research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Syntheses, Raman spectroscopy and crystal structures of alkali hexa­fluorido­rhenates(IV) revisited

aDepartment of Chemistry, University of Nevada Las Vegas, 4505 South Maryland Parkway, Las Vegas, Nevada, 89154, United States, bDepartment of Physics and Astronomy and HiPSEC, University of Nevada Las Vegas, 4505 South Maryland Parkway, Las Vegas, Nevada, 89154, United States, and cDepartment of Chemistry, Hanoi University of Science, Hanoi, Vietnam
*Correspondence e-mail: m.b.eswari@unlv.edu

Edited by M. Weil, Vienna University of Technology, Austria (Received 17 December 2017; accepted 3 April 2018; online 6 April 2018)

The A2[ReF6] (A = K, Rb and Cs) salts are isotypic and crystallize in the trigonal space group type P[\overline{3}]m1, adopting the K2[GeF6] structure type. Common to all A2[ReF6] structures are slightly distorted octa­hedral [ReF6]2− anions with an average Re—F bond length of 1.951 (8) Å. In those salts, symmetry lowering on the local [ReF6]2− anions from Oh (free anion) to D3d (solid-state structure) occur. The distortions of the [ReF6]2− anions, as observed in their Raman spectra, are correlated to the size of the counter-cations.

1. Chemical context

The hexa­fluorido­rhenate(IV) anion has been known for 80 years but its chemistry is understudied with respect to the heavier halogen analogs (Ruff & Kwasnik, 1934[Ruff, O. & Kwasnik, W. (1934). Z. Anorg. Allg. Chem. 219, 65-81.]). The scarcity of [ReF6]2− salts is attributed to the difficulties in their preparation and purification. K2[ReF6] was the first hexa­fluorido­rhenate(IV) salt to be reported; it was prepared from the solid-state melting reaction (SSMR) of K2[ReBr6] with KHF2 (Ruff & Kwasnik, 1934[Ruff, O. & Kwasnik, W. (1934). Z. Anorg. Allg. Chem. 219, 65-81.]). Almost two decades later, ten salts comprising the [ReF6]2– anion and with different counter-cations (Rb+, Cs+, PPh4+ (Ph = C6H5), [Ni(NH3)6]2+, [Co(NH3)6]3+, {[Co(NH3)6](NO3)}2+, {[Cr(NH3)6](NO3)}2+, [Co(NH3)5Cl]2+, [Cr(NH3)5Cl]2+, [Co(NH3)4(CO3)]2+) had been reported (Peacock, 1956[Peacock, R. D. (1956). J. Chem. Soc. pp. 1291-1293.]; Weise, 1956[Weise, E. (1956). Z. Anorg. Allg. Chem. 283, 377-389.]; Pedersen et al., 2014[Pedersen, K. S., Sigrist, M., Sorensen, M. A., Barra, A. L., Weyhermuller, T., Piligkos, S., Thuesen, C. A., Vinum, M. G., Mutka, H., Weihe, H., Clerac, R. & Bendix, J. (2014). Angew. Chem. Int. Ed. 53, 1351-1354.]; Brauer & Allardt, 1962[Brauer, G. & Allardt, H. D. (1962). Z. Anorg. Allg. Chem. 316, 134-140.]). Those salts were prepared by cation metathesis starting from (NH4)2[ReF6] or K2[ReF6]. However, the synthetic procedure to prepare (NH4)2[ReF6] or K2[ReF6] was not explained in detail. To date, only the structures of two [ReF6]2− salts have been characterized by single crystal X-ray diffraction (SCXRD): K2[ReF6] (measured at 292 K) and (PPh4)2[ReF6]·H2O (measured at 122 K) (Clark & Russell, 1978[Clark, G. R. & Russell, D. R. (1978). Acta Cryst. B34, 894-895.]; Pedersen et al., 2014[Pedersen, K. S., Sigrist, M., Sorensen, M. A., Barra, A. L., Weyhermuller, T., Piligkos, S., Thuesen, C. A., Vinum, M. G., Mutka, H., Weihe, H., Clerac, R. & Bendix, J. (2014). Angew. Chem. Int. Ed. 53, 1351-1354.]). Similarly, the synthesis of the K2[TcF6] congener, which was reported in 1963, involves the SSMR of K2[TcBr6] with KHF2 followed by an aqueous work-up (Schwochau & Herr, 1963[Schwochau, K. & Herr, W. (1963). Angew. Chem. 75, 95.]). However, [TcF6]2− salts have been reinvestigated recently (Balasekaran et al., 2013[Balasekaran, S. M., Molski, M., Spandl, J., Hagenbach, A., Alberto, R. & Abram, U. (2013). Inorg. Chem. 52, 7094-7099.]), and various routes for the different salts of A2[TcF6] [A = Na, K, Rb, Cs and N(CH3)4] were reported. These salts were characterized by Raman and IR spectroscopy and by SCXRD. The A2[ReF6] salts could serve as suitable precursors to explore the chemistry of rhenium in the oxidation state IV.

Here, we revisited the synthesis of A2[ReF6] (A = K, Rb, Cs) salts and report their crystal structures determined from single crystal data, and their Raman spectra.

2. Structural commentary

The title alkaline metal salts A2[ReF6] (A = K, Rb, Cs) are isotypic. They adopt the K2[GeF6] structure type (Hoard & Vincent, 1939[Hoard, J. L. & Vincent, W. B. (1939). J. Am. Chem. Soc. 61, 2849-2852.]) and crystallize in the trigonal space group type P[\overline{3}]m1 (Table 1[link]), just like the related A2[TcF6] (A = K, Rb, Cs) compounds (Balasekaran et al., 2013[Balasekaran, S. M., Molski, M., Spandl, J., Hagenbach, A., Alberto, R. & Abram, U. (2013). Inorg. Chem. 52, 7094-7099.]). Selected bond lengths and angles of the series of [ReF6]2− anions of the present work and the reported [TcF6]2− salts (Balasekaran et al., 2013[Balasekaran, S. M., Molski, M., Spandl, J., Hagenbach, A., Alberto, R. & Abram, U. (2013). Inorg. Chem. 52, 7094-7099.]) are presented in Table 1[link]. Representative for all other title compounds, the [ReF6]2− anion of the Cs2[ReF6] salt is given in Fig. 1[link]. The ReIV atom is located on a position with site symmetry [\overline{3}]m. (Wyckoff position 1a) at the origin of the trigonal unit cell. The six symmetry-related fluorine ligands form a slightly distorted octa­hedral coordination sphere around the rhenium(IV) atom. The Re—F bond lengths for the K, Rb, and Cs salts of [ReF6]2−, 1.948 (3), 1.945 (7) and 1.9594 (18) Å, respectively, are longer than the Tc—F bond lengths for the congener K, Rb, and Cs salts of [TcF6]2−, 1.928 (1), 1.933 (3), and 1.935 (5) Å, respectively (Balasekaran et al., 2013[Balasekaran, S. M., Molski, M., Spandl, J., Hagenbach, A., Alberto, R. & Abram, U. (2013). Inorg. Chem. 52, 7094-7099.]).

Table 1
Structural details (Å, °) of the [ReF6]2− anion in this study and of the related anion in [TcF6]2− saltsa

  M—F, M = Re F—M—F, M = Re M—F, M = Tc F—M—F, M = Tc
K2[MF6] 1.948 (3) 86.08 (12), 93.92 (12), 180 1.928 (6) 86.93 (5), 93.07 (5), 180
Rb2[MF6] 1.945 (7) 86.5 (3), 93.5 (3), 180 1.933 (3) 87.2 (2), 92.8 (2), 180
Cs2[MF6] 1.9594 (18) 86.86 (7), 93.14 (7), 180 1.935 (5) 87.8 (2), 92.2 (2), 180
Note: (a) Balasekaran et al. (2013[Balasekaran, S. M., Molski, M., Spandl, J., Hagenbach, A., Alberto, R. & Abram, U. (2013). Inorg. Chem. 52, 7094-7099.]).
[Figure 1]
Figure 1
Representation of the [ReF6]2− anion in Cs2[ReF6]. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) −x, −y, −z; (ii) x − y, x, −z; (iii) −x + y, −x, z; (iv) −y, x − y, z; (v) y, −x + y, −z.]

In A2[ReF6] (A = K+, Rb+, Cs+), each cation is located on a position with site symmetry 3m. (Wyckoff position 2d) and is surrounded by twelve neighboring F atoms resulting in a [3 + 6 + 3] arrangement with three groups of fluoride ligands with distances of 3.0955 (19) Å (three of such), 3.1655 (6) Å (six of such), and 3.224 (2) Å (three of such) for the Cs+ salt as a representative of the three [ReF6]2− salts. These bond-length distributions are also found in the K+ and Rb+ salts of the [ReF6]2− complexes. This correlates well and confirms that A2[ReF6] salts are isotypic with K2[GeF6] and the congener A2[TcF6] (A = K+, Rb+, Cs+) (Balasekaran et al., 2013[Balasekaran, S. M., Molski, M., Spandl, J., Hagenbach, A., Alberto, R. & Abram, U. (2013). Inorg. Chem. 52, 7094-7099.]; Hoard & Vincent, 1939[Hoard, J. L. & Vincent, W. B. (1939). J. Am. Chem. Soc. 61, 2849-2852.]). In comparison with the previous structure determination of K2[ReF6] (Clark & Russell, 1978[Clark, G. R. & Russell, D. R. (1978). Acta Cryst. B34, 894-895.]), the current redetermination resulted in better reliability factors, together with a more precise determination of lattice parameters and atomic coordinates.

3. Raman spectroscopy

As reported previously for K2[ReF6] and A2[TcF6] (A = K, Rb, Cs) (Bettinelli et al., 1987[Bettinelli, M., Disipio, L., Ingletto, G. & Razzetti, C. (1987). Inorg. Chim. Acta, 133, 7-9.]; Balasekaran et al., 2013[Balasekaran, S. M., Molski, M., Spandl, J., Hagenbach, A., Alberto, R. & Abram, U. (2013). Inorg. Chem. 52, 7094-7099.]), the [ReF6]2− anions are compressed along the crystallographic c axis, thus lowering the ideal mol­ecular symmetry of the [ReF6]2− anions from Oh to D3d in the solid state. The representive unit-cell plot of Cs2[ReF6] is given in Fig. 2[link]. The effect of symmetry lowering among the alkali metal salts of [TcF6]2− and its correlation with the vibrational spectra are well described (Balasekaran et al., 2013[Balasekaran, S. M., Molski, M., Spandl, J., Hagenbach, A., Alberto, R. & Abram, U. (2013). Inorg. Chem. 52, 7094-7099.]). Here, a similar trend occurs for the A2[ReF6] series (A = K, Rb, Cs; Fig. 3[link]). In the case of K2[ReF6], the Raman spectrum exhibits four bands at 624, 539, 244 and 224 cm−1. The latter two vibrations correspond to the F2g band split due to the symmetry lowering. In the Raman spectra of A2[MF6] complexes (A = K, Rb, Cs; M = Tc, Re), the F2g splitting decreases from K2[ReF6] to Cs2[ReF6] due to differences in M—F bond length. Furthermore, the slight increase of M—F bond lengths from K2[MF6] to Cs2[MF6] are well represented in the Raman spectra which causes the Raman bands to shift to lower wavenumbers.

[Figure 2]
Figure 2
A packing diagram of Cs2[ReF6]. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 3]
Figure 3
Raman spectra of A2[ReF6] (A = K, Rb, Cs).

4. Synthesis and crystallization

Ammonium perrhenate, ammonium bifluoride, potassium fluoride, rubidium fluoride, cesium fluoride, and hydro­bromic acid (48%) were purchased from Sigma Aldrich and used without any further purification. This work was performed in a well-ventilated fume hood due to the corrosive nature of bifluoride. K2[ReBr6] was prepared as described in the literature (Watt et al., 1963[Watt, G. W., Thompson, R. J. & Gibbons, J. M. (1963). Inorganic Syntheses edited by J. Kleinberg, Vol 7, pp. 189-190. New York: McGraw-Hill.]), and the detailed synthesis of A2[ReF6] (A = K, Rb, Cs) is described below. Single crystals of A2[ReF6] (A = K, Rb, Cs) were obtained by slow evaporation at room temperature of an aqueous solution of the respective salt.

Synthesis of K2[ReF6]

K2[ReF6] was prepared by melting K2[ReBr6] (2 g, 2.69 mmol) with excess KHF2 (14 g, 0.18 mol) in a nickel crucible at 673 K for 30 min in a box furnace. The resulting greyish solid product formed was allowed to cool to room temperature and was washed first with MeOH (4 × 10 ml). Subsequently, the product was washed with several aliquots of an H2O/MeOH mixture (3 × 5 ml, 1:4 volume ratios) and centrifuged. The pink solid obtained was dissolved in warm water (5–10 ml, 353 K) and evaporated slowly at room temperature. The resultant pink crystals of K2[ReF6] were recrystallized from warm water (5 ml, 353 K) and colorless crystals of K2[ReF6] were obtained. Yield: 661 mg, 1.7 mmol (65%). IR (KBr, cm−1): 518, 484 sh (Re—F).

Syntheses of A2[ReF6] (A = Rb, Cs) salts

K2[ReF6] (151 mg, 0.4 mmol) was dissolved in 4 ml of hot water (353 K). MF (M = Rb, Cs) (0.8 mmol) dissolved in 1 ml of hot water (353 K) was added dropwise. The solution was allowed to evaporate slowly at room temperature. Crystals of Rb2[ReF6] and Cs2[ReF6] were formed in 24 h and washed first with cold water (3 × 2 ml) to remove other fluoride impurities followed by iso­propanol (3 × 1 ml), and diethyl ether (3 × 1 ml). Rb2[ReF6] yield: 156 mg, 0.33 mmol (83%). IR (KBr, cm−1): 521 (Re—F). Cs2[ReF6] yield: 175 mg, 0.276 mmol (77%). IR (KBr, cm−1): 507, 480 sh (Re—F).

IR spectra were measured on a Shimadzu IR Affinity-1 spectrometer between 400 and 4000 cm−1. Raman spectra were recorded on a HORIBA T64000 triple spectrometer operating at 30 mW in subtractive mode. The spectra were taken from pure single crystals at room temperature using the 514.5 nm (Kr/Ar) laser line.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

  K2[ReF6] Rb2[ReF6] Cs2[ReF6]
Crystal data
Mr 378.40 471.14 566.02
Crystal system, space group Trigonal, P[\overline{3}]m1 Trigonal, P[\overline{3}]m1 Trigonal, P[\overline{3}]m1
Temperature (K) 100 100 100
a, c (Å) 5.834 (2), 4.546 (2) 5.9926 (13), 4.7177 (10) 6.268 (1), 4.931 (1)
V3) 134.00 (11) 146.72 (7) 167.77 (6)
Z 1 1 1
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 24.26 37.22 28.83
Crystal size (mm) 0.10 × 0.07 × 0.04 0.08 × 0.07 × 0.04 0.25 × 0.12 × 0.11
 
Data collection
Diffractometer Bruker D8 QUEST Bruker D8 QUEST Bruker D8 QUEST
Absorption correction Multi-scan (SADABS; Bruker, 2015[Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, WI, USA.]) Numerical (SADABS; Bruker, 2015[Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, WI, USA.]) Multi-scan (SADABS; Bruker, 2015[Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, WI, USA.])
Tmin, Tmax 0.14, 0.44 0.11, 0.30 0.05, 0.15
No. of measured, independent and observed [I > 2σ(I)] reflections 2148, 180, 180 1526, 115, 111 2683, 218, 218
Rint 0.054 0.073 0.040
(sin θ/λ)max−1) 0.714 0.593 0.713
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.016, 0.041, 1.13 0.027, 0.074, 1.30 0.013, 0.036, 1.25
No. of reflections 180 115 218
No. of parameters 12 12 13
Δρmax, Δρmin (e Å−3) 1.80, −1.37 1.91, −1.36 0.68, −2.92
Computer programs: APEX3 and SAINT (Bruker, 2015[Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, WI, USA.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2007[Brandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For all structures, data collection: APEX3 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2007); software used to prepare material for publication: publCIF (Westrip, 2010).

Dipotassium hexafluoridorhenate(IV) (SMB_K2ReF6_1) top
Crystal data top
K2[ReF6]Dx = 4.689 Mg m3
Mr = 378.40Mo Kα radiation, λ = 0.71073 Å
Trigonal, P3m1Cell parameters from 2236 reflections
a = 5.834 (2) Åθ = 4.0–30.5°
c = 4.546 (2) ŵ = 24.26 mm1
V = 134.00 (11) Å3T = 100 K
Z = 1Hexagonal, translucent colourless
F(000) = 1670.10 × 0.07 × 0.04 mm
Data collection top
Bruker D8 QUEST
diffractometer
180 independent reflections
Radiation source: sealed tube, Siemens KFFMo2K-90180 reflections with I > 2σ(I)
Curved graphite monochromatorRint = 0.054
Detector resolution: 8.3333 pixels mm-1θmax = 30.5°, θmin = 4.0°
φ and ω scansh = 88
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
k = 88
Tmin = 0.14, Tmax = 0.44l = 66
2148 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.016Secondary atom site location: difference Fourier map
wR(F2) = 0.041 w = 1/[σ2(Fo2) + (0.0194P)2 + 0.517P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max < 0.001
180 reflectionsΔρmax = 1.80 e Å3
12 parametersΔρmin = 1.37 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Re10000.00863 (14)
F10.3254 (6)0.1627 (3)0.2299 (6)0.0137 (5)
K10.33330.66670.2955 (4)0.0111 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Re10.00883 (16)0.00883 (16)0.0082 (2)0.00441 (8)00
F10.0119 (13)0.0162 (10)0.0117 (12)0.0060 (6)0.0012 (10)0.0006 (5)
K10.0118 (5)0.0118 (5)0.0096 (6)0.0059 (2)00
Geometric parameters (Å, º) top
Re1—F11.948 (3)F1—K1viii2.9325 (10)
Re1—F1i1.948 (3)F1—K1vi2.946 (3)
Re1—F1ii1.948 (3)K1—F1xi2.762 (3)
Re1—F1iii1.948 (3)K1—F1x2.762 (3)
Re1—F1iv1.948 (3)K1—F1xii2.762 (3)
Re1—F1v1.948 (3)K1—F1xiii2.9325 (11)
Re1—K1i3.6263 (13)K1—F1xiv2.9325 (10)
Re1—K1vi3.6263 (13)K1—F1iv2.9325 (11)
Re1—K1vii3.6263 (13)K1—F1xv2.9325 (11)
Re1—K13.6263 (13)K1—F1xvi2.9325 (11)
Re1—K1viii3.6263 (13)K1—F1xvii2.946 (3)
Re1—K1ix3.6263 (13)K1—F1ii2.946 (3)
F1—K1x2.762 (3)K1—F1vi2.946 (3)
F1—K12.9325 (11)
F1—Re1—F1i180.0K1—F1—K1viii168.22 (13)
F1—Re1—F1ii86.08 (12)Re1—F1—K1vi93.38 (11)
F1i—Re1—F1ii93.92 (12)K1x—F1—K1vi105.55 (10)
F1—Re1—F1iii93.92 (12)K1—F1—K1vi94.27 (6)
F1i—Re1—F1iii86.08 (12)K1viii—F1—K1vi94.27 (6)
F1ii—Re1—F1iii180.00 (19)F1xi—K1—F1x65.46 (11)
F1—Re1—F1iv93.92 (12)F1xi—K1—F1xii65.46 (11)
F1i—Re1—F1iv86.08 (12)F1x—K1—F1xii65.46 (11)
F1ii—Re1—F1iv86.08 (12)F1xi—K1—F1xiii62.44 (10)
F1iii—Re1—F1iv93.92 (12)F1x—K1—F1xiii127.81 (6)
F1—Re1—F1v86.08 (12)F1xii—K1—F1xiii95.05 (6)
F1i—Re1—F1v93.92 (12)F1xi—K1—F1xiv62.44 (10)
F1ii—Re1—F1v93.92 (12)F1x—K1—F1xiv95.05 (6)
F1iii—Re1—F1v86.08 (12)F1xii—K1—F1xiv127.81 (6)
F1iv—Re1—F1v180.00 (7)F1xiii—K1—F1xiv58.10 (11)
F1—Re1—K1i126.206 (14)F1xi—K1—F1iv95.05 (6)
F1i—Re1—K1i53.794 (14)F1x—K1—F1iv127.81 (6)
F1ii—Re1—K1i125.81 (9)F1xii—K1—F1iv62.44 (10)
F1iii—Re1—K1i54.19 (9)F1xiii—K1—F1iv61.22 (12)
F1iv—Re1—K1i126.205 (14)F1xiv—K1—F1iv118.98 (2)
F1v—Re1—K1i53.795 (14)F1xi—K1—F1xv95.05 (6)
F1—Re1—K1vi54.19 (9)F1x—K1—F1xv62.44 (10)
F1i—Re1—K1vi125.81 (9)F1xii—K1—F1xv127.81 (6)
F1ii—Re1—K1vi53.794 (14)F1xiii—K1—F1xv118.98 (2)
F1iii—Re1—K1vi126.206 (14)F1xiv—K1—F1xv61.22 (12)
F1iv—Re1—K1vi126.205 (14)F1iv—K1—F1xv168.22 (13)
F1v—Re1—K1vi53.795 (14)F1xi—K1—F1xvi127.81 (6)
K1i—Re1—K1vi107.11 (3)F1x—K1—F1xvi62.44 (10)
F1—Re1—K1vii125.81 (9)F1xii—K1—F1xvi95.05 (6)
F1i—Re1—K1vii54.19 (9)F1xiii—K1—F1xvi168.22 (13)
F1ii—Re1—K1vii126.206 (14)F1xiv—K1—F1xvi118.98 (2)
F1iii—Re1—K1vii53.794 (14)F1iv—K1—F1xvi118.98 (2)
F1iv—Re1—K1vii53.795 (14)F1xv—K1—F1xvi58.10 (11)
F1v—Re1—K1vii126.205 (14)F1xi—K1—F1127.81 (6)
K1i—Re1—K1vii72.89 (3)F1x—K1—F195.05 (6)
K1vi—Re1—K1vii180.0F1xii—K1—F162.44 (10)
F1—Re1—K153.794 (14)F1xiii—K1—F1118.98 (2)
F1i—Re1—K1126.206 (14)F1xiv—K1—F1168.22 (13)
F1ii—Re1—K154.19 (9)F1iv—K1—F158.09 (11)
F1iii—Re1—K1125.81 (9)F1xv—K1—F1118.98 (2)
F1iv—Re1—K153.794 (14)F1xvi—K1—F161.22 (11)
F1v—Re1—K1126.206 (14)F1xi—K1—F1xvii105.55 (10)
K1i—Re1—K1180.0F1x—K1—F1xvii144.70 (4)
K1vi—Re1—K172.89 (3)F1xii—K1—F1xvii144.70 (4)
K1vii—Re1—K1107.11 (3)F1xiii—K1—F1xvii53.80 (10)
F1—Re1—K1viii53.795 (14)F1xiv—K1—F1xvii53.80 (10)
F1i—Re1—K1viii126.205 (14)F1iv—K1—F1xvii85.73 (6)
F1ii—Re1—K1viii126.206 (14)F1xv—K1—F1xvii85.73 (6)
F1iii—Re1—K1viii53.794 (14)F1xvi—K1—F1xvii114.69 (6)
F1iv—Re1—K1viii125.81 (9)F1—K1—F1xvii114.69 (6)
F1v—Re1—K1viii54.19 (9)F1xi—K1—F1ii144.70 (4)
K1i—Re1—K1viii72.90 (3)F1x—K1—F1ii144.70 (4)
K1vi—Re1—K1viii72.90 (3)F1xii—K1—F1ii105.55 (10)
K1vii—Re1—K1viii107.10 (3)F1xiii—K1—F1ii85.73 (6)
K1—Re1—K1viii107.10 (3)F1xiv—K1—F1ii114.69 (6)
F1—Re1—K1ix126.205 (14)F1iv—K1—F1ii53.80 (10)
F1i—Re1—K1ix53.795 (14)F1xv—K1—F1ii114.69 (6)
F1ii—Re1—K1ix53.794 (14)F1xvi—K1—F1ii85.73 (6)
F1iii—Re1—K1ix126.206 (14)F1—K1—F1ii53.80 (10)
F1iv—Re1—K1ix54.19 (9)F1xvii—K1—F1ii60.91 (10)
F1v—Re1—K1ix125.81 (9)F1xi—K1—F1vi144.70 (4)
K1i—Re1—K1ix107.10 (3)F1x—K1—F1vi105.55 (10)
K1vi—Re1—K1ix107.10 (3)F1xii—K1—F1vi144.70 (4)
K1vii—Re1—K1ix72.90 (3)F1xiii—K1—F1vi114.69 (6)
K1—Re1—K1ix72.90 (3)F1xiv—K1—F1vi85.73 (6)
K1viii—Re1—K1ix180.0F1iv—K1—F1vi114.69 (6)
Re1—F1—K1x161.08 (14)F1xv—K1—F1vi53.80 (10)
Re1—F1—K193.79 (6)F1xvi—K1—F1vi53.80 (10)
K1x—F1—K184.95 (6)F1—K1—F1vi85.73 (6)
Re1—F1—K1viii93.79 (6)F1xvii—K1—F1vi60.91 (10)
K1x—F1—K1viii84.95 (6)F1ii—K1—F1vi60.91 (10)
Symmetry codes: (i) x, y, z; (ii) xy, x, z; (iii) x+y, x, z; (iv) y, xy, z; (v) y, x+y, z; (vi) x+1, y+1, z; (vii) x1, y1, z; (viii) x, y1, z; (ix) x, y+1, z; (x) x+1, y+1, z+1; (xi) y, x+y+1, z+1; (xii) xy, x, z+1; (xiii) x+y, x+1, z; (xiv) x, y+1, z; (xv) y+1, xy+1, z; (xvi) x+y+1, x+1, z; (xvii) y, x+y+1, z.
Dirubidium hexafluoridorhenate(IV) (SMB_Rb2ReF6_j) top
Crystal data top
Rb2[ReF6]Dx = 5.332 Mg m3
Mr = 471.14Mo Kα radiation, λ = 0.71073 Å
Trigonal, P3m1Cell parameters from 1612 reflections
a = 5.9926 (13) Åθ = 3.9–28.3°
c = 4.7177 (10) ŵ = 37.22 mm1
V = 146.72 (7) Å3T = 100 K
Z = 1Hexagonal plate, translucent colourless
F(000) = 2030.08 × 0.07 × 0.04 mm
Data collection top
Bruker D8 QUEST
diffractometer
115 independent reflections
Radiation source: sealed tube, Siemens KFFMo2K-90111 reflections with I > 2σ(I)
Curved graphite monochromatorRint = 0.073
Detector resolution: 8.3333 pixels mm-1θmax = 24.9°, θmin = 3.9°
φ and ω scansh = 77
Absorption correction: numerical
(SADABS; Bruker, 2015)
k = 77
Tmin = 0.11, Tmax = 0.30l = 55
1526 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: heavy-atom method
R[F2 > 2σ(F2)] = 0.027Secondary atom site location: difference Fourier map
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0175P)2 + 3.5548P]
where P = (Fo2 + 2Fc2)/3
S = 1.30(Δ/σ)max < 0.001
115 reflectionsΔρmax = 1.91 e Å3
12 parametersΔρmin = 1.36 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Re10000.0157 (5)
F10.3151 (14)0.1576 (7)0.2231 (15)0.0151 (17)
Rb10.33330.66670.2971 (4)0.0138 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Re10.0133 (6)0.0133 (6)0.0205 (8)0.0066 (3)00
F10.015 (4)0.017 (3)0.012 (3)0.0077 (19)0.001 (3)0.0007 (14)
Rb10.0131 (8)0.0131 (8)0.0152 (12)0.0065 (4)00
Geometric parameters (Å, º) top
Re1—F1i1.945 (7)F1—Rb1viii3.0181 (11)
Re1—F1ii1.945 (7)F1—Rb1vi3.058 (7)
Re1—F1iii1.945 (7)Rb1—F1xi2.907 (7)
Re1—F1iv1.945 (7)Rb1—F1x2.907 (7)
Re1—F1v1.945 (7)Rb1—F1xii2.907 (7)
Re1—F11.945 (7)Rb1—F1xiii3.0181 (11)
Re1—Rb1i3.7330 (10)Rb1—F1xiv3.0181 (11)
Re1—Rb1vi3.7330 (11)Rb1—F1v3.0181 (11)
Re1—Rb1vii3.7330 (11)Rb1—F1xv3.0181 (11)
Re1—Rb13.7330 (10)Rb1—F1xvi3.0181 (11)
Re1—Rb1viii3.7330 (11)Rb1—F1xvii3.058 (7)
Re1—Rb1ix3.7330 (11)Rb1—F1ii3.058 (7)
F1—Rb1x2.907 (7)Rb1—F1vi3.058 (7)
F1—Rb13.0181 (11)
F1i—Re1—F1ii93.5 (3)Rb1—F1—Rb1viii166.2 (3)
F1i—Re1—F1iii86.5 (3)Re1—F1—Rb1vi93.9 (2)
F1ii—Re1—F1iii180.0 (3)Rb1x—F1—Rb1vi104.5 (2)
F1i—Re1—F1iv93.5 (3)Rb1—F1—Rb1vi94.26 (14)
F1ii—Re1—F1iv93.5 (3)Rb1viii—F1—Rb1vi94.26 (14)
F1iii—Re1—F1iv86.5 (3)F1xi—Rb1—F1x65.8 (2)
F1i—Re1—F1v86.5 (3)F1xi—Rb1—F1xii65.8 (2)
F1ii—Re1—F1v86.5 (3)F1x—Rb1—F1xii65.8 (2)
F1iii—Re1—F1v93.5 (3)F1xi—Rb1—F1xiii62.7 (2)
F1iv—Re1—F1v180.0F1x—Rb1—F1xiii128.31 (8)
F1i—Re1—F1180.0F1xii—Rb1—F1xiii96.30 (14)
F1ii—Re1—F186.5 (3)F1xi—Rb1—F1xiv62.7 (2)
F1iii—Re1—F193.5 (3)F1x—Rb1—F1xiv96.30 (14)
F1iv—Re1—F186.5 (3)F1xii—Rb1—F1xiv128.31 (8)
F1v—Re1—F193.5 (3)F1xiii—Rb1—F1xiv56.0 (3)
F1i—Re1—Rb1i53.64 (2)F1xi—Rb1—F1v96.30 (14)
F1ii—Re1—Rb1i125.2 (2)F1x—Rb1—F1v128.31 (8)
F1iii—Re1—Rb1i54.8 (2)F1xii—Rb1—F1v62.7 (2)
F1iv—Re1—Rb1i53.64 (2)F1xiii—Rb1—F1v63.1 (3)
F1v—Re1—Rb1i126.36 (2)F1xiv—Rb1—F1v118.68 (6)
F1—Re1—Rb1i126.36 (2)F1xi—Rb1—F1xv96.30 (14)
F1i—Re1—Rb1vi125.2 (2)F1x—Rb1—F1xv62.7 (2)
F1ii—Re1—Rb1vi53.64 (2)F1xii—Rb1—F1xv128.31 (8)
F1iii—Re1—Rb1vi126.36 (2)F1xiii—Rb1—F1xv118.68 (5)
F1iv—Re1—Rb1vi53.64 (2)F1xiv—Rb1—F1xv63.1 (3)
F1v—Re1—Rb1vi126.36 (2)F1v—Rb1—F1xv166.2 (3)
F1—Re1—Rb1vi54.8 (2)F1xi—Rb1—F1xvi128.31 (8)
Rb1i—Re1—Rb1vi106.77 (3)F1x—Rb1—F1xvi62.7 (2)
F1i—Re1—Rb1vii54.8 (2)F1xii—Rb1—F1xvi96.30 (14)
F1ii—Re1—Rb1vii126.36 (2)F1xiii—Rb1—F1xvi166.2 (3)
F1iii—Re1—Rb1vii53.64 (2)F1xiv—Rb1—F1xvi118.68 (6)
F1iv—Re1—Rb1vii126.36 (2)F1v—Rb1—F1xvi118.68 (5)
F1v—Re1—Rb1vii53.64 (2)F1xv—Rb1—F1xvi56.0 (3)
F1—Re1—Rb1vii125.2 (2)F1xi—Rb1—F1128.31 (8)
Rb1i—Re1—Rb1vii73.23 (3)F1x—Rb1—F196.30 (14)
Rb1vi—Re1—Rb1vii180.0F1xii—Rb1—F162.7 (2)
F1i—Re1—Rb1126.36 (2)F1xiii—Rb1—F1118.68 (6)
F1ii—Re1—Rb154.8 (2)F1xiv—Rb1—F1166.2 (3)
F1iii—Re1—Rb1125.2 (2)F1v—Rb1—F156.0 (3)
F1iv—Re1—Rb1126.36 (2)F1xv—Rb1—F1118.68 (5)
F1v—Re1—Rb153.64 (2)F1xvi—Rb1—F163.1 (3)
F1—Re1—Rb153.64 (2)F1xi—Rb1—F1xvii104.5 (2)
Rb1i—Re1—Rb1180.0F1x—Rb1—F1xvii144.30 (9)
Rb1vi—Re1—Rb173.23 (3)F1xii—Rb1—F1xvii144.30 (9)
Rb1vii—Re1—Rb1106.77 (3)F1xiii—Rb1—F1xvii52.0 (2)
F1i—Re1—Rb1viii126.36 (2)F1xiv—Rb1—F1xvii52.0 (2)
F1ii—Re1—Rb1viii126.36 (2)F1v—Rb1—F1xvii85.74 (14)
F1iii—Re1—Rb1viii53.64 (2)F1xv—Rb1—F1xvii85.74 (14)
F1iv—Re1—Rb1viii54.8 (2)F1xvi—Rb1—F1xvii114.25 (9)
F1v—Re1—Rb1viii125.2 (2)F1—Rb1—F1xvii114.25 (9)
F1—Re1—Rb1viii53.64 (2)F1xi—Rb1—F1ii144.30 (9)
Rb1i—Re1—Rb1viii73.23 (3)F1x—Rb1—F1ii144.30 (9)
Rb1vi—Re1—Rb1viii73.23 (3)F1xii—Rb1—F1ii104.5 (2)
Rb1vii—Re1—Rb1viii106.77 (3)F1xiii—Rb1—F1ii85.74 (14)
Rb1—Re1—Rb1viii106.77 (3)F1xiv—Rb1—F1ii114.25 (9)
F1i—Re1—Rb1ix53.64 (2)F1v—Rb1—F1ii52.0 (2)
F1ii—Re1—Rb1ix53.64 (2)F1xv—Rb1—F1ii114.25 (9)
F1iii—Re1—Rb1ix126.36 (2)F1xvi—Rb1—F1ii85.74 (14)
F1iv—Re1—Rb1ix125.2 (2)F1—Rb1—F1ii52.0 (2)
F1v—Re1—Rb1ix54.8 (2)F1xvii—Rb1—F1ii62.2 (2)
F1—Re1—Rb1ix126.36 (2)F1xi—Rb1—F1vi144.30 (9)
Rb1i—Re1—Rb1ix106.77 (3)F1x—Rb1—F1vi104.5 (2)
Rb1vi—Re1—Rb1ix106.77 (3)F1xii—Rb1—F1vi144.30 (9)
Rb1vii—Re1—Rb1ix73.23 (3)F1xiii—Rb1—F1vi114.25 (9)
Rb1—Re1—Rb1ix73.23 (3)F1xiv—Rb1—F1vi85.74 (14)
Rb1viii—Re1—Rb1ix180.0F1v—Rb1—F1vi114.25 (9)
Re1—F1—Rb1x161.6 (3)F1xv—Rb1—F1vi52.0 (2)
Re1—F1—Rb195.10 (14)F1xvi—Rb1—F1vi52.0 (2)
Rb1x—F1—Rb183.70 (14)F1—Rb1—F1vi85.74 (14)
Re1—F1—Rb1viii95.10 (14)F1xvii—Rb1—F1vi62.2 (2)
Rb1x—F1—Rb1viii83.70 (14)F1ii—Rb1—F1vi62.2 (2)
Symmetry codes: (i) x, y, z; (ii) xy, x, z; (iii) x+y, x, z; (iv) y, x+y, z; (v) y, xy, z; (vi) x+1, y+1, z; (vii) x1, y1, z; (viii) x, y1, z; (ix) x, y+1, z; (x) x+1, y+1, z+1; (xi) y, x+y+1, z+1; (xii) xy, x, z+1; (xiii) x+y, x+1, z; (xiv) x, y+1, z; (xv) y+1, xy+1, z; (xvi) x+y+1, x+1, z; (xvii) y, x+y+1, z.
Dicaesium hexafluoridorhenate(IV) (SMB_Cs2ReF6_1a) top
Crystal data top
Cs2[ReF6]Dx = 5.602 Mg m3
Mr = 566.02Mo Kα radiation, λ = 0.71073 Å
Trigonal, P3m1Cell parameters from 135 reflections
a = 6.268 (1) Åθ = 3.8–32.6°
c = 4.931 (1) ŵ = 28.83 mm1
V = 167.77 (6) Å3T = 100 K
Z = 1Hexagonal plate, clear colourless
F(000) = 2390.25 × 0.12 × 0.11 mm
Data collection top
Bruker D8 QUEST
diffractometer
218 independent reflections
Radiation source: sealed tube, Siemens KFFMo2K-90218 reflections with I > 2σ(I)
Curved graphite monochromatorRint = 0.040
Detector resolution: 8.3333 pixels mm-1θmax = 30.4°, θmin = 3.8°
φ and ω scansh = 88
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
k = 88
Tmin = 0.05, Tmax = 0.15l = 77
2683 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.013 w = 1/[σ2(Fo2) + (0.0181P)2 + 0.1419P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.036(Δ/σ)max < 0.001
S = 1.25Δρmax = 0.68 e Å3
218 reflectionsΔρmin = 2.92 e Å3
13 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015)
0 restraintsExtinction coefficient: 0.029 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Re10000.00427 (15)
F10.3027 (3)0.15135 (17)0.2165 (4)0.0092 (4)
Cs10.33330.66670.30027 (9)0.00615 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Re10.00483 (16)0.00483 (16)0.0032 (2)0.00241 (8)00
F10.0088 (8)0.0107 (6)0.0075 (9)0.0044 (4)0.0023 (6)0.0012 (3)
Cs10.00661 (16)0.00661 (16)0.0052 (2)0.00331 (8)00
Geometric parameters (Å, º) top
Re1—F1i1.9594 (18)F1—Cs1viii3.1655 (6)
Re1—F1ii1.9594 (18)F1—Cs1vi3.224 (2)
Re1—F1iii1.9594 (18)Cs1—F1xi3.0955 (19)
Re1—F1iv1.9594 (18)Cs1—F1x3.0955 (19)
Re1—F1v1.9594 (18)Cs1—F1xii3.0955 (19)
Re1—F11.9594 (18)Cs1—F1xiii3.1655 (6)
Re1—Cs1i3.9100 (6)Cs1—F1xiv3.1655 (6)
Re1—Cs1vi3.9100 (6)Cs1—F1iii3.1655 (6)
Re1—Cs1vii3.9100 (6)Cs1—F1xv3.1655 (6)
Re1—Cs13.9100 (6)Cs1—F1xvi3.1655 (6)
Re1—Cs1viii3.9100 (6)Cs1—F1xvii3.224 (2)
Re1—Cs1ix3.9100 (6)Cs1—F1iv3.224 (2)
F1—Cs1x3.0955 (19)Cs1—F1vi3.224 (2)
F1—Cs13.1655 (6)
F1i—Re1—F1ii93.14 (7)Cs1—F1—Cs1viii163.82 (6)
F1i—Re1—F1iii86.86 (7)Re1—F1—Cs1vi94.78 (7)
F1ii—Re1—F1iii180.00 (4)Cs1x—F1—Cs1vi102.55 (5)
F1i—Re1—F1iv93.14 (7)Cs1—F1—Cs1vi94.07 (3)
F1ii—Re1—F1iv93.14 (7)Cs1viii—F1—Cs1vi94.07 (3)
F1iii—Re1—F1iv86.86 (7)F1xi—Cs1—F1x67.11 (6)
F1i—Re1—F1v86.86 (7)F1xi—Cs1—F1xii67.11 (6)
F1ii—Re1—F1v86.86 (7)F1x—Cs1—F1xii67.11 (6)
F1iii—Re1—F1v93.14 (7)F1xi—Cs1—F1xiii62.38 (6)
F1iv—Re1—F1v180.00 (8)F1x—Cs1—F1xiii129.122 (17)
F1i—Re1—F1180.0F1xii—Cs1—F1xiii97.70 (3)
F1ii—Re1—F186.86 (7)F1xi—Cs1—F1xiv62.38 (6)
F1iii—Re1—F193.14 (7)F1x—Cs1—F1xiv97.70 (3)
F1iv—Re1—F186.86 (7)F1xii—Cs1—F1xiv129.122 (17)
F1v—Re1—F193.14 (7)F1xiii—Cs1—F1xiv53.43 (7)
F1i—Re1—Cs1i53.533 (6)F1xi—Cs1—F1iii97.70 (3)
F1ii—Re1—Cs1i53.533 (6)F1x—Cs1—F1iii129.122 (17)
F1iii—Re1—Cs1i126.467 (6)F1xii—Cs1—F1iii62.38 (6)
F1iv—Re1—Cs1i124.74 (6)F1xiii—Cs1—F1iii65.44 (7)
F1v—Re1—Cs1i55.26 (6)F1xiv—Cs1—F1iii118.323 (15)
F1—Re1—Cs1i126.467 (6)F1xi—Cs1—F1xv97.70 (3)
F1i—Re1—Cs1vi124.74 (6)F1x—Cs1—F1xv62.38 (6)
F1ii—Re1—Cs1vi53.533 (6)F1xii—Cs1—F1xv129.122 (17)
F1iii—Re1—Cs1vi126.467 (6)F1xiii—Cs1—F1xv118.323 (14)
F1iv—Re1—Cs1vi53.532 (6)F1xiv—Cs1—F1xv65.44 (7)
F1v—Re1—Cs1vi126.468 (6)F1iii—Cs1—F1xv163.82 (6)
F1—Re1—Cs1vi55.26 (6)F1xi—Cs1—F1129.123 (17)
Cs1i—Re1—Cs1vi106.554 (9)F1x—Cs1—F197.70 (3)
F1i—Re1—Cs1vii55.26 (6)F1xii—Cs1—F162.38 (6)
F1ii—Re1—Cs1vii126.467 (6)F1xiii—Cs1—F1118.323 (15)
F1iii—Re1—Cs1vii53.533 (6)F1xiv—Cs1—F1163.82 (6)
F1iv—Re1—Cs1vii126.468 (6)F1iii—Cs1—F153.43 (7)
F1v—Re1—Cs1vii53.532 (6)F1xv—Cs1—F1118.323 (15)
F1—Re1—Cs1vii124.74 (6)F1xi—Cs1—F1xvi129.122 (17)
Cs1i—Re1—Cs1vii73.446 (9)F1x—Cs1—F1xvi62.38 (6)
Cs1vi—Re1—Cs1vii180.0F1xii—Cs1—F1xvi97.70 (3)
F1i—Re1—Cs1126.467 (6)F1xiii—Cs1—F1xvi163.82 (6)
F1ii—Re1—Cs1126.467 (6)F1xiv—Cs1—F1xvi118.323 (15)
F1iii—Re1—Cs153.533 (6)F1iii—Cs1—F1xvi118.323 (15)
F1iv—Re1—Cs155.26 (6)F1xv—Cs1—F1xvi53.43 (7)
F1v—Re1—Cs1124.74 (6)F1—Cs1—F1xvi65.44 (7)
F1—Re1—Cs153.533 (6)F1xi—Cs1—F1xvii102.55 (5)
Cs1i—Re1—Cs1180.0F1x—Cs1—F1xvii143.51 (2)
Cs1vi—Re1—Cs173.447 (8)F1xii—Cs1—F1xvii143.51 (2)
Cs1vii—Re1—Cs1106.553 (8)F1xiii—Cs1—F1xvii49.86 (5)
F1i—Re1—Cs1viii126.467 (6)F1xiv—Cs1—F1xvii49.86 (5)
F1ii—Re1—Cs1viii55.26 (6)F1iii—Cs1—F1xvii85.93 (3)
F1iii—Re1—Cs1viii124.74 (6)F1xv—Cs1—F1xvii85.93 (3)
F1iv—Re1—Cs1viii126.467 (6)F1—Cs1—F1xvii113.96 (2)
F1v—Re1—Cs1viii53.533 (6)F1xvi—Cs1—F1xvii113.96 (2)
F1—Re1—Cs1viii53.533 (6)F1xi—Cs1—F1iv143.51 (2)
Cs1i—Re1—Cs1viii73.447 (8)F1x—Cs1—F1iv143.51 (2)
Cs1vi—Re1—Cs1viii73.447 (9)F1xii—Cs1—F1iv102.55 (5)
Cs1vii—Re1—Cs1viii106.553 (9)F1xiii—Cs1—F1iv85.93 (3)
Cs1—Re1—Cs1viii106.553 (9)F1xiv—Cs1—F1iv113.96 (2)
F1i—Re1—Cs1ix53.533 (6)F1iii—Cs1—F1iv49.86 (5)
F1ii—Re1—Cs1ix124.74 (6)F1xv—Cs1—F1iv113.96 (2)
F1iii—Re1—Cs1ix55.26 (6)F1—Cs1—F1iv49.86 (5)
F1iv—Re1—Cs1ix53.533 (6)F1xvi—Cs1—F1iv85.93 (3)
F1v—Re1—Cs1ix126.467 (6)F1xvii—Cs1—F1iv64.10 (5)
F1—Re1—Cs1ix126.467 (6)F1xi—Cs1—F1vi143.51 (2)
Cs1i—Re1—Cs1ix106.553 (8)F1x—Cs1—F1vi102.55 (5)
Cs1vi—Re1—Cs1ix106.553 (9)F1xii—Cs1—F1vi143.51 (2)
Cs1vii—Re1—Cs1ix73.447 (9)F1xiii—Cs1—F1vi113.96 (2)
Cs1—Re1—Cs1ix73.447 (9)F1xiv—Cs1—F1vi85.93 (3)
Cs1viii—Re1—Cs1ix180.0F1iii—Cs1—F1vi113.96 (2)
Re1—F1—Cs1x162.67 (9)F1xv—Cs1—F1vi49.86 (5)
Re1—F1—Cs196.61 (3)F1—Cs1—F1vi85.93 (3)
Cs1x—F1—Cs182.30 (3)F1xvi—Cs1—F1vi49.86 (5)
Re1—F1—Cs1viii96.61 (3)F1xvii—Cs1—F1vi64.10 (5)
Cs1x—F1—Cs1viii82.30 (3)F1iv—Cs1—F1vi64.10 (5)
Symmetry codes: (i) x, y, z; (ii) y, x+y, z; (iii) y, xy, z; (iv) xy, x, z; (v) x+y, x, z; (vi) x+1, y+1, z; (vii) x1, y1, z; (viii) x, y1, z; (ix) x, y+1, z; (x) x+1, y+1, z+1; (xi) y, x+y+1, z+1; (xii) xy, x, z+1; (xiii) x+y, x+1, z; (xiv) x, y+1, z; (xv) y+1, xy+1, z; (xvi) x+y+1, x+1, z; (xvii) y, x+y+1, z.
Structural details (Å, °) of the [ReF6]2- anion in this study and of the related anion in [TcF6]2- saltsa top
M—F, M = ReF—M—F, M = ReM—F, M = TcF—M—F, M = Tc
K2[MF6]1.948 (3)86.08 (12), 93.92 (12), 1801.928 (6)86.93 (5), 93.07 (5), 180
Rb2[MF6]1.945 (7)86.5 (3), 93.5 (3), 1801.933 (3)87.2 (2), 92.8 (2), 180
Cs2[MF6]1.9594 (18)86.86 (7), 93.14 (7), 1801.935 (5)87.8 (2), 92.2 (2), 180
Note: (a) Balasekaran et al. (2013).
 

Acknowledgements

The authors thank Ms Julie Bertoia and Mr Charles Bynum for laboratory support, and Ms Wendee Johns for administrative support.

Funding information

Funding for this research was provided by: Department of Energy - Nuclear Science and Security Consortium (award No. DE-NA0003180).

References

First citationBalasekaran, S. M., Molski, M., Spandl, J., Hagenbach, A., Alberto, R. & Abram, U. (2013). Inorg. Chem. 52, 7094–7099.  Web of Science CSD CrossRef CAS Google Scholar
First citationBettinelli, M., Disipio, L., Ingletto, G. & Razzetti, C. (1987). Inorg. Chim. Acta, 133, 7–9.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrauer, G. & Allardt, H. D. (1962). Z. Anorg. Allg. Chem. 316, 134–140.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, WI, USA.  Google Scholar
First citationClark, G. R. & Russell, D. R. (1978). Acta Cryst. B34, 894–895.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationHoard, J. L. & Vincent, W. B. (1939). J. Am. Chem. Soc. 61, 2849–2852.  CrossRef CAS Google Scholar
First citationPeacock, R. D. (1956). J. Chem. Soc. pp. 1291–1293.  CrossRef Web of Science Google Scholar
First citationPedersen, K. S., Sigrist, M., Sorensen, M. A., Barra, A. L., Weyhermuller, T., Piligkos, S., Thuesen, C. A., Vinum, M. G., Mutka, H., Weihe, H., Clerac, R. & Bendix, J. (2014). Angew. Chem. Int. Ed. 53, 1351–1354.  Web of Science CSD CrossRef CAS Google Scholar
First citationRuff, O. & Kwasnik, W. (1934). Z. Anorg. Allg. Chem. 219, 65–81.  CrossRef CAS Google Scholar
First citationSchwochau, K. & Herr, W. (1963). Angew. Chem. 75, 95.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWatt, G. W., Thompson, R. J. & Gibbons, J. M. (1963). Inorganic Syntheses edited by J. Kleinberg, Vol 7, pp. 189–190. New York: McGraw-Hill.  Google Scholar
First citationWeise, E. (1956). Z. Anorg. Allg. Chem. 283, 377–389.  CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds