research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and theoretical study of N,N-bis­­[(5-chloro-2-oxo-2,3-di­hydro­benzo[d]oxazol-3-yl)meth­yl]-2-phenyl­ethanamine

CROSSMARK_Color_square_no_text.svg

aDepartment of Mathematics and Science Education, Faculty of Education, Kastamonu University, 37200 Kastamonu, Turkey, bDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Ege University, 35100 Izmir, Turkey, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and dDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey
*Correspondence e-mail: aaydin@kastamonu.edu.tr

Edited by M. Weil, Vienna University of Technology, Austria (Received 16 March 2018; accepted 18 April 2018; online 27 April 2018)

In the mol­ecular structure of the title compound, C24H19Cl2N3O4, the three C atoms of the central N,N-di­methyl­methanamine moiety are bonded to the N atoms of the two 5-chloro-1,3-benzoxazol-2(3H)-one groups and to the methyl C atom of the methyl­benzene group. One of the nine-membered 2,3-di­hydro-1,3-benzoxazole rings and the phenyl ring are almost parallel to each other, making a dihedral angle of 5.30 (18)°, but they are almost normal to the mean plane of the other nine-membered 2,3-di­hydro-1,3-benzoxazole ring, subtending dihedral angles of 89.29 (16) and 85.41 (18)°, respectively. The crystal structure features C—H⋯O hydrogen bonds and ππ stacking inter­actions [centroid-to-centroid distances = 3.5788 (19) Å, slippage = 0.438 and 3.7773 (16) Å, and slippage = 0.716 Å].

1. Chemical context

2(3H)-Benzoxazolone is a privileged lead mol­ecule for the design of potential bioactive agents, and its derivatives have been shown to posses a broad spectrum of bioactive properties such as anti-HIV (Deng et al., 2006[Deng, B. L., Cullen, M. D., Zhou, Z., Hartman, T. L., Buckheit, R. W. Jr, Pannecouque, C., Clercq, E. D., Fanwick, P. E. & Cushman, M. (2006). Bioorg. Med. Chem. 14, 2366-2374.]), anti­cancer (Ivanova et al., 2007[Ivanova, Y., Momekov, G., Petrov, O., Karaivanova, M. & Kalcheva, V. (2007). Eur. J. Med. Chem. 42, 1382-1387.]), analgesic (Ünlü et al., 2003[Ünlü, S., Önkol, T., Dündar, Y., Ökçelik, B., Küpeli, E., Yeşilada, E., Noyanalpan, N. & Şahin, M. F. (2003). Arch. Pharm. Pharm. Med. Chem. 336, 353-361.]), anti-inflammatory (Köksal et al., 2005[Köksal, M., Gökhan, N., Küpeli, E., Yesilada, E. & Erdoğan, H. (2005). Arch. Pharm. Pharm. Med. Chem. 338, 117-125.]), anti­nociceptive (Önkol et al., 2001[Önkol, T., Ito, S., Yıldırım, E., Erol, K. & Şahin, M. F. (2001). Arch. Pharm. Pharm. Med. Chem. 334, 17-20.]), anti­microbial (Köksal et al., 2002[Köksal, M., Gökhan, N., Erdoğan, H., Ozalp, M. & Ekizoğlu, M. (2002). II Farmaco. 57, 535-538.]), anti­convulsant (Ucar et al., 1998[Ucar, H., Van derpoorten, K., Cacciaguerra, S., Spampinato, S., Stables, J. P., Depovere, P., Isa, M., Masereel, B., Delarge, J. & Poupaert, J. H. (1998). J. Med. Chem. 41, 1138-1145.]), anti­malarial (Courtois et al., 2004[Courtois, M., Mincheva, Z., Andreu, F., Rideau, M. & Viaud-Massuard, M. C. (2004). J. Enzyme Inhib. Med. Chem. 19, 559-565.]) and human leukocyte MPO clorinating inhibitor activities (Soyer et al., 2005[Soyer, Z., Baş, M., Pabuçcuoğlu, A. & Pabuçcuoğlu, V. (2005). Arch. Pharm. Chem. Life Sci. 338, 405-410.]). In this context, we have investigated another benzoxazolone derivative with formula C24H19Cl2N3O4, and report here its synthesis, mol­ecular, crystal and theoretical structures.

[Scheme 1]

2. Structural commentary

The central part of the title mol­ecule (Fig. 1[link]) comprises an N,N-di­methyl­methanamine unit whose three carbon atoms are bonded to the N atoms of the two 5-chloro-1,3-benzoxazol-2(3H)-one moieties and to the methyl carbon atom of the methyl­benzene group. The nine-membered 2,3-di­hydro-1,3-benzoxazole ring (N3/O3/C10–C16) and the phenyl ring (C19–C24) are almost parallel to each other, making a dihedral angle of 5.30 (18)°. These two entities are almost normal to the mean plane of the other 2,3-di­hydro-1,3-benzoxazole ring (N1/O1/C1–C7), subtending dihedral angles of 89.29 (16) and 85.41 (18)°, respectively.

[Figure 1]
Figure 1
View of the title mol­ecule with the atom-numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.

The C7—N1—C8—N2, N2—C9—N3—C16, N2—C17—C18—C19 and C17—C18—C19—C24 torsion angles are −90.7 (3), −75.6 (3), −63.6 (3) and 106.1 (4)°, respectively. The bond lengths and angles of the title mol­ecule (Table 1[link]) are normal and correspond to those observed in related benzoxazolone derivatives (Aydın et al., 2004[Aydın, A., Önkol, T., Akkurt, M., Büyükgüngör, O. & Ünlü, S. (2004). Acta Cryst. E60, o244-o245.], 2012[Aydın, A., Soyer, Z., Akkurt, M. & Büyükgüngör, O. (2012). Acta Cryst. E68, o1544-o1545.], 2017[Aydın, A., Soyer, Z., Akkurt, M. & Büyükgüngör, O. (2017). Univ. J. Phys. Appl. 11, 57-61.]; Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

Table 1
Comparison of experimental (X-ray) and theoretical (CNDO/2) bond lenghts and angles (Å, °) for the title compound

Bond X-ray CNDO/2
Cl1—C4 1.735 (3) 1.7379
Cl2—C14 1.738 (3) 1.7382
O1—C1 1.382 (3) 1.3545
O1—C7 1.384 (3) 1.3585
O2—C7 1.202 (3) 1.2091
O3—C10 1.371 (3) 1.3573
O3—C11 1.390 (4) 1.3544
O4—C10 1.200 (4) 1.2090
N1—C6 1.398 (3) 1.3649
N1—C7 1.371 (3) 1.3593
N1—C8 1.491 (3) 1.4587
N2—C8 1.430 (4) 1.4666
N2—C9 1.448 (4) 1.4641
N2—C17 1.463 (4) 1.4672
N3—C9 1.444 (3) 1.4601
N3—C10 1.370 (4) 1.3587
N3—C16 1.393 (3) 1.3663
C17—C18 1.520 (4) 1.5425
C18—C19 1.506 (4) 1.5131
     
C8—N2—C9 112.5 (2) 110.47
C8—N2—C17 114.76 (19) 112.03
C9—N2—C17 114.5 (2) 110.74
Cl1—C4—C3 118.03 (19) 120.09
Cl1—C4—C5 118.6 (2) 119.73
O1—C7—O2 123.0 (3) 124.49
O2—C7—N1 129.6 (3) 127.02
N1—C8—N2 115.9 (2) 112.31
N2—C9—N3 111.3 (2) 111.17
O3—C10—O4 123.5 (3) 124.70
O4—C10—N3 128.3 (3) 126.73
Cl2—C14—C13 118.4 (2) 120.07
Cl2—C14—C15 118.6 (2) 119.71
N2—C17—C18 111.8 (2) 112.23
C17—C18—C19 112.9 (2) 114.03
C18—C19—C20 121.2 (3) 120.60
C18—C19—C24 121.2 (3) 121.28

3. Supra­molecular features

The crystal structure features weak inter­molecular C—H⋯O hydrogen bonds (Table 2[link], Fig. 2[link]) between a methyl­ene group and a carbonyl O atom of a neighbouring mol­ecule. ππ stacking inter­actions [Cg1⋯Cg3ii = 3.5788 (19) Å, slippage = 0.438 Å and Cg2⋯Cg2iii = 3.7773 (16) Å, slippage = 0.716 Å, symmetry codes: (ii) x, −1 + y, z, (iii) 1 − x, 1 − y, 1 − z, where Cg1, Cg2 and Cg3 are the centroids of the O3/N3/C10/C11/C16 2,3-di­hydro-1,3-oxazole ring, the C1–C6 benzene ring and the C19–C24 phenyl ring, respectively] additionally consolidate the crystal packing.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯O4i 0.97 2.51 3.037 (4) 114
Symmetry code: (i) x-1, y, z.
[Figure 2]
Figure 2
A view of the crystal packing in the title structure, showing the C—H⋯O hydrogen bonding and ππ stacking inter­actions. H atoms not involved in hydrogen bonds are omitted for the sake of clarity. [Symmetry codes: (a) x − 1, y, z; (b) x, y − 1, z; (c) 1 − x, 1 − y, 1 − z.]

4. Theoretical calculations

Semi-empirical mol­ecular orbital (MO) calculations of the title mol­ecule were carried out using the CNDO/2 method (Pople & Segal, 1966[Pople, J. A. & Segal, G. A. (1966). J. Chem. Phys. 44, 3289-3296.]). It is based on the Complete Neglect of Differential Overlap integral approximation. The semi-empirical CNDO/2 parameterization is widely used to derive bond lengths, bond angles, torsion angles, atom charges, HOMO and LUMO energy levels, dipole moments, polarizability, etc. The spatial view of the title compound calculated as a closed-shell in a vacuum at 0 K is shown in Fig. 3[link].

[Figure 3]
Figure 3
The mol­ecular structure of the title compound calculated using the CNDO/2 method.

In the title mol­ecule, the calculated charges on the Cl1, Cl2, O1, O2, O3, O4, N1, N2 and N3 atoms are −0.164, −0.226, −0.424, −0.228, −0.431, −0.117, −0.187 and −0.112 e, respectively. The calculated dipole moment is about 2.122 Debye. The HOMO and LUMO energy levels are −10.7480 and 3.4691 eV, respectively.

The calculated bond lengths and angles of the title mol­ecule are consistent with those obtained by X-ray structure determination within error limits (Table 1[link]). Looking at Figs. 1[link] and 3[link], the experimental and calculated conformations appear to be quite different. This is supported by the torsion angles N1—C8—N2—C17 [experimental 70.5 (3), calculated 58.25°], N1—C8—N2—C9 [−62.8 (3), −177.78°], N2—C17—C18—C19 [−63.6 (3), −150.35°], C18—C17—N2—C8 [84.1 (3), −95.53°] and C9—N2—C17—18 [143.5 (2), −140.65°]. The small differences between the theoretical and experimental results are due to the calculations being in a vacuum and at 0 K.

5. Synthesis and crystallization

4-Chloro-2-amino­phenol (10 mmol), urea (50 mmol) and 37%wt HCl (2.5 ml) were irradiated (300 W, 413 K) for 15 min in a microwave oven. After completion of the reaction (monitored with TLC), water (10 ml) was added to the reaction mixture and stirred at room temperature for 1 h. The resulting precipitate was filtered and washed with water. After drying the precipitate, crystallization from ethanol–water (1:1 v/v) yielded 5-chloro-2(3H)-benzoxazolone. This compound (2 mmol) was dissolved in methanol (5 ml). Phenethyl­amine (2 mmol) and 37%wt formalin (2.5 mmol) were added to this solution. The mixture was then stirred vigorously for 1 h. The resulting precipitate was filtered and washed with cold methanol. The crude product was recrystallized from methanol, yield 40%; m.p. 427 K.

IR υmax (FTIR/ATR): 3062, 2862, 1769, 1038 cm−1; 1H NMR (CDCl3): δ 2.79 (2H, t, J = 6.8 Hz, NCH2CH2), 3.14 (2H, t, J = 7.0 Hz, CH2CH2-phen­yl) 4.90 (4H, s, 2 × CH2), 6.88–7.16 (11H, m, Ar-H) ppm; MS (ESI) m/z (%): 315 (100), 317 (37), 484 (M + H, 3), 486 (M + H + 2, 1).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 (aromatic) and 0.97 (methyl­ene) Å and Uiso = 1.2Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula C24H19Cl2N3O4
Mr 484.32
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 7.4028 (5), 7.4432 (5), 22.4616 (15)
α, β, γ (°) 97.255 (5), 90.274 (5), 114.784 (5)
V3) 1112.36 (14)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.33
Crystal size (mm) 0.61 × 0.26 × 0.04
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.901, 0.987
No. of measured, independent and observed [I > 2σ(I)] reflections 15409, 4604, 2261
Rint 0.083
(sin θ/λ)max−1) 0.628
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.089, 0.87
No. of reflections 4604
No. of parameters 298
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.13, −0.17
Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

N,N-Bis[(5-chloro-2-oxo-2,3-dihydrobenzo[d]oxazol-3-yl)methyl]-2-phenylethanamine top
Crystal data top
C24H19Cl2N3O4Z = 2
Mr = 484.32F(000) = 500
Triclinic, P1Dx = 1.446 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4028 (5) ÅCell parameters from 12292 reflections
b = 7.4432 (5) Åθ = 1.8–27.2°
c = 22.4616 (15) ŵ = 0.33 mm1
α = 97.255 (5)°T = 296 K
β = 90.274 (5)°Plate, light yellow
γ = 114.784 (5)°0.61 × 0.26 × 0.04 mm
V = 1112.36 (14) Å3
Data collection top
Stoe IPDS 2
diffractometer
4604 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus2261 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.083
Detector resolution: 6.67 pixels mm-1θmax = 26.5°, θmin = 1.8°
ω scansh = 99
Absorption correction: integration
(XRED-32; Stoe & Cie, 2002)
k = 99
Tmin = 0.901, Tmax = 0.987l = 2828
15409 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 0.87 w = 1/[σ2(Fo2) + (0.0273P)2]
where P = (Fo2 + 2Fc2)/3
4604 reflections(Δ/σ)max < 0.001
298 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.17 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.33895 (11)0.91821 (11)0.55979 (3)0.0695 (3)
Cl20.03618 (13)0.22527 (15)0.03733 (4)0.0993 (4)
O10.1417 (3)0.1051 (3)0.45148 (8)0.0614 (7)
O20.0466 (3)0.0234 (3)0.35320 (9)0.0774 (8)
O30.7070 (3)0.3740 (3)0.16410 (8)0.0729 (8)
O40.7524 (3)0.3741 (4)0.26394 (9)0.0931 (10)
N10.1491 (3)0.3147 (3)0.38837 (9)0.0519 (7)
N20.2740 (3)0.4370 (3)0.29248 (8)0.0487 (8)
N30.4467 (3)0.3171 (3)0.21984 (9)0.0542 (8)
C10.1949 (3)0.2919 (4)0.48420 (11)0.0502 (9)
C20.2325 (4)0.3444 (4)0.54484 (11)0.0567 (10)
C30.2776 (3)0.5405 (4)0.56779 (11)0.0548 (9)
C40.2845 (3)0.6740 (4)0.52899 (11)0.0490 (9)
C50.2442 (3)0.6204 (4)0.46734 (11)0.0487 (9)
C60.2011 (3)0.4255 (4)0.44584 (10)0.0465 (9)
C70.1063 (4)0.1186 (4)0.39202 (12)0.0598 (11)
C80.1117 (4)0.3782 (4)0.33094 (10)0.0548 (9)
C90.3282 (4)0.2752 (4)0.27152 (11)0.0560 (10)
C100.6446 (4)0.3553 (4)0.22130 (13)0.0671 (11)
C110.5420 (4)0.3407 (4)0.12702 (12)0.0570 (10)
C120.5348 (4)0.3392 (5)0.06646 (13)0.0723 (11)
C130.3512 (5)0.2999 (5)0.03966 (12)0.0706 (11)
C140.1891 (4)0.2687 (4)0.07364 (12)0.0622 (11)
C150.1980 (4)0.2725 (4)0.13546 (12)0.0575 (10)
C160.3809 (4)0.3077 (4)0.16085 (10)0.0507 (9)
C170.4427 (4)0.6267 (4)0.31468 (11)0.0577 (10)
C180.4109 (5)0.8042 (4)0.29870 (11)0.0722 (11)
C190.3978 (5)0.8067 (4)0.23191 (13)0.0697 (11)
C200.5647 (6)0.8579 (5)0.19940 (15)0.0932 (14)
C210.5538 (8)0.8637 (6)0.13801 (19)0.122 (2)
C220.3763 (11)0.8152 (7)0.1095 (2)0.136 (3)
C230.2082 (9)0.7639 (6)0.1404 (2)0.121 (2)
C240.2183 (6)0.7582 (5)0.20128 (15)0.0887 (14)
H20.227900.252000.569700.0680*
H30.303100.582800.609000.0660*
H50.246300.711200.442200.0580*
H8A0.002200.268700.308800.0660*
H8B0.075800.489400.340600.0660*
H9A0.403200.255400.303600.0670*
H9B0.208200.152700.260900.0670*
H120.646700.363200.044400.0870*
H130.337000.294500.001800.0850*
H150.088100.252700.158100.0690*
H17A0.563000.627800.297500.0690*
H17B0.461000.638700.358000.0690*
H18A0.288800.800800.315200.0870*
H18B0.520200.926700.317200.0870*
H200.687400.889400.218900.1120*
H210.668500.900900.116800.1460*
H220.368100.816700.068300.1640*
H230.086300.732700.120300.1450*
H240.102500.721100.222000.1070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0777 (5)0.0615 (5)0.0641 (5)0.0269 (4)0.0050 (4)0.0006 (4)
Cl20.0934 (6)0.1463 (9)0.0720 (6)0.0683 (6)0.0183 (5)0.0007 (5)
O10.0774 (12)0.0546 (12)0.0547 (12)0.0289 (10)0.0104 (9)0.0128 (10)
O20.1047 (16)0.0566 (13)0.0598 (13)0.0252 (12)0.0167 (11)0.0014 (11)
O30.0563 (11)0.1035 (16)0.0651 (13)0.0394 (12)0.0080 (10)0.0133 (12)
O40.0797 (15)0.142 (2)0.0701 (14)0.0601 (15)0.0131 (12)0.0120 (14)
N10.0590 (13)0.0511 (13)0.0451 (12)0.0215 (11)0.0062 (10)0.0117 (10)
N20.0526 (13)0.0542 (14)0.0412 (12)0.0238 (12)0.0059 (10)0.0094 (10)
N30.0562 (14)0.0671 (15)0.0434 (13)0.0297 (12)0.0032 (10)0.0090 (11)
C10.0504 (15)0.0532 (17)0.0506 (16)0.0255 (14)0.0034 (12)0.0068 (13)
C20.0639 (17)0.0652 (19)0.0477 (16)0.0313 (15)0.0018 (13)0.0170 (14)
C30.0542 (15)0.0677 (19)0.0441 (14)0.0268 (15)0.0000 (12)0.0100 (14)
C40.0458 (15)0.0503 (16)0.0505 (16)0.0204 (13)0.0030 (12)0.0051 (13)
C50.0485 (14)0.0529 (16)0.0472 (15)0.0224 (13)0.0068 (11)0.0127 (12)
C60.0449 (14)0.0559 (17)0.0414 (15)0.0226 (13)0.0077 (11)0.0119 (13)
C70.0707 (19)0.061 (2)0.0515 (18)0.0301 (17)0.0141 (14)0.0125 (15)
C80.0573 (16)0.0670 (18)0.0434 (14)0.0294 (15)0.0018 (12)0.0086 (13)
C90.0674 (17)0.0600 (18)0.0432 (15)0.0283 (15)0.0062 (13)0.0117 (13)
C100.0627 (19)0.084 (2)0.0610 (19)0.0375 (17)0.0037 (15)0.0097 (17)
C110.0551 (17)0.0645 (18)0.0553 (17)0.0290 (15)0.0049 (13)0.0084 (14)
C120.074 (2)0.097 (2)0.0583 (19)0.0455 (19)0.0214 (15)0.0207 (17)
C130.090 (2)0.092 (2)0.0431 (16)0.0499 (19)0.0109 (16)0.0146 (15)
C140.0710 (19)0.072 (2)0.0510 (17)0.0381 (17)0.0010 (14)0.0069 (15)
C150.0579 (16)0.0672 (19)0.0540 (16)0.0325 (15)0.0094 (13)0.0097 (14)
C160.0576 (16)0.0556 (16)0.0438 (15)0.0283 (14)0.0075 (13)0.0087 (12)
C170.0647 (17)0.0614 (18)0.0443 (15)0.0243 (16)0.0019 (13)0.0070 (13)
C180.102 (2)0.0616 (19)0.0517 (17)0.0336 (18)0.0064 (16)0.0067 (15)
C190.107 (2)0.0455 (17)0.0530 (18)0.0285 (18)0.0043 (18)0.0077 (14)
C200.121 (3)0.075 (2)0.071 (2)0.028 (2)0.017 (2)0.0145 (19)
C210.188 (5)0.091 (3)0.073 (3)0.041 (3)0.045 (3)0.029 (2)
C220.254 (7)0.086 (3)0.066 (3)0.069 (4)0.008 (4)0.013 (2)
C230.184 (5)0.090 (3)0.088 (3)0.061 (3)0.041 (3)0.002 (3)
C240.123 (3)0.070 (2)0.074 (2)0.042 (2)0.011 (2)0.0095 (18)
Geometric parameters (Å, º) top
Cl1—C41.735 (3)C15—C161.373 (4)
Cl2—C141.738 (3)C17—C181.520 (4)
O1—C11.382 (3)C18—C191.506 (4)
O1—C71.384 (3)C19—C201.375 (6)
O2—C71.202 (3)C19—C241.377 (6)
O3—C101.371 (3)C20—C211.388 (5)
O3—C111.390 (4)C21—C221.343 (10)
O4—C101.200 (4)C22—C231.361 (10)
N1—C61.398 (3)C23—C241.376 (6)
N1—C71.371 (3)C2—H20.9300
N1—C81.491 (3)C3—H30.9300
N2—C81.430 (4)C5—H50.9300
N2—C91.448 (4)C8—H8A0.9700
N2—C171.463 (4)C8—H8B0.9700
N3—C91.444 (3)C9—H9A0.9700
N3—C101.370 (4)C9—H9B0.9700
N3—C161.393 (3)C12—H120.9300
C1—C21.362 (3)C13—H130.9300
C1—C61.383 (4)C15—H150.9300
C2—C31.381 (4)C17—H17A0.9700
C3—C41.388 (4)C17—H17B0.9700
C4—C51.387 (3)C18—H18A0.9700
C5—C61.369 (4)C18—H18B0.9700
C11—C121.360 (4)C20—H200.9300
C11—C161.368 (4)C21—H210.9300
C12—C131.382 (5)C22—H220.9300
C13—C141.377 (5)C23—H230.9300
C14—C151.386 (4)C24—H240.9300
C1—O1—C7107.7 (2)C19—C20—C21121.3 (4)
C10—O3—C11107.1 (2)C20—C21—C22119.5 (5)
C6—N1—C7109.6 (2)C21—C22—C23120.6 (4)
C6—N1—C8128.6 (2)C22—C23—C24120.1 (6)
C7—N1—C8121.2 (2)C19—C24—C23120.8 (4)
C8—N2—C9112.5 (2)C1—C2—H2121.00
C8—N2—C17114.76 (19)C3—C2—H2121.00
C9—N2—C17114.5 (2)C2—C3—H3120.00
C9—N3—C10123.4 (2)C4—C3—H3120.00
C9—N3—C16127.5 (2)C4—C5—H5122.00
C10—N3—C16108.9 (2)C6—C5—H5122.00
O1—C1—C2127.6 (2)N1—C8—H8A108.00
O1—C1—C6109.5 (2)N1—C8—H8B108.00
C2—C1—C6122.9 (2)N2—C8—H8A108.00
C1—C2—C3117.2 (2)N2—C8—H8B108.00
C2—C3—C4119.5 (2)H8A—C8—H8B107.00
Cl1—C4—C3118.03 (19)N2—C9—H9A109.00
Cl1—C4—C5118.6 (2)N2—C9—H9B109.00
C3—C4—C5123.3 (2)N3—C9—H9A109.00
C4—C5—C6115.8 (2)N3—C9—H9B109.00
N1—C6—C1105.7 (2)H9A—C9—H9B108.00
N1—C6—C5133.2 (2)C11—C12—H12122.00
C1—C6—C5121.1 (2)C13—C12—H12122.00
O1—C7—O2123.0 (3)C12—C13—H13120.00
O1—C7—N1107.5 (2)C14—C13—H13120.00
O2—C7—N1129.6 (3)C14—C15—H15122.00
N1—C8—N2115.9 (2)C16—C15—H15122.00
N2—C9—N3111.3 (2)N2—C17—H17A109.00
O3—C10—O4123.5 (3)N2—C17—H17B109.00
O3—C10—N3108.3 (2)C18—C17—H17A109.00
O4—C10—N3128.3 (3)C18—C17—H17B109.00
O3—C11—C12127.0 (3)H17A—C17—H17B108.00
O3—C11—C16109.4 (2)C17—C18—H18A109.00
C12—C11—C16123.5 (3)C17—C18—H18B109.00
C11—C12—C13115.9 (3)C19—C18—H18A109.00
C12—C13—C14120.7 (3)C19—C18—H18B109.00
Cl2—C14—C13118.4 (2)H18A—C18—H18B108.00
Cl2—C14—C15118.6 (2)C19—C20—H20119.00
C13—C14—C15123.0 (3)C21—C20—H20119.00
C14—C15—C16115.1 (3)C20—C21—H21120.00
N3—C16—C11106.3 (3)C22—C21—H21120.00
N3—C16—C15132.1 (3)C21—C22—H22120.00
C11—C16—C15121.6 (2)C23—C22—H22120.00
N2—C17—C18111.8 (2)C22—C23—H23120.00
C17—C18—C19112.9 (2)C24—C23—H23120.00
C18—C19—C20121.2 (3)C19—C24—H24120.00
C18—C19—C24121.2 (3)C23—C24—H24120.00
C20—C19—C24117.7 (3)
C7—O1—C1—C2176.3 (3)O1—C1—C2—C3178.1 (3)
C7—O1—C1—C62.3 (3)C2—C1—C6—N1178.4 (3)
C1—O1—C7—N13.4 (3)C2—C1—C6—C50.7 (4)
C1—O1—C7—O2175.8 (3)O1—C1—C6—C5178.0 (2)
C11—O3—C10—N31.7 (3)C1—C2—C3—C40.6 (4)
C11—O3—C10—O4179.4 (3)C2—C3—C4—Cl1179.3 (2)
C10—O3—C11—C161.8 (3)C2—C3—C4—C51.3 (4)
C10—O3—C11—C12178.1 (3)C3—C4—C5—C61.6 (4)
C8—N1—C7—O1175.2 (2)Cl1—C4—C5—C6179.6 (2)
C6—N1—C7—O13.3 (3)C4—C5—C6—N1178.3 (3)
C6—N1—C8—N299.0 (3)C4—C5—C6—C11.3 (4)
C7—N1—C8—N290.7 (3)C12—C11—C16—C150.8 (5)
C7—N1—C6—C11.9 (3)C12—C11—C16—N3178.7 (3)
C8—N1—C6—C1173.1 (3)O3—C11—C12—C13179.3 (3)
C7—N1—C6—C5175.4 (3)C16—C11—C12—C130.6 (5)
C8—N1—C6—C54.3 (5)O3—C11—C16—N31.1 (3)
C6—N1—C7—O2175.9 (3)O3—C11—C16—C15179.4 (2)
C8—N1—C7—O23.9 (5)C11—C12—C13—C141.2 (5)
C17—N2—C8—N170.5 (3)C12—C13—C14—C150.6 (5)
C9—N2—C17—C18143.5 (2)C12—C13—C14—Cl2178.7 (3)
C8—N2—C9—N3162.6 (2)Cl2—C14—C15—C16180.0 (2)
C9—N2—C8—N162.8 (3)C13—C14—C15—C160.7 (4)
C8—N2—C17—C1884.1 (3)C14—C15—C16—C111.4 (4)
C17—N2—C9—N364.0 (3)C14—C15—C16—N3178.0 (3)
C9—N3—C10—O3175.6 (2)N2—C17—C18—C1963.6 (3)
C16—N3—C10—O31.1 (3)C17—C18—C19—C2074.1 (4)
C10—N3—C16—C110.0 (3)C17—C18—C19—C24106.1 (4)
C9—N3—C16—C155.2 (5)C18—C19—C20—C21178.9 (3)
C9—N3—C10—O45.6 (5)C24—C19—C20—C211.0 (5)
C16—N3—C10—O4179.9 (3)C18—C19—C24—C23179.0 (3)
C10—N3—C16—C15179.5 (3)C20—C19—C24—C230.9 (5)
C10—N3—C9—N2110.9 (3)C19—C20—C21—C221.1 (6)
C16—N3—C9—N275.6 (3)C20—C21—C22—C231.1 (7)
C9—N3—C16—C11174.2 (2)C21—C22—C23—C241.0 (7)
C6—C1—C2—C30.3 (4)C22—C23—C24—C190.9 (6)
O1—C1—C6—N10.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O4i0.972.513.037 (4)114
C9—H9A···O40.972.562.921 (4)102
C17—H17A···N30.972.542.944 (3)105
Symmetry code: (i) x1, y, z.
Comparison of experimental (X-ray) and theoretical (CNDO/2) bond lenghts and angles (Å, °) for the title compound top
BondX-rayCNDO/2
Cl1—C41.735 (3)1.7379
Cl2—C141.738 (3)1.7382
O1—C11.382 (3)1.3545
O1—C71.384 (3)1.3585
O2—C71.202 (3)1.2091
O3—C101.371 (3)1.3573
O3—C111.390 (4)1.3544
O4—C101.200 (4)1.2090
N1—C61.398 (3)1.3649
N1—C71.371 (3)1.3593
N1—C81.491 (3)1.4587
N2—C81.430 (4)1.4666
N2—C91.448 (4)1.4641
N2—C171.463 (4)1.4672
N3—C91.444 (3)1.4601
N3—C101.370 (4)1.3587
N3—C161.393 (3)1.3663
C17—C181.520 (4)1.5425
C18—C191.506 (4)1.5131
C8—N2—C9112.5 (2)110.47
C8—N2—C17114.76 (19)112.03
C9—N2—C17114.5 (2)110.74
Cl1—C4—C3118.03 (19)120.09
Cl1—C4—C5118.6 (2)119.73
O1—C7—O2123.0 (3)124.49
O2—C7—N1129.6 (3)127.02
N1—C8—N2115.9 (2)112.31
N2—C9—N3111.3 (2)111.17
O3—C10—O4123.5 (3)124.70
O4—C10—N3128.3 (3)126.73
Cl2—C14—C13118.4 (2)120.07
Cl2—C14—C15118.6 (2)119.71
N2—C17—C18111.8 (2)112.23
C17—C18—C19112.9 (2)114.03
C18—C19—C20121.2 (3)120.60
C18—C19—C24121.2 (3)121.28
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationAydın, A., Önkol, T., Akkurt, M., Büyükgüngör, O. & Ünlü, S. (2004). Acta Cryst. E60, o244–o245.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAydın, A., Soyer, Z., Akkurt, M. & Büyükgüngör, O. (2012). Acta Cryst. E68, o1544–o1545.  CSD CrossRef IUCr Journals Google Scholar
First citationAydın, A., Soyer, Z., Akkurt, M. & Büyükgüngör, O. (2017). Univ. J. Phys. Appl. 11, 57–61.  Google Scholar
First citationCourtois, M., Mincheva, Z., Andreu, F., Rideau, M. & Viaud-Massuard, M. C. (2004). J. Enzyme Inhib. Med. Chem. 19, 559–565.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDeng, B. L., Cullen, M. D., Zhou, Z., Hartman, T. L., Buckheit, R. W. Jr, Pannecouque, C., Clercq, E. D., Fanwick, P. E. & Cushman, M. (2006). Bioorg. Med. Chem. 14, 2366–2374.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationIvanova, Y., Momekov, G., Petrov, O., Karaivanova, M. & Kalcheva, V. (2007). Eur. J. Med. Chem. 42, 1382–1387.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKöksal, M., Gökhan, N., Erdoğan, H., Ozalp, M. & Ekizoğlu, M. (2002). II Farmaco. 57, 535–538.  Google Scholar
First citationKöksal, M., Gökhan, N., Küpeli, E., Yesilada, E. & Erdoğan, H. (2005). Arch. Pharm. Pharm. Med. Chem. 338, 117–125.  Google Scholar
First citationÖnkol, T., Ito, S., Yıldırım, E., Erol, K. & Şahin, M. F. (2001). Arch. Pharm. Pharm. Med. Chem. 334, 17–20.  Google Scholar
First citationPople, J. A. & Segal, G. A. (1966). J. Chem. Phys. 44, 3289–3296.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoyer, Z., Baş, M., Pabuçcuoğlu, A. & Pabuçcuoğlu, V. (2005). Arch. Pharm. Chem. Life Sci. 338, 405–410.  CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationUcar, H., Van derpoorten, K., Cacciaguerra, S., Spampinato, S., Stables, J. P., Depovere, P., Isa, M., Masereel, B., Delarge, J. & Poupaert, J. H. (1998). J. Med. Chem. 41, 1138–1145.  Web of Science CrossRef CAS PubMed Google Scholar
First citationÜnlü, S., Önkol, T., Dündar, Y., Ökçelik, B., Küpeli, E., Yeşilada, E., Noyanalpan, N. & Şahin, M. F. (2003). Arch. Pharm. Pharm. Med. Chem. 336, 353–361.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds