research communications
Syntheses, Raman spectroscopy and crystal structures of alkali hexafluoridorhenates(IV) revisited
aDepartment of Chemistry, University of Nevada Las Vegas, 4505 South Maryland Parkway, Las Vegas, Nevada, 89154, United States, bDepartment of Physics and Astronomy and HiPSEC, University of Nevada Las Vegas, 4505 South Maryland Parkway, Las Vegas, Nevada, 89154, United States, and cDepartment of Chemistry, Hanoi University of Science, Hanoi, Vietnam
*Correspondence e-mail: m.b.eswari@unlv.edu
The A2[ReF6] (A = K, Rb and Cs) salts are isotypic and crystallize in the trigonal type Pm1, adopting the K2[GeF6] structure type. Common to all A2[ReF6] structures are slightly distorted octahedral [ReF6]2− anions with an average Re—F bond length of 1.951 (8) Å. In those salts, symmetry lowering on the local [ReF6]2− anions from Oh (free anion) to D3d (solid-state structure) occur. The distortions of the [ReF6]2− anions, as observed in their Raman spectra, are correlated to the size of the counter-cations.
Keywords: rhenium; fluorine; crystal structure; Raman spectroscopy; isotypism.
1. Chemical context
The hexafluoridorhenate(IV) anion has been known for 80 years but its chemistry is understudied with respect to the heavier halogen analogs (Ruff & Kwasnik, 1934). The scarcity of [ReF6]2− salts is attributed to the difficulties in their preparation and purification. K2[ReF6] was the first hexafluoridorhenate(IV) salt to be reported; it was prepared from the solid-state melting reaction (SSMR) of K2[ReBr6] with KHF2 (Ruff & Kwasnik, 1934). Almost two decades later, ten salts comprising the [ReF6]2– anion and with different counter-cations (Rb+, Cs+, PPh4+ (Ph = C6H5), [Ni(NH3)6]2+, [Co(NH3)6]3+, {[Co(NH3)6](NO3)}2+, {[Cr(NH3)6](NO3)}2+, [Co(NH3)5Cl]2+, [Cr(NH3)5Cl]2+, [Co(NH3)4(CO3)]2+) had been reported (Peacock, 1956; Weise, 1956; Pedersen et al., 2014; Brauer & Allardt, 1962). Those salts were prepared by cation metathesis starting from (NH4)2[ReF6] or K2[ReF6]. However, the synthetic procedure to prepare (NH4)2[ReF6] or K2[ReF6] was not explained in detail. To date, only the structures of two [ReF6]2− salts have been characterized by single crystal X-ray diffraction (SCXRD): K2[ReF6] (measured at 292 K) and (PPh4)2[ReF6]·H2O (measured at 122 K) (Clark & Russell, 1978; Pedersen et al., 2014). Similarly, the synthesis of the K2[TcF6] congener, which was reported in 1963, involves the SSMR of K2[TcBr6] with KHF2 followed by an aqueous work-up (Schwochau & Herr, 1963). However, [TcF6]2− salts have been reinvestigated recently (Balasekaran et al., 2013), and various routes for the different salts of A2[TcF6] [A = Na, K, Rb, Cs and N(CH3)4] were reported. These salts were characterized by Raman and IR spectroscopy and by SCXRD. The A2[ReF6] salts could serve as suitable precursors to explore the chemistry of rhenium in the IV.
Here, we revisited the synthesis of A2[ReF6] (A = K, Rb, Cs) salts and report their crystal structures determined from single crystal data, and their Raman spectra.
2. Structural commentary
The title alkaline metal salts A2[ReF6] (A = K, Rb, Cs) are isotypic. They adopt the K2[GeF6] structure type (Hoard & Vincent, 1939) and crystallize in the trigonal type Pm1 (Table 1), just like the related A2[TcF6] (A = K, Rb, Cs) compounds (Balasekaran et al., 2013). Selected bond lengths and angles of the series of [ReF6]2− anions of the present work and the reported [TcF6]2− salts (Balasekaran et al., 2013) are presented in Table 1. Representative for all other title compounds, the [ReF6]2− anion of the Cs2[ReF6] salt is given in Fig. 1. The ReIV atom is located on a position with m. (Wyckoff position 1a) at the origin of the trigonal The six symmetry-related fluorine ligands form a slightly distorted octahedral coordination sphere around the rhenium(IV) atom. The Re—F bond lengths for the K, Rb, and Cs salts of [ReF6]2−, 1.948 (3), 1.945 (7) and 1.9594 (18) Å, respectively, are longer than the Tc—F bond lengths for the congener K, Rb, and Cs salts of [TcF6]2−, 1.928 (1), 1.933 (3), and 1.935 (5) Å, respectively (Balasekaran et al., 2013).
In A2[ReF6] (A = K+, Rb+, Cs+), each cation is located on a position with 3m. (Wyckoff position 2d) and is surrounded by twelve neighboring F atoms resulting in a [3 + 6 + 3] arrangement with three groups of fluoride ligands with distances of 3.0955 (19) Å (three of such), 3.1655 (6) Å (six of such), and 3.224 (2) Å (three of such) for the Cs+ salt as a representative of the three [ReF6]2− salts. These bond-length distributions are also found in the K+ and Rb+ salts of the [ReF6]2− complexes. This correlates well and confirms that A2[ReF6] salts are isotypic with K2[GeF6] and the congener A2[TcF6] (A = K+, Rb+, Cs+) (Balasekaran et al., 2013; Hoard & Vincent, 1939). In comparison with the previous of K2[ReF6] (Clark & Russell, 1978), the current redetermination resulted in better reliability factors, together with a more precise determination of lattice parameters and atomic coordinates.
3. Raman spectroscopy
As reported previously for K2[ReF6] and A2[TcF6] (A = K, Rb, Cs) (Bettinelli et al., 1987; Balasekaran et al., 2013), the [ReF6]2− anions are compressed along the crystallographic c axis, thus lowering the ideal molecular symmetry of the [ReF6]2− anions from Oh to D3d in the solid state. The representive unit-cell plot of Cs2[ReF6] is given in Fig. 2. The effect of symmetry lowering among the alkali metal salts of [TcF6]2− and its correlation with the vibrational spectra are well described (Balasekaran et al., 2013). Here, a similar trend occurs for the A2[ReF6] series (A = K, Rb, Cs; Fig. 3). In the case of K2[ReF6], the Raman spectrum exhibits four bands at 624, 539, 244 and 224 cm−1. The latter two vibrations correspond to the F2g band split due to the symmetry lowering. In the Raman spectra of A2[MF6] complexes (A = K, Rb, Cs; M = Tc, Re), the F2g splitting decreases from K2[ReF6] to Cs2[ReF6] due to differences in M—F bond length. Furthermore, the slight increase of M—F bond lengths from K2[MF6] to Cs2[MF6] are well represented in the Raman spectra which causes the Raman bands to shift to lower wavenumbers.
4. Synthesis and crystallization
Ammonium perrhenate, ammonium bifluoride, potassium fluoride, rubidium fluoride, cesium fluoride, and hydrobromic acid (48%) were purchased from Sigma Aldrich and used without any further purification. This work was performed in a well-ventilated fume hood due to the corrosive nature of bifluoride. K2[ReBr6] was prepared as described in the literature (Watt et al., 1963), and the detailed synthesis of A2[ReF6] (A = K, Rb, Cs) is described below. Single crystals of A2[ReF6] (A = K, Rb, Cs) were obtained by slow evaporation at room temperature of an aqueous solution of the respective salt.
Synthesis of K2[ReF6]
K2[ReF6] was prepared by melting K2[ReBr6] (2 g, 2.69 mmol) with excess KHF2 (14 g, 0.18 mol) in a nickel crucible at 673 K for 30 min in a box furnace. The resulting greyish solid product formed was allowed to cool to room temperature and was washed first with MeOH (4 × 10 ml). Subsequently, the product was washed with several aliquots of an H2O/MeOH mixture (3 × 5 ml, 1:4 volume ratios) and centrifuged. The pink solid obtained was dissolved in warm water (5–10 ml, 353 K) and evaporated slowly at room temperature. The resultant pink crystals of K2[ReF6] were recrystallized from warm water (5 ml, 353 K) and colorless crystals of K2[ReF6] were obtained. Yield: 661 mg, 1.7 mmol (65%). IR (KBr, cm−1): 518, 484 sh (Re—F).
Syntheses of A2[ReF6] (A = Rb, Cs) salts
K2[ReF6] (151 mg, 0.4 mmol) was dissolved in 4 ml of hot water (353 K). MF (M = Rb, Cs) (0.8 mmol) dissolved in 1 ml of hot water (353 K) was added dropwise. The solution was allowed to evaporate slowly at room temperature. Crystals of Rb2[ReF6] and Cs2[ReF6] were formed in 24 h and washed first with cold water (3 × 2 ml) to remove other fluoride impurities followed by isopropanol (3 × 1 ml), and diethyl ether (3 × 1 ml). Rb2[ReF6] yield: 156 mg, 0.33 mmol (83%). IR (KBr, cm−1): 521 (Re—F). Cs2[ReF6] yield: 175 mg, 0.276 mmol (77%). IR (KBr, cm−1): 507, 480 sh (Re—F).
IR spectra were measured on a Shimadzu IR Affinity-1 spectrometer between 400 and 4000 cm−1. Raman spectra were recorded on a HORIBA T64000 triple spectrometer operating at 30 mW in subtractive mode. The spectra were taken from pure single crystals at room temperature using the 514.5 nm (Kr/Ar) laser line.
5. Refinement
Crystal data, data collection and structure .
details are summarized in Table 2
|
Supporting information
https://doi.org/10.1107/S2056989018005297/wm5432sup1.cif
contains datablocks global, global_1, global_2, SMB_K2ReF6_1, SMB_Rb2ReF6_j, SMB_Cs2ReF6_1a. DOI:Structure factors: contains datablock SMB_K2ReF6_1. DOI: https://doi.org/10.1107/S2056989018005297/wm5432SMB_K2ReF6_1sup2.hkl
Structure factors: contains datablock SMB_Cs2ReF6_1a. DOI: https://doi.org/10.1107/S2056989018005297/wm5432SMB_Cs2ReF6_1asup3.hkl
Structure factors: contains datablock SMB_Rb2ReF6_j. DOI: https://doi.org/10.1107/S2056989018005297/wm5432SMB_Rb2ReF6_jsup4.hkl
Structure factors: contains datablock SMB_ReF6_f. DOI: https://doi.org/10.1107/S2056989018005297/wm5432SMB_ReF6_fsup5.hkl
Hexafluororhenate(IV) - revisited. DOI: https://doi.org/10.1107/S2056989018005297/wm5432sup6.pdf
Syntheses, Raman spectroscopy and crystal structures of alkali hexafluoridorhenates(IV) - revisited. DOI: https://doi.org/10.1107/S2056989018005297/wm5432sup7.pdf
For all structures, data collection: APEX3 (Bruker, 2015); cell
SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2007); software used to prepare material for publication: publCIF (Westrip, 2010).K2[ReF6] | Dx = 4.689 Mg m−3 |
Mr = 378.40 | Mo Kα radiation, λ = 0.71073 Å |
Trigonal, P3m1 | Cell parameters from 2236 reflections |
a = 5.834 (2) Å | θ = 4.0–30.5° |
c = 4.546 (2) Å | µ = 24.26 mm−1 |
V = 134.00 (11) Å3 | T = 100 K |
Z = 1 | Hexagonal, translucent colourless |
F(000) = 167 | 0.10 × 0.07 × 0.04 mm |
Bruker D8 QUEST diffractometer | 180 independent reflections |
Radiation source: sealed tube, Siemens KFFMo2K-90 | 180 reflections with I > 2σ(I) |
Curved graphite monochromator | Rint = 0.054 |
Detector resolution: 8.3333 pixels mm-1 | θmax = 30.5°, θmin = 4.0° |
φ and ω scans | h = −8→8 |
Absorption correction: multi-scan (SADABS; Bruker, 2015) | k = −8→8 |
Tmin = 0.14, Tmax = 0.44 | l = −6→6 |
2148 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Primary atom site location: structure-invariant direct methods |
R[F2 > 2σ(F2)] = 0.016 | Secondary atom site location: difference Fourier map |
wR(F2) = 0.041 | w = 1/[σ2(Fo2) + (0.0194P)2 + 0.517P] where P = (Fo2 + 2Fc2)/3 |
S = 1.13 | (Δ/σ)max < 0.001 |
180 reflections | Δρmax = 1.80 e Å−3 |
12 parameters | Δρmin = −1.37 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Re1 | 0 | 0 | 0 | 0.00863 (14) | |
F1 | 0.3254 (6) | 0.1627 (3) | 0.2299 (6) | 0.0137 (5) | |
K1 | 0.3333 | 0.6667 | 0.2955 (4) | 0.0111 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Re1 | 0.00883 (16) | 0.00883 (16) | 0.0082 (2) | 0.00441 (8) | 0 | 0 |
F1 | 0.0119 (13) | 0.0162 (10) | 0.0117 (12) | 0.0060 (6) | −0.0012 (10) | −0.0006 (5) |
K1 | 0.0118 (5) | 0.0118 (5) | 0.0096 (6) | 0.0059 (2) | 0 | 0 |
Re1—F1 | 1.948 (3) | F1—K1viii | 2.9325 (10) |
Re1—F1i | 1.948 (3) | F1—K1vi | 2.946 (3) |
Re1—F1ii | 1.948 (3) | K1—F1xi | 2.762 (3) |
Re1—F1iii | 1.948 (3) | K1—F1x | 2.762 (3) |
Re1—F1iv | 1.948 (3) | K1—F1xii | 2.762 (3) |
Re1—F1v | 1.948 (3) | K1—F1xiii | 2.9325 (11) |
Re1—K1i | 3.6263 (13) | K1—F1xiv | 2.9325 (10) |
Re1—K1vi | 3.6263 (13) | K1—F1iv | 2.9325 (11) |
Re1—K1vii | 3.6263 (13) | K1—F1xv | 2.9325 (11) |
Re1—K1 | 3.6263 (13) | K1—F1xvi | 2.9325 (11) |
Re1—K1viii | 3.6263 (13) | K1—F1xvii | 2.946 (3) |
Re1—K1ix | 3.6263 (13) | K1—F1ii | 2.946 (3) |
F1—K1x | 2.762 (3) | K1—F1vi | 2.946 (3) |
F1—K1 | 2.9325 (11) | ||
F1—Re1—F1i | 180.0 | K1—F1—K1viii | 168.22 (13) |
F1—Re1—F1ii | 86.08 (12) | Re1—F1—K1vi | 93.38 (11) |
F1i—Re1—F1ii | 93.92 (12) | K1x—F1—K1vi | 105.55 (10) |
F1—Re1—F1iii | 93.92 (12) | K1—F1—K1vi | 94.27 (6) |
F1i—Re1—F1iii | 86.08 (12) | K1viii—F1—K1vi | 94.27 (6) |
F1ii—Re1—F1iii | 180.00 (19) | F1xi—K1—F1x | 65.46 (11) |
F1—Re1—F1iv | 93.92 (12) | F1xi—K1—F1xii | 65.46 (11) |
F1i—Re1—F1iv | 86.08 (12) | F1x—K1—F1xii | 65.46 (11) |
F1ii—Re1—F1iv | 86.08 (12) | F1xi—K1—F1xiii | 62.44 (10) |
F1iii—Re1—F1iv | 93.92 (12) | F1x—K1—F1xiii | 127.81 (6) |
F1—Re1—F1v | 86.08 (12) | F1xii—K1—F1xiii | 95.05 (6) |
F1i—Re1—F1v | 93.92 (12) | F1xi—K1—F1xiv | 62.44 (10) |
F1ii—Re1—F1v | 93.92 (12) | F1x—K1—F1xiv | 95.05 (6) |
F1iii—Re1—F1v | 86.08 (12) | F1xii—K1—F1xiv | 127.81 (6) |
F1iv—Re1—F1v | 180.00 (7) | F1xiii—K1—F1xiv | 58.10 (11) |
F1—Re1—K1i | 126.206 (14) | F1xi—K1—F1iv | 95.05 (6) |
F1i—Re1—K1i | 53.794 (14) | F1x—K1—F1iv | 127.81 (6) |
F1ii—Re1—K1i | 125.81 (9) | F1xii—K1—F1iv | 62.44 (10) |
F1iii—Re1—K1i | 54.19 (9) | F1xiii—K1—F1iv | 61.22 (12) |
F1iv—Re1—K1i | 126.205 (14) | F1xiv—K1—F1iv | 118.98 (2) |
F1v—Re1—K1i | 53.795 (14) | F1xi—K1—F1xv | 95.05 (6) |
F1—Re1—K1vi | 54.19 (9) | F1x—K1—F1xv | 62.44 (10) |
F1i—Re1—K1vi | 125.81 (9) | F1xii—K1—F1xv | 127.81 (6) |
F1ii—Re1—K1vi | 53.794 (14) | F1xiii—K1—F1xv | 118.98 (2) |
F1iii—Re1—K1vi | 126.206 (14) | F1xiv—K1—F1xv | 61.22 (12) |
F1iv—Re1—K1vi | 126.205 (14) | F1iv—K1—F1xv | 168.22 (13) |
F1v—Re1—K1vi | 53.795 (14) | F1xi—K1—F1xvi | 127.81 (6) |
K1i—Re1—K1vi | 107.11 (3) | F1x—K1—F1xvi | 62.44 (10) |
F1—Re1—K1vii | 125.81 (9) | F1xii—K1—F1xvi | 95.05 (6) |
F1i—Re1—K1vii | 54.19 (9) | F1xiii—K1—F1xvi | 168.22 (13) |
F1ii—Re1—K1vii | 126.206 (14) | F1xiv—K1—F1xvi | 118.98 (2) |
F1iii—Re1—K1vii | 53.794 (14) | F1iv—K1—F1xvi | 118.98 (2) |
F1iv—Re1—K1vii | 53.795 (14) | F1xv—K1—F1xvi | 58.10 (11) |
F1v—Re1—K1vii | 126.205 (14) | F1xi—K1—F1 | 127.81 (6) |
K1i—Re1—K1vii | 72.89 (3) | F1x—K1—F1 | 95.05 (6) |
K1vi—Re1—K1vii | 180.0 | F1xii—K1—F1 | 62.44 (10) |
F1—Re1—K1 | 53.794 (14) | F1xiii—K1—F1 | 118.98 (2) |
F1i—Re1—K1 | 126.206 (14) | F1xiv—K1—F1 | 168.22 (13) |
F1ii—Re1—K1 | 54.19 (9) | F1iv—K1—F1 | 58.09 (11) |
F1iii—Re1—K1 | 125.81 (9) | F1xv—K1—F1 | 118.98 (2) |
F1iv—Re1—K1 | 53.794 (14) | F1xvi—K1—F1 | 61.22 (11) |
F1v—Re1—K1 | 126.206 (14) | F1xi—K1—F1xvii | 105.55 (10) |
K1i—Re1—K1 | 180.0 | F1x—K1—F1xvii | 144.70 (4) |
K1vi—Re1—K1 | 72.89 (3) | F1xii—K1—F1xvii | 144.70 (4) |
K1vii—Re1—K1 | 107.11 (3) | F1xiii—K1—F1xvii | 53.80 (10) |
F1—Re1—K1viii | 53.795 (14) | F1xiv—K1—F1xvii | 53.80 (10) |
F1i—Re1—K1viii | 126.205 (14) | F1iv—K1—F1xvii | 85.73 (6) |
F1ii—Re1—K1viii | 126.206 (14) | F1xv—K1—F1xvii | 85.73 (6) |
F1iii—Re1—K1viii | 53.794 (14) | F1xvi—K1—F1xvii | 114.69 (6) |
F1iv—Re1—K1viii | 125.81 (9) | F1—K1—F1xvii | 114.69 (6) |
F1v—Re1—K1viii | 54.19 (9) | F1xi—K1—F1ii | 144.70 (4) |
K1i—Re1—K1viii | 72.90 (3) | F1x—K1—F1ii | 144.70 (4) |
K1vi—Re1—K1viii | 72.90 (3) | F1xii—K1—F1ii | 105.55 (10) |
K1vii—Re1—K1viii | 107.10 (3) | F1xiii—K1—F1ii | 85.73 (6) |
K1—Re1—K1viii | 107.10 (3) | F1xiv—K1—F1ii | 114.69 (6) |
F1—Re1—K1ix | 126.205 (14) | F1iv—K1—F1ii | 53.80 (10) |
F1i—Re1—K1ix | 53.795 (14) | F1xv—K1—F1ii | 114.69 (6) |
F1ii—Re1—K1ix | 53.794 (14) | F1xvi—K1—F1ii | 85.73 (6) |
F1iii—Re1—K1ix | 126.206 (14) | F1—K1—F1ii | 53.80 (10) |
F1iv—Re1—K1ix | 54.19 (9) | F1xvii—K1—F1ii | 60.91 (10) |
F1v—Re1—K1ix | 125.81 (9) | F1xi—K1—F1vi | 144.70 (4) |
K1i—Re1—K1ix | 107.10 (3) | F1x—K1—F1vi | 105.55 (10) |
K1vi—Re1—K1ix | 107.10 (3) | F1xii—K1—F1vi | 144.70 (4) |
K1vii—Re1—K1ix | 72.90 (3) | F1xiii—K1—F1vi | 114.69 (6) |
K1—Re1—K1ix | 72.90 (3) | F1xiv—K1—F1vi | 85.73 (6) |
K1viii—Re1—K1ix | 180.0 | F1iv—K1—F1vi | 114.69 (6) |
Re1—F1—K1x | 161.08 (14) | F1xv—K1—F1vi | 53.80 (10) |
Re1—F1—K1 | 93.79 (6) | F1xvi—K1—F1vi | 53.80 (10) |
K1x—F1—K1 | 84.95 (6) | F1—K1—F1vi | 85.73 (6) |
Re1—F1—K1viii | 93.79 (6) | F1xvii—K1—F1vi | 60.91 (10) |
K1x—F1—K1viii | 84.95 (6) | F1ii—K1—F1vi | 60.91 (10) |
Symmetry codes: (i) −x, −y, −z; (ii) x−y, x, −z; (iii) −x+y, −x, z; (iv) −y, x−y, z; (v) y, −x+y, −z; (vi) −x+1, −y+1, −z; (vii) x−1, y−1, z; (viii) x, y−1, z; (ix) −x, −y+1, −z; (x) −x+1, −y+1, −z+1; (xi) y, −x+y+1, −z+1; (xii) x−y, x, −z+1; (xiii) −x+y, −x+1, z; (xiv) x, y+1, z; (xv) −y+1, x−y+1, z; (xvi) −x+y+1, −x+1, z; (xvii) y, −x+y+1, −z. |
Rb2[ReF6] | Dx = 5.332 Mg m−3 |
Mr = 471.14 | Mo Kα radiation, λ = 0.71073 Å |
Trigonal, P3m1 | Cell parameters from 1612 reflections |
a = 5.9926 (13) Å | θ = 3.9–28.3° |
c = 4.7177 (10) Å | µ = 37.22 mm−1 |
V = 146.72 (7) Å3 | T = 100 K |
Z = 1 | Hexagonal plate, translucent colourless |
F(000) = 203 | 0.08 × 0.07 × 0.04 mm |
Bruker D8 QUEST diffractometer | 115 independent reflections |
Radiation source: sealed tube, Siemens KFFMo2K-90 | 111 reflections with I > 2σ(I) |
Curved graphite monochromator | Rint = 0.073 |
Detector resolution: 8.3333 pixels mm-1 | θmax = 24.9°, θmin = 3.9° |
φ and ω scans | h = −7→7 |
Absorption correction: numerical (SADABS; Bruker, 2015) | k = −7→7 |
Tmin = 0.11, Tmax = 0.30 | l = −5→5 |
1526 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Primary atom site location: heavy-atom method |
R[F2 > 2σ(F2)] = 0.027 | Secondary atom site location: difference Fourier map |
wR(F2) = 0.074 | w = 1/[σ2(Fo2) + (0.0175P)2 + 3.5548P] where P = (Fo2 + 2Fc2)/3 |
S = 1.30 | (Δ/σ)max < 0.001 |
115 reflections | Δρmax = 1.91 e Å−3 |
12 parameters | Δρmin = −1.36 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Re1 | 0 | 0 | 0 | 0.0157 (5) | |
F1 | 0.3151 (14) | 0.1576 (7) | 0.2231 (15) | 0.0151 (17) | |
Rb1 | 0.3333 | 0.6667 | 0.2971 (4) | 0.0138 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Re1 | 0.0133 (6) | 0.0133 (6) | 0.0205 (8) | 0.0066 (3) | 0 | 0 |
F1 | 0.015 (4) | 0.017 (3) | 0.012 (3) | 0.0077 (19) | 0.001 (3) | 0.0007 (14) |
Rb1 | 0.0131 (8) | 0.0131 (8) | 0.0152 (12) | 0.0065 (4) | 0 | 0 |
Re1—F1i | 1.945 (7) | F1—Rb1viii | 3.0181 (11) |
Re1—F1ii | 1.945 (7) | F1—Rb1vi | 3.058 (7) |
Re1—F1iii | 1.945 (7) | Rb1—F1xi | 2.907 (7) |
Re1—F1iv | 1.945 (7) | Rb1—F1x | 2.907 (7) |
Re1—F1v | 1.945 (7) | Rb1—F1xii | 2.907 (7) |
Re1—F1 | 1.945 (7) | Rb1—F1xiii | 3.0181 (11) |
Re1—Rb1i | 3.7330 (10) | Rb1—F1xiv | 3.0181 (11) |
Re1—Rb1vi | 3.7330 (11) | Rb1—F1v | 3.0181 (11) |
Re1—Rb1vii | 3.7330 (11) | Rb1—F1xv | 3.0181 (11) |
Re1—Rb1 | 3.7330 (10) | Rb1—F1xvi | 3.0181 (11) |
Re1—Rb1viii | 3.7330 (11) | Rb1—F1xvii | 3.058 (7) |
Re1—Rb1ix | 3.7330 (11) | Rb1—F1ii | 3.058 (7) |
F1—Rb1x | 2.907 (7) | Rb1—F1vi | 3.058 (7) |
F1—Rb1 | 3.0181 (11) | ||
F1i—Re1—F1ii | 93.5 (3) | Rb1—F1—Rb1viii | 166.2 (3) |
F1i—Re1—F1iii | 86.5 (3) | Re1—F1—Rb1vi | 93.9 (2) |
F1ii—Re1—F1iii | 180.0 (3) | Rb1x—F1—Rb1vi | 104.5 (2) |
F1i—Re1—F1iv | 93.5 (3) | Rb1—F1—Rb1vi | 94.26 (14) |
F1ii—Re1—F1iv | 93.5 (3) | Rb1viii—F1—Rb1vi | 94.26 (14) |
F1iii—Re1—F1iv | 86.5 (3) | F1xi—Rb1—F1x | 65.8 (2) |
F1i—Re1—F1v | 86.5 (3) | F1xi—Rb1—F1xii | 65.8 (2) |
F1ii—Re1—F1v | 86.5 (3) | F1x—Rb1—F1xii | 65.8 (2) |
F1iii—Re1—F1v | 93.5 (3) | F1xi—Rb1—F1xiii | 62.7 (2) |
F1iv—Re1—F1v | 180.0 | F1x—Rb1—F1xiii | 128.31 (8) |
F1i—Re1—F1 | 180.0 | F1xii—Rb1—F1xiii | 96.30 (14) |
F1ii—Re1—F1 | 86.5 (3) | F1xi—Rb1—F1xiv | 62.7 (2) |
F1iii—Re1—F1 | 93.5 (3) | F1x—Rb1—F1xiv | 96.30 (14) |
F1iv—Re1—F1 | 86.5 (3) | F1xii—Rb1—F1xiv | 128.31 (8) |
F1v—Re1—F1 | 93.5 (3) | F1xiii—Rb1—F1xiv | 56.0 (3) |
F1i—Re1—Rb1i | 53.64 (2) | F1xi—Rb1—F1v | 96.30 (14) |
F1ii—Re1—Rb1i | 125.2 (2) | F1x—Rb1—F1v | 128.31 (8) |
F1iii—Re1—Rb1i | 54.8 (2) | F1xii—Rb1—F1v | 62.7 (2) |
F1iv—Re1—Rb1i | 53.64 (2) | F1xiii—Rb1—F1v | 63.1 (3) |
F1v—Re1—Rb1i | 126.36 (2) | F1xiv—Rb1—F1v | 118.68 (6) |
F1—Re1—Rb1i | 126.36 (2) | F1xi—Rb1—F1xv | 96.30 (14) |
F1i—Re1—Rb1vi | 125.2 (2) | F1x—Rb1—F1xv | 62.7 (2) |
F1ii—Re1—Rb1vi | 53.64 (2) | F1xii—Rb1—F1xv | 128.31 (8) |
F1iii—Re1—Rb1vi | 126.36 (2) | F1xiii—Rb1—F1xv | 118.68 (5) |
F1iv—Re1—Rb1vi | 53.64 (2) | F1xiv—Rb1—F1xv | 63.1 (3) |
F1v—Re1—Rb1vi | 126.36 (2) | F1v—Rb1—F1xv | 166.2 (3) |
F1—Re1—Rb1vi | 54.8 (2) | F1xi—Rb1—F1xvi | 128.31 (8) |
Rb1i—Re1—Rb1vi | 106.77 (3) | F1x—Rb1—F1xvi | 62.7 (2) |
F1i—Re1—Rb1vii | 54.8 (2) | F1xii—Rb1—F1xvi | 96.30 (14) |
F1ii—Re1—Rb1vii | 126.36 (2) | F1xiii—Rb1—F1xvi | 166.2 (3) |
F1iii—Re1—Rb1vii | 53.64 (2) | F1xiv—Rb1—F1xvi | 118.68 (6) |
F1iv—Re1—Rb1vii | 126.36 (2) | F1v—Rb1—F1xvi | 118.68 (5) |
F1v—Re1—Rb1vii | 53.64 (2) | F1xv—Rb1—F1xvi | 56.0 (3) |
F1—Re1—Rb1vii | 125.2 (2) | F1xi—Rb1—F1 | 128.31 (8) |
Rb1i—Re1—Rb1vii | 73.23 (3) | F1x—Rb1—F1 | 96.30 (14) |
Rb1vi—Re1—Rb1vii | 180.0 | F1xii—Rb1—F1 | 62.7 (2) |
F1i—Re1—Rb1 | 126.36 (2) | F1xiii—Rb1—F1 | 118.68 (6) |
F1ii—Re1—Rb1 | 54.8 (2) | F1xiv—Rb1—F1 | 166.2 (3) |
F1iii—Re1—Rb1 | 125.2 (2) | F1v—Rb1—F1 | 56.0 (3) |
F1iv—Re1—Rb1 | 126.36 (2) | F1xv—Rb1—F1 | 118.68 (5) |
F1v—Re1—Rb1 | 53.64 (2) | F1xvi—Rb1—F1 | 63.1 (3) |
F1—Re1—Rb1 | 53.64 (2) | F1xi—Rb1—F1xvii | 104.5 (2) |
Rb1i—Re1—Rb1 | 180.0 | F1x—Rb1—F1xvii | 144.30 (9) |
Rb1vi—Re1—Rb1 | 73.23 (3) | F1xii—Rb1—F1xvii | 144.30 (9) |
Rb1vii—Re1—Rb1 | 106.77 (3) | F1xiii—Rb1—F1xvii | 52.0 (2) |
F1i—Re1—Rb1viii | 126.36 (2) | F1xiv—Rb1—F1xvii | 52.0 (2) |
F1ii—Re1—Rb1viii | 126.36 (2) | F1v—Rb1—F1xvii | 85.74 (14) |
F1iii—Re1—Rb1viii | 53.64 (2) | F1xv—Rb1—F1xvii | 85.74 (14) |
F1iv—Re1—Rb1viii | 54.8 (2) | F1xvi—Rb1—F1xvii | 114.25 (9) |
F1v—Re1—Rb1viii | 125.2 (2) | F1—Rb1—F1xvii | 114.25 (9) |
F1—Re1—Rb1viii | 53.64 (2) | F1xi—Rb1—F1ii | 144.30 (9) |
Rb1i—Re1—Rb1viii | 73.23 (3) | F1x—Rb1—F1ii | 144.30 (9) |
Rb1vi—Re1—Rb1viii | 73.23 (3) | F1xii—Rb1—F1ii | 104.5 (2) |
Rb1vii—Re1—Rb1viii | 106.77 (3) | F1xiii—Rb1—F1ii | 85.74 (14) |
Rb1—Re1—Rb1viii | 106.77 (3) | F1xiv—Rb1—F1ii | 114.25 (9) |
F1i—Re1—Rb1ix | 53.64 (2) | F1v—Rb1—F1ii | 52.0 (2) |
F1ii—Re1—Rb1ix | 53.64 (2) | F1xv—Rb1—F1ii | 114.25 (9) |
F1iii—Re1—Rb1ix | 126.36 (2) | F1xvi—Rb1—F1ii | 85.74 (14) |
F1iv—Re1—Rb1ix | 125.2 (2) | F1—Rb1—F1ii | 52.0 (2) |
F1v—Re1—Rb1ix | 54.8 (2) | F1xvii—Rb1—F1ii | 62.2 (2) |
F1—Re1—Rb1ix | 126.36 (2) | F1xi—Rb1—F1vi | 144.30 (9) |
Rb1i—Re1—Rb1ix | 106.77 (3) | F1x—Rb1—F1vi | 104.5 (2) |
Rb1vi—Re1—Rb1ix | 106.77 (3) | F1xii—Rb1—F1vi | 144.30 (9) |
Rb1vii—Re1—Rb1ix | 73.23 (3) | F1xiii—Rb1—F1vi | 114.25 (9) |
Rb1—Re1—Rb1ix | 73.23 (3) | F1xiv—Rb1—F1vi | 85.74 (14) |
Rb1viii—Re1—Rb1ix | 180.0 | F1v—Rb1—F1vi | 114.25 (9) |
Re1—F1—Rb1x | 161.6 (3) | F1xv—Rb1—F1vi | 52.0 (2) |
Re1—F1—Rb1 | 95.10 (14) | F1xvi—Rb1—F1vi | 52.0 (2) |
Rb1x—F1—Rb1 | 83.70 (14) | F1—Rb1—F1vi | 85.74 (14) |
Re1—F1—Rb1viii | 95.10 (14) | F1xvii—Rb1—F1vi | 62.2 (2) |
Rb1x—F1—Rb1viii | 83.70 (14) | F1ii—Rb1—F1vi | 62.2 (2) |
Symmetry codes: (i) −x, −y, −z; (ii) x−y, x, −z; (iii) −x+y, −x, z; (iv) y, −x+y, −z; (v) −y, x−y, z; (vi) −x+1, −y+1, −z; (vii) x−1, y−1, z; (viii) x, y−1, z; (ix) −x, −y+1, −z; (x) −x+1, −y+1, −z+1; (xi) y, −x+y+1, −z+1; (xii) x−y, x, −z+1; (xiii) −x+y, −x+1, z; (xiv) x, y+1, z; (xv) −y+1, x−y+1, z; (xvi) −x+y+1, −x+1, z; (xvii) y, −x+y+1, −z. |
Cs2[ReF6] | Dx = 5.602 Mg m−3 |
Mr = 566.02 | Mo Kα radiation, λ = 0.71073 Å |
Trigonal, P3m1 | Cell parameters from 135 reflections |
a = 6.268 (1) Å | θ = 3.8–32.6° |
c = 4.931 (1) Å | µ = 28.83 mm−1 |
V = 167.77 (6) Å3 | T = 100 K |
Z = 1 | Hexagonal plate, clear colourless |
F(000) = 239 | 0.25 × 0.12 × 0.11 mm |
Bruker D8 QUEST diffractometer | 218 independent reflections |
Radiation source: sealed tube, Siemens KFFMo2K-90 | 218 reflections with I > 2σ(I) |
Curved graphite monochromator | Rint = 0.040 |
Detector resolution: 8.3333 pixels mm-1 | θmax = 30.4°, θmin = 3.8° |
φ and ω scans | h = −8→8 |
Absorption correction: multi-scan (SADABS; Bruker, 2015) | k = −8→8 |
Tmin = 0.05, Tmax = 0.15 | l = −7→7 |
2683 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.013 | w = 1/[σ2(Fo2) + (0.0181P)2 + 0.1419P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.036 | (Δ/σ)max < 0.001 |
S = 1.25 | Δρmax = 0.68 e Å−3 |
218 reflections | Δρmin = −2.92 e Å−3 |
13 parameters | Extinction correction: SHELXL2014 (Sheldrick, 2015) |
0 restraints | Extinction coefficient: 0.029 (2) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Re1 | 0 | 0 | 0 | 0.00427 (15) | |
F1 | 0.3027 (3) | 0.15135 (17) | 0.2165 (4) | 0.0092 (4) | |
Cs1 | 0.3333 | 0.6667 | 0.30027 (9) | 0.00615 (14) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Re1 | 0.00483 (16) | 0.00483 (16) | 0.0032 (2) | 0.00241 (8) | 0 | 0 |
F1 | 0.0088 (8) | 0.0107 (6) | 0.0075 (9) | 0.0044 (4) | −0.0023 (6) | −0.0012 (3) |
Cs1 | 0.00661 (16) | 0.00661 (16) | 0.0052 (2) | 0.00331 (8) | 0 | 0 |
Re1—F1i | 1.9594 (18) | F1—Cs1viii | 3.1655 (6) |
Re1—F1ii | 1.9594 (18) | F1—Cs1vi | 3.224 (2) |
Re1—F1iii | 1.9594 (18) | Cs1—F1xi | 3.0955 (19) |
Re1—F1iv | 1.9594 (18) | Cs1—F1x | 3.0955 (19) |
Re1—F1v | 1.9594 (18) | Cs1—F1xii | 3.0955 (19) |
Re1—F1 | 1.9594 (18) | Cs1—F1xiii | 3.1655 (6) |
Re1—Cs1i | 3.9100 (6) | Cs1—F1xiv | 3.1655 (6) |
Re1—Cs1vi | 3.9100 (6) | Cs1—F1iii | 3.1655 (6) |
Re1—Cs1vii | 3.9100 (6) | Cs1—F1xv | 3.1655 (6) |
Re1—Cs1 | 3.9100 (6) | Cs1—F1xvi | 3.1655 (6) |
Re1—Cs1viii | 3.9100 (6) | Cs1—F1xvii | 3.224 (2) |
Re1—Cs1ix | 3.9100 (6) | Cs1—F1iv | 3.224 (2) |
F1—Cs1x | 3.0955 (19) | Cs1—F1vi | 3.224 (2) |
F1—Cs1 | 3.1655 (6) | ||
F1i—Re1—F1ii | 93.14 (7) | Cs1—F1—Cs1viii | 163.82 (6) |
F1i—Re1—F1iii | 86.86 (7) | Re1—F1—Cs1vi | 94.78 (7) |
F1ii—Re1—F1iii | 180.00 (4) | Cs1x—F1—Cs1vi | 102.55 (5) |
F1i—Re1—F1iv | 93.14 (7) | Cs1—F1—Cs1vi | 94.07 (3) |
F1ii—Re1—F1iv | 93.14 (7) | Cs1viii—F1—Cs1vi | 94.07 (3) |
F1iii—Re1—F1iv | 86.86 (7) | F1xi—Cs1—F1x | 67.11 (6) |
F1i—Re1—F1v | 86.86 (7) | F1xi—Cs1—F1xii | 67.11 (6) |
F1ii—Re1—F1v | 86.86 (7) | F1x—Cs1—F1xii | 67.11 (6) |
F1iii—Re1—F1v | 93.14 (7) | F1xi—Cs1—F1xiii | 62.38 (6) |
F1iv—Re1—F1v | 180.00 (8) | F1x—Cs1—F1xiii | 129.122 (17) |
F1i—Re1—F1 | 180.0 | F1xii—Cs1—F1xiii | 97.70 (3) |
F1ii—Re1—F1 | 86.86 (7) | F1xi—Cs1—F1xiv | 62.38 (6) |
F1iii—Re1—F1 | 93.14 (7) | F1x—Cs1—F1xiv | 97.70 (3) |
F1iv—Re1—F1 | 86.86 (7) | F1xii—Cs1—F1xiv | 129.122 (17) |
F1v—Re1—F1 | 93.14 (7) | F1xiii—Cs1—F1xiv | 53.43 (7) |
F1i—Re1—Cs1i | 53.533 (6) | F1xi—Cs1—F1iii | 97.70 (3) |
F1ii—Re1—Cs1i | 53.533 (6) | F1x—Cs1—F1iii | 129.122 (17) |
F1iii—Re1—Cs1i | 126.467 (6) | F1xii—Cs1—F1iii | 62.38 (6) |
F1iv—Re1—Cs1i | 124.74 (6) | F1xiii—Cs1—F1iii | 65.44 (7) |
F1v—Re1—Cs1i | 55.26 (6) | F1xiv—Cs1—F1iii | 118.323 (15) |
F1—Re1—Cs1i | 126.467 (6) | F1xi—Cs1—F1xv | 97.70 (3) |
F1i—Re1—Cs1vi | 124.74 (6) | F1x—Cs1—F1xv | 62.38 (6) |
F1ii—Re1—Cs1vi | 53.533 (6) | F1xii—Cs1—F1xv | 129.122 (17) |
F1iii—Re1—Cs1vi | 126.467 (6) | F1xiii—Cs1—F1xv | 118.323 (14) |
F1iv—Re1—Cs1vi | 53.532 (6) | F1xiv—Cs1—F1xv | 65.44 (7) |
F1v—Re1—Cs1vi | 126.468 (6) | F1iii—Cs1—F1xv | 163.82 (6) |
F1—Re1—Cs1vi | 55.26 (6) | F1xi—Cs1—F1 | 129.123 (17) |
Cs1i—Re1—Cs1vi | 106.554 (9) | F1x—Cs1—F1 | 97.70 (3) |
F1i—Re1—Cs1vii | 55.26 (6) | F1xii—Cs1—F1 | 62.38 (6) |
F1ii—Re1—Cs1vii | 126.467 (6) | F1xiii—Cs1—F1 | 118.323 (15) |
F1iii—Re1—Cs1vii | 53.533 (6) | F1xiv—Cs1—F1 | 163.82 (6) |
F1iv—Re1—Cs1vii | 126.468 (6) | F1iii—Cs1—F1 | 53.43 (7) |
F1v—Re1—Cs1vii | 53.532 (6) | F1xv—Cs1—F1 | 118.323 (15) |
F1—Re1—Cs1vii | 124.74 (6) | F1xi—Cs1—F1xvi | 129.122 (17) |
Cs1i—Re1—Cs1vii | 73.446 (9) | F1x—Cs1—F1xvi | 62.38 (6) |
Cs1vi—Re1—Cs1vii | 180.0 | F1xii—Cs1—F1xvi | 97.70 (3) |
F1i—Re1—Cs1 | 126.467 (6) | F1xiii—Cs1—F1xvi | 163.82 (6) |
F1ii—Re1—Cs1 | 126.467 (6) | F1xiv—Cs1—F1xvi | 118.323 (15) |
F1iii—Re1—Cs1 | 53.533 (6) | F1iii—Cs1—F1xvi | 118.323 (15) |
F1iv—Re1—Cs1 | 55.26 (6) | F1xv—Cs1—F1xvi | 53.43 (7) |
F1v—Re1—Cs1 | 124.74 (6) | F1—Cs1—F1xvi | 65.44 (7) |
F1—Re1—Cs1 | 53.533 (6) | F1xi—Cs1—F1xvii | 102.55 (5) |
Cs1i—Re1—Cs1 | 180.0 | F1x—Cs1—F1xvii | 143.51 (2) |
Cs1vi—Re1—Cs1 | 73.447 (8) | F1xii—Cs1—F1xvii | 143.51 (2) |
Cs1vii—Re1—Cs1 | 106.553 (8) | F1xiii—Cs1—F1xvii | 49.86 (5) |
F1i—Re1—Cs1viii | 126.467 (6) | F1xiv—Cs1—F1xvii | 49.86 (5) |
F1ii—Re1—Cs1viii | 55.26 (6) | F1iii—Cs1—F1xvii | 85.93 (3) |
F1iii—Re1—Cs1viii | 124.74 (6) | F1xv—Cs1—F1xvii | 85.93 (3) |
F1iv—Re1—Cs1viii | 126.467 (6) | F1—Cs1—F1xvii | 113.96 (2) |
F1v—Re1—Cs1viii | 53.533 (6) | F1xvi—Cs1—F1xvii | 113.96 (2) |
F1—Re1—Cs1viii | 53.533 (6) | F1xi—Cs1—F1iv | 143.51 (2) |
Cs1i—Re1—Cs1viii | 73.447 (8) | F1x—Cs1—F1iv | 143.51 (2) |
Cs1vi—Re1—Cs1viii | 73.447 (9) | F1xii—Cs1—F1iv | 102.55 (5) |
Cs1vii—Re1—Cs1viii | 106.553 (9) | F1xiii—Cs1—F1iv | 85.93 (3) |
Cs1—Re1—Cs1viii | 106.553 (9) | F1xiv—Cs1—F1iv | 113.96 (2) |
F1i—Re1—Cs1ix | 53.533 (6) | F1iii—Cs1—F1iv | 49.86 (5) |
F1ii—Re1—Cs1ix | 124.74 (6) | F1xv—Cs1—F1iv | 113.96 (2) |
F1iii—Re1—Cs1ix | 55.26 (6) | F1—Cs1—F1iv | 49.86 (5) |
F1iv—Re1—Cs1ix | 53.533 (6) | F1xvi—Cs1—F1iv | 85.93 (3) |
F1v—Re1—Cs1ix | 126.467 (6) | F1xvii—Cs1—F1iv | 64.10 (5) |
F1—Re1—Cs1ix | 126.467 (6) | F1xi—Cs1—F1vi | 143.51 (2) |
Cs1i—Re1—Cs1ix | 106.553 (8) | F1x—Cs1—F1vi | 102.55 (5) |
Cs1vi—Re1—Cs1ix | 106.553 (9) | F1xii—Cs1—F1vi | 143.51 (2) |
Cs1vii—Re1—Cs1ix | 73.447 (9) | F1xiii—Cs1—F1vi | 113.96 (2) |
Cs1—Re1—Cs1ix | 73.447 (9) | F1xiv—Cs1—F1vi | 85.93 (3) |
Cs1viii—Re1—Cs1ix | 180.0 | F1iii—Cs1—F1vi | 113.96 (2) |
Re1—F1—Cs1x | 162.67 (9) | F1xv—Cs1—F1vi | 49.86 (5) |
Re1—F1—Cs1 | 96.61 (3) | F1—Cs1—F1vi | 85.93 (3) |
Cs1x—F1—Cs1 | 82.30 (3) | F1xvi—Cs1—F1vi | 49.86 (5) |
Re1—F1—Cs1viii | 96.61 (3) | F1xvii—Cs1—F1vi | 64.10 (5) |
Cs1x—F1—Cs1viii | 82.30 (3) | F1iv—Cs1—F1vi | 64.10 (5) |
Symmetry codes: (i) −x, −y, −z; (ii) y, −x+y, −z; (iii) −y, x−y, z; (iv) x−y, x, −z; (v) −x+y, −x, z; (vi) −x+1, −y+1, −z; (vii) x−1, y−1, z; (viii) x, y−1, z; (ix) −x, −y+1, −z; (x) −x+1, −y+1, −z+1; (xi) y, −x+y+1, −z+1; (xii) x−y, x, −z+1; (xiii) −x+y, −x+1, z; (xiv) x, y+1, z; (xv) −y+1, x−y+1, z; (xvi) −x+y+1, −x+1, z; (xvii) y, −x+y+1, −z. |
M—F, M = Re | F—M—F, M = Re | M—F, M = Tc | F—M—F, M = Tc | |
K2[MF6] | 1.948 (3) | 86.08 (12), 93.92 (12), 180 | 1.928 (6) | 86.93 (5), 93.07 (5), 180 |
Rb2[MF6] | 1.945 (7) | 86.5 (3), 93.5 (3), 180 | 1.933 (3) | 87.2 (2), 92.8 (2), 180 |
Cs2[MF6] | 1.9594 (18) | 86.86 (7), 93.14 (7), 180 | 1.935 (5) | 87.8 (2), 92.2 (2), 180 |
Note: (a) Balasekaran et al. (2013). |
Acknowledgements
The authors thank Ms Julie Bertoia and Mr Charles Bynum for laboratory support, and Ms Wendee Johns for administrative support.
Funding information
Funding for this research was provided by: Department of Energy - Nuclear Science and Security Consortium (award No. DE-NA0003180).
References
Balasekaran, S. M., Molski, M., Spandl, J., Hagenbach, A., Alberto, R. & Abram, U. (2013). Inorg. Chem. 52, 7094–7099. Web of Science CSD CrossRef CAS Google Scholar
Bettinelli, M., Disipio, L., Ingletto, G. & Razzetti, C. (1987). Inorg. Chim. Acta, 133, 7–9. CrossRef CAS Web of Science Google Scholar
Brandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Brauer, G. & Allardt, H. D. (1962). Z. Anorg. Allg. Chem. 316, 134–140. CrossRef CAS Web of Science Google Scholar
Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, WI, USA. Google Scholar
Clark, G. R. & Russell, D. R. (1978). Acta Cryst. B34, 894–895. CrossRef CAS IUCr Journals Web of Science Google Scholar
Hoard, J. L. & Vincent, W. B. (1939). J. Am. Chem. Soc. 61, 2849–2852. CrossRef CAS Google Scholar
Peacock, R. D. (1956). J. Chem. Soc. pp. 1291–1293. CrossRef Web of Science Google Scholar
Pedersen, K. S., Sigrist, M., Sorensen, M. A., Barra, A. L., Weyhermuller, T., Piligkos, S., Thuesen, C. A., Vinum, M. G., Mutka, H., Weihe, H., Clerac, R. & Bendix, J. (2014). Angew. Chem. Int. Ed. 53, 1351–1354. Web of Science CSD CrossRef CAS Google Scholar
Ruff, O. & Kwasnik, W. (1934). Z. Anorg. Allg. Chem. 219, 65–81. CrossRef CAS Google Scholar
Schwochau, K. & Herr, W. (1963). Angew. Chem. 75, 95. CrossRef Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Watt, G. W., Thompson, R. J. & Gibbons, J. M. (1963). Inorganic Syntheses edited by J. Kleinberg, Vol 7, pp. 189–190. New York: McGraw-Hill. Google Scholar
Weise, E. (1956). Z. Anorg. Allg. Chem. 283, 377–389. CrossRef CAS Web of Science Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.