research communications
Crystal structures of a manganese(I) and a rhenium(I) complex of a bipyridine ligand with a non-coordinating benzoic acid moiety
aUniversity of Wisconsin Oshkosh Department of Chemistry, 800 Algoma Blvd., Oshkosh, WI 54902, USA, and bDepartment of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI, 53706, USA
*Correspondence e-mail: lenses@uwosh.edu, iguzei@chem.wisc.edu
The structures of two facially coordinated Group VII metal complexes are reported, namely: fac-bromido[2-(2,2′-bipyridin-6-yl)benzoic acid-κ2N,N′]tricarbonylmanganese(I) tetrahydrofuran monosolvate, [MnBr(C17H12N2O2)(CO)3]·C4H8O, I, and fac-[2-(2,2′-bipyridin-6-yl)benzoic acid-κ2N,N′]tricarbonylchloridorhenium(I) tetrahydrofuran monosolvate, [ReCl(C17H12N2O2)(CO)3]·C4H8O, II. In both complexes, the metal ion is coordinated by three carbonyl ligands, a halide ion, and a 2-(2,2′-bipyridin-6-yl)benzoic acid ligand, in a distorted octahedral geometry. In manganese complex I, the tetrahydrofuran (THF) solvent molecule could not be refined due to disorder. The benzoic acid fragment is also disordered over two positions, such that the carboxylic acid group is either positioned near to the bromide ligand or to the axial carbonyl ligand. In the crystal of I, the complex molecules are linked by a pair of C—H⋯Br hydrogen bonds, forming inversion dimers that stack up the a-axis direction. In the rhenium complex II, there is hydrogen bonding between the benzoic acid moiety and a disordered co-crystallized THF molecule. In the crystal, the molecules are linked by C—H⋯Cl hydrogen bonds, forming layers parallel to (100) separated by layers of THF solvent molecules.
1. Chemical context
Crystal structures of fac-[M(2,2′-bipyridyl)(CO)3X]n+ (M = MnI or ReI, X = monoanionic ligand, n = 0 or X = neutral ligand, n = 1) complexes have been reported for complexes bearing many different bipyridyl derivatives. Among the numerous examples are structures reported by Chen et al. (2005), Gerlits & Coppens (2001), and Horn et al. (1987). Complexes of the type fac-[Re(2,2′-bipyridyl)(CO)3X]n+ and fac-[Mn(2,2′-bipyridyl)(CO)3X]n+, are of particular interest as selective catalysts for the reduction of CO2 to CO (Bourrez et al., 2011; Hawecker et al., 1986; Smieja et al., 2013; Sampson et al., 2014; Machan et al., 2014; Smieja & Kubiak, 2010). The addition of weak Brønsted acids such as water or methanol are necessary for the catalytic turnover of Mn complexes (Smieja et al., 2013) and they also significantly increase the catalytic rate of Re complexes (Smieja et al., 2012). Moreover, the use of bipyridyl ligands in these complexes containing phenolic functional groups positioned near the CO2 binding site, which can act as intramolecular proton donors, have been shown to enhance catalytic performance. fac-Tricarbonylbromido[2-(2,2′-bipyridin-6-yl-κ2N,N′)phenol]manganese(I) showed enhanced for the reduction of CO2 to CO compared to fac-tricarbonylbromido(2,2′-bipyridine)manganese(I) (Agarwal et al., 2015). fac-Tricarbonylbromido[2-(4-phenyl-2,2′-bipyridin-6-yl-κ2N,N′)benzene-1,3-diol]manganese(I) was found to electrocatalytically reduce CO2 to a mixture of CO and formic acid in the absence of external Brønsted acids (Franco et al., 2014). In the presence of external Brønsted acids, selectivity for formate versus CO was found to depend on acid strength (Franco et al., 2017).
Herein, we report on the syntheses and structural characterizations of two new complexes of the type fac-[M(2,2′-bipyridyl)(CO)3X]n+, viz. fac-bromido[2-(2,2′-bipyridin-6-yl)benzoic acid-κ2N,N′]tricarbonylmanganese(I) tetrahydrofuran monosolvate, I, and fac-[2-(2,2′-bipyridin-6-yl)benzoic acid-κ2N,N′]tricarbonylchloridorhenium(I) tetrahydrofuran monosolvate, II, in which the bipyridyl ligand contains a different type of intramolecular proton donor positioned near the CO2 binding site. These complexes are the first reported examples of a bipyridyl ligand containing a 2-(2,2′-bipyridin-6-yl)benzoic acid backbone in which the benzoic acid moiety remains protonated and does not coordinate to the metal.
2. Structural commentary
The molecular structures of compounds I and II are illustrated in Figs. 1 and 2, respectively. Both compounds crystallize as tetrahydrofuran (THF) monosolvates, THF having been used for the recrystallization of both compounds. The metal atoms exhibit distorted octahedral geometries and contain primary coordination spheres similar to those of other fac-[Re(α-diimine)(CO)3Cl] and fac-[Mn(α-diimine)(CO)3Br] complexes; including fac-tricarbonylchlorido(4,4′-dihydroxy-2,2′-bipyridine)rhenium(I) (III; Manbeck et al., 2015), fac-tricarbonyliodido(2,2′-bipyridine)manganese(I) (IV; Stor et al., 1995), and fac-tricarbonylbromido[2-(2,2′-bipyridin-6-yl-κ2N,N′)phenol]manganese(I) (V; Agarwal et al., 2015). The metal–ligand bond distances are similar to those previously reported for complexes of this type, for e.g., in I the Mn—N bond distances are 2.029 (2) and 2.082 (2) Å, while in V the Mn—N bond distances are 2.0347 (8) and 2.091 (1) Å.
In I, the benzoic acid fragment is disordered over two positions (Fig. 1). In the major component, the carboxylic acid group is positioned near the bromide ligand (see Fig. 3), whereas in the minor component the benzoic acid fragment is rotated such that the carboxylic acid group is positioned near the axial carbonyl ligand (see Fig. 4). In II, the benzoic acid fragment is not disordered, and the carboxylic acid group is positioned near the axial carbonyl ligand (Fig. 2).
Molecules with similar motifs, in which a benzoic acid is bound to a pyridyl ring in the ortho position (Charris-Molina et al., 2017) or to a phenyl ring in the ortho position (Dobson & Gerkin, 1998), have been structurally characterized. Compared to the torsion angles between the benzoic acid fragment and the pyridyl or phenyl rings in these structures, the benzoic acid fragment and the pyridyl ring in I and II are closer to being perpendicular to each other, with the N2—C13—C14—C19 torsion angle being −116.4 (3)° in the major component of I and 100.55 (19)° in II. In the minor component of I, the N2—C13—C14A—C19A torsion angle is 85.7 (8)°. In contrast, for the structures reported by Charris-Molina et al. (2017) the analogous torsion angles are 52.6 (4), −40.5 (3), −51.5 (5) and 48.8 (3)°. In the structure of biphenyl-2-carboxylic acid itself (Dobson & Gerkin, 1998), the analogous torsion angles of the four molecules of the are −46.7 (4), −52.3 (4), 48.2 (4) and 52.3 (4)°. Smaller absolute values of the torsion angles for I and II would result in closer contacts between the atoms of the benzoic acid fragment and the ancillary ligands around the metal, which may explain the more perpendicular torsion angles found in I and II.
3. Supramolecular features
In compound I, the THF solvate molecule is disordered over several positions and probably forms intermolecular hydrogen bonds. In the crystal, complex molecules are linked by pairs of C—H⋯Br hydrogen bonds, forming inversion dimers (Table 1). A view of the crystal packing is given in Fig. 5 and shows the voids occupied by the disordered THF solvent molecules.
In compound II, there is hydrogen bonding between the benzoic acid group and the oxygen atom of the disordered THF molecule (Table 2). In the crystal, the complex molecules are linked by C—H⋯Cl hydrogen bonds, forming layers lying parallel to the bc plane (Table 2 and Fig. 6), which are separated by layers of THF solvent molecules.
4. Database survey
A search of the Cambridge Structural Database (Version 5.39, last update February 2018; Groom et al., 2016) for complexes containing a polypyridine ligand with an o-benzoate substituent in the 6-position of the polypyridine moiety gave two hits, viz. [2-(2,2′:4′,2′′-terpyridin-6′-yl-κ2N1,N1′)benzoato-κO]manganese(II) trihydrate (CSD refcode MEWBAT; Liu, 2013) and {[dimethyl(phenyl)silyl]acetato}-[N-(3,5-di-t-butylphenyl)-2-{6-[3,5-di-t-butyl-2-({[tris(pentafluorophenyl)-λ5-boranyl]oxy}carbonyl)phenyl]pyridin-2-yl}quinolin-8-amine]scandium toluene solvate (RIPLOT; LeBlanc et al., 2014). Unlike in I and II, the benzoate substituent in these complexes is deprotonated and coordinates to the metal forming a seven-membered chelate ring. The reaction conditions and the low of the metals in I and II would be expected to disfavor deprotonation of the benzoic acid substituent and its coordination to the metal.
5. Electrochemistry
In order to determine whether I and II could act as pre-catalysts for the reduction of CO2, cyclic voltammetry experiments were performed. These studies were conducted in acetonitrile containing 1 mM I or II and 0.1 M tetrabutylammonium hexafluorophosphate using a glassy carbon a platinum wire and an Ag/Ag+ non-aqueous Ferrocene was used as an internal standard. In order to determine whether a enhancement was observed in the presence of the substrate, the current response was measured under an atmosphere, after bubbling CO2 through the solution, and after bubbling CO2 through the solution in the presence of an external Brønsted acid (5% water by volume). In the presence of CO2 and water, similar complexes have shown a enhancement at the potential at which the complexes undergo a second one-electron reduction (Bourrez et al., 2011; Agarwal et al., 2015; Smieja & Kubiak, 2010). Interestingly, neither complex presented here showed electrocatalytic activity for the reduction of CO2 at or near this potential, even in the presence of an external Brønsted acid (5% water by volume). In order to probe whether catalysis was inhibited specifically by the intramolecular nature of the benzoic acid substituent, the cyclic voltammetry of fac-[Mn(2,2′-bipyridyl)(CO)3Br] was performed in the presence of CO2, 5% water, and up to 50 molar equivalents of benzoic acid. Even in the presence of 50 molar equivalents of benzoic acid, the current enhancement was similar to that in the presence of only CO2 and 5% water (Bourrez et al., 2011), indicating that it is the presence of the benzoic acid substituent in an intramolecular fashion that inhibits catalysis.
6. Synthesis and crystallization
Toluene, ethanol, and acetonitrile used in syntheses were degassed by sparging with N2. THF, hexane, and pentane were dried over molecular sieves and degassed using the freeze-pump-thaw method when used for recrystallization. All other reagents and solvents were purchased commercially and used as received. Metallated complexes were manipulated and stored in the dark to minimize exposure to light.
Synthesis of methyl 2-(2,2′-bipyridin-6-yl)benzoate: The reagents 6-bromo-2,2′-bipyridine (0.500 g, 2.13 mmol) and 2-methoxycarbonylphenylboronic acid, pinacol ester (0.715 g, 2.73 mmol) and the catalyst tetrakis(triphenylphosphine)palladium(0) (0.11 g, 0.095 mmol) were placed in a Kjedahl-shaped Schlenk flask. The flask was then evacuated and refilled with nitrogen three times, ending with the flask under nitrogen. Toluene (26 ml), ethanol (2.6 ml), and 2 M aqueous K2CO3 (2.1 ml) were added to the flask, which was then heated at 368 K under nitrogen under stirring for 41 h. The reaction mixture was cooled to room temperature, and then saturated aqueous ammonium chloride (26 ml) and deionized water (26 ml) were added to the reaction flask. The product mixture was then extracted with dichloromethane three times (42 ml, 30 ml, 25 ml). The combined organic layers were dried over magnesium sulfate and then filtered. The solvent was removed under vacuum. The product was purified by using silica gel 60 as the solid phase and diethyl ether as the eluant (Rf = 0.60). (yield 0.395 g, 63.9%) 1H NMR (270 MHz, CDCl3) (ppm): δ8.69 (d, 1H, J = 4.7 Hz), δ8.51–8.48 (m, 2H), δ7.95–7.84 (m, 2H), δ7.77 (dd, 1H, J = 7.5 Hz, J = 1.3 Hz), δ7.69–7.45 (m, 4H), δ7.34 (poorly resolved multiplet, 1H), δ3.53 (s, 3H). MS (ES–API): found m/z = 291.1 [M + H]+; {C18H15N2O2+} requires 291.1.
Synthesis of 2-(2,2′-bipyridin-6-yl)benzoic acid: Water (7.7 ml) containing 0.77 g (19 mmol) of dissolved sodium hydroxide was added to methyl 2-(2,2′-bipyridin-6-yl)benzoate (0.175 g, 0.60 mmol). The reaction mixture was refluxed for 3 h under stirring. The reaction was then cooled to room temperature. Aqueous hydrochloric acid (2 N) was added dropwise until the pH was approximately 4. The white precipitate that appeared was collected on a Büchner funnel by vacuum filtration. The precipitate was washed with 4 ml deionized water and then dried in vacuo (yield 0.167g, 100%). 1H NMR (270 MHz, D2O containing 1M NaOH) (ppm): δ8.84 (d, 1H, J = 4.6 Hz), δ8.46 (d, 1H, J = 8.1 Hz), δ8.21–8.29 (m, 3H), δ7.88–9.95 (m, 2H), δ7.71–7.81 (m, 4H).
Synthesis of compound I: Bromopentacarbonylmanganese(I) (0.0525 g, 0.191 mmol) and 2-(2,2′-bipyridin-6-yl)benzoic acid (0.0500 g, 0.181 mmol) were placed in a Schlenk flask, which was then evacuated and refilled with nitrogen three times, ending with the flask under nitrogen. Acetonitrile (9.4 ml) was added to the flask, which was then covered with aluminium foil. The reaction was heated to 333 K and stirred under a nitrogen atmosphere for 12 h. The reaction was cooled to room temperature and the solvent then removed under vacuum. The crude product was dissolved in a minimal amount of THF and recrystallized by slow diffusion of hexane into the solution. These recrystallization conditions performed on a smaller scale produced the yellow needle-like crystals used for X-ray crystallographic analysis. IR νCO (KBr pellet, cm−1): 2019(s), 1933(s), 1912(s).
Synthesis of compound II: Pentacarbonylchlororhenium(I) (0.0273 g, 0.0755 mmol) and 2-(2,2′-bipyridin-6-yl)benzoic acid (0.0207 g, 0.0749 mmol) were placed in a Schlenk flask, which was then evacuated and refilled with nitrogen three times, ending with the flask under nitrogen. Acetonitrile (3.5 ml) was added to the flask, which was then covered with aluminium foil. The reaction was heated to 333 K and stirred under a nitrogen atmosphere for 12 h. The reaction was cooled to room temperature and the solvent then removed under vacuum. The crude product was dissolved in a minimal amount of THF and recrystallized by slow diffusion of pentane into the solution. These recrystallization conditions performed on a smaller scale produced the yellow block-like crystals used for X-ray crystallographic analysis. IR νCO (KBr pellet, cm−1): 2072(s), 1977(s), 1936(s).
7. Refinement
Crystal data, data collection and structure . For both compounds the C-bound H atoms were included in idealized positions and allowed to ride on the parent atoms: C—H = 0.95–0.99 Å with Uiso(H) = 1.2Ueq(C). In compound II, the carboxylic H atom was located in a difference-Fourier map and freely refined.
details are summarized in Table 3
|
In compound I, the benzoic acid fragment is disordered over two positions with the major component contribution of 74.8 (3)%. The disordered fragment was refined with restraints. The solvent THF molecule is disordered over at least three positions. Bond-length restraints were applied to model the molecules but the resulting isotropic displacement coefficients suggested they were mobile. In addition, the was computationally unstable. Finally the option SQUEEZE of the program PLATON (Spek, 2015) was used to correct the diffraction data for diffuse scattering effects and to identify the solvate molecule. PLATON calculated the upper limit of volume that can be occupied by the solvent to be 475 Å3, or 21% of the unit-cell volume. The program calculated 153 electrons in the for the diffuse species. This closely corresponds to four molecules of THF (160 electrons) per or one THF molecule per MnI complex (I). Their formula mass and unit-cell characteristics were not taken into account during It is very likely that this solvate molecule, which is disordered over several positions, could form hydrogen bonds.
In compound II, the THF molecule is disordered over three positions in a 0.672 (3):0.202 (2):0.126 (3) ratio. The disordered molecules were refined with restraints and constraints (Guzei, 2014).
Supporting information
https://doi.org/10.1107/S2056989018006047/su5439sup1.cif
contains datablocks I, II, Global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018006047/su5439Isup4.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989018006047/su5439IIsup5.hkl
For both structures, data collection: APEX3 (Bruker, 2015); cell
SAINT-Plus (Bruker, 2015); data reduction: SAINT-Plus (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and PLATON (Spek, 2009).[MnBr(C17H12N2O2)(CO)3]·C4H8O | F(000) = 984 |
Mr = 495.17 | Dx = 1.434 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 10.525 (3) Å | Cell parameters from 9894 reflections |
b = 18.187 (5) Å | θ = 2.2–28.9° |
c = 12.459 (4) Å | µ = 2.35 mm−1 |
β = 105.928 (13)° | T = 100 K |
V = 2293.2 (12) Å3 | Needle, yellow |
Z = 4 | 0.21 × 0.04 × 0.03 mm |
Bruker SMART APEXIII area detector diffractometer | 6992 independent reflections |
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs | 5393 reflections with I > 2σ(I) |
Mirror optics monochromator | Rint = 0.048 |
Detector resolution: 7.9 pixels mm-1 | θmax = 30.6°, θmin = 2.0° |
0.5° ω and 0.5° φ scans | h = −15→15 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −26→25 |
Tmin = 0.673, Tmax = 0.802 | l = −17→17 |
51901 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.041 | H-atom parameters constrained |
wR(F2) = 0.104 | w = 1/[σ2(Fo2) + (0.0415P)2 + 3.4283P] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max = 0.001 |
6992 reflections | Δρmax = 0.59 e Å−3 |
346 parameters | Δρmin = −0.76 e Å−3 |
149 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Br1 | 0.81210 (3) | 0.58497 (2) | 0.67241 (2) | 0.03094 (8) | |
Mn1 | 0.79215 (3) | 0.67459 (2) | 0.51236 (3) | 0.02312 (9) | |
O1 | 0.8538 (2) | 0.79491 (12) | 0.6780 (2) | 0.0465 (6) | |
O2 | 1.08314 (18) | 0.67387 (11) | 0.57136 (18) | 0.0358 (4) | |
O3 | 0.7716 (2) | 0.77396 (12) | 0.32364 (19) | 0.0422 (5) | |
N1 | 0.7657 (2) | 0.58451 (10) | 0.41253 (18) | 0.0250 (4) | |
N2 | 0.58835 (19) | 0.66090 (10) | 0.47642 (18) | 0.0231 (4) | |
C1 | 0.8213 (2) | 0.74942 (14) | 0.6135 (2) | 0.0312 (6) | |
C2 | 0.9700 (2) | 0.67300 (13) | 0.5454 (2) | 0.0276 (5) | |
C3 | 0.7791 (2) | 0.73615 (14) | 0.3956 (3) | 0.0319 (6) | |
C4 | 0.8611 (3) | 0.55066 (14) | 0.3774 (2) | 0.0320 (6) | |
H4 | 0.9461 | 0.5727 | 0.3938 | 0.038* | |
C5 | 0.8408 (3) | 0.48547 (15) | 0.3187 (2) | 0.0365 (6) | |
H5 | 0.9105 | 0.4628 | 0.2960 | 0.044* | |
C6 | 0.7168 (3) | 0.45389 (15) | 0.2939 (3) | 0.0399 (7) | |
H6 | 0.7000 | 0.4089 | 0.2538 | 0.048* | |
C7 | 0.6172 (3) | 0.48852 (15) | 0.3280 (3) | 0.0361 (6) | |
H7 | 0.5313 | 0.4676 | 0.3113 | 0.043* | |
C8 | 0.6446 (2) | 0.55402 (13) | 0.3867 (2) | 0.0265 (5) | |
C9 | 0.5448 (2) | 0.59597 (12) | 0.4244 (2) | 0.0247 (5) | |
C10 | 0.4168 (3) | 0.57149 (15) | 0.4078 (3) | 0.0352 (6) | |
H10 | 0.3897 | 0.5259 | 0.3714 | 0.042* | |
C11 | 0.3283 (3) | 0.61409 (16) | 0.4449 (3) | 0.0415 (7) | |
H11 | 0.2408 | 0.5973 | 0.4370 | 0.050* | |
C12 | 0.3689 (3) | 0.68058 (15) | 0.4929 (3) | 0.0365 (6) | |
H12 | 0.3088 | 0.7114 | 0.5166 | 0.044* | |
C13 | 0.4982 (2) | 0.70278 (13) | 0.5069 (2) | 0.0276 (5) | |
O4 | 0.5438 (3) | 0.69265 (14) | 0.7265 (2) | 0.0426 (7) | 0.748 (3) |
H4A | 0.5453 | 0.6705 | 0.7860 | 0.064* | 0.748 (3) |
O5 | 0.5472 (3) | 0.79126 (15) | 0.8336 (2) | 0.0375 (7) | 0.748 (3) |
C14 | 0.5363 (3) | 0.78182 (19) | 0.5386 (3) | 0.0255 (7) | 0.748 (3) |
C15 | 0.5461 (5) | 0.8292 (2) | 0.4543 (4) | 0.0335 (10) | 0.748 (3) |
H15 | 0.5330 | 0.8108 | 0.3807 | 0.040* | 0.748 (3) |
C16 | 0.5748 (5) | 0.9035 (2) | 0.4753 (4) | 0.0411 (9) | 0.748 (3) |
H16 | 0.5847 | 0.9351 | 0.4174 | 0.049* | 0.748 (3) |
C17 | 0.5889 (4) | 0.9309 (2) | 0.5823 (4) | 0.0393 (9) | 0.748 (3) |
H17 | 0.6067 | 0.9816 | 0.5975 | 0.047* | 0.748 (3) |
C18 | 0.5768 (4) | 0.8846 (2) | 0.6650 (4) | 0.0300 (9) | 0.748 (3) |
H18 | 0.5873 | 0.9037 | 0.7379 | 0.036* | 0.748 (3) |
C19 | 0.5495 (3) | 0.80940 (17) | 0.6456 (3) | 0.0260 (7) | 0.748 (3) |
C20 | 0.5467 (5) | 0.7646 (2) | 0.7440 (4) | 0.0277 (8) | 0.748 (3) |
O4A | 0.4563 (8) | 0.8099 (4) | 0.3602 (6) | 0.0343 (19) | 0.252 (3) |
H4AA | 0.4104 | 0.8358 | 0.3080 | 0.051* | 0.252 (3) |
O5A | 0.5901 (11) | 0.9062 (5) | 0.3988 (8) | 0.053 (3) | 0.252 (3) |
C14A | 0.5335 (9) | 0.7683 (5) | 0.5909 (9) | 0.024 (2) | 0.252 (3) |
C15A | 0.5520 (14) | 0.7576 (7) | 0.7034 (10) | 0.027 (3) | 0.252 (3) |
H15A | 0.5446 | 0.7098 | 0.7319 | 0.033* | 0.252 (3) |
C16A | 0.5818 (10) | 0.8179 (5) | 0.7748 (8) | 0.028 (2) | 0.252 (3) |
H16A | 0.5914 | 0.8127 | 0.8525 | 0.034* | 0.252 (3) |
C17A | 0.5970 (11) | 0.8861 (5) | 0.7292 (9) | 0.029 (2) | 0.252 (3) |
H17A | 0.6121 | 0.9277 | 0.7772 | 0.035* | 0.252 (3) |
C18A | 0.5916 (11) | 0.8967 (6) | 0.6210 (9) | 0.024 (2) | 0.252 (3) |
H18A | 0.6125 | 0.9429 | 0.5947 | 0.029* | 0.252 (3) |
C19A | 0.5536 (8) | 0.8360 (4) | 0.5484 (7) | 0.0224 (18) | 0.252 (3) |
C20A | 0.5423 (17) | 0.8528 (7) | 0.4324 (10) | 0.034 (3) | 0.252 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.02879 (13) | 0.02479 (12) | 0.04266 (16) | −0.00564 (9) | 0.01555 (11) | 0.00050 (10) |
Mn1 | 0.02055 (17) | 0.01701 (15) | 0.0360 (2) | −0.00424 (12) | 0.01480 (15) | −0.00188 (14) |
O1 | 0.0328 (10) | 0.0387 (11) | 0.0734 (16) | −0.0104 (9) | 0.0234 (11) | −0.0271 (11) |
O2 | 0.0229 (9) | 0.0385 (10) | 0.0490 (12) | −0.0039 (7) | 0.0148 (8) | 0.0071 (9) |
O3 | 0.0390 (11) | 0.0416 (11) | 0.0484 (13) | −0.0009 (9) | 0.0160 (10) | 0.0083 (10) |
N1 | 0.0253 (10) | 0.0208 (9) | 0.0327 (11) | −0.0001 (7) | 0.0144 (9) | 0.0007 (8) |
N2 | 0.0218 (9) | 0.0171 (8) | 0.0340 (11) | −0.0034 (7) | 0.0139 (8) | −0.0027 (8) |
C1 | 0.0220 (11) | 0.0286 (12) | 0.0481 (16) | −0.0055 (9) | 0.0183 (11) | −0.0071 (11) |
C2 | 0.0281 (12) | 0.0219 (10) | 0.0378 (14) | −0.0031 (9) | 0.0172 (11) | 0.0031 (10) |
C3 | 0.0239 (12) | 0.0224 (11) | 0.0532 (17) | −0.0046 (9) | 0.0173 (12) | −0.0046 (11) |
C4 | 0.0303 (13) | 0.0305 (12) | 0.0402 (15) | 0.0029 (10) | 0.0182 (12) | 0.0009 (11) |
C5 | 0.0420 (15) | 0.0334 (13) | 0.0394 (15) | 0.0132 (11) | 0.0200 (13) | −0.0015 (11) |
C6 | 0.0484 (17) | 0.0271 (13) | 0.0469 (17) | 0.0033 (12) | 0.0178 (14) | −0.0119 (12) |
C7 | 0.0363 (14) | 0.0267 (12) | 0.0473 (17) | −0.0057 (10) | 0.0151 (13) | −0.0132 (11) |
C8 | 0.0287 (12) | 0.0197 (10) | 0.0347 (13) | −0.0025 (9) | 0.0150 (10) | −0.0049 (9) |
C9 | 0.0247 (11) | 0.0197 (10) | 0.0330 (13) | −0.0044 (8) | 0.0134 (10) | −0.0038 (9) |
C10 | 0.0296 (13) | 0.0276 (12) | 0.0539 (18) | −0.0117 (10) | 0.0206 (13) | −0.0121 (12) |
C11 | 0.0260 (13) | 0.0384 (14) | 0.068 (2) | −0.0138 (11) | 0.0261 (14) | −0.0121 (14) |
C12 | 0.0284 (13) | 0.0325 (13) | 0.0559 (18) | −0.0017 (10) | 0.0237 (13) | −0.0102 (12) |
C13 | 0.0257 (11) | 0.0217 (10) | 0.0387 (14) | −0.0012 (9) | 0.0143 (10) | −0.0060 (10) |
O4 | 0.068 (2) | 0.0295 (13) | 0.0364 (15) | 0.0106 (12) | 0.0239 (15) | 0.0043 (11) |
O5 | 0.0448 (16) | 0.0388 (14) | 0.0356 (15) | −0.0106 (12) | 0.0223 (12) | −0.0067 (11) |
C14 | 0.0217 (15) | 0.0238 (16) | 0.0346 (19) | 0.0003 (12) | 0.0137 (15) | −0.0061 (14) |
C15 | 0.041 (2) | 0.026 (2) | 0.036 (2) | −0.0005 (17) | 0.0158 (19) | −0.0044 (16) |
C16 | 0.056 (3) | 0.0269 (17) | 0.043 (2) | −0.0034 (16) | 0.0183 (19) | −0.0004 (15) |
C17 | 0.055 (3) | 0.0223 (17) | 0.044 (2) | −0.0020 (16) | 0.0189 (19) | −0.0034 (16) |
C18 | 0.034 (2) | 0.0257 (17) | 0.034 (2) | 0.0016 (14) | 0.016 (2) | −0.0077 (17) |
C19 | 0.0243 (15) | 0.0233 (14) | 0.0327 (17) | 0.0036 (11) | 0.0117 (13) | −0.0038 (13) |
C20 | 0.0226 (17) | 0.0299 (18) | 0.034 (2) | 0.0031 (13) | 0.0132 (18) | 0.0016 (16) |
O4A | 0.047 (4) | 0.030 (3) | 0.021 (3) | −0.016 (3) | 0.002 (3) | 0.004 (3) |
O5A | 0.076 (7) | 0.043 (4) | 0.038 (5) | −0.033 (4) | 0.015 (4) | 0.007 (4) |
C14A | 0.022 (4) | 0.022 (4) | 0.035 (5) | −0.004 (3) | 0.017 (4) | 0.000 (3) |
C15A | 0.023 (5) | 0.028 (4) | 0.036 (5) | −0.003 (3) | 0.017 (4) | −0.007 (4) |
C16A | 0.033 (5) | 0.024 (4) | 0.031 (4) | −0.002 (3) | 0.014 (4) | −0.003 (3) |
C17A | 0.039 (6) | 0.019 (4) | 0.037 (5) | 0.001 (3) | 0.021 (5) | −0.006 (3) |
C18A | 0.027 (5) | 0.017 (4) | 0.031 (5) | −0.003 (3) | 0.014 (4) | −0.001 (3) |
C19A | 0.025 (4) | 0.018 (3) | 0.029 (4) | −0.004 (3) | 0.014 (3) | 0.000 (3) |
C20A | 0.046 (7) | 0.033 (6) | 0.026 (4) | −0.017 (5) | 0.015 (4) | 0.001 (3) |
Br1—Mn1 | 2.5391 (7) | C13—C14A | 1.562 (10) |
Mn1—N1 | 2.029 (2) | O4—H4A | 0.8400 |
Mn1—N2 | 2.082 (2) | O4—C20 | 1.326 (5) |
Mn1—C1 | 1.822 (3) | O5—C20 | 1.215 (5) |
Mn1—C2 | 1.803 (3) | C14—C15 | 1.384 (6) |
Mn1—C3 | 1.810 (3) | C14—C19 | 1.395 (5) |
O1—C1 | 1.139 (3) | C15—H15 | 0.9500 |
O2—C2 | 1.145 (3) | C15—C16 | 1.394 (5) |
O3—C3 | 1.116 (3) | C16—H16 | 0.9500 |
N1—C4 | 1.349 (3) | C16—C17 | 1.392 (6) |
N1—C8 | 1.345 (3) | C17—H17 | 0.9500 |
N2—C9 | 1.364 (3) | C17—C18 | 1.364 (6) |
N2—C13 | 1.350 (3) | C18—H18 | 0.9500 |
C4—H4 | 0.9500 | C18—C19 | 1.405 (5) |
C4—C5 | 1.378 (4) | C19—C20 | 1.479 (5) |
C5—H5 | 0.9500 | O4A—H4AA | 0.8400 |
C5—C6 | 1.381 (4) | O4A—C20A | 1.338 (13) |
C6—H6 | 0.9500 | O5A—C20A | 1.220 (12) |
C6—C7 | 1.386 (4) | C14A—C15A | 1.375 (13) |
C7—H7 | 0.9500 | C14A—C19A | 1.378 (10) |
C7—C8 | 1.386 (3) | C15A—H15A | 0.9500 |
C8—C9 | 1.476 (3) | C15A—C16A | 1.393 (12) |
C9—C10 | 1.379 (3) | C16A—H16A | 0.9500 |
C10—H10 | 0.9500 | C16A—C17A | 1.391 (12) |
C10—C11 | 1.384 (4) | C17A—H17A | 0.9500 |
C11—H11 | 0.9500 | C17A—C18A | 1.346 (12) |
C11—C12 | 1.365 (4) | C18A—H18A | 0.9500 |
C12—H12 | 0.9500 | C18A—C19A | 1.414 (11) |
C12—C13 | 1.384 (4) | C19A—C20A | 1.449 (12) |
C13—C14 | 1.515 (4) | ||
N1—Mn1—Br1 | 86.05 (6) | C13—C12—H12 | 120.3 |
N1—Mn1—N2 | 79.15 (8) | N2—C13—C12 | 122.9 (2) |
N2—Mn1—Br1 | 87.16 (6) | N2—C13—C14 | 117.0 (2) |
C1—Mn1—Br1 | 88.54 (9) | N2—C13—C14A | 124.3 (4) |
C1—Mn1—N1 | 174.43 (11) | C12—C13—C14 | 119.3 (2) |
C1—Mn1—N2 | 101.88 (9) | C12—C13—C14A | 110.6 (4) |
C2—Mn1—Br1 | 87.32 (8) | C20—O4—H4A | 109.5 |
C2—Mn1—N1 | 94.95 (10) | C15—C14—C13 | 117.5 (3) |
C2—Mn1—N2 | 172.18 (9) | C15—C14—C19 | 119.5 (3) |
C2—Mn1—C1 | 83.50 (11) | C19—C14—C13 | 122.7 (3) |
C3—Mn1—Br1 | 178.20 (8) | C14—C15—H15 | 119.4 |
C3—Mn1—N1 | 92.27 (11) | C14—C15—C16 | 121.3 (4) |
C3—Mn1—N2 | 93.14 (10) | C16—C15—H15 | 119.4 |
C3—Mn1—C1 | 93.13 (13) | C15—C16—H16 | 120.4 |
C3—Mn1—C2 | 92.21 (11) | C15—C16—C17 | 119.2 (4) |
C4—N1—Mn1 | 125.32 (18) | C17—C16—H16 | 120.4 |
C8—N1—Mn1 | 116.16 (16) | C16—C17—H17 | 120.2 |
C8—N1—C4 | 118.3 (2) | C18—C17—C16 | 119.7 (4) |
C9—N2—Mn1 | 113.44 (15) | C18—C17—H17 | 120.2 |
C13—N2—Mn1 | 129.34 (16) | C17—C18—H18 | 119.1 |
C13—N2—C9 | 116.8 (2) | C17—C18—C19 | 121.9 (4) |
O1—C1—Mn1 | 172.5 (2) | C19—C18—H18 | 119.1 |
O2—C2—Mn1 | 176.5 (2) | C14—C19—C18 | 118.5 (4) |
O3—C3—Mn1 | 179.7 (3) | C14—C19—C20 | 125.1 (3) |
N1—C4—H4 | 118.5 | C18—C19—C20 | 116.3 (4) |
N1—C4—C5 | 122.9 (3) | O4—C20—C19 | 114.3 (4) |
C5—C4—H4 | 118.5 | O5—C20—O4 | 122.6 (4) |
C4—C5—H5 | 120.8 | O5—C20—C19 | 123.1 (4) |
C4—C5—C6 | 118.5 (2) | C20A—O4A—H4AA | 109.5 |
C6—C5—H5 | 120.8 | C15A—C14A—C13 | 121.1 (8) |
C5—C6—H6 | 120.3 | C15A—C14A—C19A | 121.6 (9) |
C5—C6—C7 | 119.3 (3) | C19A—C14A—C13 | 117.2 (8) |
C7—C6—H6 | 120.3 | C14A—C15A—H15A | 120.5 |
C6—C7—H7 | 120.4 | C14A—C15A—C16A | 118.9 (11) |
C6—C7—C8 | 119.1 (3) | C16A—C15A—H15A | 120.5 |
C8—C7—H7 | 120.4 | C15A—C16A—H16A | 120.9 |
N1—C8—C7 | 121.8 (2) | C17A—C16A—C15A | 118.2 (9) |
N1—C8—C9 | 114.9 (2) | C17A—C16A—H16A | 120.9 |
C7—C8—C9 | 123.3 (2) | C16A—C17A—H17A | 118.1 |
N2—C9—C8 | 115.0 (2) | C18A—C17A—C16A | 123.9 (9) |
N2—C9—C10 | 122.5 (2) | C18A—C17A—H17A | 118.1 |
C10—C9—C8 | 122.5 (2) | C17A—C18A—H18A | 121.4 |
C9—C10—H10 | 120.4 | C17A—C18A—C19A | 117.1 (10) |
C9—C10—C11 | 119.2 (2) | C19A—C18A—H18A | 121.4 |
C11—C10—H10 | 120.4 | C14A—C19A—C18A | 119.8 (9) |
C10—C11—H11 | 120.5 | C14A—C19A—C20A | 126.3 (9) |
C12—C11—C10 | 118.9 (2) | C18A—C19A—C20A | 113.8 (8) |
C12—C11—H11 | 120.5 | O4A—C20A—C19A | 113.7 (9) |
C11—C12—H12 | 120.3 | O5A—C20A—O4A | 120.0 (10) |
C11—C12—C13 | 119.5 (2) | O5A—C20A—C19A | 125.6 (11) |
Mn1—N1—C4—C5 | 173.4 (2) | C12—C13—C14—C19 | 73.9 (4) |
Mn1—N1—C8—C7 | −173.9 (2) | C12—C13—C14A—C15A | 72.9 (10) |
Mn1—N1—C8—C9 | 6.8 (3) | C12—C13—C14A—C19A | −111.1 (7) |
Mn1—N2—C9—C8 | −9.8 (3) | C13—N2—C9—C8 | 176.6 (2) |
Mn1—N2—C9—C10 | 170.4 (2) | C13—N2—C9—C10 | −3.2 (4) |
Mn1—N2—C13—C12 | −168.8 (2) | C13—C14—C15—C16 | 177.1 (4) |
Mn1—N2—C13—C14 | 21.9 (4) | C13—C14—C19—C18 | −176.0 (3) |
Mn1—N2—C13—C14A | −7.7 (6) | C13—C14—C19—C20 | 8.8 (5) |
N1—C4—C5—C6 | 0.7 (4) | C13—C14A—C15A—C16A | −179.2 (9) |
N1—C8—C9—N2 | 2.3 (3) | C13—C14A—C19A—C18A | −177.2 (8) |
N1—C8—C9—C10 | −178.0 (3) | C13—C14A—C19A—C20A | 1.5 (15) |
N2—C9—C10—C11 | 0.2 (5) | C14—C15—C16—C17 | −2.5 (7) |
N2—C13—C14—C15 | 69.6 (4) | C14—C19—C20—O4 | 6.6 (6) |
N2—C13—C14—C19 | −116.4 (3) | C14—C19—C20—O5 | −173.5 (4) |
N2—C13—C14A—C15A | −90.2 (10) | C15—C14—C19—C18 | −2.1 (5) |
N2—C13—C14A—C19A | 85.7 (8) | C15—C14—C19—C20 | −177.3 (4) |
C4—N1—C8—C7 | 1.6 (4) | C15—C16—C17—C18 | 1.2 (7) |
C4—N1—C8—C9 | −177.7 (2) | C16—C17—C18—C19 | −0.5 (7) |
C4—C5—C6—C7 | 0.2 (5) | C17—C18—C19—C14 | 0.9 (6) |
C5—C6—C7—C8 | −0.2 (5) | C17—C18—C19—C20 | 176.6 (4) |
C6—C7—C8—N1 | −0.7 (4) | C18—C19—C20—O4 | −168.7 (4) |
C6—C7—C8—C9 | 178.5 (3) | C18—C19—C20—O5 | 11.2 (6) |
C7—C8—C9—N2 | −177.1 (3) | C19—C14—C15—C16 | 2.9 (7) |
C7—C8—C9—C10 | 2.7 (4) | C14A—C15A—C16A—C17A | −2.7 (17) |
C8—N1—C4—C5 | −1.7 (4) | C14A—C19A—C20A—O4A | 29 (2) |
C8—C9—C10—C11 | −179.6 (3) | C14A—C19A—C20A—O5A | −160.9 (15) |
C9—N2—C13—C12 | 3.6 (4) | C15A—C14A—C19A—C18A | −1.3 (15) |
C9—N2—C13—C14 | −165.7 (3) | C15A—C14A—C19A—C20A | 177.4 (13) |
C9—N2—C13—C14A | 164.7 (5) | C15A—C16A—C17A—C18A | −3.7 (17) |
C9—C10—C11—C12 | 2.6 (5) | C16A—C17A—C18A—C19A | 7.3 (17) |
C10—C11—C12—C13 | −2.2 (5) | C17A—C18A—C19A—C14A | −4.8 (15) |
C11—C12—C13—N2 | −1.0 (5) | C17A—C18A—C19A—C20A | 176.4 (12) |
C11—C12—C13—C14 | 168.0 (3) | C18A—C19A—C20A—O4A | −152.6 (12) |
C11—C12—C13—C14A | −164.4 (5) | C18A—C19A—C20A—O5A | 18 (2) |
C12—C13—C14—C15 | −100.1 (4) | C19A—C14A—C15A—C16A | 5.0 (17) |
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H10···Br1i | 0.95 | 2.87 | 3.685 (3) | 144 |
Symmetry code: (i) −x+1, −y+1, −z+1. |
[ReCl(C17H12N2O2)(CO)3]·C4H8O | F(000) = 1272 |
Mr = 654.07 | Dx = 1.867 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 15.462 (4) Å | Cell parameters from 9101 reflections |
b = 11.370 (3) Å | θ = 2.6–31.8° |
c = 13.370 (3) Å | µ = 5.38 mm−1 |
β = 98.023 (10)° | T = 100 K |
V = 2327.4 (10) Å3 | Block, yellow |
Z = 4 | 0.28 × 0.24 × 0.22 mm |
Bruker SMART APEXIII area detector diffractometer | 7944 independent reflections |
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs | 7361 reflections with I > 2σ(I) |
Mirror optics monochromator | Rint = 0.027 |
Detector resolution: 7.9 pixels mm-1 | θmax = 31.9°, θmin = 1.3° |
0.5° ω and 0.5° φ scans | h = −22→22 |
Absorption correction: analytical (SADABS; Krause et al., 2015) | k = −16→16 |
Tmin = 0.285, Tmax = 0.526 | l = −19→19 |
70522 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.016 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.039 | w = 1/[σ2(Fo2) + (0.0182P)2 + 2.0257P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.003 |
7944 reflections | Δρmax = 1.63 e Å−3 |
342 parameters | Δρmin = −1.64 e Å−3 |
27 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Re1 | 0.25443 (2) | 0.56361 (2) | 0.41243 (2) | 0.01643 (2) | |
Cl1 | 0.12745 (2) | 0.69931 (3) | 0.37941 (3) | 0.02075 (7) | |
O1 | 0.38542 (11) | 0.75829 (16) | 0.48236 (17) | 0.0571 (5) | |
O2 | 0.31136 (12) | 0.60610 (14) | 0.20431 (13) | 0.0469 (4) | |
O3 | 0.40094 (9) | 0.38300 (14) | 0.46361 (13) | 0.0395 (3) | |
O4 | 0.25774 (8) | 0.21703 (11) | 0.31781 (9) | 0.0263 (2) | |
O5 | 0.31281 (9) | 0.16759 (12) | 0.17689 (11) | 0.0295 (3) | |
H5 | 0.339 (2) | 0.111 (3) | 0.218 (2) | 0.064 (9)* | |
N1 | 0.20926 (9) | 0.54664 (12) | 0.55735 (10) | 0.0189 (2) | |
N2 | 0.15082 (8) | 0.42971 (10) | 0.38837 (9) | 0.0141 (2) | |
C1 | 0.33623 (12) | 0.68554 (17) | 0.45436 (17) | 0.0336 (4) | |
C2 | 0.28734 (13) | 0.58568 (16) | 0.28011 (16) | 0.0295 (4) | |
C3 | 0.34552 (11) | 0.44986 (15) | 0.44347 (15) | 0.0260 (3) | |
C4 | 0.24129 (12) | 0.60914 (17) | 0.63982 (14) | 0.0298 (4) | |
H4 | 0.2891 | 0.6606 | 0.6359 | 0.036* | |
C5 | 0.20740 (15) | 0.6013 (2) | 0.72977 (15) | 0.0386 (5) | |
H5A | 0.2321 | 0.6456 | 0.7870 | 0.046* | |
C6 | 0.13710 (14) | 0.5282 (2) | 0.73522 (13) | 0.0365 (5) | |
H6 | 0.1123 | 0.5219 | 0.7961 | 0.044* | |
C7 | 0.10326 (12) | 0.46437 (17) | 0.65100 (13) | 0.0271 (3) | |
H7 | 0.0542 | 0.4145 | 0.6530 | 0.033* | |
C8 | 0.14155 (10) | 0.47363 (13) | 0.56311 (11) | 0.0178 (3) | |
C9 | 0.11021 (9) | 0.40700 (13) | 0.47062 (11) | 0.0163 (2) | |
C10 | 0.04153 (11) | 0.32791 (14) | 0.46733 (14) | 0.0256 (3) | |
H10 | 0.0159 | 0.3116 | 0.5264 | 0.031* | |
C11 | 0.01085 (12) | 0.27318 (16) | 0.37729 (17) | 0.0313 (4) | |
H11 | −0.0374 | 0.2207 | 0.3729 | 0.038* | |
C12 | 0.05092 (11) | 0.29564 (15) | 0.29444 (14) | 0.0272 (3) | |
H12 | 0.0306 | 0.2587 | 0.2318 | 0.033* | |
C13 | 0.12151 (10) | 0.37260 (13) | 0.30166 (11) | 0.0185 (3) | |
C14 | 0.15673 (11) | 0.39961 (15) | 0.20576 (12) | 0.0236 (3) | |
C15 | 0.11602 (16) | 0.4894 (2) | 0.14585 (15) | 0.0413 (5) | |
H15 | 0.0723 | 0.5356 | 0.1704 | 0.050* | |
C16 | 0.13830 (19) | 0.5124 (2) | 0.05091 (16) | 0.0514 (7) | |
H16 | 0.1110 | 0.5752 | 0.0116 | 0.062* | |
C17 | 0.20068 (16) | 0.4436 (2) | 0.01340 (14) | 0.0395 (5) | |
H17 | 0.2160 | 0.4589 | −0.0518 | 0.047* | |
C18 | 0.24041 (12) | 0.35285 (17) | 0.07105 (12) | 0.0274 (3) | |
H18 | 0.2825 | 0.3052 | 0.0448 | 0.033* | |
C19 | 0.21945 (10) | 0.33025 (14) | 0.16769 (12) | 0.0206 (3) | |
C20 | 0.26432 (10) | 0.23343 (14) | 0.23004 (13) | 0.0204 (3) | |
O6 | 0.4105 (3) | 0.0039 (5) | 0.2725 (3) | 0.0444 (9) | 0.672 (3) |
C21 | 0.4761 (3) | −0.0296 (4) | 0.2093 (3) | 0.0412 (10) | 0.672 (3) |
H21A | 0.5111 | 0.0390 | 0.1931 | 0.049* | 0.672 (3) |
H21B | 0.4492 | −0.0674 | 0.1458 | 0.049* | 0.672 (3) |
C22 | 0.5303 (3) | −0.1156 (4) | 0.2774 (4) | 0.0535 (11) | 0.672 (3) |
H22A | 0.5900 | −0.1222 | 0.2591 | 0.064* | 0.672 (3) |
H22B | 0.5029 | −0.1945 | 0.2737 | 0.064* | 0.672 (3) |
C23 | 0.5321 (2) | −0.0610 (4) | 0.3845 (3) | 0.0523 (11) | 0.672 (3) |
H23A | 0.5304 | −0.1234 | 0.4358 | 0.063* | 0.672 (3) |
H23B | 0.5856 | −0.0134 | 0.4028 | 0.063* | 0.672 (3) |
C24 | 0.4518 (3) | 0.0153 (4) | 0.3778 (3) | 0.0467 (9) | 0.672 (3) |
H24A | 0.4122 | −0.0126 | 0.4249 | 0.056* | 0.672 (3) |
H24B | 0.4678 | 0.0981 | 0.3940 | 0.056* | 0.672 (3) |
O6A | 0.4080 (11) | −0.0019 (17) | 0.2447 (7) | 0.0339 (13) | 0.202 (3) |
C24A | 0.4408 (8) | −0.0269 (14) | 0.3488 (8) | 0.0339 (13) | 0.202 (3) |
H24C | 0.3953 | −0.0664 | 0.3821 | 0.041* | 0.202 (3) |
H24D | 0.4579 | 0.0469 | 0.3857 | 0.041* | 0.202 (3) |
C23A | 0.5209 (7) | −0.1082 (11) | 0.3488 (8) | 0.0339 (13) | 0.202 (3) |
H23C | 0.5763 | −0.0639 | 0.3632 | 0.041* | 0.202 (3) |
H23D | 0.5207 | −0.1731 | 0.3981 | 0.041* | 0.202 (3) |
C22A | 0.5060 (8) | −0.1537 (11) | 0.2397 (8) | 0.0339 (13) | 0.202 (3) |
H22C | 0.5610 | −0.1829 | 0.2184 | 0.041* | 0.202 (3) |
H22D | 0.4617 | −0.2171 | 0.2311 | 0.041* | 0.202 (3) |
C21A | 0.4733 (14) | −0.0426 (17) | 0.1815 (10) | 0.0339 (13) | 0.202 (3) |
H21C | 0.5206 | 0.0156 | 0.1796 | 0.041* | 0.202 (3) |
H21D | 0.4461 | −0.0610 | 0.1117 | 0.041* | 0.202 (3) |
O6B | 0.4356 (8) | 0.0219 (9) | 0.2593 (10) | 0.0298 (18)* | 0.126 (3) |
C21B | 0.4661 (11) | −0.0418 (14) | 0.1775 (7) | 0.0298 (18)* | 0.126 (3) |
H21E | 0.4967 | 0.0119 | 0.1359 | 0.036* | 0.126 (3) |
H21F | 0.4164 | −0.0783 | 0.1338 | 0.036* | 0.126 (3) |
C22B | 0.5288 (9) | −0.1366 (12) | 0.2266 (9) | 0.0298 (18)* | 0.126 (3) |
H22E | 0.5892 | −0.1061 | 0.2424 | 0.036* | 0.126 (3) |
H22F | 0.5288 | −0.2068 | 0.1828 | 0.036* | 0.126 (3) |
C23B | 0.4892 (9) | −0.1641 (9) | 0.3233 (9) | 0.0298 (18)* | 0.126 (3) |
H23E | 0.4393 | −0.2192 | 0.3098 | 0.036* | 0.126 (3) |
H23F | 0.5333 | −0.1975 | 0.3765 | 0.036* | 0.126 (3) |
C24B | 0.4593 (9) | −0.0416 (11) | 0.3526 (7) | 0.0298 (18)* | 0.126 (3) |
H24E | 0.4085 | −0.0480 | 0.3899 | 0.036* | 0.126 (3) |
H24F | 0.5071 | −0.0007 | 0.3959 | 0.036* | 0.126 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Re1 | 0.01365 (3) | 0.01547 (3) | 0.02146 (3) | −0.00104 (2) | 0.00704 (2) | −0.00100 (2) |
Cl1 | 0.02042 (15) | 0.01814 (15) | 0.02561 (17) | 0.00341 (12) | 0.00999 (12) | 0.00509 (13) |
O1 | 0.0344 (8) | 0.0381 (9) | 0.0991 (15) | −0.0196 (7) | 0.0102 (9) | −0.0154 (9) |
O2 | 0.0676 (11) | 0.0336 (8) | 0.0500 (9) | −0.0017 (7) | 0.0453 (9) | 0.0034 (7) |
O3 | 0.0222 (6) | 0.0359 (8) | 0.0597 (10) | 0.0097 (6) | 0.0029 (6) | −0.0023 (7) |
O4 | 0.0279 (6) | 0.0249 (6) | 0.0258 (6) | 0.0039 (5) | 0.0025 (5) | 0.0017 (5) |
O5 | 0.0250 (6) | 0.0258 (6) | 0.0395 (7) | 0.0063 (5) | 0.0105 (5) | −0.0027 (5) |
N1 | 0.0201 (6) | 0.0206 (6) | 0.0159 (5) | 0.0042 (5) | 0.0022 (4) | −0.0032 (4) |
N2 | 0.0152 (5) | 0.0137 (5) | 0.0142 (5) | 0.0023 (4) | 0.0046 (4) | 0.0000 (4) |
C1 | 0.0223 (8) | 0.0249 (8) | 0.0550 (12) | −0.0057 (7) | 0.0106 (7) | −0.0059 (8) |
C2 | 0.0330 (9) | 0.0223 (7) | 0.0385 (10) | 0.0010 (6) | 0.0234 (8) | 0.0013 (7) |
C3 | 0.0171 (7) | 0.0261 (8) | 0.0355 (9) | −0.0004 (6) | 0.0062 (6) | −0.0043 (6) |
C4 | 0.0297 (8) | 0.0322 (9) | 0.0258 (8) | 0.0064 (7) | −0.0017 (6) | −0.0135 (7) |
C5 | 0.0413 (11) | 0.0496 (12) | 0.0227 (8) | 0.0188 (9) | −0.0034 (7) | −0.0165 (8) |
C6 | 0.0434 (11) | 0.0513 (12) | 0.0160 (7) | 0.0246 (10) | 0.0085 (7) | 0.0002 (7) |
C7 | 0.0334 (9) | 0.0310 (8) | 0.0196 (7) | 0.0122 (7) | 0.0128 (6) | 0.0070 (6) |
C8 | 0.0215 (6) | 0.0177 (6) | 0.0151 (6) | 0.0060 (5) | 0.0061 (5) | 0.0019 (5) |
C9 | 0.0169 (6) | 0.0148 (6) | 0.0185 (6) | 0.0019 (5) | 0.0069 (5) | 0.0013 (5) |
C10 | 0.0230 (7) | 0.0198 (7) | 0.0370 (9) | −0.0019 (6) | 0.0148 (6) | 0.0016 (6) |
C11 | 0.0215 (7) | 0.0208 (7) | 0.0525 (11) | −0.0063 (6) | 0.0084 (7) | −0.0063 (7) |
C12 | 0.0235 (7) | 0.0229 (7) | 0.0339 (9) | −0.0003 (6) | −0.0002 (6) | −0.0115 (6) |
C13 | 0.0188 (6) | 0.0177 (6) | 0.0185 (6) | 0.0043 (5) | 0.0015 (5) | −0.0038 (5) |
C14 | 0.0287 (8) | 0.0259 (7) | 0.0159 (6) | 0.0078 (6) | 0.0021 (6) | −0.0033 (6) |
C15 | 0.0574 (13) | 0.0442 (11) | 0.0242 (9) | 0.0312 (10) | 0.0117 (8) | 0.0077 (8) |
C16 | 0.0722 (17) | 0.0596 (15) | 0.0237 (9) | 0.0390 (14) | 0.0119 (10) | 0.0149 (9) |
C17 | 0.0532 (13) | 0.0509 (13) | 0.0155 (7) | 0.0185 (10) | 0.0084 (8) | 0.0037 (7) |
C18 | 0.0319 (8) | 0.0321 (9) | 0.0182 (7) | 0.0052 (7) | 0.0037 (6) | −0.0051 (6) |
C19 | 0.0226 (7) | 0.0208 (7) | 0.0176 (6) | 0.0031 (5) | 0.0004 (5) | −0.0046 (5) |
C20 | 0.0148 (6) | 0.0188 (6) | 0.0273 (7) | −0.0012 (5) | 0.0013 (5) | −0.0033 (6) |
O6 | 0.0276 (13) | 0.0409 (15) | 0.061 (2) | 0.0138 (11) | −0.0072 (19) | 0.001 (2) |
C21 | 0.0222 (14) | 0.0421 (19) | 0.058 (3) | 0.0132 (13) | 0.001 (2) | 0.009 (2) |
C22 | 0.0369 (19) | 0.053 (2) | 0.071 (3) | 0.0202 (18) | 0.010 (2) | 0.022 (2) |
C23 | 0.0303 (16) | 0.080 (3) | 0.049 (2) | 0.0020 (18) | 0.0129 (16) | 0.028 (2) |
C24 | 0.046 (2) | 0.044 (2) | 0.048 (2) | −0.0090 (17) | 0.0000 (17) | 0.0119 (17) |
O6A | 0.032 (3) | 0.049 (3) | 0.020 (2) | 0.007 (2) | 0.0013 (19) | 0.008 (2) |
C24A | 0.032 (3) | 0.049 (3) | 0.020 (2) | 0.007 (2) | 0.0013 (19) | 0.008 (2) |
C23A | 0.032 (3) | 0.049 (3) | 0.020 (2) | 0.007 (2) | 0.0013 (19) | 0.008 (2) |
C22A | 0.032 (3) | 0.049 (3) | 0.020 (2) | 0.007 (2) | 0.0013 (19) | 0.008 (2) |
C21A | 0.032 (3) | 0.049 (3) | 0.020 (2) | 0.007 (2) | 0.0013 (19) | 0.008 (2) |
Re1—Cl1 | 2.4875 (6) | C18—C19 | 1.399 (2) |
Re1—N1 | 2.1580 (14) | C19—C20 | 1.492 (2) |
Re1—N2 | 2.2008 (13) | O6—C21 | 1.458 (5) |
Re1—C1 | 1.9074 (19) | O6—C24 | 1.469 (5) |
Re1—C2 | 1.9244 (19) | C21—H21A | 0.9900 |
Re1—C3 | 1.9146 (18) | C21—H21B | 0.9900 |
O1—C1 | 1.150 (2) | C21—C22 | 1.508 (5) |
O2—C2 | 1.151 (2) | C22—H22A | 0.9900 |
O3—C3 | 1.149 (2) | C22—H22B | 0.9900 |
O4—C20 | 1.206 (2) | C22—C23 | 1.558 (7) |
O5—H5 | 0.90 (3) | C23—H23A | 0.9900 |
O5—C20 | 1.333 (2) | C23—H23B | 0.9900 |
N1—C4 | 1.347 (2) | C23—C24 | 1.507 (5) |
N1—C8 | 1.347 (2) | C24—H24A | 0.9900 |
N2—C9 | 1.3648 (18) | C24—H24B | 0.9900 |
N2—C13 | 1.3506 (19) | O6A—C24A | 1.441 (11) |
C4—H4 | 0.9500 | O6A—C21A | 1.478 (13) |
C4—C5 | 1.380 (3) | C24A—H24C | 0.9900 |
C5—H5A | 0.9500 | C24A—H24D | 0.9900 |
C5—C6 | 1.378 (4) | C24A—C23A | 1.546 (12) |
C6—H6 | 0.9500 | C23A—H23C | 0.9900 |
C6—C7 | 1.380 (3) | C23A—H23D | 0.9900 |
C7—H7 | 0.9500 | C23A—C22A | 1.534 (13) |
C7—C8 | 1.392 (2) | C22A—H22C | 0.9900 |
C8—C9 | 1.473 (2) | C22A—H22D | 0.9900 |
C9—C10 | 1.388 (2) | C22A—C21A | 1.533 (13) |
C10—H10 | 0.9500 | C21A—H21C | 0.9900 |
C10—C11 | 1.379 (3) | C21A—H21D | 0.9900 |
C11—H11 | 0.9500 | O6B—C21B | 1.4432 |
C11—C12 | 1.367 (3) | O6B—C24B | 1.4435 |
C12—H12 | 0.9500 | C21B—H21E | 0.9900 |
C12—C13 | 1.392 (2) | C21B—H21F | 0.9900 |
C13—C14 | 1.493 (2) | C21B—C22B | 1.5350 |
C14—C15 | 1.393 (2) | C22B—H22E | 0.9900 |
C14—C19 | 1.400 (2) | C22B—H22F | 0.9900 |
C15—H15 | 0.9500 | C22B—C23B | 1.5390 |
C15—C16 | 1.386 (3) | C23B—H23E | 0.9900 |
C16—H16 | 0.9500 | C23B—H23F | 0.9900 |
C16—C17 | 1.389 (3) | C23B—C24B | 1.5350 |
C17—H17 | 0.9500 | C24B—H24E | 0.9900 |
C17—C18 | 1.380 (3) | C24B—H24F | 0.9900 |
C18—H18 | 0.9500 | ||
N1—Re1—Cl1 | 82.45 (4) | C21—O6—C24 | 109.5 (3) |
N1—Re1—N2 | 75.48 (5) | O6—C21—H21A | 111.6 |
N2—Re1—Cl1 | 82.11 (4) | O6—C21—H21B | 111.6 |
C1—Re1—Cl1 | 94.36 (6) | O6—C21—C22 | 101.1 (3) |
C1—Re1—N1 | 94.91 (8) | H21A—C21—H21B | 109.4 |
C1—Re1—N2 | 170.08 (7) | C22—C21—H21A | 111.6 |
C1—Re1—C2 | 85.75 (9) | C22—C21—H21B | 111.6 |
C1—Re1—C3 | 89.41 (8) | C21—C22—H22A | 111.1 |
C2—Re1—Cl1 | 93.41 (6) | C21—C22—H22B | 111.1 |
C2—Re1—N1 | 175.84 (7) | C21—C22—C23 | 103.5 (3) |
C2—Re1—N2 | 103.67 (7) | H22A—C22—H22B | 109.0 |
C3—Re1—Cl1 | 174.86 (5) | C23—C22—H22A | 111.1 |
C3—Re1—N1 | 93.76 (7) | C23—C22—H22B | 111.1 |
C3—Re1—N2 | 93.61 (6) | C22—C23—H23A | 110.7 |
C3—Re1—C2 | 90.36 (8) | C22—C23—H23B | 110.7 |
C20—O5—H5 | 109 (2) | H23A—C23—H23B | 108.8 |
C4—N1—Re1 | 124.05 (13) | C24—C23—C22 | 105.4 (3) |
C8—N1—Re1 | 117.26 (10) | C24—C23—H23A | 110.7 |
C8—N1—C4 | 118.58 (15) | C24—C23—H23B | 110.7 |
C9—N2—Re1 | 114.86 (10) | O6—C24—C23 | 104.5 (4) |
C13—N2—Re1 | 127.46 (10) | O6—C24—H24A | 110.8 |
C13—N2—C9 | 117.63 (13) | O6—C24—H24B | 110.8 |
O1—C1—Re1 | 178.1 (2) | C23—C24—H24A | 110.8 |
O2—C2—Re1 | 174.45 (19) | C23—C24—H24B | 110.8 |
O3—C3—Re1 | 178.65 (18) | H24A—C24—H24B | 108.9 |
N1—C4—H4 | 118.7 | C24A—O6A—C21A | 108.4 (10) |
N1—C4—C5 | 122.6 (2) | O6A—C24A—H24C | 110.3 |
C5—C4—H4 | 118.7 | O6A—C24A—H24D | 110.3 |
C4—C5—H5A | 120.6 | O6A—C24A—C23A | 106.9 (9) |
C6—C5—C4 | 118.87 (18) | H24C—C24A—H24D | 108.6 |
C6—C5—H5A | 120.6 | C23A—C24A—H24C | 110.3 |
C5—C6—H6 | 120.5 | C23A—C24A—H24D | 110.3 |
C5—C6—C7 | 119.08 (17) | C24A—C23A—H23C | 111.6 |
C7—C6—H6 | 120.5 | C24A—C23A—H23D | 111.6 |
C6—C7—H7 | 120.3 | H23C—C23A—H23D | 109.4 |
C6—C7—C8 | 119.45 (19) | C22A—C23A—C24A | 100.9 (8) |
C8—C7—H7 | 120.3 | C22A—C23A—H23C | 111.6 |
N1—C8—C7 | 121.38 (15) | C22A—C23A—H23D | 111.6 |
N1—C8—C9 | 115.86 (13) | C23A—C22A—H22C | 111.5 |
C7—C8—C9 | 122.76 (15) | C23A—C22A—H22D | 111.5 |
N2—C9—C8 | 116.40 (13) | H22C—C22A—H22D | 109.3 |
N2—C9—C10 | 122.22 (14) | C21A—C22A—C23A | 101.5 (9) |
C10—C9—C8 | 121.36 (14) | C21A—C22A—H22C | 111.5 |
C9—C10—H10 | 120.4 | C21A—C22A—H22D | 111.5 |
C11—C10—C9 | 119.24 (16) | O6A—C21A—C22A | 99.9 (11) |
C11—C10—H10 | 120.4 | O6A—C21A—H21C | 111.8 |
C10—C11—H11 | 120.5 | O6A—C21A—H21D | 111.8 |
C12—C11—C10 | 118.92 (16) | C22A—C21A—H21C | 111.8 |
C12—C11—H11 | 120.5 | C22A—C21A—H21D | 111.8 |
C11—C12—H12 | 120.0 | H21C—C21A—H21D | 109.5 |
C11—C12—C13 | 120.07 (16) | C21B—O6B—C24B | 109.5 |
C13—C12—H12 | 120.0 | O6B—C21B—H21E | 110.4 |
N2—C13—C12 | 121.85 (15) | O6B—C21B—H21F | 110.4 |
N2—C13—C14 | 121.29 (14) | O6B—C21B—C22B | 106.4 |
C12—C13—C14 | 116.49 (14) | H21E—C21B—H21F | 108.6 |
C15—C14—C13 | 117.06 (15) | C22B—C21B—H21E | 110.4 |
C15—C14—C19 | 118.97 (16) | C22B—C21B—H21F | 110.4 |
C19—C14—C13 | 123.40 (15) | C21B—C22B—H22E | 111.5 |
C14—C15—H15 | 119.5 | C21B—C22B—H22F | 111.5 |
C16—C15—C14 | 121.01 (18) | C21B—C22B—C23B | 101.5 |
C16—C15—H15 | 119.5 | H22E—C22B—H22F | 109.3 |
C15—C16—H16 | 120.1 | C23B—C22B—H22E | 111.5 |
C15—C16—C17 | 119.87 (19) | C23B—C22B—H22F | 111.5 |
C17—C16—H16 | 120.1 | C22B—C23B—H23E | 111.5 |
C16—C17—H17 | 120.1 | C22B—C23B—H23F | 111.5 |
C18—C17—C16 | 119.80 (18) | H23E—C23B—H23F | 109.3 |
C18—C17—H17 | 120.1 | C24B—C23B—C22B | 101.5 |
C17—C18—H18 | 119.6 | C24B—C23B—H23E | 111.5 |
C17—C18—C19 | 120.72 (17) | C24B—C23B—H23F | 111.5 |
C19—C18—H18 | 119.6 | O6B—C24B—C23B | 106.4 |
C14—C19—C20 | 120.28 (14) | O6B—C24B—H24E | 110.4 |
C18—C19—C14 | 119.60 (15) | O6B—C24B—H24F | 110.4 |
C18—C19—C20 | 120.12 (15) | C23B—C24B—H24E | 110.4 |
O4—C20—O5 | 124.18 (16) | C23B—C24B—H24F | 110.4 |
O4—C20—C19 | 124.17 (15) | H24E—C24B—H24F | 108.6 |
O5—C20—C19 | 111.64 (14) | ||
Re1—N1—C4—C5 | 175.99 (14) | C13—N2—C9—C10 | 0.4 (2) |
Re1—N1—C8—C7 | −174.60 (12) | C13—C14—C15—C16 | −173.3 (2) |
Re1—N1—C8—C9 | 4.26 (17) | C13—C14—C19—C18 | 171.61 (16) |
Re1—N2—C9—C8 | −0.54 (16) | C13—C14—C19—C20 | −8.9 (2) |
Re1—N2—C9—C10 | 177.80 (12) | C14—C15—C16—C17 | 1.5 (4) |
Re1—N2—C13—C12 | −175.22 (11) | C14—C19—C20—O4 | −8.5 (2) |
Re1—N2—C13—C14 | −2.4 (2) | C14—C19—C20—O5 | 171.69 (15) |
N1—C4—C5—C6 | −1.1 (3) | C15—C14—C19—C18 | 0.5 (3) |
N1—C8—C9—N2 | −2.41 (19) | C15—C14—C19—C20 | 179.93 (18) |
N1—C8—C9—C10 | 179.23 (14) | C15—C16—C17—C18 | −0.2 (4) |
N2—C9—C10—C11 | −2.4 (2) | C16—C17—C18—C19 | −0.9 (4) |
N2—C13—C14—C15 | −88.2 (2) | C17—C18—C19—C14 | 0.8 (3) |
N2—C13—C14—C19 | 100.55 (19) | C17—C18—C19—C20 | −178.70 (18) |
C4—N1—C8—C7 | 1.7 (2) | C18—C19—C20—O4 | 170.91 (16) |
C4—N1—C8—C9 | −179.42 (14) | C18—C19—C20—O5 | −8.9 (2) |
C4—C5—C6—C7 | 0.6 (3) | C19—C14—C15—C16 | −1.6 (4) |
C5—C6—C7—C8 | 1.0 (3) | O6—C21—C22—C23 | −37.5 (4) |
C6—C7—C8—N1 | −2.2 (2) | C21—O6—C24—C23 | −24.1 (5) |
C6—C7—C8—C9 | 179.01 (15) | C21—C22—C23—C24 | 24.2 (4) |
C7—C8—C9—N2 | 176.43 (14) | C22—C23—C24—O6 | −1.0 (5) |
C7—C8—C9—C10 | −1.9 (2) | C24—O6—C21—C22 | 39.3 (5) |
C8—N1—C4—C5 | −0.1 (3) | O6A—C24A—C23A—C22A | −18.3 (16) |
C8—C9—C10—C11 | 175.90 (15) | C24A—O6A—C21A—C22A | 36.3 (19) |
C9—N2—C13—C12 | 1.8 (2) | C24A—C23A—C22A—C21A | 39.9 (14) |
C9—N2—C13—C14 | 174.62 (13) | C23A—C22A—C21A—O6A | −46.9 (16) |
C9—C10—C11—C12 | 2.1 (3) | C21A—O6A—C24A—C23A | −11.4 (19) |
C10—C11—C12—C13 | 0.0 (3) | O6B—C21B—C22B—C23B | 31.5 |
C11—C12—C13—N2 | −2.1 (2) | C21B—O6B—C24B—C23B | −12.4 |
C11—C12—C13—C14 | −175.19 (16) | C21B—C22B—C23B—C24B | −37.4 |
C12—C13—C14—C15 | 85.0 (2) | C22B—C23B—C24B—O6B | 31.5 |
C12—C13—C14—C19 | −86.3 (2) | C24B—O6B—C21B—C22B | −12.3 |
C13—N2—C9—C8 | −177.94 (13) |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5···O6 | 0.90 (3) | 1.74 (4) | 2.615 (4) | 164 (3) |
O5—H5···O6A | 0.90 (3) | 1.68 (4) | 2.516 (15) | 154 (3) |
O5—H5···O6B | 0.90 (3) | 1.83 (4) | 2.642 (9) | 150 (3) |
C5—H5A···Cl1i | 0.95 | 2.80 | 3.371 (2) | 120 |
C10—H10···Cl1ii | 0.95 | 2.70 | 3.552 (2) | 149 |
C12—H12···Cl1iii | 0.95 | 2.76 | 3.524 (2) | 138 |
Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) −x, −y+1, −z+1; (iii) −x, y−1/2, −z+1/2. |
Funding information
Funding for this research was provided by: American Chemical Society Petroleum Research Fund (grant No. 54833-UNI3 to Sheri Lense).
References
Agarwal, J., Shaw, T. W., Schaefer, H. F. III & Bocarsly, A. B. (2015). Inorg. Chem. 54, 5285–5294. CrossRef CAS Google Scholar
Bourrez, M., Molton, F., Chardon-Noblat, S. & Deronzier, A. (2011). Angew. Chem. Int. Ed. 50, 9903–9906. Web of Science CrossRef CAS Google Scholar
Bruker (2015). APEX3 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Charris-Molina, A., Castillo, J.-C., Macías, M. & Portilla, J. (2017). J. Org. Chem. 82, 12674–12681. CAS Google Scholar
Chen, Y. D., Zhang, L. Y. & Chen, Z. N. (2005). Acta Cryst. E61, m121–m122. CrossRef IUCr Journals Google Scholar
Dobson, A. J. & Gerkin, R. E. (1998). Acta Cryst. C54, 795–798. CrossRef CAS IUCr Journals Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Franco, F., Cometto, C., Vallana, F. F., Sordello, F., Priola, E., Minero, C., Nervi, C. & Gobetto, R. (2014). Chem. Commun. 50, 14670–14673. CrossRef CAS Google Scholar
Franco, F., Cometto, C., Nencini, L., Barolo, C., Sordello, F., Minero, C., Fiedler, J., Robert, M., Gobetto, R. & Nervi, C. (2017). Chem. Eur. J. 23, 4782–4793. CrossRef CAS Google Scholar
Gerlits, O. O. & Coppens, P. (2001). Acta Cryst. E57, m164–m166. CrossRef IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Guzei, I. A. (2014). J. Appl. Cryst. 47, 806–809. Web of Science CrossRef CAS IUCr Journals Google Scholar
Hawecker, J., Lehn, J.-M. & Ziessel, R. (1986). Helv. Chim. Acta, 69, 1990–2012. CrossRef CAS Web of Science Google Scholar
Horn, E., Snow, M. R. & Tiekink, E. R. T. (1987). Acta Cryst. C43, 792–794. CrossRef CAS IUCr Journals Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
LeBlanc, F. A., Piers, W. E. & Parvez, M. (2014). Angew. Chem. Int. Ed. 53, 789–792. CrossRef CAS Google Scholar
Liu, X. (2013). Acta Cryst. E69, m204. CrossRef IUCr Journals Google Scholar
Machan, C. W., Chabolla, S. A., Yin, J., Gilson, M. K., Tezcan, F. A. & Kubiak, C. P. (2014). J. Am. Chem. Soc. 136, 14598–14607. Web of Science CSD CrossRef CAS PubMed Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Manbeck, G. F., Muckerman, J. T., Szalda, D. J., Himeda, Y. & Fujita, E. (2015). J. Phys. Chem. B, 119, 7457–7466. Web of Science CSD CrossRef CAS PubMed Google Scholar
Sampson, M. D., Nguyen, A. D., Grice, K. A., Moore, C. E., Rheingold, A. L. & Kubiak, C. P. (2014). J. Am. Chem. Soc. 136, 5460–5471. Web of Science CSD CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Smieja, J. M., Benson, E. E., Kumar, B., Grice, K. A., Seu, C. S., Miller, A. J. M., Mayer, J. M. & Kubiak, C. P. (2012). Proc. Natl Acad. Sci. USA, 109, 15646–15650. Web of Science CSD CrossRef CAS PubMed Google Scholar
Smieja, J. M. & Kubiak, C. P. (2010). Inorg. Chem. 49, 9283–9289. Web of Science CSD CrossRef CAS PubMed Google Scholar
Smieja, J. M., Sampson, M. D., Grice, K. A., Benson, E. E., Froehlich, J. D. & Kubiak, C. P. (2013). Inorg. Chem. 52, 2484–2491. Web of Science CSD CrossRef CAS PubMed Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2015). Acta Cryst. C71, 9–18. Web of Science CrossRef IUCr Journals Google Scholar
Stor, G. J., Stufkens, D. J., Vernooijs, P., Baerends, E. J., Fraanje, J. & Goubitz, K. (1995). Inorg. Chem. 34, 1588–1594. CSD CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.