weak interactions in crystals\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

An investigation to elucidate the factors dictating the crystal structure of seven ammonium carboxyl­ate mol­ecular salts

CROSSMARK_Color_square_no_text.svg

aMolecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag, PO WITS, 2050, Johannesburg, South Africa
*Correspondence e-mail: andreas.lemmerer@wits.ac.za

Edited by C. Massera, Università di Parma, Italy (Received 27 October 2017; accepted 13 December 2017; online 17 April 2018)

The crystal structures of seven ammonium carboxyl­ate salts are reported, namely (RS)-1-phenyl­ethan-1-aminium isonicotinate, C8H12N+·C6H4N1O2, (I), (RS)-1-phenyl­ethan-1-aminium flurbiprofenate [or 2-(3-fluoro-4-phenyl­phen­yl)propano­ate], C8H12N+·C15H12FO2, (II), (RS)-1-phenyl­ethan-1-aminium 2-chloro-4-nitro­benzoate, C8H12N+·C7H3ClNO4, (III), (RS)-1-phenyl­ethan-1-aminium 4-iodo­benzoate, C8H12N+·C7H4IO2, (IV), (S)-1-cyclo­hexyl­ethan-1-aminium 2-chloro-4-nitro­benzoate, C8H18N+·C7H3ClNO4, (V), 2-(cyclo­hex-1-en-1-yl)ethan-1-aminium 4-bromo­benzoate, C8H16N+·C7H4BrO2, (VI), and (S)-1-cyclo­hexyl­ethan-1-aminium 4-bromo­benzoate, C8H18N+·C7H4BrO2, (VII). Salts (II) to (VII) feature three N+—H⋯O hydrogen bonds, which form one-dimensional hydrogen-bonded ladders. Salts (II), (III), (IV), (V) and (VII) have a type II ladder system despite the presence of halogen bonding and other inter­molecular inter­actions, whereas (VI) has a type III ladder system. Salt (I) has a unique hydrogen-bonded system of ladders, featuring both N+—H⋯O and N+—H⋯N hydrogen bonds owing to the presence of the pyridine functional group. The presence of an additional hydrogen-bond acceptor on the carboxyl­ate cation disrupts the formation of the ubiquitous type II and III ladder found predominately in ammonium carboxyl­ate salts. Halogen bonding, however, has no influence on their formation.

1. Chemical context

Crystal engineering, the conception and synthesis of mol­ecular solid-state structures, is fundamentally based upon the discernment and subsequent exploitation of inter­molecular inter­actions. Thus, primarily non-covalent bonding is used to achieve the organization of mol­ecules and ions in the solid state in order to produce materials with desired properties. Examples of such materials include organic field-effect trans­istors, hole collectors in organic photovoltaic cells (Snaith, 2013[Snaith, H. J. (2013). J. Phys. Chem. Lett. 4, 3623-3630.]), laser materials (Tessler, 1999[Tessler, N. (1999). Adv. Mater. 11, 363-370.]) as well as organic light-emitting diodes and semiconductors (Odom et al., 2003[Odom, S. A., Parkin, S. R. & Anthony, J. E. (2003). Org. Lett. 5, 4245-4248.]). The two principle forces exploited in the design of mol­ecular solids are hydrogen bonding and coordination complexation (Desiraju, 1989[Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier.]).

This work will focus on the effects of hydrogen bonding. In particular, we have investigated the effects thereof of changing both the structure and stereochemistry of the constituents on the robust ionic supra­molecular heterosynthons generated by ammonium carboxyl­ate salts (R–NH3+)·(R–COO), where R often contains a phenyl­ethyl group generating chiral mol­ecules (Kinbara et al., 1996[Kinbara, K., Hashimoto, Y., Sukegawa, M., Nohira, H. & Saigo, K. (1996). J. Am. Chem. Soc. 118, 3441-3449.]). It is known from a wide variety of structural studies that ammonium carboxyl­ate salts predom­inately form two types of hydrogen-bonded one-dimensional ladders in the solid state (Odendal et al., 2010[Odendal, J. A., Bruce, J. C., Koch, K. R. & Haynes, D. A. (2010). CrystEngComm, 12, 2398-2408.]). These are classified as type II and type III, where type II consists of repeating hydrogen-bonded rings with the descriptor R43(10) (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]), while type III consists of alternating R22(8) and R44(12) rings. The robustness and perturbation of these ladders as a function of the structure and stereochemistry of the constituent ions have been tested via the crystallization of a variety of ammonium carboxyl­ate salts. The seven salts reported here are (see Scheme): (RS)-1-phenyl­ethan-1-aminium isonicotinate, (I)[link], (RS)-1-phenyl­ethan-1-aminium flurbiprofenate, (II)[link], (RS)-1-phenyl­ethan-1-aminium 2-chloro-4-nitro-benzoate, (III)[link], (RS)-1-phenyl­ethan-1-aminium 4-iodo­benzoate, (IV)[link], (S)-1-cyclo­hexyl­ethan-1-aminium 2-chloro-4-nitro-benzoate, (V)[link], 2-(cyclo­hex-1-en-1-yl)ethan-1-aminium 4-bromo­benzoate, (VI)[link], and (S)-1-cyclo­hexyl­ethan-1-aminium 4-bromo­benzoate, (VII)[link].

[Scheme 1]

2. Structural commentary

An amine and a carb­oxy­lic acid will combine to form a salt if the difference in pKa's is approximately 3 or greater (Bhogala et al., 2005[Bhogala, B. R., Basavoju, S. & Nangia, A. (2005). CrystEngComm, 7, 551-562.]; Lemmerer et al., 2015[Lemmerer, A., Govindraju, S., Johnston, M., Motloung, X. & Savig, K. L. (2015). CrystEngComm, 17, 3591-3595.]). Thus, from the differences in pKa values depicted in Table S1 in the supporting information, all the compounds considered in this work should be in the form of salts and hence possess charge-assisted hydrogen bonds, which are considered to be a stronger and more robust supra­molecular synthon than the same between neutral mol­ecules (Lemmerer et al., 2008a[Lemmerer, A., Bourne, S. A. & Fernandes, M. A. (2008a). Cryst. Growth Des. 8, 1106-1109.]). All structures crystallize with a 1:1 ratio of ammonium cation to benzoate anion, with all mol­ecules on general positions. The asymmetric units and atom-numbering schemes are shown in Fig. 1[link].

[Figure 1]
Figure 1
Perspective views of compounds (I)–(VII), showing the atom-numbering schemes. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. The dashed lines indicate the symmetry-independent N+—H⋯O or N+—H⋯N hydrogen bonds.

3. Supra­molecular features

Salt (I)[link] consists of one 1-phenyl­ethan-1-aminium cation and one isonicotinate anion. The ammonium group forms three charge-assisted hydrogen bonds, shown in Fig. 2[link]a. The first of these bonds involves the O2 atom of the isonicotinate anion (i) (see Table 1[link]) and is designated a. The second involves the O1 atom of the isonicotinate anion in the asymmetric unit and is designated b. The third involves the pyridine ring nitro­gen of a third isonicotinate anion (ii) and is designated c. The b and c hydrogen bonds form a ring structure involving two of each kind of bond, consisting of two mol­ecules of both 1-phenyl­ethan-1-aminium and isonicotinate (See Fig. 2[link]a). The graph set of this pattern is R44(18). A larger R88(30) ring is formed using all three hydrogen bonds involving four of both 1-phenyl­ethan-1-aminium and isonicotinate ions. Overall, this forms a 2-D sheet as shown in Fig. 2[link]b. As neither of the two expected type II or type III ladders are formed it seems that the additional hydrogen-bond acceptor in the form of the nitro­gen atom of the pyridine ring disrupts their formation.

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯O2i 0.95 (2) 1.80 (2) 2.747 (2) 176 (2)
N1—H1C⋯O1 0.98 (2) 1.81 (2) 2.783 (2) 174 (2)
N1—H1A⋯N2ii 0.93 (2) 1.93 (2) 2.856 (2) 175 (2)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z.
[Figure 2]
Figure 2
(a) Detailed view of the three hydrogen bonds forming two types of hydrogen-bonded rings in (I)[link]. (b) Side-on view of the two-dimensional, hydrogen-bonded layers formed.

In salt (II)[link], the asymmetric unit consists of one 1-phenyl­ethan-1-aminium cation and one flurbiprofenate anion. Once again the ammonium group of the 1-phenyl­ethan-1-aminium ion forms three charged-assisted hydrogen bonds (Table 2[link]). The first of these bonds involves the O2 atom of the anion while the other two involve the O1 atoms of the carboxyl­ate group of two separate symmetry-related flurbiprofenate anions. These three hydrogen bonds form a type II ladder system where each of the O1 atoms behaves as a bifurcated hydrogen-bond acceptor, linking the rings (Fig. 3[link]a). This pattern has translational symmetry through a twofold screw axis along the crystallographic b axis which is inherent in the space group P21/n. As no short contacts such as halogen bonding or π-halogen inter­actions are observed, the fluorine atom does not disrupt the formation of the expected hydrogen-bonding patterns. However a peculiarity exists. As the cation was present as a racemate, traditionally type III ladders are expected to dominate as reported by Lemmerer and co-workers (Lemmerer et al., 2008b[Lemmerer, A., Bourne, S. A. & Fernandes, M. A. (2008b). CrystEngComm, 10, 1605-1612.]).

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.91 (3) 1.91 (3) 2.809 (3) 170 (3)
N1—H1C⋯O1ii 0.90 (3) 1.87 (3) 2.758 (3) 168 (3)
N1—H1B⋯O2 0.95 (3) 1.75 (3) 2.693 (3) 176 (3)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y+1, z.
[Figure 3]
Figure 3
The hydrogen bonding (shown as dashed red lines), halogen bonding (shown as dashed blue lines) and packing diagrams for salts (II)–(VII).

In salt (III)[link], the asymmetric unit consists of one 1-phenyl­ethan-1-aminium cation and one 2-chloro-4-nitro-benzoate anion. The ammonium ion forms three charge-assisted hydrogen bonds to the carboxyl­ate group and not to the nitro group of the 2-chloro-4-nitro-benzoate anion (Table 3[link]). In fact, no relevant non-covalent inter­actions involving the nitro group are observed. As for compound (II)[link], a type II ladder is formed by the above-mentioned hydrogen bonds, as shown in Fig. 3[link]b. The anions in adjacent rings (related by translation along the b axis) are connected via C—O⋯Cl halogen bonds [O⋯Cl = 3.225 (1) Å; C—O⋯Cl = 160.5 (1)°]. However, this inter­action does not perturb the ladder supra­molecular synthons to a significant enough degree to prevent their formation. Once again, both enanti­omers of the 1-phenyl­ethan-1-aminium were present and thus type III ladders were expected to form.

Table 3
Hydrogen-bond geometry (Å, °) for (III)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1 0.94 (2) 1.91 (2) 2.829 (1) 165 (1)
N1—H1B⋯O2i 0.94 (2) 1.85 (2) 2.789 (1) 176 (1)
N1—H1C⋯O1ii 0.95 (2) 1.84 (2) 2.780 (1) 170 (1)
Symmetry codes: (i) x, y-1, z; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

In salt (IV)[link], the asymmetric unit consists of one α-methyl-benzyl­ammonium cation and one 4-iodo­benzoate anion. A type II ladder system is observed (Table 4[link]). An inter­esting feature of this structure is the π⋯halogen inter­action between the centre of the aromatic ring of the methyl­benzyl­ammonium cation and the iodine atom (Fig. 3[link]c). This is possible as, due to its size, iodine is very polarizable and thus the delocalized electrons in the aromatic system can create a permanent dipole in the iodine atom in the solid state. The distance of 3.740 (3) Å is similar to other mol­ecules containing iodine inter­acting non-covalently with aromatic systems reported in the literature (Nagels et al., 2013[Nagels, N., Hauchecorne, D. & Herrebout, W. (2013). Molecules, 18, 6829-6851.]). Again, as in salt (III)[link], the halogen bonding does not disrupt the formation of the ladder motif.

Table 4
Hydrogen-bond geometry (Å, °) for (IV)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1 0.88 (3) 1.92 (3) 2.796 (3) 175 (2)
N1—H1B⋯O2i 0.84 (3) 1.88 (3) 2.715 (3) 174 (3)
N1—H1C⋯O1ii 0.92 (3) 1.83 (3) 2.735 (2) 169 (3)
Symmetry codes: (i) x, y+1, z; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

In salt (V)[link], the asymmetric unit consists of one (S)-1-cyclo­hexyl­ethyl­ammonium cation and one 2-chloro-4-nitro-benzoate anion, both on general positions. A type II ladder is formed as shown in Fig. 3[link]d. No hydrogen bonding to the nitro group takes place (Table 5[link]), which is consistent with the results for salt (III)[link]. However, a type I Cl⋯Cl halogen bond is observed with a distance of 3.207 (3) Å that connects adjacent ladders along the a axis. As the cation is present as a single enanti­omer, the type II ladder formation is in line with the previous studies.

Table 5
Hydrogen-bond geometry (Å, °) for (V)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1 0.93 (3) 1.96 (3) 2.869 (2) 167 (2)
N1—H1B⋯O1i 0.93 (3) 1.86 (3) 2.785 (2) 173 (2)
N1—H1C⋯O2ii 0.88 (3) 1.99 (3) 2.858 (2) 170 (2)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+1]; (ii) x, y-1, z.

In salt (VI)[link], the asymmetric unit consists of one 2-(1-cyclo­hexen­yl)ethyl­ammonium cation and one 4-bromo­benzoate anion, both on general positions. A type III ladder is observed (Table 6[link]), unique among the salts here reported (Fig. 3[link]e). As in salt (V)[link], the crystal structure is stabilized by halogen bonding, in this case between bromine and oxygen O1 with a distance of 3.253 (3) Å. The halogen bond connects adjacent ladders related by the two-fold screw axis.

Table 6
Hydrogen-bond geometry (Å, °) for (VI)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1 0.86 (3) 1.89 (3) 2.737 (2) 167 (3)
N1—H1B⋯O2i 0.94 (3) 1.85 (3) 2.763 (3) 164 (3)
N1—H1C⋯O2ii 0.86 (3) 1.89 (3) 2.727 (2) 167 (3)
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+1, -z.

In salt (VII)[link], the asymmetric unit consists of one (S)-1-cyclo­hexyl­ethyl­ammonium cation and one 4-bromo­benzoate anion, both on general positions. A type II ladder is formed (Table 7[link], Fig. 3[link]f). This is expected as the cation is enanti­omerically pure (Lemmerer et al., 2008b[Lemmerer, A., Bourne, S. A. & Fernandes, M. A. (2008b). CrystEngComm, 10, 1605-1612.]). In contrast to the previous salts that have a halogen atom on the anion, no halogen bonding is observed.

Table 7
Hydrogen-bond geometry (Å, °) for (VII)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1 0.91 1.99 2.781 (12) 144
N1—H1B⋯O2i 0.91 2.06 2.870 (12) 148
N1—H1C⋯O1ii 0.91 1.89 2.718 (10) 150
Symmetry codes: (i) x+1, y, z; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

In summary, introducing a pyridine functional group instead of a plain benzene in (I)[link] has altered the hydrogen-bonding pattern usually observed in ammonium carboxyl­ate salts, which generally show the typical type II and III patterns as seen in (II)–(VII)

4. Synthesis and crystallization

All chemicals were purchased from commercial sources (Sigma Aldrich) and used as received without further purification. Crystals were grown via the slow evaporation of methanol or ethanol solutions under ambient conditions. All solutions contained a 1:1 ratio of amine and acid. Detailed masses and volumes are as follows. For (I)[link]: (RS)-α-methyl­benzyl­amine (0.100 g, 0.825 mmol) and isonicotinic acid (0.102 g, 0.825 mmol) in methanol (5 mL); for (II)[link]: (RS)-α-methyl­benzyl­amine (0.100 g, 0.825 mmol) and flurbiprofen (0.202 g, 0.825 mmol) in ethanol (8 mL); for (III)[link]: (RS)-α-methyl­benzyl­amine (0.100 g, 0.825 mmol) and 2-chloro-4-nitro-benzoic acid (0.166 g, 0.825 mmol) in ethanol (5 mL); for (IV)[link]: (RS)-α-methyl­benzyl­amine (0.492 g, 0.406 mmol) and 4-iodo­benzoic acid (0.101 g, 0.406 mmol) in ethanol (5 mL); for (V)[link]: (S)-1-cyclo­hexyl­ethyl­amine (0.0254 g, 0.200 mmol) and 2-chloro-4-nitro-benzoic acid (0.0403 g, 0.200 mmol); for (VI)[link]: 2-(1-cyclo­hexen­yl) ethyl­amine (0.0250 g, 0.200 mmol) and 4-bromo­benzoic acid (0.0410 g, 0.200 mmol); and for (VII)[link]: (S)-1-cyclo­hexyl­ethyl­amine (0.0254 g, 0.200 mmol) and 4-bromo­benzoic acid (0.0410 g, 0.200 mmol).

5. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 8[link]. For all compounds, the C-bound H atoms were placed geometrically [C—H bond lengths of 1.00 Å (methine CH), 0.99 Å (ethyl­ene CH2), 0.98 Å (methyl­ene CH3) and 0.95 Å (Ar—H)] and refined as riding with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(C). The N-bound H atoms were located in difference-Fourier maps and their coordinates and isotropic displacement parameters allowed to refine freely for (I)–(VI). For (VII)[link], the N-bound H atoms were geometrically placed (C—H bond lengths of 0.91 Å) and refined as riding with Uiso(H) = 1.5Ueq(C).

Table 8
Experimental details

  (I) (II) (III) (IV)
Crystal data
Chemical formula C8H12N+·C6H4NO2 C8H12N+·C15H12FO2 C8H12N+·C7H3ClNO4 C8H12N+·C7H4IO2
Mr 244.29 365.43 322.74 369.19
Crystal system, space group Monoclinic, P21/n Monoclinic, P21/n Monoclinic, C2/c Monoclinic, P21/n
Temperature (K) 173 173 173 173
a, b, c (Å) 9.4094 (5), 9.4697 (5), 15.1613 (9) 12.4146 (4), 5.9101 (2), 27.3645 (9) 15.5817 (7), 6.3914 (3), 31.3238 (14) 9.7224 (5), 6.0571 (3), 24.8767 (12)
α, β, γ (°) 90, 102.247 (3), 90 90, 90.793 (1), 90 90, 100.998 (2), 90 90, 99.527 (2), 90
V3) 1320.19 (13) 2007.58 (11) 3062.2 (2) 1444.77 (12)
Z 4 4 8 4
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.08 0.08 0.27 2.21
Crystal size (mm) 0.76 × 0.33 × 0.07 0.49 × 0.05 × 0.03 0.47 × 0.35 × 0.08 0.68 × 0.16 × 0.04
 
Data collection
Diffractometer Bruker D8 Venture Photon CCD area detector Bruker D8 Venture Photon CCD area detector Bruker D8 Venture Photon CCD area detector Bruker D8 Venture Photon CCD area detector
Absorption correction Integration (XPREP; Bruker, 2016[Bruker (2016). APEX3, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Integration (XPREP; Bruker, 2016[Bruker (2016). APEX3, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Integration (XPREP; Bruker, 2016[Bruker (2016). APEX3, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Integration (XPREP; Bruker, 2016[Bruker (2016). APEX3, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.95, 0.96 0.984, 0.998 0.903, 0.979 0.508, 0.928
No. of measured, independent and observed [I > 2σ(I)] reflections 38822, 3190, 2359 21119, 3729, 3014 18885, 3709, 3218 30978, 3463, 3109
Rint 0.101 0.036 0.053 0.051
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.171, 1.05 0.061, 0.174, 1.07 0.035, 0.091, 1.04 0.026, 0.057, 1.13
No. of reflections 3190 3729 3709 3463
No. of parameters 176 256 212 185
No. of restraints 0 0 0 0
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.38, −0.40 1.00, −0.30 0.28, −0.32 0.74, −0.38
  (V) (VI) (VII)
Crystal data
Chemical formula C8H18N+·C7H3ClNO4 C8H15N+·C7H4BrO2 C8H18N+·C7H4BrO2
Mr 328.79 325.22 328.24
Crystal system, space group Monoclinic, C2 Monoclinic, P21/n Orthorhombic, P212121
Temperature (K) 173 173 173
a, b, c (Å) 16.2280 (15), 6.4392 (5), 15.5937 (15) 6.4391 (3), 17.0023 (8), 14.1588 (6) 6.2790 (3), 15.6610 (9), 15.8800 (8)
α, β, γ (°) 90, 104.289 (4), 90 90, 102.241 (2), 90 90, 90, 90
V3) 1579.1 (2) 1514.86 (12) 1561.57 (14)
Z 4 4 4
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.26 2.71 2.63
Crystal size (mm) 0.51 × 0.39 × 0.06 0.68 × 0.18 × 0.1 0.69 × 0.13 × 0.10
 
Data collection
Diffractometer Bruker D8 Venture Photon CCD area detector Bruker D8 Venture Photon CCD area detector Bruker D8 Venture Photon CCD area detector
Absorption correction Integration (XPREP; Bruker, 2016[Bruker (2016). APEX3, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Integration (XPREP; Bruker, 2016[Bruker (2016). APEX3, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Integration (XPREP; Bruker, 2016[Bruker (2016). APEX3, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.910, 0.988 0.275, 0.776 0.452, 0.846
No. of measured, independent and observed [I > 2σ(I)] reflections 15055, 3837, 3587 30862, 3658, 3302 21006, 2913, 2687
Rint 0.045 0.071 0.068
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.071, 1.04 0.037, 0.098, 1.05 0.078, 0.211, 1.08
No. of reflections 3837 3658 2913
No. of parameters 211 194 174
No. of restraints 1 0 0
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.20, −0.18 1.01, −1.02 1.46, −0.48
Absolute structure Flack x determined using 1512 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]). Flack x determined using 1026 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.031 (19) 0.068 (9)
Computer programs: APEX3, SAINT-Plus and XPREP (Bruker, 2016[Bruker (2016). APEX3, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2017 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg & Berndt, 1999[Brandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

For the disorder of the atom C4 in the cyclo­hexene ring of (VI)[link], two alternate positions were found in a difference-Fourier map, and their occupancies refined to final values of 0.77 (2) and 0.23 (2).

6. Related literature

The following references, not cited in the main body of the paper, have been cited in the supporting information: Bouchard et al. (2002[Bouchard, G., Carrupt, P.-A., Testa, B., Gobry, V. & Girault, H. H. (2002). Chem. Eur. J. 8, 3478-3484.]); Isoda et al. (1997[Isoda, T., Yamasaki, M., Yano, H. & Harada, S. (1997). Faraday Trans. 93, 449-452.]); Perrin (1982[Perrin, D. D. (1982). Ionization Constants of Organic Acids and Bases in Aqueous Solution, 2nd edition. Oxford: Pergamon.]); Portnov et al. (1971[Portnov, M. A., Al'tshuler, G. N., Vaisman, M. N., Dubinina, T. A. & Yakhontov, L. N. (1971). Pharm. Chem. J. 5, 426-428.]); van Sorge et al. (1999[Sorge, A. A. van, Wijnen, P., van Delft, J., Carballosa Coré-Bodelier, V. M. W. & van Haeringen, N. (1999). Pharm. World Sci. 21, 91-95.]); Tuckerman et al. (1959[Tuckerman, M. M., Mayer, J. R. & Nachod, F. C. (1959). J. Am. Chem. Soc. 81, 92-94.]).

Supporting information


Computing details top

For all structures, data collection: APEX3 (Bruker, 2016); cell refinement: SAINT-Plus (Bruker, 2016); data reduction: SAINT-Plus (Bruker, 2016) and XPREP (Bruker, 2016); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: WinGX (Farrugia, 2012).

(RS)-1-Phenylethan-1-aminium pyridine-4-carboxylate (I) top
Crystal data top
C8H12N+·C6H4NO2F(000) = 520
Mr = 244.29Dx = 1.229 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8190 reflections
a = 9.4094 (5) Åθ = 2.4–24.1°
b = 9.4697 (5) ŵ = 0.08 mm1
c = 15.1613 (9) ÅT = 173 K
β = 102.247 (3)°Plate, colourless
V = 1320.19 (13) Å30.76 × 0.33 × 0.07 mm
Z = 4
Data collection top
Bruker D8 Venture Photon CCD area detector
diffractometer
2359 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.101
ω scansθmax = 28.0°, θmin = 2.4°
Absorption correction: integration
(XPREP; Bruker, 2016)
h = 1212
Tmin = 0.95, Tmax = 0.96k = 1212
38822 measured reflectionsl = 2020
3190 independent reflections
Refinement top
Refinement on F20 constraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.056H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.171 w = 1/[σ2(Fo2) + (0.0941P)2 + 0.2604P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3190 reflectionsΔρmax = 0.38 e Å3
176 parametersΔρmin = 0.40 e Å3
0 restraints
Special details top

Experimental. Numerical integration absorption corrections based on indexed crystal faces were applied using the XPREP routine (Bruker, 2016)

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.36397 (17)0.73101 (15)0.23522 (11)0.0356 (4)
C20.37700 (18)0.82392 (16)0.16665 (12)0.0379 (4)
H20.4697130.8616340.1643780.045*
C30.25688 (19)0.86235 (18)0.10161 (13)0.0427 (4)
H30.2673880.9244370.0541930.051*
C40.1213 (2)0.8100 (2)0.10587 (13)0.0475 (4)
H40.0381410.8374520.061920.057*
C50.1068 (2)0.7180 (2)0.17387 (15)0.0536 (5)
H50.0136260.681930.1766040.064*
C60.22735 (19)0.6783 (2)0.23802 (14)0.0471 (4)
H60.2167140.6142760.2844530.057*
C70.49410 (18)0.68555 (16)0.30626 (11)0.0368 (4)
H70.458520.6219730.3496190.044*
C80.5745 (2)0.80785 (18)0.35973 (13)0.0482 (5)
H8A0.6576130.7714970.4041670.072*
H8B0.5085690.8581550.3909370.072*
H8C0.6091920.8727380.3185430.072*
C100.71054 (19)0.61304 (16)0.01922 (13)0.0421 (4)
H100.7834070.5750320.0663540.051*
C110.6532 (2)0.53314 (17)0.05587 (13)0.0475 (5)
H110.6902450.4405110.0595850.057*
C120.49964 (18)0.71011 (17)0.11664 (12)0.0389 (4)
H120.4241630.7441870.1636950.047*
C130.55272 (17)0.79860 (15)0.04510 (11)0.0363 (4)
H130.5157790.8917990.0440270.044*
C140.66020 (16)0.75029 (15)0.02501 (11)0.0320 (3)
C150.72087 (15)0.84180 (15)0.10609 (11)0.0312 (3)
N10.59829 (15)0.60289 (13)0.26409 (10)0.0340 (3)
N20.54883 (16)0.57833 (14)0.12346 (10)0.0420 (4)
O10.76355 (12)0.78218 (11)0.18042 (8)0.0382 (3)
O20.72283 (14)0.97236 (11)0.09234 (8)0.0446 (3)
H1A0.549 (2)0.541 (2)0.2211 (14)0.047 (5)*
H1B0.664 (2)0.560 (2)0.3127 (15)0.052 (6)*
H1C0.651 (2)0.666 (2)0.2308 (13)0.048 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0372 (8)0.0231 (7)0.0463 (9)0.0016 (6)0.0086 (7)0.0025 (6)
C20.0364 (8)0.0255 (7)0.0519 (10)0.0001 (6)0.0096 (7)0.0012 (6)
C30.0484 (10)0.0293 (8)0.0496 (10)0.0068 (7)0.0083 (8)0.0036 (7)
C40.0390 (9)0.0436 (10)0.0559 (11)0.0110 (7)0.0014 (8)0.0045 (8)
C50.0341 (9)0.0560 (12)0.0707 (13)0.0025 (8)0.0108 (9)0.0024 (10)
C60.0417 (10)0.0423 (9)0.0589 (11)0.0042 (7)0.0140 (8)0.0066 (8)
C70.0404 (9)0.0261 (7)0.0431 (9)0.0004 (6)0.0069 (7)0.0009 (6)
C80.0546 (11)0.0343 (9)0.0517 (11)0.0016 (7)0.0022 (8)0.0112 (7)
C100.0445 (9)0.0232 (7)0.0519 (10)0.0068 (6)0.0048 (7)0.0022 (7)
C110.0547 (10)0.0228 (8)0.0590 (11)0.0073 (7)0.0015 (9)0.0078 (7)
C120.0375 (8)0.0281 (8)0.0467 (9)0.0012 (6)0.0008 (7)0.0020 (6)
C130.0375 (8)0.0208 (7)0.0477 (9)0.0031 (6)0.0024 (7)0.0002 (6)
C140.0313 (7)0.0194 (6)0.0442 (8)0.0012 (5)0.0055 (6)0.0002 (6)
C150.0279 (7)0.0211 (7)0.0429 (8)0.0007 (5)0.0033 (6)0.0001 (6)
N10.0360 (7)0.0182 (6)0.0443 (8)0.0009 (5)0.0006 (6)0.0011 (5)
N20.0465 (8)0.0250 (7)0.0510 (8)0.0025 (6)0.0026 (6)0.0068 (6)
O10.0390 (6)0.0294 (6)0.0423 (7)0.0036 (4)0.0000 (5)0.0034 (5)
O20.0582 (8)0.0181 (5)0.0509 (7)0.0017 (5)0.0036 (6)0.0010 (5)
Geometric parameters (Å, º) top
C1—C21.387 (2)C8—H8C0.98
C1—C61.388 (2)C10—C111.378 (2)
C1—C71.512 (2)C10—C141.392 (2)
C2—C31.382 (2)C10—H100.95
C2—H20.95C11—N21.331 (2)
C3—C41.383 (3)C11—H110.95
C3—H30.95C12—N21.343 (2)
C4—C51.378 (3)C12—C131.378 (2)
C4—H40.95C12—H120.95
C5—C61.381 (3)C13—C141.381 (2)
C5—H50.95C13—H130.95
C6—H60.95C14—C151.513 (2)
C7—N11.500 (2)C15—O11.2482 (18)
C7—C81.520 (2)C15—O21.2546 (18)
C7—H71N1—H1A0.93 (2)
C8—H8A0.98N1—H1B0.95 (2)
C8—H8B0.98N1—H1C0.98 (2)
C2—C1—C6118.74 (16)H8A—C8—H8C109.5
C2—C1—C7121.84 (14)H8B—C8—H8C109.5
C6—C1—C7119.41 (15)C11—C10—C14119.06 (16)
C3—C2—C1120.86 (16)C11—C10—H10120.5
C3—C2—H2119.6C14—C10—H10120.5
C1—C2—H2119.6N2—C11—C10123.73 (15)
C2—C3—C4119.69 (17)N2—C11—H11118.1
C2—C3—H3120.2C10—C11—H11118.1
C4—C3—H3120.2N2—C12—C13123.55 (16)
C5—C4—C3120.01 (17)N2—C12—H12118.2
C5—C4—H4120C13—C12—H12118.2
C3—C4—H4120C12—C13—C14119.25 (14)
C4—C5—C6120.16 (17)C12—C13—H13120.4
C4—C5—H5119.9C14—C13—H13120.4
C6—C5—H5119.9C13—C14—C10117.66 (15)
C5—C6—C1120.53 (17)C13—C14—C15121.61 (13)
C5—C6—H6119.7C10—C14—C15120.73 (14)
C1—C6—H6119.7O1—C15—O2125.63 (15)
N1—C7—C1110.42 (13)O1—C15—C14117.90 (13)
N1—C7—C8109.18 (14)O2—C15—C14116.46 (14)
C1—C7—C8113.54 (13)C7—N1—H1A110.8 (12)
N1—C7—H7107.8C7—N1—H1B105.6 (12)
C1—C7—H7107.8H1A—N1—H1B115.0 (18)
C8—C7—H7107.8C7—N1—H1C110.6 (12)
C7—C8—H8A109.5H1A—N1—H1C104.9 (16)
C7—C8—H8B109.5H1B—N1—H1C110.0 (17)
H8A—C8—H8B109.5C11—N2—C12116.73 (14)
C7—C8—H8C109.5
C6—C1—C2—C30.7 (2)C14—C10—C11—N21.5 (3)
C7—C1—C2—C3179.00 (15)N2—C12—C13—C141.4 (3)
C1—C2—C3—C41.4 (3)C12—C13—C14—C100.4 (2)
C2—C3—C4—C51.1 (3)C12—C13—C14—C15178.95 (14)
C3—C4—C5—C60.2 (3)C11—C10—C14—C130.9 (3)
C4—C5—C6—C10.5 (3)C11—C10—C14—C15179.69 (16)
C2—C1—C6—C50.2 (3)C13—C14—C15—O1148.63 (15)
C7—C1—C6—C5179.94 (17)C10—C14—C15—O130.7 (2)
C2—C1—C7—N164.54 (19)C13—C14—C15—O230.9 (2)
C6—C1—C7—N1115.18 (17)C10—C14—C15—O2149.70 (16)
C2—C1—C7—C858.5 (2)C10—C11—N2—C120.6 (3)
C6—C1—C7—C8121.83 (18)C13—C12—N2—C110.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O2i0.95 (2)1.80 (2)2.747 (2)176 (2)
N1—H1C···O10.98 (2)1.81 (2)2.783 (2)174 (2)
N1—H1A···N2ii0.93 (2)1.93 (2)2.856 (2)175 (2)
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+1, y+1, z.
(RS)-1-Phenylethan-1-aminium 2-(3-fluoro-4-phenylphenyl)propanoate (II) top
Crystal data top
C8H12N+·C15H12FO2F(000) = 776
Mr = 365.43Dx = 1.209 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8586 reflections
a = 12.4146 (4) Åθ = 3.3–28.1°
b = 5.9101 (2) ŵ = 0.08 mm1
c = 27.3645 (9) ÅT = 173 K
β = 90.793 (1)°Needle, colourless
V = 2007.58 (11) Å30.49 × 0.05 × 0.03 mm
Z = 4
Data collection top
Bruker D8 Venture Photon CCD area detector
diffractometer
3014 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω scansθmax = 25.5°, θmin = 3.0°
Absorption correction: integration
(XPREP; Bruker, 2016)
h = 1515
Tmin = 0.984, Tmax = 0.998k = 77
21119 measured reflectionsl = 3333
3729 independent reflections
Refinement top
Refinement on F20 constraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.061H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.174 w = 1/[σ2(Fo2) + (0.0822P)2 + 1.6935P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
3729 reflectionsΔρmax = 1.00 e Å3
256 parametersΔρmin = 0.29 e Å3
0 restraints
Special details top

Experimental. Numerical integration absorption corrections based on indexed crystal faces were applied using the XPREP routine (Bruker, 2016)

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.04935 (18)0.8642 (4)0.27025 (8)0.0329 (5)
C21.0760 (2)1.0387 (5)0.30184 (9)0.0417 (6)
H21.0313581.1689650.3032810.05*
C31.1675 (2)1.0250 (6)0.33148 (10)0.0530 (7)
H31.1847661.14490.3533630.064*
C41.2332 (2)0.8381 (6)0.32915 (12)0.0601 (8)
H41.295870.8289080.3493380.072*
C51.2079 (2)0.6647 (6)0.29759 (15)0.0674 (9)
H51.2536090.5361260.2957930.081*
C61.1162 (2)0.6766 (5)0.26840 (12)0.0520 (7)
H61.0988860.5552520.2469170.062*
C70.95219 (18)0.8788 (4)0.23622 (8)0.0334 (5)
H70.9414990.7272440.2206580.04*
C80.9665 (2)1.0510 (5)0.19606 (9)0.0466 (7)
H8A1.0313821.0146860.1776040.07*
H8B0.903581.0479440.1740650.07*
H8C0.9739631.2021640.2104420.07*
C90.72402 (18)0.2856 (4)0.39881 (8)0.0358 (5)
C100.66307 (19)0.0970 (4)0.38683 (8)0.0367 (5)
H100.6940350.0239570.3689670.044*
C110.55715 (18)0.0859 (4)0.40101 (8)0.0329 (5)
C120.50615 (17)0.2529 (4)0.42747 (7)0.0284 (5)
C130.56906 (18)0.4412 (4)0.43937 (8)0.0327 (5)
H130.5379120.5612420.4574420.039*
C140.67580 (19)0.4579 (4)0.42552 (8)0.0366 (5)
H140.7164740.5881550.4343440.044*
C150.39177 (17)0.2360 (4)0.44248 (7)0.0293 (5)
C160.35361 (19)0.0448 (4)0.46614 (8)0.0362 (5)
H160.4003710.0798720.4719620.043*
C170.2475 (2)0.0349 (5)0.48133 (9)0.0437 (6)
H170.2221730.0962270.4976630.052*
C180.1787 (2)0.2137 (5)0.47289 (9)0.0471 (7)
H180.1060920.2060110.4832660.057*
C190.2158 (2)0.4046 (5)0.44923 (9)0.0448 (6)
H190.1684870.5281780.4432470.054*
C200.32183 (19)0.4161 (4)0.43423 (8)0.0360 (5)
H200.3469180.5480870.4181860.043*
C210.83900 (19)0.3060 (5)0.38057 (10)0.0484 (7)
H210.8617630.1534430.3687340.058*
C220.9186 (2)0.3812 (8)0.41767 (12)0.0823 (13)
H22A0.9899720.3896870.4029470.123*
H22B0.8982050.5308770.429890.123*
H22C0.9204090.2730850.444820.123*
C230.83496 (16)0.4652 (4)0.33647 (8)0.0329 (5)
N10.85361 (16)0.9339 (4)0.26431 (8)0.0319 (4)
O10.83181 (13)0.3767 (3)0.29437 (6)0.0388 (4)
O20.83086 (15)0.6720 (3)0.34405 (6)0.0470 (5)
F10.49883 (12)0.0979 (2)0.38696 (6)0.0499 (4)
H1A0.797 (2)0.927 (5)0.2430 (11)0.045 (7)*
H1C0.857 (2)1.077 (5)0.2754 (10)0.044 (7)*
H1B0.848 (2)0.838 (5)0.2918 (11)0.046 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0316 (11)0.0356 (13)0.0316 (11)0.0004 (10)0.0037 (9)0.0034 (10)
C20.0384 (13)0.0474 (15)0.0391 (13)0.0060 (11)0.0021 (10)0.0042 (11)
C30.0493 (16)0.069 (2)0.0401 (14)0.0014 (14)0.0093 (11)0.0036 (13)
C40.0421 (15)0.074 (2)0.0642 (18)0.0028 (15)0.0166 (13)0.0232 (17)
C50.0456 (17)0.0524 (19)0.104 (3)0.0130 (14)0.0061 (16)0.0169 (18)
C60.0447 (15)0.0367 (14)0.0746 (19)0.0029 (12)0.0002 (13)0.0020 (13)
C70.0342 (12)0.0346 (12)0.0315 (11)0.0024 (10)0.0025 (9)0.0048 (9)
C80.0420 (14)0.0638 (18)0.0339 (12)0.0147 (13)0.0048 (10)0.0077 (12)
C90.0315 (11)0.0412 (13)0.0346 (12)0.0054 (10)0.0007 (9)0.0152 (10)
C100.0396 (13)0.0340 (13)0.0366 (12)0.0095 (10)0.0060 (10)0.0060 (10)
C110.0386 (12)0.0277 (12)0.0325 (11)0.0003 (9)0.0001 (9)0.0020 (9)
C120.0331 (11)0.0295 (12)0.0226 (10)0.0023 (9)0.0021 (8)0.0039 (9)
C130.0406 (12)0.0304 (12)0.0269 (11)0.0006 (10)0.0008 (9)0.0008 (9)
C140.0374 (12)0.0378 (13)0.0342 (12)0.0058 (10)0.0070 (9)0.0076 (10)
C150.0335 (11)0.0318 (12)0.0226 (10)0.0008 (9)0.0015 (8)0.0035 (9)
C160.0396 (13)0.0369 (13)0.0323 (11)0.0005 (10)0.0011 (9)0.0028 (10)
C170.0434 (14)0.0506 (16)0.0373 (13)0.0098 (12)0.0033 (10)0.0033 (12)
C180.0326 (13)0.0670 (19)0.0418 (14)0.0058 (12)0.0021 (10)0.0127 (13)
C190.0360 (13)0.0499 (16)0.0482 (14)0.0093 (11)0.0061 (11)0.0097 (12)
C200.0373 (12)0.0341 (13)0.0364 (12)0.0018 (10)0.0049 (9)0.0014 (10)
C210.0325 (13)0.0591 (17)0.0536 (15)0.0087 (12)0.0033 (11)0.0232 (13)
C220.0402 (16)0.150 (4)0.0564 (18)0.001 (2)0.0051 (14)0.017 (2)
C230.0228 (11)0.0351 (13)0.0409 (13)0.0012 (9)0.0041 (9)0.0070 (10)
N10.0315 (10)0.0283 (11)0.0358 (11)0.0018 (8)0.0007 (8)0.0004 (9)
O10.0368 (9)0.0327 (9)0.0467 (10)0.0030 (7)0.0031 (7)0.0041 (7)
O20.0644 (12)0.0327 (10)0.0445 (10)0.0038 (8)0.0175 (8)0.0023 (8)
F10.0514 (9)0.0378 (8)0.0609 (9)0.0053 (7)0.0103 (7)0.0134 (7)
Geometric parameters (Å, º) top
C1—C21.383 (3)C12—C151.487 (3)
C1—C61.386 (4)C13—C141.387 (3)
C1—C71.516 (3)C13—H130.95
C2—C31.389 (4)C14—H140.95
C2—H20.95C15—C161.389 (3)
C3—C41.375 (4)C15—C201.390 (3)
C3—H30.95C16—C171.388 (3)
C4—C51.374 (5)C16—H160.95
C4—H40.95C17—C181.376 (4)
C5—C61.384 (4)C17—H170.95
C5—H50.95C18—C191.383 (4)
C6—H60.95C18—H180.95
C7—N11.490 (3)C19—C201.386 (3)
C7—C81.510 (3)C19—H190.95
C7—H71C20—H200.95
C8—H8A0.98C21—C221.475 (4)
C8—H8B0.98C21—C231.531 (3)
C8—H8C0.98C21—H211
C9—C101.384 (3)C22—H22A0.98
C9—C141.394 (4)C22—H22B0.98
C9—C211.523 (3)C22—H22C0.98
C10—C111.378 (3)C23—O21.241 (3)
C10—H100.95C23—O11.265 (3)
C11—F11.358 (3)N1—H1A0.91 (3)
C11—C121.383 (3)N1—H1C0.90 (3)
C12—C131.396 (3)N1—H1B0.95 (3)
C2—C1—C6118.8 (2)C12—C13—H13119.1
C2—C1—C7121.5 (2)C13—C14—C9120.7 (2)
C6—C1—C7119.7 (2)C13—C14—H14119.7
C1—C2—C3120.6 (2)C9—C14—H14119.7
C1—C2—H2119.7C16—C15—C20118.8 (2)
C3—C2—H2119.7C16—C15—C12121.1 (2)
C4—C3—C2120.0 (3)C20—C15—C12120.0 (2)
C4—C3—H3120C17—C16—C15120.3 (2)
C2—C3—H3120C17—C16—H16119.8
C5—C4—C3119.9 (3)C15—C16—H16119.8
C5—C4—H4120C18—C17—C16120.4 (2)
C3—C4—H4120C18—C17—H17119.8
C4—C5—C6120.2 (3)C16—C17—H17119.8
C4—C5—H5119.9C17—C18—C19119.7 (2)
C6—C5—H5119.9C17—C18—H18120.2
C5—C6—C1120.5 (3)C19—C18—H18120.2
C5—C6—H6119.7C18—C19—C20120.1 (2)
C1—C6—H6119.7C18—C19—H19119.9
N1—C7—C8109.5 (2)C20—C19—H19119.9
N1—C7—C1110.34 (18)C19—C20—C15120.5 (2)
C8—C7—C1112.63 (19)C19—C20—H20119.7
N1—C7—H7108.1C15—C20—H20119.7
C8—C7—H7108.1C22—C21—C9114.8 (2)
C1—C7—H7108.1C22—C21—C23111.8 (3)
C7—C8—H8A109.5C9—C21—C23106.63 (18)
C7—C8—H8B109.5C22—C21—H21107.8
H8A—C8—H8B109.5C9—C21—H21107.8
C7—C8—H8C109.5C23—C21—H21107.8
H8A—C8—H8C109.5C21—C22—H22A109.5
H8B—C8—H8C109.5C21—C22—H22B109.5
C10—C9—C14118.4 (2)H22A—C22—H22B109.5
C10—C9—C21119.8 (2)C21—C22—H22C109.5
C14—C9—C21121.7 (2)H22A—C22—H22C109.5
C11—C10—C9119.5 (2)H22B—C22—H22C109.5
C11—C10—H10120.3O2—C23—O1124.0 (2)
C9—C10—H10120.3O2—C23—C21118.3 (2)
F1—C11—C10117.7 (2)O1—C23—C21117.6 (2)
F1—C11—C12118.2 (2)C7—N1—H1A107.0 (17)
C10—C11—C12124.0 (2)C7—N1—H1C110.5 (18)
C11—C12—C13115.6 (2)H1A—N1—H1C107 (2)
C11—C12—C15122.9 (2)C7—N1—H1B110.3 (17)
C13—C12—C15121.50 (19)H1A—N1—H1B115 (2)
C14—C13—C12121.8 (2)H1C—N1—H1B108 (2)
C14—C13—H13119.1
C6—C1—C2—C30.6 (4)C10—C9—C14—C130.5 (3)
C7—C1—C2—C3177.7 (2)C21—C9—C14—C13176.3 (2)
C1—C2—C3—C40.8 (4)C11—C12—C15—C1650.7 (3)
C2—C3—C4—C50.2 (5)C13—C12—C15—C16129.4 (2)
C3—C4—C5—C60.5 (5)C11—C12—C15—C20131.3 (2)
C4—C5—C6—C10.7 (5)C13—C12—C15—C2048.6 (3)
C2—C1—C6—C50.1 (4)C20—C15—C16—C170.2 (3)
C7—C1—C6—C5177.1 (3)C12—C15—C16—C17177.9 (2)
C2—C1—C7—N153.5 (3)C15—C16—C17—C180.4 (4)
C6—C1—C7—N1129.5 (2)C16—C17—C18—C190.2 (4)
C2—C1—C7—C869.3 (3)C17—C18—C19—C200.2 (4)
C6—C1—C7—C8107.8 (3)C18—C19—C20—C150.4 (4)
C14—C9—C10—C110.7 (3)C16—C15—C20—C190.2 (3)
C21—C9—C10—C11176.2 (2)C12—C15—C20—C19178.3 (2)
C9—C10—C11—F1177.5 (2)C10—C9—C21—C22134.9 (3)
C9—C10—C11—C120.7 (3)C14—C9—C21—C2248.3 (4)
F1—C11—C12—C13177.81 (18)C10—C9—C21—C23100.7 (3)
C10—C11—C12—C130.4 (3)C14—C9—C21—C2376.1 (3)
F1—C11—C12—C152.1 (3)C22—C21—C23—O246.8 (3)
C10—C11—C12—C15179.7 (2)C9—C21—C23—O279.5 (3)
C11—C12—C13—C140.2 (3)C22—C21—C23—O1135.9 (3)
C15—C12—C13—C14179.93 (19)C9—C21—C23—O197.8 (3)
C12—C13—C14—C90.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.91 (3)1.91 (3)2.809 (3)170 (3)
N1—H1C···O1ii0.90 (3)1.87 (3)2.758 (3)168 (3)
N1—H1B···O20.95 (3)1.75 (3)2.693 (3)176 (3)
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x, y+1, z.
(RS)-1-Phenylethan-1-aminium 2-chloro-4-nitrobenzoate (III) top
Crystal data top
C8H12N+·C7H3ClNO4F(000) = 1344
Mr = 322.74Dx = 1.4 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 8180 reflections
a = 15.5817 (7) Åθ = 2.7–28.3°
b = 6.3914 (3) ŵ = 0.27 mm1
c = 31.3238 (14) ÅT = 173 K
β = 100.998 (2)°Plate, colourless
V = 3062.2 (2) Å30.47 × 0.35 × 0.08 mm
Z = 8
Data collection top
Bruker D8 Venture Photon CCD area detector
diffractometer
3218 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ω scansθmax = 28.0°, θmin = 2.7°
Absorption correction: integration
(XPREP; Bruker, 2016)
h = 2020
Tmin = 0.903, Tmax = 0.979k = 88
18885 measured reflectionsl = 4141
3709 independent reflections
Refinement top
Refinement on F20 constraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.046P)2 + 1.4672P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3709 reflectionsΔρmax = 0.28 e Å3
212 parametersΔρmin = 0.31 e Å3
0 restraints
Special details top

Experimental. Numerical integration absorption corrections based on indexed crystal faces were applied using the XPREP routine (Bruker, 2016)

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.09581 (10)0.3921 (3)0.05256 (5)0.0435 (4)
H10.0886610.3714650.0220520.052*
C20.09009 (10)0.2257 (3)0.07959 (5)0.0440 (4)
H20.0798560.0890530.0677720.053*
C30.09920 (9)0.2562 (2)0.12412 (5)0.0360 (3)
H30.0949580.1400540.1425360.043*
C40.11437 (8)0.4538 (2)0.14197 (4)0.0263 (3)
C50.12131 (11)0.6209 (2)0.11467 (5)0.0412 (3)
H50.1324540.7572990.1264710.049*
C60.11206 (12)0.5899 (3)0.07006 (5)0.0492 (4)
H60.1169260.7052650.0515460.059*
C70.12507 (8)0.4829 (2)0.19075 (4)0.0261 (3)
H70.1084060.3487780.203470.031*
C80.06945 (9)0.6569 (2)0.20441 (4)0.0353 (3)
H8A0.0075580.6278740.1930020.053*
H8B0.0855490.7905630.1927930.053*
H8C0.0793830.6642610.2362190.053*
N10.21931 (6)0.52603 (17)0.20964 (3)0.0233 (2)
H1A0.2343 (10)0.661 (3)0.2022 (5)0.035 (4)*
H1B0.2564 (10)0.429 (3)0.1998 (5)0.034 (4)*
H1C0.2276 (10)0.518 (2)0.2403 (5)0.033 (4)*
C90.33113 (8)0.90589 (19)0.14294 (4)0.0244 (2)
C100.37797 (7)0.72139 (19)0.15321 (4)0.0236 (2)
C110.39367 (8)0.5834 (2)0.12153 (4)0.0277 (3)
H110.4238880.4554760.1288940.033*
C120.36346 (9)0.6399 (2)0.07865 (4)0.0330 (3)
C130.32140 (11)0.8263 (2)0.06657 (4)0.0386 (3)
H130.3039720.8629850.036790.046*
C140.30526 (9)0.9589 (2)0.09922 (4)0.0332 (3)
H140.2760811.0879620.0916460.04*
C150.30282 (7)1.04387 (19)0.17704 (4)0.0238 (2)
N20.37830 (10)0.4929 (2)0.04459 (4)0.0453 (3)
O10.25740 (6)0.95511 (14)0.20132 (3)0.0280 (2)
O20.32294 (6)1.23110 (14)0.17769 (3)0.0323 (2)
O30.41721 (10)0.33069 (19)0.05555 (4)0.0595 (4)
O40.35101 (12)0.5415 (2)0.00671 (4)0.0796 (5)
Cl10.42338 (2)0.66402 (5)0.20708 (2)0.02886 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0479 (8)0.0530 (10)0.0283 (6)0.0043 (7)0.0041 (6)0.0096 (6)
C20.0523 (9)0.0377 (9)0.0410 (8)0.0035 (7)0.0058 (7)0.0159 (7)
C30.0414 (7)0.0285 (7)0.0380 (7)0.0027 (6)0.0071 (6)0.0027 (6)
C40.0260 (5)0.0264 (7)0.0264 (6)0.0023 (5)0.0051 (4)0.0016 (5)
C50.0664 (10)0.0279 (7)0.0295 (7)0.0040 (7)0.0095 (6)0.0011 (5)
C60.0767 (11)0.0428 (9)0.0283 (7)0.0003 (8)0.0106 (7)0.0048 (6)
C70.0276 (5)0.0258 (6)0.0260 (6)0.0049 (5)0.0078 (4)0.0010 (5)
C80.0308 (6)0.0439 (9)0.0334 (7)0.0035 (6)0.0113 (5)0.0021 (6)
N10.0283 (5)0.0208 (5)0.0221 (5)0.0008 (4)0.0080 (4)0.0002 (4)
C90.0294 (6)0.0209 (6)0.0244 (5)0.0018 (4)0.0093 (4)0.0007 (4)
C100.0267 (5)0.0246 (6)0.0200 (5)0.0031 (4)0.0059 (4)0.0000 (4)
C110.0331 (6)0.0240 (6)0.0275 (6)0.0020 (5)0.0097 (5)0.0007 (5)
C120.0474 (7)0.0300 (7)0.0247 (6)0.0032 (6)0.0145 (5)0.0030 (5)
C130.0591 (9)0.0362 (8)0.0222 (6)0.0069 (6)0.0119 (6)0.0040 (5)
C140.0482 (7)0.0268 (7)0.0267 (6)0.0073 (6)0.0121 (5)0.0052 (5)
C150.0272 (5)0.0223 (6)0.0220 (5)0.0013 (4)0.0052 (4)0.0004 (4)
N20.0727 (9)0.0388 (8)0.0279 (6)0.0080 (6)0.0186 (6)0.0049 (5)
O10.0368 (5)0.0249 (5)0.0251 (4)0.0034 (4)0.0127 (3)0.0024 (3)
O20.0407 (5)0.0201 (5)0.0396 (5)0.0024 (4)0.0167 (4)0.0030 (4)
O30.0975 (10)0.0428 (7)0.0406 (6)0.0242 (7)0.0192 (6)0.0079 (5)
O40.1472 (14)0.0678 (9)0.0243 (5)0.0380 (9)0.0182 (7)0.0036 (6)
Cl10.02955 (16)0.03213 (18)0.02288 (15)0.00106 (11)0.00007 (11)0.00070 (11)
Geometric parameters (Å, º) top
C1—C21.373 (2)N1—H1B0.940 (16)
C1—C61.382 (2)N1—H1C0.946 (16)
C1—H10.95C9—C101.3919 (17)
C2—C31.389 (2)C9—C141.3933 (17)
C2—H20.95C9—C151.5143 (16)
C3—C41.3833 (19)C10—C111.3837 (17)
C3—H30.95C10—Cl11.7397 (11)
C4—C51.3848 (19)C11—C121.3836 (18)
C4—C71.5167 (16)C11—H110.95
C5—C61.391 (2)C12—C131.377 (2)
C5—H50.95C12—N21.4726 (17)
C6—H60.95C13—C141.3876 (19)
C7—N11.5003 (15)C13—H130.95
C7—C81.5206 (19)C14—H140.95
C7—H71C15—O21.2362 (15)
C8—H8A0.98C15—O11.2675 (14)
C8—H8B0.98N2—O31.2171 (17)
C8—H8C0.98N2—O41.2216 (17)
N1—H1A0.937 (17)
C2—C1—C6119.52 (13)C7—N1—H1A110.0 (9)
C2—C1—H1120.2C7—N1—H1B111.4 (9)
C6—C1—H1120.2H1A—N1—H1B109.4 (13)
C1—C2—C3120.29 (14)C7—N1—H1C108.9 (9)
C1—C2—H2119.9H1A—N1—H1C107.9 (13)
C3—C2—H2119.9H1B—N1—H1C109.0 (13)
C4—C3—C2120.72 (14)C10—C9—C14118.28 (11)
C4—C3—H3119.6C10—C9—C15122.74 (10)
C2—C3—H3119.6C14—C9—C15118.89 (11)
C3—C4—C5118.82 (12)C11—C10—C9122.05 (11)
C3—C4—C7119.75 (12)C11—C10—Cl1117.81 (9)
C5—C4—C7121.41 (12)C9—C10—Cl1120.07 (9)
C4—C5—C6120.33 (14)C12—C11—C10117.13 (12)
C4—C5—H5119.8C12—C11—H11121.4
C6—C5—H5119.8C10—C11—H11121.4
C1—C6—C5120.30 (15)C13—C12—C11123.24 (12)
C1—C6—H6119.8C13—C12—N2119.02 (12)
C5—C6—H6119.8C11—C12—N2117.74 (12)
N1—C7—C4109.33 (9)C12—C13—C14118.00 (12)
N1—C7—C8108.79 (10)C12—C13—H13121
C4—C7—C8114.45 (11)C14—C13—H13121
N1—C7—H7108C13—C14—C9121.11 (12)
C4—C7—H7108C13—C14—H14119.4
C8—C7—H7108C9—C14—H14119.4
C7—C8—H8A109.5O2—C15—O1126.32 (11)
C7—C8—H8B109.5O2—C15—C9117.92 (10)
H8A—C8—H8B109.5O1—C15—C9115.71 (11)
C7—C8—H8C109.5O3—N2—O4123.54 (13)
H8A—C8—H8C109.5O3—N2—C12118.55 (12)
H8B—C8—H8C109.5O4—N2—C12117.91 (13)
C6—C1—C2—C31.0 (2)Cl1—C10—C11—C12174.67 (10)
C1—C2—C3—C40.2 (2)C10—C11—C12—C131.7 (2)
C2—C3—C4—C50.7 (2)C10—C11—C12—N2178.93 (12)
C2—C3—C4—C7179.33 (13)C11—C12—C13—C143.0 (2)
C3—C4—C5—C60.8 (2)N2—C12—C13—C14177.66 (14)
C7—C4—C5—C6179.39 (14)C12—C13—C14—C90.3 (2)
C2—C1—C6—C50.9 (3)C10—C9—C14—C133.5 (2)
C4—C5—C6—C10.0 (3)C15—C9—C14—C13173.03 (13)
C3—C4—C7—N1107.18 (13)C10—C9—C15—O2126.58 (13)
C5—C4—C7—N171.41 (16)C14—C9—C15—O257.09 (16)
C3—C4—C7—C8130.51 (13)C10—C9—C15—O155.96 (15)
C5—C4—C7—C850.90 (17)C14—C9—C15—O1120.37 (13)
C14—C9—C10—C114.84 (18)C13—C12—N2—O3178.42 (16)
C15—C9—C10—C11171.52 (11)C11—C12—N2—O30.9 (2)
C14—C9—C10—Cl1172.07 (10)C13—C12—N2—O41.3 (2)
C15—C9—C10—Cl111.58 (16)C11—C12—N2—O4179.34 (16)
C9—C10—C11—C122.30 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.94 (2)1.91 (2)2.829 (1)165 (1)
N1—H1B···O2i0.94 (2)1.85 (2)2.789 (1)176 (1)
N1—H1C···O1ii0.95 (2)1.84 (2)2.780 (1)170 (1)
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y1/2, z+1/2.
(RS)-1-Phenylethan-1-aminium 4-iodobenzoate (IV) top
Crystal data top
C8H12N+·C7H4IO2F(000) = 728
Mr = 369.19Dx = 1.697 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9122 reflections
a = 9.7224 (5) Åθ = 3.3–28.3°
b = 6.0571 (3) ŵ = 2.21 mm1
c = 24.8767 (12) ÅT = 173 K
β = 99.527 (2)°Plate, orange
V = 1444.77 (12) Å30.68 × 0.16 × 0.04 mm
Z = 4
Data collection top
Bruker D8 Venture Photon CCD area detector
diffractometer
3109 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ω scansθmax = 28.0°, θmin = 3.0°
Absorption correction: integration
(XPREP; Bruker, 2016)
h = 1212
Tmin = 0.508, Tmax = 0.928k = 88
30978 measured reflectionsl = 3232
3463 independent reflections
Refinement top
Refinement on F20 constraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.026H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.057 w = 1/[σ2(Fo2) + (0.0189P)2 + 1.5669P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max = 0.001
3463 reflectionsΔρmax = 0.74 e Å3
185 parametersΔρmin = 0.38 e Å3
0 restraints
Special details top

Experimental. Numerical integration absorption corrections based on indexed crystal faces were applied using the XPREP routine (Bruker, 2016)

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4776 (2)0.5625 (4)0.30540 (9)0.0228 (4)
C20.5527 (2)0.3668 (4)0.30591 (9)0.0264 (5)
H20.6007020.3344210.2765650.032*
C30.5584 (2)0.2182 (4)0.34868 (10)0.0273 (5)
H30.6113490.0863270.3488880.033*
C40.4864 (2)0.2631 (4)0.39109 (10)0.0277 (5)
H40.4889520.1613140.4202930.033*
C50.4111 (2)0.4563 (4)0.39071 (9)0.0292 (5)
H50.3612840.4868330.4196620.035*
C60.4075 (2)0.6059 (4)0.34849 (9)0.0273 (5)
H60.3565220.7394620.3489970.033*
C70.4644 (2)0.7258 (4)0.25903 (10)0.0263 (5)
H70.4402410.8725680.2733660.032*
C80.3496 (3)0.6640 (5)0.21243 (11)0.0361 (6)
H8A0.3665850.5150840.1996020.054*
H8B0.3485590.7694470.1824860.054*
H8C0.2593540.6675620.2250990.054*
N10.5992 (2)0.7512 (3)0.23771 (8)0.0214 (4)
H1A0.621 (3)0.633 (5)0.2208 (10)0.023 (6)*
H1B0.591 (3)0.858 (5)0.2159 (11)0.026 (7)*
H1C0.670 (3)0.780 (4)0.2662 (12)0.031 (7)*
C90.5029 (2)0.3948 (4)0.10780 (8)0.0204 (4)
C100.5399 (2)0.6044 (4)0.09238 (9)0.0233 (4)
H100.6236390.6705730.1102970.028*
C110.4551 (2)0.7177 (4)0.05091 (9)0.0249 (4)
H110.4809660.8603530.0402320.03*
C120.3327 (2)0.6210 (4)0.02534 (8)0.0240 (4)
C130.2946 (2)0.4109 (4)0.03976 (9)0.0279 (5)
H130.2107890.3449320.0217820.034*
C140.3806 (2)0.2995 (4)0.08068 (9)0.0246 (4)
H140.3557190.1550550.09050.029*
C150.5894 (2)0.2737 (4)0.15462 (9)0.0220 (4)
O10.68527 (16)0.3835 (3)0.18395 (6)0.0249 (3)
O20.5591 (2)0.0792 (3)0.16235 (7)0.0375 (4)
I10.19967 (2)0.79494 (3)0.03513 (2)0.03359 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0175 (10)0.0242 (11)0.0258 (11)0.0025 (8)0.0005 (8)0.0018 (9)
C20.0263 (11)0.0296 (12)0.0245 (11)0.0037 (9)0.0076 (9)0.0029 (9)
C30.0279 (11)0.0245 (11)0.0292 (12)0.0029 (9)0.0039 (9)0.0025 (9)
C40.0262 (11)0.0326 (13)0.0239 (11)0.0014 (9)0.0029 (9)0.0042 (9)
C50.0254 (11)0.0395 (14)0.0236 (11)0.0012 (10)0.0063 (9)0.0019 (10)
C60.0226 (11)0.0278 (12)0.0308 (12)0.0048 (9)0.0023 (9)0.0002 (10)
C70.0219 (10)0.0269 (11)0.0300 (12)0.0042 (9)0.0036 (9)0.0039 (9)
C80.0250 (12)0.0472 (16)0.0339 (13)0.0017 (11)0.0019 (10)0.0057 (12)
N10.0213 (9)0.0191 (10)0.0224 (9)0.0012 (7)0.0009 (7)0.0037 (8)
C90.0229 (10)0.0205 (10)0.0183 (9)0.0012 (8)0.0046 (8)0.0004 (8)
C100.0251 (11)0.0214 (11)0.0224 (10)0.0032 (9)0.0010 (8)0.0002 (9)
C110.0330 (12)0.0201 (10)0.0219 (10)0.0008 (9)0.0056 (9)0.0036 (9)
C120.0290 (11)0.0242 (11)0.0178 (10)0.0077 (9)0.0010 (8)0.0010 (9)
C130.0263 (11)0.0264 (12)0.0289 (12)0.0016 (9)0.0017 (9)0.0023 (10)
C140.0264 (11)0.0193 (10)0.0275 (11)0.0030 (9)0.0031 (9)0.0017 (9)
C150.0258 (10)0.0216 (10)0.0189 (10)0.0019 (8)0.0047 (8)0.0020 (8)
O10.0251 (8)0.0259 (8)0.0218 (7)0.0011 (6)0.0020 (6)0.0004 (6)
O20.0508 (11)0.0234 (9)0.0334 (9)0.0059 (8)0.0069 (8)0.0109 (7)
I10.03935 (10)0.03639 (10)0.02241 (9)0.01375 (7)0.00260 (6)0.00224 (6)
Geometric parameters (Å, º) top
C1—C61.387 (3)N1—H1A0.88 (3)
C1—C21.391 (3)N1—H1B0.84 (3)
C1—C71.509 (3)N1—H1C0.92 (3)
C2—C31.388 (3)C9—C101.390 (3)
C2—H20.95C9—C141.392 (3)
C3—C41.386 (3)C9—C151.509 (3)
C3—H30.95C10—C111.391 (3)
C4—C51.380 (3)C10—H100.95
C4—H40.95C11—C121.383 (3)
C5—C61.383 (3)C11—H110.95
C5—H50.95C12—C131.389 (3)
C6—H60.95C12—I12.098 (2)
C7—N11.501 (3)C13—C141.382 (3)
C7—C81.517 (3)C13—H130.95
C7—H71C14—H140.95
C8—H8A0.98C15—O21.237 (3)
C8—H8B0.98C15—O11.272 (3)
C8—H8C0.98
C6—C1—C2118.6 (2)H8B—C8—H8C109.5
C6—C1—C7118.4 (2)C7—N1—H1A112.5 (17)
C2—C1—C7123.0 (2)C7—N1—H1B108.3 (18)
C3—C2—C1120.9 (2)H1A—N1—H1B109 (2)
C3—C2—H2119.5C7—N1—H1C109.4 (17)
C1—C2—H2119.5H1A—N1—H1C108 (2)
C4—C3—C2119.7 (2)H1B—N1—H1C110 (2)
C4—C3—H3120.2C10—C9—C14118.9 (2)
C2—C3—H3120.2C10—C9—C15121.37 (19)
C5—C4—C3119.7 (2)C14—C9—C15119.64 (19)
C5—C4—H4120.1C9—C10—C11120.5 (2)
C3—C4—H4120.1C9—C10—H10119.8
C4—C5—C6120.5 (2)C11—C10—H10119.8
C4—C5—H5119.8C12—C11—C10119.4 (2)
C6—C5—H5119.8C12—C11—H11120.3
C5—C6—C1120.6 (2)C10—C11—H11120.3
C5—C6—H6119.7C11—C12—C13121.0 (2)
C1—C6—H6119.7C11—C12—I1119.89 (17)
N1—C7—C1111.61 (18)C13—C12—I1119.08 (16)
N1—C7—C8109.3 (2)C14—C13—C12118.9 (2)
C1—C7—C8112.4 (2)C14—C13—H13120.6
N1—C7—H7107.8C12—C13—H13120.6
C1—C7—H7107.8C13—C14—C9121.2 (2)
C8—C7—H7107.8C13—C14—H14119.4
C7—C8—H8A109.5C9—C14—H14119.4
C7—C8—H8B109.5O2—C15—O1125.4 (2)
H8A—C8—H8B109.5O2—C15—C9117.8 (2)
C7—C8—H8C109.5O1—C15—C9116.76 (19)
H8A—C8—H8C109.5
C6—C1—C2—C30.4 (3)C15—C9—C10—C11176.7 (2)
C7—C1—C2—C3178.0 (2)C9—C10—C11—C120.6 (3)
C1—C2—C3—C41.1 (4)C10—C11—C12—C131.2 (3)
C2—C3—C4—C50.7 (4)C10—C11—C12—I1177.56 (16)
C3—C4—C5—C60.3 (4)C11—C12—C13—C140.6 (3)
C4—C5—C6—C11.1 (4)I1—C12—C13—C14178.18 (17)
C2—C1—C6—C50.7 (3)C12—C13—C14—C90.7 (3)
C7—C1—C6—C5177.0 (2)C10—C9—C14—C131.3 (3)
C6—C1—C7—N1142.4 (2)C15—C9—C14—C13176.2 (2)
C2—C1—C7—N140.0 (3)C10—C9—C15—O2172.3 (2)
C6—C1—C7—C894.4 (3)C14—C9—C15—O210.3 (3)
C2—C1—C7—C883.2 (3)C10—C9—C15—O19.7 (3)
C14—C9—C10—C110.7 (3)C14—C9—C15—O1167.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.88 (3)1.92 (3)2.796 (3)175 (2)
N1—H1B···O2i0.84 (3)1.88 (3)2.715 (3)174 (3)
N1—H1C···O1ii0.92 (3)1.83 (3)2.735 (2)169 (3)
Symmetry codes: (i) x, y+1, z; (ii) x+3/2, y+1/2, z+1/2.
(S)-1-Cyclohexylethan-1-aminium 2-chloro-4-nitrobenzoate (V) top
Crystal data top
C8H18N+·C7H3ClNO4F(000) = 696
Mr = 328.79Dx = 1.383 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 8605 reflections
a = 16.2280 (15) Åθ = 3.2–31.0°
b = 6.4392 (5) ŵ = 0.26 mm1
c = 15.5937 (15) ÅT = 173 K
β = 104.289 (4)°Plate, colourless
V = 1579.1 (2) Å30.51 × 0.39 × 0.06 mm
Z = 4
Data collection top
Bruker D8 Venture Photon CCD area detector
diffractometer
3587 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ω scansθmax = 28.0°, θmin = 3.2°
Absorption correction: integration
(XPREP; Bruker, 2016)
h = 2121
Tmin = 0.910, Tmax = 0.988k = 88
15055 measured reflectionsl = 2020
3837 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.0364P)2 + 0.5174P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.071(Δ/σ)max = 0.004
S = 1.04Δρmax = 0.20 e Å3
3837 reflectionsΔρmin = 0.18 e Å3
211 parametersAbsolute structure: Flack x determined using 1512 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).
1 restraintAbsolute structure parameter: 0.031 (19)
0 constraints
Special details top

Experimental. Numerical integration absorption corrections based on indexed crystal faces were applied using the XPREP routine (Bruker, 2016)

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.92062 (12)0.0254 (3)0.72741 (12)0.0222 (4)
H10.9833470.0006920.7460460.027*
C20.87885 (13)0.1383 (4)0.77418 (11)0.0276 (4)
H2A0.8163180.1214190.7559330.033*
H2B0.8927810.2784990.7557970.033*
C30.90886 (14)0.1200 (4)0.87506 (12)0.0298 (4)
H3A0.970470.1506610.8940210.036*
H3B0.8785310.2233480.9029580.036*
C40.89238 (14)0.0959 (4)0.90568 (13)0.0306 (5)
H4A0.8303280.1210760.8921480.037*
H4B0.9150940.1060210.970580.037*
C50.93408 (15)0.2602 (4)0.86040 (14)0.0324 (5)
H5A0.9194880.399780.8787970.039*
H5B0.9966350.2442870.8792380.039*
C60.90493 (14)0.2421 (3)0.75965 (13)0.0278 (4)
H6A0.9358340.3453330.732360.033*
H6B0.8434770.2743210.7403470.033*
C70.89437 (13)0.0078 (3)0.62578 (12)0.0245 (4)
H70.9135540.137140.6009760.029*
C80.93451 (14)0.1751 (4)0.59025 (14)0.0345 (5)
H8A0.9964730.1681790.6122460.052*
H8B0.919420.1705270.5254240.052*
H8C0.9136110.3048110.610090.052*
C90.67604 (12)0.3841 (3)0.70870 (12)0.0195 (4)
C100.63111 (11)0.1984 (3)0.68641 (12)0.0199 (4)
C110.61854 (12)0.0605 (3)0.74977 (13)0.0224 (4)
H110.5893470.0670730.7338440.027*
C120.65033 (12)0.1160 (3)0.83759 (12)0.0236 (4)
C130.69029 (14)0.3020 (3)0.86335 (13)0.0265 (4)
H130.7087690.3380670.9241570.032*
C140.70281 (13)0.4352 (3)0.79816 (12)0.0244 (4)
H140.7303080.5644950.8147130.029*
C150.70359 (12)0.5207 (3)0.64162 (12)0.0206 (4)
N10.79918 (11)0.0076 (3)0.59071 (10)0.0213 (3)
N20.64113 (13)0.0332 (3)0.90616 (12)0.0327 (4)
O10.74062 (9)0.4280 (2)0.59039 (9)0.0255 (3)
O20.69186 (10)0.7100 (2)0.64544 (10)0.0288 (3)
O30.61108 (15)0.2043 (3)0.88266 (13)0.0522 (5)
O40.66539 (14)0.0207 (3)0.98356 (11)0.0488 (5)
Cl10.58672 (3)0.13764 (8)0.57637 (3)0.03040 (13)
H1A0.7792 (15)0.139 (5)0.5991 (15)0.030 (6)*
H1B0.7824 (16)0.011 (4)0.5295 (17)0.032 (6)*
H1C0.7717 (16)0.091 (4)0.6117 (17)0.028 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0220 (9)0.0239 (9)0.0206 (9)0.0011 (8)0.0051 (7)0.0010 (7)
C20.0404 (10)0.0216 (8)0.0208 (8)0.0048 (10)0.0076 (7)0.0005 (9)
C30.0385 (10)0.0301 (11)0.0204 (8)0.0028 (10)0.0063 (8)0.0052 (9)
C40.0323 (11)0.0393 (13)0.0199 (9)0.0020 (10)0.0060 (8)0.0038 (9)
C50.0374 (12)0.0304 (11)0.0271 (10)0.0064 (10)0.0033 (9)0.0070 (8)
C60.0328 (11)0.0233 (10)0.0259 (10)0.0036 (9)0.0047 (8)0.0001 (8)
C70.0259 (10)0.0284 (10)0.0201 (9)0.0008 (8)0.0078 (7)0.0020 (8)
C80.0345 (11)0.0439 (15)0.0270 (10)0.0082 (10)0.0114 (8)0.0029 (9)
C90.0203 (8)0.0188 (9)0.0197 (9)0.0028 (7)0.0054 (7)0.0007 (7)
C100.0181 (8)0.0231 (9)0.0170 (8)0.0015 (7)0.0013 (7)0.0010 (6)
C110.0206 (9)0.0211 (9)0.0260 (9)0.0004 (7)0.0068 (7)0.0002 (7)
C120.0239 (8)0.0269 (10)0.0227 (8)0.0034 (9)0.0106 (7)0.0062 (8)
C130.0304 (10)0.0330 (11)0.0168 (9)0.0004 (9)0.0075 (8)0.0016 (8)
C140.0300 (10)0.0237 (9)0.0204 (9)0.0036 (8)0.0075 (8)0.0047 (7)
C150.0210 (9)0.0216 (10)0.0178 (8)0.0005 (8)0.0021 (7)0.0015 (7)
N10.0278 (9)0.0195 (8)0.0175 (8)0.0011 (7)0.0073 (6)0.0000 (6)
N20.0385 (10)0.0340 (10)0.0309 (10)0.0101 (8)0.0187 (8)0.0118 (8)
O10.0337 (8)0.0258 (7)0.0195 (6)0.0030 (6)0.0112 (6)0.0026 (6)
O20.0376 (8)0.0197 (7)0.0322 (8)0.0007 (6)0.0143 (7)0.0031 (6)
O30.0801 (15)0.0340 (10)0.0509 (11)0.0100 (10)0.0321 (10)0.0099 (8)
O40.0711 (13)0.0519 (11)0.0261 (8)0.0079 (10)0.0171 (8)0.0137 (8)
Cl10.0323 (2)0.0334 (2)0.0200 (2)0.0058 (2)0.00398 (16)0.0016 (2)
Geometric parameters (Å, º) top
C1—C61.525 (3)C8—H8B0.98
C1—C21.532 (3)C8—H8C0.98
C1—C71.540 (3)C9—C141.394 (3)
C1—H11C9—C101.399 (3)
C2—C31.532 (2)C9—C151.516 (3)
C2—H2A0.99C10—C111.381 (3)
C2—H2B0.99C10—Cl11.7340 (18)
C3—C41.515 (3)C11—C121.386 (3)
C3—H3A0.99C11—H110.95
C3—H3B0.99C12—C131.374 (3)
C4—C51.520 (3)C12—N21.472 (3)
C4—H4A0.99C13—C141.383 (3)
C4—H4B0.99C13—H130.95
C5—C61.529 (3)C14—H140.95
C5—H5A0.99C15—O21.238 (2)
C5—H5B0.99C15—O11.262 (2)
C6—H6A0.99N1—H1A0.93 (3)
C6—H6B0.99N1—H1B0.93 (3)
C7—N11.509 (3)N1—H1C0.88 (3)
C7—C81.515 (3)N2—O41.224 (3)
C7—H71N2—O31.224 (3)
C8—H8A0.98
C6—C1—C2110.06 (16)N1—C7—H7107.6
C6—C1—C7112.35 (16)C8—C7—H7107.6
C2—C1—C7113.37 (16)C1—C7—H7107.6
C6—C1—H1106.9C7—C8—H8A109.5
C2—C1—H1106.9C7—C8—H8B109.5
C7—C1—H1106.9H8A—C8—H8B109.5
C1—C2—C3111.71 (17)C7—C8—H8C109.5
C1—C2—H2A109.3H8A—C8—H8C109.5
C3—C2—H2A109.3H8B—C8—H8C109.5
C1—C2—H2B109.3C14—C9—C10117.70 (17)
C3—C2—H2B109.3C14—C9—C15118.77 (17)
H2A—C2—H2B107.9C10—C9—C15123.29 (17)
C4—C3—C2110.99 (18)C11—C10—C9122.15 (17)
C4—C3—H3A109.4C11—C10—Cl1117.66 (15)
C2—C3—H3A109.4C9—C10—Cl1120.17 (14)
C4—C3—H3B109.4C10—C11—C12117.15 (18)
C2—C3—H3B109.4C10—C11—H11121.4
H3A—C3—H3B108C12—C11—H11121.4
C3—C4—C5111.02 (17)C13—C12—C11123.21 (18)
C3—C4—H4A109.4C13—C12—N2118.79 (17)
C5—C4—H4A109.4C11—C12—N2118.00 (19)
C3—C4—H4B109.4C12—C13—C14118.03 (17)
C5—C4—H4B109.4C12—C13—H13121
H4A—C4—H4B108C14—C13—H13121
C4—C5—C6111.33 (17)C13—C14—C9121.56 (19)
C4—C5—H5A109.4C13—C14—H14119.2
C6—C5—H5A109.4C9—C14—H14119.2
C4—C5—H5B109.4O2—C15—O1126.8 (2)
C6—C5—H5B109.4O2—C15—C9117.60 (18)
H5A—C5—H5B108O1—C15—C9115.48 (17)
C1—C6—C5111.95 (17)C7—N1—H1A111.8 (15)
C1—C6—H6A109.2C7—N1—H1B112.1 (15)
C5—C6—H6A109.2H1A—N1—H1B104 (2)
C1—C6—H6B109.2C7—N1—H1C112.6 (17)
C5—C6—H6B109.2H1A—N1—H1C112 (2)
H6A—C6—H6B107.9H1B—N1—H1C104 (2)
N1—C7—C8108.09 (17)O4—N2—O3123.90 (19)
N1—C7—C1112.08 (15)O4—N2—C12117.8 (2)
C8—C7—C1113.51 (17)O3—N2—C12118.32 (19)
C6—C1—C2—C355.1 (2)Cl1—C10—C11—C12176.58 (14)
C7—C1—C2—C3178.10 (17)C10—C11—C12—C132.3 (3)
C1—C2—C3—C456.3 (2)C10—C11—C12—N2177.19 (17)
C2—C3—C4—C556.1 (2)C11—C12—C13—C143.2 (3)
C3—C4—C5—C655.7 (2)N2—C12—C13—C14176.29 (18)
C2—C1—C6—C554.7 (2)C12—C13—C14—C90.0 (3)
C7—C1—C6—C5177.98 (16)C10—C9—C14—C133.9 (3)
C4—C5—C6—C155.5 (2)C15—C9—C14—C13170.65 (18)
C6—C1—C7—N176.3 (2)C14—C9—C15—O250.9 (3)
C2—C1—C7—N149.2 (2)C10—C9—C15—O2134.9 (2)
C6—C1—C7—C8160.87 (18)C14—C9—C15—O1125.41 (19)
C2—C1—C7—C873.6 (2)C10—C9—C15—O148.8 (3)
C14—C9—C10—C114.8 (3)C13—C12—N2—O44.1 (3)
C15—C9—C10—C11169.42 (18)C11—C12—N2—O4176.37 (19)
C14—C9—C10—Cl1173.55 (15)C13—C12—N2—O3174.7 (2)
C15—C9—C10—Cl112.2 (3)C11—C12—N2—O34.8 (3)
C9—C10—C11—C121.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.93 (3)1.96 (3)2.869 (2)167 (2)
N1—H1B···O1i0.93 (3)1.86 (3)2.785 (2)173 (2)
N1—H1C···O2ii0.88 (3)1.99 (3)2.858 (2)170 (2)
Symmetry codes: (i) x+3/2, y1/2, z+1; (ii) x, y1, z.
2-(Cyclohex-1-en-1-yl)ethan-1-aminium 4-bromobenzoate (VI) top
Crystal data top
C8H15N+·C7H4BrO2F(000) = 668
Mr = 325.22Dx = 1.426 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9914 reflections
a = 6.4391 (3) Åθ = 3.2–28.3°
b = 17.0023 (8) ŵ = 2.71 mm1
c = 14.1588 (6) ÅT = 173 K
β = 102.241 (2)°Rods, colourless
V = 1514.86 (12) Å30.68 × 0.18 × 0.1 mm
Z = 4
Data collection top
Bruker D8 Venture Photon CCD area detector
diffractometer
3302 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
ω scansθmax = 28.0°, θmin = 2.8°
Absorption correction: integration
(XPREP; Bruker, 2016)
h = 88
Tmin = 0.275, Tmax = 0.776k = 2222
30862 measured reflectionsl = 1818
3658 independent reflections
Refinement top
Refinement on F20 constraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0477P)2 + 1.5945P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3658 reflectionsΔρmax = 1.01 e Å3
194 parametersΔρmin = 1.02 e Å3
0 restraints
Special details top

Experimental. Numerical integration absorption corrections based on indexed crystal faces were applied using the XPREP routine (Bruker, 2016)

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.9952 (4)0.55176 (13)0.35862 (16)0.0297 (5)
C21.2265 (4)0.56748 (17)0.38957 (19)0.0394 (6)
H2A1.2722670.5995590.3392870.047*
H2B1.3035680.5167840.3938780.047*
C31.2903 (4)0.6097 (2)0.4859 (2)0.0482 (7)
H3A1.298620.5711380.5388860.058*0.77 (2)
H3B1.4333080.6329930.4912240.058*0.77 (2)
H3C1.3674240.5717180.5336840.058*0.23 (2)
H3D1.392270.6517180.478530.058*0.23 (2)
C4A1.1367 (7)0.6733 (4)0.4972 (5)0.0337 (12)0.77 (2)
H4A1.1377870.7144010.4477380.04*0.77 (2)
H4B1.1825440.6979690.5616110.04*0.77 (2)
C4B1.126 (3)0.6445 (19)0.5257 (16)0.046 (5)0.23 (2)
H4C1.1438920.6227750.5918020.055*0.23 (2)
H4D1.1619620.7010670.5335820.055*0.23 (2)
C50.9110 (4)0.64165 (17)0.4868 (2)0.0432 (6)
H5A0.8186060.6557830.5281430.052*0.77 (2)
H5B0.8095470.6722650.5104060.052*0.23 (2)
C60.8522 (4)0.58524 (15)0.40311 (17)0.0337 (5)
H60.7063630.5726580.3805750.04*
C70.9225 (4)0.49832 (14)0.27304 (16)0.0342 (5)
H7A0.778380.4782690.2735520.041*
H7B1.0197150.4527010.2778030.041*
C80.9188 (4)0.54181 (13)0.17902 (15)0.0278 (4)
H8A0.8330040.5902960.1775940.033*
H8B1.0653830.5575180.1762240.033*
C90.2632 (3)0.32298 (12)0.19291 (14)0.0213 (4)
C100.4191 (3)0.29872 (13)0.27194 (15)0.0253 (4)
H100.5596310.3186450.2799120.03*
C110.3711 (3)0.24585 (13)0.33893 (15)0.0271 (4)
H110.4770440.2296970.3928390.033*
C120.1660 (3)0.21718 (12)0.32558 (15)0.0240 (4)
C130.0081 (3)0.23954 (13)0.24739 (16)0.0278 (4)
H130.1317310.2189080.2392550.033*
C140.0588 (3)0.29276 (13)0.18123 (15)0.0257 (4)
H140.0475720.3086720.1273690.031*
C150.3204 (3)0.38114 (12)0.12140 (15)0.0237 (4)
N10.8286 (3)0.49309 (12)0.09315 (13)0.0242 (4)
O10.5104 (3)0.39903 (11)0.13033 (13)0.0366 (4)
O20.1681 (3)0.40722 (10)0.05740 (12)0.0327 (4)
Br10.09846 (4)0.14745 (2)0.41940 (2)0.03754 (10)
H1A0.716 (5)0.4690 (18)0.100 (2)0.039 (8)*
H1B0.928 (5)0.456 (2)0.082 (2)0.042 (8)*
H1C0.809 (5)0.5244 (19)0.045 (2)0.042 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0350 (11)0.0303 (11)0.0227 (10)0.0081 (9)0.0036 (8)0.0016 (8)
C20.0284 (11)0.0489 (15)0.0409 (13)0.0036 (10)0.0075 (10)0.0104 (11)
C30.0314 (12)0.0606 (18)0.0491 (16)0.0057 (12)0.0004 (11)0.0145 (14)
C4A0.0330 (17)0.037 (2)0.030 (2)0.0094 (16)0.0043 (15)0.0051 (17)
C4B0.052 (8)0.056 (13)0.028 (8)0.010 (8)0.006 (6)0.010 (7)
C50.0326 (12)0.0538 (16)0.0428 (14)0.0036 (11)0.0072 (11)0.0164 (12)
C60.0263 (10)0.0398 (12)0.0339 (12)0.0060 (9)0.0042 (9)0.0052 (10)
C70.0464 (13)0.0322 (11)0.0229 (10)0.0104 (10)0.0049 (9)0.0003 (9)
C80.0304 (11)0.0277 (10)0.0242 (10)0.0053 (8)0.0037 (8)0.0021 (8)
C90.0226 (9)0.0218 (9)0.0205 (9)0.0003 (7)0.0069 (7)0.0016 (7)
C100.0199 (9)0.0289 (10)0.0262 (10)0.0027 (8)0.0029 (7)0.0005 (8)
C110.0250 (10)0.0307 (11)0.0232 (9)0.0004 (8)0.0002 (8)0.0029 (8)
C120.0267 (10)0.0213 (9)0.0249 (10)0.0002 (7)0.0074 (8)0.0032 (7)
C130.0203 (9)0.0309 (11)0.0316 (11)0.0030 (8)0.0041 (8)0.0059 (9)
C140.0218 (9)0.0288 (10)0.0248 (10)0.0007 (8)0.0007 (7)0.0041 (8)
C150.0279 (10)0.0233 (9)0.0223 (9)0.0006 (8)0.0105 (8)0.0014 (7)
N10.0229 (8)0.0297 (9)0.0204 (8)0.0029 (7)0.0055 (7)0.0039 (7)
O10.0305 (8)0.0442 (10)0.0365 (9)0.0120 (7)0.0101 (7)0.0054 (7)
O20.0322 (8)0.0390 (9)0.0291 (8)0.0059 (7)0.0112 (6)0.0137 (7)
Br10.03653 (15)0.03802 (16)0.03819 (15)0.00282 (9)0.00818 (10)0.01726 (10)
Geometric parameters (Å, º) top
C1—C61.347 (3)C7—H7A0.99
C1—C21.485 (3)C7—H7B0.99
C1—C71.508 (3)C8—N11.484 (3)
C2—C31.519 (4)C8—H8A0.99
C2—H2A0.99C8—H8B0.99
C2—H2B0.99C9—C141.390 (3)
C3—C4B1.429 (18)C9—C101.398 (3)
C3—C4A1.497 (6)C9—C151.515 (3)
C3—H3A0.99C10—C111.388 (3)
C3—H3B0.99C10—H100.95
C3—H3C0.99C11—C121.383 (3)
C3—H3D0.99C11—H110.95
C4A—C51.527 (5)C12—C131.388 (3)
C4A—H4A0.99C12—Br11.898 (2)
C4A—H4B0.99C13—C141.390 (3)
C4B—C51.377 (18)C13—H130.95
C4B—H4C0.99C14—H140.95
C4B—H4D0.99C15—O11.241 (3)
C5—C61.509 (3)C15—O21.266 (3)
C5—H5A0.95N1—H1A0.86 (3)
C5—H5B0.95N1—H1B0.94 (3)
C6—H60.95N1—H1C0.86 (3)
C7—C81.519 (3)
C6—C1—C2121.9 (2)C5—C6—H6118.2
C6—C1—C7120.3 (2)C1—C7—C8110.83 (19)
C2—C1—C7117.8 (2)C1—C7—H7A109.5
C1—C2—C3114.4 (2)C8—C7—H7A109.5
C1—C2—H2A108.7C1—C7—H7B109.5
C3—C2—H2A108.7C8—C7—H7B109.5
C1—C2—H2B108.7H7A—C7—H7B108.1
C3—C2—H2B108.7N1—C8—C7112.16 (18)
H2A—C2—H2B107.6N1—C8—H8A109.2
C4B—C3—C2117.9 (7)C7—C8—H8A109.2
C4A—C3—C2112.3 (3)N1—C8—H8B109.2
C4A—C3—H3A109.2C7—C8—H8B109.2
C2—C3—H3A109.2H8A—C8—H8B107.9
C4A—C3—H3B109.2C14—C9—C10119.17 (19)
C2—C3—H3B109.2C14—C9—C15121.33 (18)
H3A—C3—H3B107.9C10—C9—C15119.49 (18)
C4B—C3—H3C107.8C11—C10—C9120.78 (19)
C2—C3—H3C107.8C11—C10—H10119.6
C4B—C3—H3D107.8C9—C10—H10119.6
C2—C3—H3D107.8C12—C11—C10118.66 (19)
H3C—C3—H3D107.2C12—C11—H11120.7
C3—C4A—C5111.8 (4)C10—C11—H11120.7
C3—C4A—H4A109.3C11—C12—C13121.97 (19)
C5—C4A—H4A109.3C11—C12—Br1118.58 (15)
C3—C4A—H4B109.3C13—C12—Br1119.43 (16)
C5—C4A—H4B109.3C12—C13—C14118.59 (19)
H4A—C4A—H4B107.9C12—C13—H13120.7
C5—C4B—C3126.4 (11)C14—C13—H13120.7
C5—C4B—H4C105.7C9—C14—C13120.83 (19)
C3—C4B—H4C105.7C9—C14—H14119.6
C5—C4B—H4D105.7C13—C14—H14119.6
C3—C4B—H4D105.7O1—C15—O2125.8 (2)
H4C—C4B—H4D106.2O1—C15—C9117.77 (19)
C4B—C5—C6113.6 (7)O2—C15—C9116.46 (18)
C6—C5—C4A112.0 (3)C8—N1—H1A111 (2)
C6—C5—H5A124C8—N1—H1B110.6 (18)
C4A—C5—H5A124H1A—N1—H1B109 (3)
C4B—C5—H5B123.2C8—N1—H1C106 (2)
C6—C5—H5B123.2H1A—N1—H1C114 (3)
C1—C6—C5123.6 (2)H1B—N1—H1C106 (3)
C1—C6—H6118.2
C6—C1—C2—C311.9 (4)C14—C9—C10—C110.8 (3)
C7—C1—C2—C3169.8 (2)C15—C9—C10—C11179.63 (19)
C1—C2—C3—C4B13.2 (17)C9—C10—C11—C120.4 (3)
C1—C2—C3—C4A40.6 (5)C10—C11—C12—C130.2 (3)
C2—C3—C4A—C557.2 (6)C10—C11—C12—Br1178.05 (16)
C2—C3—C4B—C52 (4)C11—C12—C13—C140.4 (3)
C3—C4B—C5—C610 (4)Br1—C12—C13—C14177.80 (16)
C3—C4A—C5—C643.8 (6)C10—C9—C14—C130.5 (3)
C2—C1—C6—C50.6 (4)C15—C9—C14—C13179.9 (2)
C7—C1—C6—C5177.7 (2)C12—C13—C14—C90.1 (3)
C4B—C5—C6—C111.7 (17)C14—C9—C15—O1172.3 (2)
C4A—C5—C6—C115.5 (5)C10—C9—C15—O17.3 (3)
C6—C1—C7—C8100.0 (3)C14—C9—C15—O27.7 (3)
C2—C1—C7—C878.4 (3)C10—C9—C15—O2172.70 (19)
C1—C7—C8—N1174.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.86 (3)1.89 (3)2.737 (2)167 (3)
N1—H1B···O2i0.94 (3)1.85 (3)2.763 (3)164 (3)
N1—H1C···O2ii0.86 (3)1.89 (3)2.727 (2)167 (3)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z.
(S)-1-Cyclohexylethan-1-aminium 4-bromobenzoate' (VII) top
Crystal data top
C8H18N+·C7H4BrO2F(000) = 680
Mr = 328.24Dx = 1.396 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 9958 reflections
a = 6.2790 (3) Åθ = 3.5–28.1°
b = 15.6610 (9) ŵ = 2.63 mm1
c = 15.8800 (8) ÅT = 173 K
V = 1561.57 (14) Å3Needle, colourless
Z = 40.69 × 0.13 × 0.10 mm
Data collection top
Bruker D8 Venture Photon CCD area detector
diffractometer
2687 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
ω scansθmax = 25.5°, θmin = 2.9°
Absorption correction: integration
(XPREP; Bruker, 2016)
h = 77
Tmin = 0.452, Tmax = 0.846k = 1818
21006 measured reflectionsl = 1919
2913 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.078 w = 1/[σ2(Fo2) + (0.1114P)2 + 6.6115P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.211(Δ/σ)max < 0.001
S = 1.08Δρmax = 1.46 e Å3
2913 reflectionsΔρmin = 0.48 e Å3
174 parametersAbsolute structure: Flack x determined using 1026 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.068 (9)
0 constraints
Special details top

Experimental. Numerical integration absorption corrections based on indexed crystal faces were applied using the XPREP routine (Bruker, 2016)

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.773 (2)0.0775 (8)0.3199 (7)0.053 (3)
H10.7409420.0150060.3177390.064*
C20.612 (2)0.1220 (11)0.2688 (8)0.068 (4)
H2A0.6389240.1842640.2692560.082*
H2B0.4679530.1117210.2923980.082*
C30.624 (3)0.0862 (13)0.1743 (9)0.084 (5)
H3A0.5956630.0240630.1736330.1*
H3B0.5166090.1148960.1385450.1*
C40.844 (2)0.1039 (11)0.1413 (8)0.077 (5)
H4A0.853160.086450.0815160.093*
H4B0.8738740.1659110.1446290.093*
C51.005 (3)0.0565 (12)0.1911 (10)0.083 (5)
H5A1.1496740.0664720.1687070.1*
H5B0.9747780.0055370.190160.1*
C60.984 (3)0.0910 (11)0.2780 (10)0.080 (5)
H6A1.0133820.1531460.2762190.097*
H6B1.0960150.0644870.3134640.097*
C70.762 (2)0.1051 (7)0.4107 (7)0.056 (3)
H70.8822020.0756390.440150.067*
C80.563 (3)0.0786 (10)0.4553 (8)0.086 (6)
H8A0.4689380.1280830.4617220.129*
H8B0.5992860.055850.5109640.129*
H8C0.4901450.0343870.4223890.129*
N10.7938 (13)0.1998 (5)0.4253 (4)0.0331 (16)
H1A0.6911370.2295150.3974160.05*
H1B0.9242730.2156520.405920.05*
H1C0.7848630.211130.4814080.05*
C90.4242 (17)0.3282 (6)0.2666 (6)0.036 (2)
C100.631 (2)0.3587 (7)0.2719 (7)0.051 (3)
H100.6900850.3700930.3258520.061*
C110.7566 (19)0.3734 (7)0.2006 (6)0.047 (2)
H110.8998840.3925070.2042070.057*
C120.6544 (19)0.3577 (6)0.1225 (7)0.046 (2)
C130.4508 (18)0.3286 (7)0.1153 (7)0.043 (2)
H130.3940010.318320.06080.052*
C140.321 (2)0.3131 (6)0.1868 (6)0.043 (2)
H140.1777570.2942860.1825020.052*
C150.2958 (14)0.3029 (6)0.3460 (5)0.0276 (18)
O10.4108 (15)0.2878 (6)0.4104 (5)0.061 (2)
O20.1043 (14)0.3044 (6)0.3421 (5)0.058 (2)
Br10.8185 (2)0.37723 (9)0.02444 (6)0.0586 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.059 (7)0.061 (6)0.040 (6)0.010 (6)0.009 (5)0.008 (5)
C20.067 (8)0.080 (8)0.058 (7)0.024 (8)0.014 (6)0.014 (7)
C30.083 (10)0.126 (14)0.043 (7)0.023 (9)0.018 (7)0.023 (8)
C40.080 (9)0.110 (12)0.042 (6)0.018 (9)0.026 (7)0.019 (7)
C50.083 (11)0.104 (12)0.063 (9)0.005 (10)0.005 (8)0.020 (9)
C60.068 (9)0.098 (11)0.076 (10)0.020 (8)0.018 (8)0.044 (8)
C70.081 (9)0.047 (6)0.039 (6)0.012 (5)0.009 (5)0.004 (5)
C80.137 (15)0.080 (9)0.042 (7)0.059 (10)0.017 (8)0.014 (6)
N10.032 (4)0.050 (4)0.018 (3)0.002 (4)0.004 (3)0.001 (3)
C90.040 (5)0.040 (5)0.028 (5)0.008 (4)0.003 (4)0.004 (4)
C100.074 (8)0.046 (6)0.033 (5)0.002 (5)0.004 (5)0.002 (4)
C110.070 (7)0.045 (5)0.027 (4)0.010 (5)0.003 (4)0.001 (4)
C120.055 (6)0.044 (5)0.038 (5)0.007 (5)0.011 (5)0.001 (4)
C130.049 (6)0.048 (6)0.032 (5)0.003 (5)0.003 (5)0.002 (4)
C140.066 (7)0.036 (4)0.026 (5)0.001 (5)0.005 (5)0.006 (4)
C150.025 (4)0.040 (4)0.018 (4)0.005 (4)0.006 (3)0.001 (3)
O10.059 (5)0.093 (6)0.031 (4)0.015 (5)0.007 (4)0.008 (4)
O20.048 (5)0.082 (6)0.044 (5)0.001 (4)0.010 (4)0.013 (4)
Br10.0598 (7)0.0877 (8)0.0283 (5)0.0091 (7)0.0127 (5)0.0065 (5)
Geometric parameters (Å, º) top
C1—C21.475 (19)C8—H8A0.98
C1—C61.498 (19)C8—H8B0.98
C1—C71.507 (16)C8—H8C0.98
C1—H11N1—H1A0.91
C2—C31.604 (18)N1—H1B0.91
C2—H2A0.99N1—H1C0.91
C2—H2B0.99C9—C101.389 (17)
C3—C41.50 (2)C9—C141.442 (14)
C3—H3A0.99C9—C151.548 (12)
C3—H3B0.99C10—C111.397 (15)
C4—C51.48 (2)C10—H100.95
C4—H4A0.99C11—C121.418 (15)
C4—H4B0.99C11—H110.95
C5—C61.49 (2)C12—C131.362 (17)
C5—H5A0.99C12—Br11.892 (11)
C5—H5B0.99C13—C141.418 (15)
C6—H6A0.99C13—H130.95
C6—H6B0.99C14—H140.95
C7—C81.50 (2)C15—O21.204 (12)
C7—N11.515 (13)C15—O11.273 (12)
C7—H71
C2—C1—C6107.4 (12)C1—C7—N1114.9 (9)
C2—C1—C7111.0 (11)C8—C7—H7106.3
C6—C1—C7115.2 (11)C1—C7—H7106.3
C2—C1—H1107.7N1—C7—H7106.3
C6—C1—H1107.7C7—C8—H8A109.5
C7—C1—H1107.7C7—C8—H8B109.5
C1—C2—C3108.4 (11)H8A—C8—H8B109.5
C1—C2—H2A110C7—C8—H8C109.5
C3—C2—H2A110H8A—C8—H8C109.5
C1—C2—H2B110H8B—C8—H8C109.5
C3—C2—H2B110C7—N1—H1A109.5
H2A—C2—H2B108.4C7—N1—H1B109.5
C4—C3—C2107.9 (13)H1A—N1—H1B109.5
C4—C3—H3A110.1C7—N1—H1C109.5
C2—C3—H3A110.1H1A—N1—H1C109.5
C4—C3—H3B110.1H1B—N1—H1C109.5
C2—C3—H3B110.1C10—C9—C14122.0 (10)
H3A—C3—H3B108.4C10—C9—C15121.8 (9)
C5—C4—C3110.3 (13)C14—C9—C15116.1 (9)
C5—C4—H4A109.6C9—C10—C11122.3 (11)
C3—C4—H4A109.6C9—C10—H10118.8
C5—C4—H4B109.6C11—C10—H10118.8
C3—C4—H4B109.6C10—C11—C12115.2 (11)
H4A—C4—H4B108.1C10—C11—H11122.4
C4—C5—C6104.8 (15)C12—C11—H11122.4
C4—C5—H5A110.8C13—C12—C11123.8 (10)
C6—C5—H5A110.8C13—C12—Br1119.8 (9)
C4—C5—H5B110.8C11—C12—Br1116.5 (9)
C6—C5—H5B110.8C12—C13—C14121.9 (10)
H5A—C5—H5B108.9C12—C13—H13119
C5—C6—C1115.8 (13)C14—C13—H13119
C5—C6—H6A108.3C13—C14—C9114.7 (11)
C1—C6—H6A108.3C13—C14—H14122.6
C5—C6—H6B108.3C9—C14—H14122.6
C1—C6—H6B108.3O2—C15—O1127.7 (9)
H6A—C6—H6B107.4O2—C15—C9118.2 (8)
C8—C7—C1114.4 (11)O1—C15—C9114.0 (8)
C8—C7—N1108.0 (11)
C6—C1—C2—C356.2 (16)C15—C9—C10—C11173.2 (10)
C7—C1—C2—C3177.1 (13)C9—C10—C11—C122.1 (16)
C1—C2—C3—C460.0 (18)C10—C11—C12—C131.5 (16)
C2—C3—C4—C563.5 (19)C10—C11—C12—Br1179.8 (8)
C3—C4—C5—C662.2 (18)C11—C12—C13—C141.4 (17)
C4—C5—C6—C162 (2)Br1—C12—C13—C14179.9 (8)
C2—C1—C6—C561.5 (19)C12—C13—C14—C91.8 (15)
C7—C1—C6—C5174.3 (14)C10—C9—C14—C132.5 (14)
C2—C1—C7—C867.0 (16)C15—C9—C14—C13173.7 (9)
C6—C1—C7—C8170.7 (15)C10—C9—C15—O2155.7 (11)
C2—C1—C7—N158.7 (15)C14—C9—C15—O228.1 (14)
C6—C1—C7—N163.5 (17)C10—C9—C15—O120.1 (14)
C14—C9—C10—C112.8 (17)C14—C9—C15—O1156.1 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.911.992.781 (12)144
N1—H1B···O2i0.912.062.870 (12)148
N1—H1C···O1ii0.911.892.718 (10)150
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+1/2, z+1.
 

Funding information

This material is based upon work supported financially by the University of the Witwatersrand Friedel Sellschop Grant and the Mol­ecular Sciences Institute. The National Research Foundation National Equipment Programme (UID: 78572) is thanked for financing the purchase of the single-crystal diffractometer. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and therefore the NRF does not accept any liability in regard thereto.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBhogala, B. R., Basavoju, S. & Nangia, A. (2005). CrystEngComm, 7, 551–562.  Web of Science CSD CrossRef CAS Google Scholar
First citationBouchard, G., Carrupt, P.-A., Testa, B., Gobry, V. & Girault, H. H. (2002). Chem. Eur. J. 8, 3478–3484.  CrossRef CAS Google Scholar
First citationBrandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationIsoda, T., Yamasaki, M., Yano, H. & Harada, S. (1997). Faraday Trans. 93, 449–452.  CrossRef CAS Google Scholar
First citationKinbara, K., Hashimoto, Y., Sukegawa, M., Nohira, H. & Saigo, K. (1996). J. Am. Chem. Soc. 118, 3441–3449.  CSD CrossRef CAS Web of Science Google Scholar
First citationLemmerer, A., Bourne, S. A. & Fernandes, M. A. (2008a). Cryst. Growth Des. 8, 1106–1109.  Web of Science CSD CrossRef CAS Google Scholar
First citationLemmerer, A., Bourne, S. A. & Fernandes, M. A. (2008b). CrystEngComm, 10, 1605–1612.  Web of Science CSD CrossRef CAS Google Scholar
First citationLemmerer, A., Govindraju, S., Johnston, M., Motloung, X. & Savig, K. L. (2015). CrystEngComm, 17, 3591–3595.  Web of Science CSD CrossRef CAS Google Scholar
First citationNagels, N., Hauchecorne, D. & Herrebout, W. (2013). Molecules, 18, 6829–6851.  CrossRef CAS Google Scholar
First citationOdendal, J. A., Bruce, J. C., Koch, K. R. & Haynes, D. A. (2010). CrystEngComm, 12, 2398–2408.  Web of Science CSD CrossRef CAS Google Scholar
First citationOdom, S. A., Parkin, S. R. & Anthony, J. E. (2003). Org. Lett. 5, 4245–4248.  CSD CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPerrin, D. D. (1982). Ionization Constants of Organic Acids and Bases in Aqueous Solution, 2nd edition. Oxford: Pergamon.  Google Scholar
First citationPortnov, M. A., Al'tshuler, G. N., Vaisman, M. N., Dubinina, T. A. & Yakhontov, L. N. (1971). Pharm. Chem. J. 5, 426–428.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSnaith, H. J. (2013). J. Phys. Chem. Lett. 4, 3623–3630.  Web of Science CrossRef CAS Google Scholar
First citationSorge, A. A. van, Wijnen, P., van Delft, J., Carballosa Coré–Bodelier, V. M. W. & van Haeringen, N. (1999). Pharm. World Sci. 21, 91–95.  Google Scholar
First citationTessler, N. (1999). Adv. Mater. 11, 363–370.  CrossRef CAS Google Scholar
First citationTuckerman, M. M., Mayer, J. R. & Nachod, F. C. (1959). J. Am. Chem. Soc. 81, 92–94.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds