weak interactions in crystals\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of a supra­molecular lithium complex of p-tert-butyl­calix[4]arene

CROSSMARK_Color_square_no_text.svg

aResearch Center for Engineering Science, Graduate School of Engineering Science, Akita University, 1-1 Tegatagakuen-machi, Akita 010-8502, Japan, bGraduate School of International Resource Sciences, Akita University, 1-1 Tegatagakuen-machi, Akita 010-8502, Japan, cNissan Chemical Industries, LTD, 6903-1 Ooaza-Onoda, Sanyo-Onoda, Yamaguchi 756-0093, Japan, and dEmeritus Professor, Akita University, 1-1 Tegatagakuen-machi, Akita 010-8502, Japan
*Correspondence e-mail: myamada@gipc.akita-u.ac.jp

Edited by C. Massera, Università di Parma, Italy (Received 19 December 2017; accepted 30 January 2018; online 17 April 2018)

Crystals of a supra­molecular lithium complex with a calix[4]arene derivative, namely tetra­methano­llithium 5,11,17,23-tetra-tert-butyl-25,26,27-trihy­droxy-28-oxidocalix[4]arene methanol monosolvate, [Li(CH3OH)4](C44H55O4)·CH3OH or [Li(CH3OH)4]+·(calix[4]arene)]·CH3OH (where calix[4]arene represents a mono-anion species because of deprotonation of one H atom of the calixarene hy­droxy groups), were obtained from p-tert-butyl­calix[4]arene reacted with LiH in tetra­hydro­furan, followed by recrystallization from methanol. The asymmetric unit comprises one mono-anionic calixarene mol­ecule, one Li+ cation coordinated to four methanol mol­ecules, and one methanol mol­ecule included in the calixarene cavity. The calixarene mol­ecule maintains a cone conformation by intra­molecular hydrogen bonding between one phenoxide (–O) and three pendent calixarene hy­droxy groups (–OH). The coordinated methanol mol­ecules around the metal cation play a significant role in forming the supra­molecular assembly. The crystal structure of this assembly is stabilized by three sets of inter­molecular inter­actions: (i) hydrogen bonds involving the –OH and –O moieties of the calixarene mol­ecules, the –OH groups of the coordinated methanol mol­ecules, and the –OH group of the methanol mol­ecule included in the calixarene cavity; (ii) C—H⋯π inter­actions between the calixarene mol­ecules and/or the coordinated methanol mol­ecules; (iii) O—H⋯π inter­actions between the calixarene mol­ecule and the included methanol mol­ecule.

1. Chemical context

Calixarenes are synthetic macrocyclic compounds that are composed of phenol rings, linked with methyl­ene groups at linking positions (Gutsche, 1998[Gutsche, C. D. (1998). Calixarenes Revisited. Cambridge, UK: Royal Society of Chemistry.]). They are versatile mol­ecules for the inclusion of organic and/or inorganic compounds into their flexible cavities and for the coordination of organic/metal ions in mol­ecular recognition phenomena and host–guest chemistry (Vicens & Böhmer, 1991[Vicens, J. & Böhmer, V. (1991). Editors. Calixarenes: A Versatile Class of Macrocyclic Compounds, Kluwer Academic Publishers: Dordrecht, The Netherlands.]). The coordination chemistry of alkali metal cations, involving conventional calixarenes (and their corresponding functionalized derivatives) as ligands, has been intensively investigated in the past years, as a possible method of selective extraction of this class of cations using calixarenes as extractant. At the same time, the X-ray analysis of alkali metal complexes with p-tert-butyl­calix[4]arene in the crystalline state has been reported (Bock et al., 1995[Bock, H., John, A., Naether, C. & Havlas, Z. (1995). J. Am. Chem. Soc. 117, 9367-9368.]; Davidson et al., 1997[Davidson, M. G., Howard, J. A. K., Lamb, S. & Lehmann, C. W. (1997). Chem. Commun. pp. 1607-1608.]; Dürr et al., 2006[Dürr, S., Bechlars, B. & Radius, U. (2006). Inorg. Chim. Acta, 359, 4215-4226.]; Gueneau et al., 2003[Gueneau, E. D., Fromm, K. M. & Goesmann, H. (2003). Chem. Eur. J. 9, 509-514.]; Guillemot et al., 2002[Guillemot, G., Solari, E., Rizzoli, C. & Floriani, C. (2002). Chem. Eur. J. 8, 2072-2080.]; Hamada et al., 1993[Hamada, F., Robinson, K. D., Orr, G. W. & Atwood, J. L. (1993). Supramol. Chem. 2, 19-24.]; Hanna et al., 2002[Hanna, T. A., Liu, L., Zakharov, L. N., Rheingold, A. L., Watson, W. H. & Gutsche, C. D. (2002). Tetrahedron, 58, 9751-9757.], 2003[Hanna, T. A., Liu, L., Angeles-Boza, A. M., Kou, X., Gutsche, C. D., Ejsmont, K., Watson, W. H., Zakharov, L. N., Incarvito, C. D. & Rheingold, A. L. (2003). J. Am. Chem. Soc. 125, 6228-6238.]; Harrowfield et al., 1991[Harrowfield, J. M., Ogden, M. I., Richmond, W. R. & White, A. H. (1991). J. Chem. Soc. Chem. Commun. pp. 1159-1161.]; Lee et al., 2009[Lee, D. S., Elsegood, M. R. J., Redshaw, C. & Zhan, S. (2009). Acta Cryst. C65, m291-m295.]). In the majority of cases, the alkali metal complexes of p-tert-butyl­calix[4]arene in the solid state show direct coordination of the metal ions to the oxygen atoms belonging to the calixarene hy­droxy groups at the lower rim, with the resulting crystal structures stabilized by weak inter­actions with the lattice solvent mol­ecules.

[Scheme 1]

In the present paper, we report a different type of Li complex with p-tert-butyl­calix[4]arene, in which no direct coordination of the metal to the oxygen atoms of the calixarene hy­droxy groups takes place. The lithium cation is instead surrounded by four methanol solvent mol­ecules, which are in turn connected to the host mol­ecule via a series of hydrogen bonds, playing a significant role in the formation of the supra­molecular assembly.

2. Structural commentary

Fig. 1[link] shows the mol­ecular structure of the complex [Li(CH3OH)4]+·(calix[4]arene)]·CH3OH, consisting of one mono-deprotonated calix[4]arene unit in a cone conformation, one methanol mol­ecule included in the cavity, and one Li cation coordinated to four methanol mol­ecules. The positive charge of the methanol–lithium complex naturally dictates that the calixarene is in a mono-anionic form. The conformation of the macrocycle is stabilized by intra­molecular hydrogen bonding involving one deprotonated –O and three –OH groups at the lower rim, as shown in Table 1[link]. The geometrical parameters of the cone conformer are given in Table 2[link], which reports the angle between the mean plane passing through the oxygen atoms O1, O2, O3 and O4, and the four mean planes passing through the aromatic walls (plane A: C1–C6/O1; plane B: C7–C12/O2; plane C: C13–C18/O4; plane D: C19–C24/O3). From these values, it is possible to notice that the two neighboring aromatic rings (C1–C6 and C7–C12) are slightly outward with respect to the other two adjacent aromatic moieties. Selected bond distances and angles for the tetra­kis­(methanol)–lithium complex are reported in Table 3[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O8—H74⋯O9 0.67 (3) 2.01 (8) 2.673 (3) 167 (3)
O2—H68⋯O1 0.83 (3) 1.66 (4) 2.490 (2) 172 (3)
O3—H69⋯O1 0.89 (3) 1.64 (3) 2.520 (2) 169 (3)
O4—H70⋯O2 0.90 (3) 1.77 (3) 2.650 (2) 166 (3)
O5—H71⋯O1i 0.88 (4) 1.87 (4) 2.714 (3) 160 (4)
O6—H72⋯O4ii 0.94 (5) 1.81 (5) 2.732 (3) 165 (4)
O7—H73⋯O3i 0.79 (6) 1.91 (6) 2.676 (3) 163 (6)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Table 2
Conformation of the four aromatic walls of the calix[4]arene host (°)

AD are the mean planes passing through the four phenyl moieties of the host. The values reported are the angles formed with the mean plane passing through atoms O1–O4.

Plane Angle
A 136.01 (6)
B 136.80 (6)
C 108.21 (6)
D 119.02 (6)

Table 3
Selected geometric parameters (Å, °)

Li1—O5 1.922 (6) Li1—O7 1.903 (6)
Li1—O6 1.917 (6) Li1—O8 1.922 (6)
       
O5—Li1—O6 107.2 (3) O6—Li1—O7 112.3 (3)
O5—Li1—O7 111.3 (3) O6—Li1—O8 109.9 (3)
O5—Li1—O8 111.0 (3) O7—Li1—O8 105.3 (3)
[Figure 1]
Figure 1
ORTEP diagram of the Li complex of p-tert-butyl­calix[4]arene with displacement ellipsoids at the 20% probability level.

As shown in Fig. 2[link], one methanol mol­ecule is included in the cavity, displaying a short O—H⋯π inter­action involving the hy­droxy moiety and π-electrons of the calixarene aromatic ring C1–C6. The O9⋯Cg1 and the H75⋯Cg1 distances are 3.360 (6) and 2.538 (5) Å, respectively, while the angle O9—H79⋯Cg1 is of 166.34 (6)° (Cg1 is the centroid of the C1–C6 ring). On the other hand, there are no C—H⋯π inter­actions between the embedded methanol and the aromatic-π electrons of the calixarene, hence the included solvent is stabilized inside the calixarene cavity only by the O—H⋯π inter­action.

[Figure 2]
Figure 2
Hydrogen bonds (blue dotted lines) involving the p-tert-butyl­calix[4]arene anion, the methanol mol­ecule included in the cavity, and the [Li(CH3OH)4]+ complex belonging to the asymmetric unit. The centroid of aromatic the ring, Cg1, is represented as a blue sphere. The H atoms of the calixarene host have been omitted for clarity.

3. Supra­molecular features

The relevant feature of the title complex is that the lithium cation is not directly coordinated to the hy­droxy groups of the lower rim of the calix[4]arene host. On the contrary, the inter­action of the [Li(CH3OH)4]+ complex with the macrocycle in the asymmetric unit is mediated by the methanol mol­ecule embedded in the cavity, which acts as hydrogen-bond acceptor for a methanol mol­ecule (C48–O8) coordinated to the lithium cation (Fig. 2[link] and Table 1[link]).

Moreover, the coordinated methanol mol­ecules of [Li(CH3OH)4]+ further contribute to the stabilization of the complex in the structure, inter­acting with two other adjacent calixarene mol­ecules through hydrogen bonds and C—H⋯π inter­actions, as illustrated in Fig. 3[link] and Table 1[link]. In particular, three of the coordinated methanol mol­ecules (C45–O5, C47–O7 and C46–O6), act as hydrogen-bond donors towards the hy­droxy groups at the lower rim of the macrocycle, namely O1i, O3i and O4ii, respectively [symmetry codes: (i) −x + [{3\over 2}], y + [{1\over 2}], −z + [{3\over 2}]; (ii) x + [{1\over 2}], −y + [{1\over 2}], z + [{1\over 2}]]. In addition, the fourth coordinated methanol mol­ecule C48–O8 inter­acts with the aromatic-π electrons of a calixareneii via a C—H⋯π inter­action. The C48⋯C17ii and C48—H64⋯C17ii distances are 3.603 (4) and 2.628 Å, respectively, with a C48—H64⋯C17ii angle of 173.3 (8)°.

[Figure 3]
Figure 3
Hydrogen bonding (blue and green dotted lines) involving the [Li(CH3OH)4]+ complex and two adjacent calix[4]arene mol­ecules in the crystal structure. [Symmetry codes: (i) [{3\over 2}] − x, [{1\over 2}] + y, [{3\over 2}] − z; (ii) [{1\over 2}] + x, [{1\over 2}] − y, [{1\over 2}] + z.]

Similarly, C—H⋯π inter­actions are also present between tert-butyl groups at the upper rim of the macrocycle and π-electrons of the aromatic walls of adjacent calix[4]arenes. In particular, Fig. 4[link] shows the spatial arrangement of four symmetry-related host mol­ecules [the C40⋯C4i and C40—H41⋯C4i distances are 3.498 (4) and 2.770 Å, respectively and the C40—H41⋯C4i angle is 131.6 (5)° while the C42⋯C10iii and C42—H46⋯C10iii distances are 3.770 (5) and 2.828 Å, and the C42—H46⋯C10iii angle is 161.7 (8)°; symmetry code: (iii) 1 + x, y, z].

[Figure 4]
Figure 4
C—H⋯π inter­actions involving four adjacent calix[4]arene anions in the crystal structure. [Symmetry codes: (i) [{3\over 2}] − x, [{1\over 2}] + y, [{3\over 2}] − z; (iii) 1 + x, y, z.]

4. Database survey

A search in the Cambridge Structural Database (Version 5.38, update May 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) based on a fragment comprising alkali metals and unsubstituted p-tert-butyl­calix[4]arenes, yielded the structures of several compounds.

In particular, inclusion complexes were found with: (i) lithium (ZESGIN, Bock et al., 1995[Bock, H., John, A., Naether, C. & Havlas, Z. (1995). J. Am. Chem. Soc. 117, 9367-9368.]; RILNOP and RILNUV, Davidson et al., 1997[Davidson, M. G., Howard, J. A. K., Lamb, S. & Lehmann, C. W. (1997). Chem. Commun. pp. 1607-1608.]; YEMQIR, Dürr et al., 2006[Dürr, S., Bechlars, B. & Radius, U. (2006). Inorg. Chim. Acta, 359, 4215-4226.]; RUWVIO and RUWVOU, Gueneau et al., 2003[Gueneau, E. D., Fromm, K. M. & Goesmann, H. (2003). Chem. Eur. J. 9, 509-514.]; NASWEJ, Hamada et al., 1993[Hamada, F., Robinson, K. D., Orr, G. W. & Atwood, J. L. (1993). Supramol. Chem. 2, 19-24.]; QUBJIH, Lee et al., 2009[Lee, D. S., Elsegood, M. R. J., Redshaw, C. & Zhan, S. (2009). Acta Cryst. C65, m291-m295.]; BASWEY, Hanna et al., 2003[Hanna, T. A., Liu, L., Angeles-Boza, A. M., Kou, X., Gutsche, C. D., Ejsmont, K., Watson, W. H., Zakharov, L. N., Incarvito, C. D. & Rheingold, A. L. (2003). J. Am. Chem. Soc. 125, 6228-6238.]); (ii) sodium (MODYIN, Guillemot et al., 2002[Guillemot, G., Solari, E., Rizzoli, C. & Floriani, C. (2002). Chem. Eur. J. 8, 2072-2080.]; NASSEF, Hamada et al., 1993[Hamada, F., Robinson, K. D., Orr, G. W. & Atwood, J. L. (1993). Supramol. Chem. 2, 19-24.]); (iii) potassium (MODYOT, Guillemot et al., 2002[Guillemot, G., Solari, E., Rizzoli, C. & Floriani, C. (2002). Chem. Eur. J. 8, 2072-2080.]; NASXUA, Hamada et al., 1993[Hamada, F., Robinson, K. D., Orr, G. W. & Atwood, J. L. (1993). Supramol. Chem. 2, 19-24.]; RUWVUA, Gueneau et al., 2003[Gueneau, E. D., Fromm, K. M. & Goesmann, H. (2003). Chem. Eur. J. 9, 509-514.]; WUHVUQ and WUHWAX, Hanna et al., 2002[Hanna, T. A., Liu, L., Zakharov, L. N., Rheingold, A. L., Watson, W. H. & Gutsche, C. D. (2002). Tetrahedron, 58, 9751-9757.]); (iv) rubidium (BASTUL, Hanna et al., 2003[Hanna, T. A., Liu, L., Angeles-Boza, A. M., Kou, X., Gutsche, C. D., Ejsmont, K., Watson, W. H., Zakharov, L. N., Incarvito, C. D. & Rheingold, A. L. (2003). J. Am. Chem. Soc. 125, 6228-6238.]); (v) cesium (JIVKEE, Harrowfield et al., 1991[Harrowfield, J. M., Ogden, M. I., Richmond, W. R. & White, A. H. (1991). J. Chem. Soc. Chem. Commun. pp. 1159-1161.]).

In all the cases reported, the alkali metals inter­act with the calix[4]arene mol­ecules through the hy­droxy groups at the lower rim. The only exception is the complex with cesium, JIVKEE, in which the bare cation is placed well inside the cavity, on the quaternary axis passing through the macrocycle. The metal is involved in a polyhapto coordination with the four phenolate rings of the calix[4]arene, on which the negative charge is delocalized (Harrowfield et al., 1991[Harrowfield, J. M., Ogden, M. I., Richmond, W. R. & White, A. H. (1991). J. Chem. Soc. Chem. Commun. pp. 1159-1161.]). This coordination mode is probably possible due to the dimensions of Cs+, which matches the cavity in size. In the case of lithium, the cationic radius is much smaller, hence a direct cavity–cation inter­action is less favoured, and the metal is either coordinating the hy­droxy oxygen atoms, or forming a second-sphere coordination supra­molecular complex, like in the title compound.

5. Synthesis and crystallization

To a white suspension of p-tert-butyl­calix[4]arene (2.00 g, 3.08 mmol) in THF (50 mL) was added LiH (0.245 g, 30.8 mmol), and a yellow suspension was obtained. The suspended mixture was stirred at room temperature for 5 h under a nitro­gen atmosphere, after which time, the mixture became a yellow clear solution. After quenching the excess of LiH with methanol, the solvent was removed in vacuo. The resulting yellow solid material was dissolved in methanol (80 mL) and the remaining insoluble matter was filtered off. The clear solution thus obtained was allowed to stand for several weeks to get colorless, thin plate-shaped crystals of the mol­ecular adduct of the title compound. IR (ATR): ν 2952.40 (m), 1478.65 (s), 1360.61 (m) cm−1; 1H NMR (300 MHz, CDCl3, TMS): δ 7.04 (s, 8H, Ar–H), 4.25 (s, 4H, –CH2–), 3.46 (s, 4H, –CH2–), 3.46 (s, 15H, –CH–, five methanol mol­ecules), 1.21 (m, 36H, tert-but­yl).

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. The C-bound H atoms were placed in calculated positions and refined using a riding model: C—H = 0.95–0.98 Å with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(C) for other H atoms. H atoms on O atoms were located in the difference-Fourier map and refined with Uiso(H) = 1.5Ueq(O).

Table 4
Experimental details

Crystal data
Chemical formula [Li(CH3OH)4](C44H55O4)·CH3OH
Mr 815.03
Crystal system, space group Monoclinic, P21/n
Temperature (K) 200
a, b, c (Å) 12.8434 (4), 20.0919 (6), 19.3168 (6)
β (°) 92.561 (2)
V3) 4979.7 (3)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.58
Crystal size (mm) 0.20 × 0.20 × 0.10
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.893, 0.945
No. of measured, independent and observed [I > 2σ(I)] reflections 41849, 8251, 6715
Rint 0.021
(sin θ/λ)max−1) 0.588
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.203, 1.06
No. of reflections 8251
No. of parameters 557
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.46, −0.39
Computer programs: APEX2 and SAINT (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Yadokari-XG (Kabuto et al., 2009[Kabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Crystallogr. Soc. Jpn, 51, 218-224.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: Yadokari-XG (Kabuto et al., 2009) and Mercury (Macrae et al., 2008).

Tetramethanollithium 5,11,17,23-tetra-tert-butyl-25,26,27-trihydroxy-28-oxidocalix[4]arene methanol monosolvate top
Crystal data top
[Li(CH3OH)4](C44H55O4)·CH3OHF(000) = 1776
Mr = 815.03Dx = 1.087 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
a = 12.8434 (4) ÅCell parameters from 9823 reflections
b = 20.0919 (6) Åθ = 3.2–63.8°
c = 19.3168 (6) ŵ = 0.58 mm1
β = 92.561 (2)°T = 200 K
V = 4979.7 (3) Å3Plane, colorless
Z = 40.20 × 0.20 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
8251 independent reflections
Radiation source: fine-focus sealed tube6715 reflections with I > 2σ(I)
Detector resolution: 8.333 pixels mm-1Rint = 0.021
φ and ω scansθmax = 65.0°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Bruker 2006)
h = 1414
Tmin = 0.893, Tmax = 0.945k = 2223
41849 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: mixed
wR(F2) = 0.203H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.1063P)2 + 3.6084P]
where P = (Fo2 + 2Fc2)/3
8251 reflections(Δ/σ)max < 0.001
557 parametersΔρmax = 1.46 e Å3
0 restraintsΔρmin = 0.39 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.76784 (19)0.08132 (12)0.95506 (12)0.0392 (5)
C20.66560 (18)0.09379 (12)0.93080 (12)0.0373 (5)
H10.6210910.1181910.9594860.045*
C30.62623 (17)0.07212 (11)0.86666 (11)0.0337 (5)
C40.69117 (17)0.03573 (11)0.82392 (11)0.0326 (5)
C50.79496 (17)0.02383 (11)0.84604 (12)0.0345 (5)
C60.83058 (18)0.04662 (12)0.91089 (12)0.0380 (5)
H20.9008980.0380460.9255380.046*
C70.45550 (17)0.26708 (12)0.78857 (12)0.0385 (5)
C80.46863 (17)0.26210 (13)0.71766 (12)0.0387 (5)
H30.4575130.3005620.6896900.046*
C90.49727 (16)0.20330 (12)0.68618 (12)0.0364 (5)
C100.51265 (16)0.14659 (12)0.72660 (12)0.0349 (5)
C110.50132 (16)0.14914 (12)0.79826 (11)0.0344 (5)
C120.47390 (17)0.20927 (12)0.82756 (12)0.0369 (5)
H40.4673060.2112980.8763000.044*
C130.78349 (19)0.26506 (12)0.57083 (12)0.0395 (5)
C140.83391 (19)0.20539 (12)0.55992 (12)0.0390 (6)
H50.9054100.2065370.5493190.047*
C150.78502 (18)0.14371 (12)0.56372 (11)0.0354 (5)
C160.67899 (18)0.14313 (12)0.57703 (11)0.0354 (5)
C170.62574 (18)0.20153 (12)0.59032 (11)0.0371 (5)
C180.67867 (19)0.26118 (13)0.58751 (12)0.0410 (6)
H60.6426130.3011430.5972610.049*
C191.05823 (18)0.09337 (12)0.70485 (13)0.0418 (6)
C201.01017 (17)0.05755 (12)0.75598 (13)0.0395 (5)
H71.0435140.0547470.8007870.047*
C210.91492 (17)0.02561 (11)0.74393 (12)0.0354 (5)
C220.86546 (17)0.03069 (11)0.67883 (12)0.0337 (5)
C230.90887 (17)0.06798 (12)0.62654 (12)0.0357 (5)
C241.00575 (18)0.09739 (12)0.64050 (13)0.0401 (6)
H81.0372920.1212250.6044940.048*
C250.51496 (17)0.08751 (12)0.84342 (12)0.0372 (5)
H90.4735470.0932720.8850110.045*
H100.4860680.0487610.8173850.045*
C260.51156 (18)0.20106 (13)0.60839 (12)0.0406 (6)
H110.4779980.1603270.5890890.049*
H120.4760770.2399100.5864070.049*
C270.84858 (18)0.08067 (12)0.55860 (12)0.0378 (5)
H130.8976510.0850750.5207720.045*
H140.8017690.0425960.5476530.045*
C280.86781 (18)0.01488 (12)0.80093 (12)0.0375 (5)
H150.9250620.0336100.8309300.045*
H160.8288030.0526680.7795150.045*
C290.8047 (2)0.10237 (14)1.02850 (13)0.0491 (6)
C300.7435 (4)0.0613 (2)1.08047 (17)0.0999 (15)
H170.6685800.0673701.0707580.150*
H180.7612050.0140781.0759570.150*
H190.7618850.0762801.1277230.150*
C310.7776 (3)0.17521 (19)1.0412 (2)0.0817 (11)
H200.7024380.1817721.0330780.123*
H210.7976210.1870961.0891590.123*
H220.8153580.2035201.0094800.123*
C320.9206 (3)0.0945 (2)1.04151 (19)0.0893 (13)
H230.9402530.0480491.0337200.134*
H240.9573660.1233691.0097970.134*
H250.9396300.1069441.0894760.134*
C330.4217 (2)0.33149 (13)0.82393 (14)0.0483 (6)
C340.3259 (3)0.31832 (16)0.86617 (17)0.0646 (8)
H260.2689450.3016710.8354770.097*
H270.3431430.2850700.9019970.097*
H280.3043560.3597720.8880880.097*
C350.3903 (3)0.38581 (16)0.77120 (18)0.0744 (10)
H290.3334900.3694500.7402100.112*
H300.3670930.4254370.7957450.112*
H310.4503750.3972480.7439620.112*
C360.5101 (3)0.3574 (2)0.8719 (2)0.0909 (12)
H320.5716350.3658400.8449520.136*
H330.4883800.3987740.8937830.136*
H340.5271670.3240720.9076920.136*
C370.8372 (2)0.33242 (13)0.56622 (14)0.0502 (7)
C380.7819 (4)0.3747 (2)0.5104 (3)0.1056 (16)
H350.8166710.4179410.5075890.158*
H360.7841790.3519320.4655880.158*
H370.7091050.3813520.5220140.158*
C390.9517 (3)0.32673 (16)0.54956 (18)0.0671 (9)
H380.9822980.3713230.5472340.101*
H390.9889900.3009010.5858860.101*
H400.9575950.3043010.5048520.101*
C400.8356 (3)0.36674 (17)0.6372 (2)0.0764 (10)
H410.8699930.4101650.6348510.115*
H420.7632330.3729490.6500280.115*
H430.8724460.3390170.6721320.115*
C411.1651 (2)0.12642 (17)0.71726 (16)0.0569 (7)
C421.2390 (3)0.0983 (4)0.6681 (3)0.152 (3)
H441.2458490.0502690.6758220.228*
H451.2126020.1064840.6204560.228*
H461.3072070.1195850.6755080.228*
C431.2088 (3)0.1184 (3)0.7914 (2)0.0982 (14)
H471.1596020.1370490.8235110.147*
H481.2194240.0709910.8015430.147*
H491.2755530.1418570.7968390.147*
C441.1537 (4)0.2011 (2)0.7058 (3)0.1234 (19)
H501.1047970.2191910.7384950.185*
H511.2217160.2225720.7133300.185*
H521.1271110.2094710.6582780.185*
C451.0638 (3)0.4028 (2)0.7522 (2)0.0873 (12)
H531.0551240.4216950.7055180.131*
H541.1212420.4255190.7776180.131*
H551.0795390.3552410.7489390.131*
C461.1121 (3)0.48291 (18)0.92075 (18)0.0740 (9)
H561.1584680.4963250.9599360.111*
H571.1536690.4716530.8810860.111*
H581.0647670.5196650.9081560.111*
C470.7645 (3)0.3692 (2)0.9612 (2)0.0964 (13)
H590.6936860.3871790.9628220.145*
H600.7610400.3209790.9538260.145*
H610.8029490.3786161.0050180.145*
C481.0529 (3)0.2521 (2)0.9146 (2)0.0881 (12)
H621.0369560.2045070.9106820.132*
H631.1145480.2622030.8883690.132*
H641.0666640.2636500.9634300.132*
C490.7898 (4)0.2062 (3)0.7671 (2)0.1036 (15)
H650.7425000.2444040.7631100.18 (3)*
H660.7511490.1652740.7558590.28 (5)*
H670.8460040.2116730.7349100.18 (3)*
Li10.9522 (4)0.3821 (3)0.8811 (3)0.0634 (13)
O10.65262 (12)0.01180 (8)0.76275 (8)0.0357 (4)
O20.53575 (13)0.08851 (9)0.69430 (8)0.0407 (4)
H680.572 (3)0.0638 (16)0.7202 (17)0.061*
O30.77306 (13)0.00130 (9)0.66416 (9)0.0417 (4)
H690.736 (3)0.0003 (15)0.7021 (17)0.063*
O40.62688 (13)0.08283 (9)0.57403 (9)0.0423 (4)
H700.589 (3)0.0795 (16)0.6120 (18)0.063*
O50.97040 (17)0.41161 (11)0.78777 (11)0.0619 (6)
H710.933 (3)0.440 (2)0.762 (2)0.093*
O61.05402 (19)0.42743 (12)0.93941 (12)0.0702 (6)
H721.069 (3)0.420 (2)0.987 (3)0.105*
O70.8138 (2)0.39801 (16)0.90840 (17)0.0986 (10)
H730.783 (5)0.430 (3)0.894 (3)0.148*
O80.9716 (3)0.28755 (14)0.8890 (2)0.1247 (15)
H740.937 (6)0.269 (4)0.870 (4)0.187*
O90.8315 (5)0.2023 (2)0.8336 (3)0.196 (3)
H750.8045670.1701900.8540650.295*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0394 (13)0.0415 (13)0.0365 (12)0.0012 (10)0.0019 (10)0.0006 (10)
C20.0352 (12)0.0438 (13)0.0331 (12)0.0029 (10)0.0024 (10)0.0002 (10)
C30.0304 (11)0.0381 (12)0.0330 (11)0.0005 (9)0.0043 (9)0.0051 (9)
C40.0317 (12)0.0350 (12)0.0310 (11)0.0035 (9)0.0007 (9)0.0032 (9)
C50.0328 (12)0.0364 (12)0.0346 (12)0.0008 (9)0.0029 (9)0.0034 (9)
C60.0309 (12)0.0435 (13)0.0392 (13)0.0001 (10)0.0021 (10)0.0043 (10)
C70.0274 (11)0.0481 (14)0.0400 (13)0.0041 (10)0.0021 (9)0.0018 (10)
C80.0270 (11)0.0491 (14)0.0398 (13)0.0001 (10)0.0013 (9)0.0074 (11)
C90.0224 (11)0.0543 (14)0.0325 (12)0.0006 (10)0.0007 (9)0.0037 (10)
C100.0209 (10)0.0475 (14)0.0363 (12)0.0020 (9)0.0003 (9)0.0004 (10)
C110.0198 (10)0.0486 (14)0.0348 (12)0.0016 (9)0.0011 (9)0.0038 (10)
C120.0266 (11)0.0516 (14)0.0326 (12)0.0015 (10)0.0019 (9)0.0025 (10)
C130.0439 (13)0.0453 (14)0.0296 (11)0.0006 (11)0.0045 (10)0.0008 (10)
C140.0356 (12)0.0508 (15)0.0310 (12)0.0005 (11)0.0063 (9)0.0014 (10)
C150.0376 (12)0.0441 (13)0.0245 (10)0.0011 (10)0.0031 (9)0.0027 (9)
C160.0358 (12)0.0468 (14)0.0235 (10)0.0020 (10)0.0003 (9)0.0011 (9)
C170.0351 (12)0.0513 (14)0.0249 (11)0.0026 (10)0.0000 (9)0.0042 (10)
C180.0431 (14)0.0479 (14)0.0325 (12)0.0077 (11)0.0059 (10)0.0022 (10)
C190.0285 (12)0.0463 (14)0.0510 (14)0.0005 (10)0.0053 (10)0.0066 (11)
C200.0293 (12)0.0465 (14)0.0425 (13)0.0035 (10)0.0002 (10)0.0060 (11)
C210.0304 (12)0.0363 (12)0.0397 (12)0.0032 (9)0.0042 (9)0.0043 (10)
C220.0285 (11)0.0342 (12)0.0387 (12)0.0005 (9)0.0038 (9)0.0062 (9)
C230.0313 (12)0.0395 (13)0.0370 (12)0.0020 (10)0.0074 (9)0.0058 (10)
C240.0321 (12)0.0433 (13)0.0458 (14)0.0014 (10)0.0102 (10)0.0015 (10)
C250.0289 (12)0.0491 (14)0.0341 (12)0.0010 (10)0.0059 (9)0.0044 (10)
C260.0321 (12)0.0570 (15)0.0326 (12)0.0068 (11)0.0011 (9)0.0064 (11)
C270.0365 (12)0.0457 (13)0.0319 (12)0.0014 (10)0.0083 (10)0.0067 (10)
C280.0332 (12)0.0403 (13)0.0390 (12)0.0046 (10)0.0020 (10)0.0017 (10)
C290.0502 (15)0.0572 (16)0.0391 (14)0.0016 (13)0.0063 (11)0.0075 (12)
C300.142 (4)0.117 (3)0.0401 (17)0.036 (3)0.008 (2)0.0003 (19)
C310.073 (2)0.081 (2)0.088 (2)0.0166 (19)0.0279 (19)0.039 (2)
C320.066 (2)0.129 (3)0.069 (2)0.030 (2)0.0309 (18)0.043 (2)
C330.0541 (16)0.0450 (14)0.0459 (14)0.0036 (12)0.0046 (12)0.0010 (11)
C340.073 (2)0.0594 (18)0.0626 (18)0.0134 (16)0.0228 (16)0.0010 (15)
C350.105 (3)0.0514 (18)0.069 (2)0.0131 (18)0.0228 (19)0.0064 (15)
C360.085 (3)0.084 (3)0.102 (3)0.010 (2)0.015 (2)0.036 (2)
C370.0540 (16)0.0452 (15)0.0522 (15)0.0020 (12)0.0103 (12)0.0011 (12)
C380.103 (3)0.078 (3)0.134 (4)0.023 (2)0.020 (3)0.058 (3)
C390.068 (2)0.0579 (18)0.078 (2)0.0197 (15)0.0283 (17)0.0135 (16)
C400.083 (2)0.0604 (19)0.087 (2)0.0145 (17)0.0283 (19)0.0277 (17)
C410.0343 (14)0.073 (2)0.0632 (18)0.0130 (13)0.0023 (12)0.0065 (15)
C420.043 (2)0.264 (7)0.151 (5)0.049 (3)0.038 (3)0.105 (5)
C430.054 (2)0.143 (4)0.096 (3)0.033 (2)0.0148 (19)0.004 (3)
C440.106 (4)0.096 (3)0.164 (5)0.055 (3)0.042 (3)0.019 (3)
C450.064 (2)0.102 (3)0.096 (3)0.032 (2)0.003 (2)0.001 (2)
C460.085 (2)0.074 (2)0.062 (2)0.0032 (19)0.0116 (17)0.0150 (17)
C470.083 (3)0.114 (3)0.091 (3)0.004 (2)0.010 (2)0.039 (3)
C480.104 (3)0.086 (3)0.074 (2)0.034 (2)0.000 (2)0.003 (2)
C490.115 (4)0.113 (4)0.080 (3)0.023 (3)0.024 (3)0.025 (2)
Li10.057 (3)0.058 (3)0.073 (3)0.007 (2)0.015 (2)0.014 (2)
O10.0329 (8)0.0413 (9)0.0329 (8)0.0036 (7)0.0006 (6)0.0022 (6)
O20.0393 (9)0.0495 (10)0.0330 (9)0.0039 (8)0.0017 (7)0.0001 (7)
O30.0363 (9)0.0506 (10)0.0387 (9)0.0126 (7)0.0052 (7)0.0054 (7)
O40.0384 (9)0.0508 (10)0.0376 (9)0.0085 (8)0.0012 (7)0.0047 (7)
O50.0633 (13)0.0662 (13)0.0553 (12)0.0252 (10)0.0069 (10)0.0018 (10)
O60.0821 (16)0.0774 (15)0.0493 (12)0.0152 (12)0.0174 (11)0.0159 (11)
O70.0702 (16)0.105 (2)0.122 (2)0.0284 (15)0.0196 (15)0.0684 (19)
O80.109 (2)0.0535 (15)0.203 (4)0.0076 (15)0.082 (2)0.0104 (19)
O90.273 (6)0.114 (3)0.191 (4)0.084 (3)0.111 (4)0.046 (3)
Geometric parameters (Å, º) top
C1—C61.387 (3)C33—C341.529 (4)
C1—C21.397 (3)C33—C351.535 (4)
C1—C291.535 (3)C34—H260.9800
C2—C31.387 (3)C34—H270.9800
C2—H10.9500C34—H280.9800
C3—C41.405 (3)C35—H290.9800
C3—C251.511 (3)C35—H300.9800
C4—O11.349 (3)C35—H310.9800
C4—C51.402 (3)C36—H320.9800
C5—C61.392 (3)C36—H330.9800
C5—C281.521 (3)C36—H340.9800
C6—H20.9500C37—C391.524 (4)
C7—C81.391 (3)C37—C381.524 (5)
C7—C121.399 (3)C37—C401.536 (4)
C7—C331.535 (4)C38—H350.9800
C8—C91.386 (3)C38—H360.9800
C8—H30.9500C38—H370.9800
C9—C101.390 (3)C39—H380.9800
C9—C261.523 (3)C39—H390.9800
C10—O21.362 (3)C39—H400.9800
C10—C111.399 (3)C40—H410.9800
C11—C121.386 (3)C40—H420.9800
C11—C251.520 (3)C40—H430.9800
C12—H40.9500C41—C421.484 (5)
C13—C141.383 (3)C41—C441.522 (6)
C13—C181.400 (3)C41—C431.523 (5)
C13—C371.524 (4)C42—H440.9800
C14—C151.393 (3)C42—H450.9800
C14—H50.9500C42—H460.9800
C15—C161.397 (3)C43—H470.9800
C15—C271.512 (3)C43—H480.9800
C16—O41.384 (3)C43—H490.9800
C16—C171.388 (3)C44—H500.9800
C17—C181.380 (4)C44—H510.9800
C17—C261.522 (3)C44—H520.9800
C18—H60.9500C45—O51.420 (4)
C19—C201.389 (4)C45—H530.9800
C19—C241.390 (4)C45—H540.9800
C19—C411.534 (4)C45—H550.9800
C20—C211.392 (3)C46—O61.397 (4)
C20—H70.9500C46—H560.9800
C21—C221.387 (3)C46—H570.9800
C21—C281.516 (3)C46—H580.9800
C22—O31.368 (3)C47—O71.354 (5)
C22—C231.394 (3)C47—H590.9800
C23—C241.393 (3)C47—H600.9800
C23—C271.515 (3)C47—H610.9800
C24—H80.9500C48—O81.340 (5)
C25—H90.9900C48—H620.9800
C25—H100.9900C48—H630.9800
C26—H110.9900C48—H640.9800
C26—H120.9900C49—O91.370 (6)
C27—H130.9900C49—H650.9800
C27—H140.9900C49—H660.9800
C28—H150.9900C49—H670.9800
C28—H160.9900Li1—O51.922 (6)
C29—C321.507 (4)Li1—O61.917 (6)
C29—C311.527 (4)Li1—O71.903 (6)
C29—C301.542 (5)Li1—O81.922 (6)
C30—H170.9800Li1—H742.29 (8)
C30—H180.9800O2—H680.83 (3)
C30—H190.9800O3—H690.89 (3)
C31—H200.9800O4—H700.90 (3)
C31—H210.9800O5—H710.88 (4)
C31—H220.9800O6—H720.94 (5)
C32—H230.9800O7—H730.79 (6)
C32—H240.9800O8—H740.68 (8)
C32—H250.9800O9—H750.8400
C33—C361.524 (5)
C6—C1—C2116.5 (2)C34—C33—C7110.0 (2)
C6—C1—C29122.9 (2)C35—C33—C7112.0 (2)
C2—C1—C29120.5 (2)C33—C34—H26109.5
C3—C2—C1122.9 (2)C33—C34—H27109.5
C3—C2—H1118.6H26—C34—H27109.5
C1—C2—H1118.6C33—C34—H28109.5
C2—C3—C4119.1 (2)H26—C34—H28109.5
C2—C3—C25120.2 (2)H27—C34—H28109.5
C4—C3—C25120.7 (2)C33—C35—H29109.5
O1—C4—C5120.9 (2)C33—C35—H30109.5
O1—C4—C3119.7 (2)H29—C35—H30109.5
C5—C4—C3119.4 (2)C33—C35—H31109.5
C6—C5—C4119.2 (2)H29—C35—H31109.5
C6—C5—C28119.9 (2)H30—C35—H31109.5
C4—C5—C28120.9 (2)C33—C36—H32109.5
C1—C6—C5122.8 (2)C33—C36—H33109.5
C1—C6—H2118.6H32—C36—H33109.5
C5—C6—H2118.6C33—C36—H34109.5
C8—C7—C12116.5 (2)H32—C36—H34109.5
C8—C7—C33123.2 (2)H33—C36—H34109.5
C12—C7—C33120.3 (2)C13—C37—C39112.9 (2)
C9—C8—C7122.6 (2)C13—C37—C38109.8 (3)
C9—C8—H3118.7C39—C37—C38108.5 (3)
C7—C8—H3118.7C13—C37—C40108.8 (2)
C8—C9—C10119.1 (2)C39—C37—C40105.9 (3)
C8—C9—C26120.3 (2)C38—C37—C40110.9 (3)
C10—C9—C26120.6 (2)C37—C38—H35109.5
O2—C10—C9118.2 (2)C37—C38—H36109.5
O2—C10—C11121.3 (2)H35—C38—H36109.5
C9—C10—C11120.5 (2)C37—C38—H37109.5
C12—C11—C10118.4 (2)H35—C38—H37109.5
C12—C11—C25120.0 (2)H36—C38—H37109.5
C10—C11—C25121.6 (2)C37—C39—H38109.5
C11—C12—C7122.9 (2)C37—C39—H39109.5
C11—C12—H4118.5H38—C39—H39109.5
C7—C12—H4118.5C37—C39—H40109.5
C14—C13—C18116.6 (2)H38—C39—H40109.5
C14—C13—C37123.0 (2)H39—C39—H40109.5
C18—C13—C37120.4 (2)C37—C40—H41109.5
C13—C14—C15123.2 (2)C37—C40—H42109.5
C13—C14—H5118.4H41—C40—H42109.5
C15—C14—H5118.4C37—C40—H43109.5
C14—C15—C16117.6 (2)H41—C40—H43109.5
C14—C15—C27119.7 (2)H42—C40—H43109.5
C16—C15—C27122.6 (2)C42—C41—C44110.0 (4)
O4—C16—C17120.4 (2)C42—C41—C43110.0 (4)
O4—C16—C15118.2 (2)C44—C41—C43105.7 (3)
C17—C16—C15121.3 (2)C42—C41—C19109.2 (3)
C18—C17—C16118.6 (2)C44—C41—C19108.9 (3)
C18—C17—C26119.7 (2)C43—C41—C19113.0 (3)
C16—C17—C26121.7 (2)C41—C42—H44109.5
C17—C18—C13122.5 (2)C41—C42—H45109.5
C17—C18—H6118.7H44—C42—H45109.5
C13—C18—H6118.7C41—C42—H46109.5
C20—C19—C24116.9 (2)H44—C42—H46109.5
C20—C19—C41122.4 (2)H45—C42—H46109.5
C24—C19—C41120.6 (2)C41—C43—H47109.5
C19—C20—C21122.4 (2)C41—C43—H48109.5
C19—C20—H7118.8H47—C43—H48109.5
C21—C20—H7118.8C41—C43—H49109.5
C22—C21—C20118.8 (2)H47—C43—H49109.5
C22—C21—C28121.1 (2)H48—C43—H49109.5
C20—C21—C28120.1 (2)C41—C44—H50109.5
O3—C22—C21120.7 (2)C41—C44—H51109.5
O3—C22—C23118.3 (2)H50—C44—H51109.5
C21—C22—C23121.0 (2)C41—C44—H52109.5
C24—C23—C22118.1 (2)H50—C44—H52109.5
C24—C23—C27120.9 (2)H51—C44—H52109.5
C22—C23—C27120.8 (2)O5—C45—H53109.5
C19—C24—C23122.8 (2)O5—C45—H54109.5
C19—C24—H8118.6H53—C45—H54109.5
C23—C24—H8118.6O5—C45—H55109.5
C3—C25—C11114.87 (18)H53—C45—H55109.5
C3—C25—H9108.6H54—C45—H55109.5
C11—C25—H9108.6O6—C46—H56109.5
C3—C25—H10108.6O6—C46—H57109.5
C11—C25—H10108.6H56—C46—H57109.5
H9—C25—H10107.5O6—C46—H58109.5
C17—C26—C9112.70 (18)H56—C46—H58109.5
C17—C26—H11109.1H57—C46—H58109.5
C9—C26—H11109.1O7—C47—H59109.5
C17—C26—H12109.1O7—C47—H60109.5
C9—C26—H12109.1H59—C47—H60109.5
H11—C26—H12107.8O7—C47—H61109.5
C15—C27—C23109.92 (18)H59—C47—H61109.5
C15—C27—H13109.7H60—C47—H61109.5
C23—C27—H13109.7O8—C48—H62109.5
C15—C27—H14109.7O8—C48—H63109.5
C23—C27—H14109.7H62—C48—H63109.5
H13—C27—H14108.2O8—C48—H64109.5
C21—C28—C5114.67 (19)H62—C48—H64109.5
C21—C28—H15108.6H63—C48—H64109.5
C5—C28—H15108.6O9—C49—H65109.5
C21—C28—H16108.6O9—C49—H66109.5
C5—C28—H16108.6H65—C49—H66109.5
H15—C28—H16107.6O9—C49—H67109.5
C32—C29—C31107.7 (3)H65—C49—H67109.5
C32—C29—C1112.8 (2)H66—C49—H67109.5
C31—C29—C1110.5 (2)O5—Li1—O6107.2 (3)
C32—C29—C30111.3 (3)O5—Li1—O7111.3 (3)
C31—C29—C30106.4 (3)O5—Li1—O8111.0 (3)
C1—C29—C30108.0 (2)O6—Li1—O7112.3 (3)
C29—C30—H17109.5O6—Li1—O8109.9 (3)
C29—C30—H18109.5O7—Li1—O8105.3 (3)
H17—C30—H18109.5O7—Li1—H7497 (2)
C29—C30—H19109.5O6—Li1—H74126 (2)
H17—C30—H19109.5O8—Li1—H7416 (2)
H18—C30—H19109.5O5—Li1—H74103 (2)
C29—C31—H20109.5C10—O2—H68111 (2)
C29—C31—H21109.5C22—O3—H69108 (2)
H20—C31—H21109.5C16—O4—H70108 (2)
C29—C31—H22109.5C45—O5—Li1123.8 (3)
H20—C31—H22109.5C45—O5—H71105 (3)
H21—C31—H22109.5Li1—O5—H71130 (3)
C29—C32—H23109.5C46—O6—Li1125.8 (2)
C29—C32—H24109.5C46—O6—H72107 (3)
H23—C32—H24109.5Li1—O6—H72127 (3)
C29—C32—H25109.5C47—O7—Li1127.7 (3)
H23—C32—H25109.5C47—O7—H73111 (4)
H24—C32—H25109.5Li1—O7—H73120 (4)
C36—C33—C34109.3 (3)C48—O8—Li1130.6 (3)
C36—C33—C35109.1 (3)C48—O8—H74113 (7)
C34—C33—C35106.5 (3)Li1—O8—H74115 (7)
C36—C33—C7109.9 (2)C49—O9—H75109.5
C6—C1—C2—C31.2 (4)C20—C21—C22—O3178.3 (2)
C29—C1—C2—C3175.8 (2)C28—C21—C22—O30.6 (3)
C1—C2—C3—C40.3 (4)C20—C21—C22—C231.1 (3)
C1—C2—C3—C25179.8 (2)C28—C21—C22—C23179.9 (2)
C2—C3—C4—O1177.1 (2)O3—C22—C23—C24176.5 (2)
C25—C3—C4—O12.8 (3)C21—C22—C23—C243.0 (3)
C2—C3—C4—C51.9 (3)O3—C22—C23—C278.3 (3)
C25—C3—C4—C5178.2 (2)C21—C22—C23—C27172.2 (2)
O1—C4—C5—C6177.0 (2)C20—C19—C24—C230.6 (4)
C3—C4—C5—C61.9 (3)C41—C19—C24—C23179.7 (2)
O1—C4—C5—C281.6 (3)C22—C23—C24—C192.8 (4)
C3—C4—C5—C28179.5 (2)C27—C23—C24—C19172.4 (2)
C2—C1—C6—C51.1 (4)C2—C3—C25—C1195.4 (3)
C29—C1—C6—C5175.7 (2)C4—C3—C25—C1184.7 (3)
C4—C5—C6—C10.4 (4)C12—C11—C25—C397.4 (2)
C28—C5—C6—C1179.0 (2)C10—C11—C25—C384.6 (3)
C12—C7—C8—C90.7 (3)C18—C17—C26—C983.1 (3)
C33—C7—C8—C9178.8 (2)C16—C17—C26—C996.4 (3)
C7—C8—C9—C100.7 (3)C8—C9—C26—C17102.9 (3)
C7—C8—C9—C26179.4 (2)C10—C9—C26—C1777.1 (3)
C8—C9—C10—O2176.83 (19)C14—C15—C27—C2376.7 (3)
C26—C9—C10—O23.1 (3)C16—C15—C27—C2398.7 (2)
C8—C9—C10—C111.2 (3)C24—C23—C27—C1585.5 (3)
C26—C9—C10—C11178.8 (2)C22—C23—C27—C1589.5 (3)
O2—C10—C11—C12177.59 (19)C22—C21—C28—C589.8 (3)
C9—C10—C11—C120.4 (3)C20—C21—C28—C591.3 (3)
O2—C10—C11—C250.4 (3)C6—C5—C28—C21100.5 (3)
C9—C10—C11—C25178.4 (2)C4—C5—C28—C2181.0 (3)
C10—C11—C12—C71.0 (3)C6—C1—C29—C3212.1 (4)
C25—C11—C12—C7177.0 (2)C2—C1—C29—C32171.1 (3)
C8—C7—C12—C111.6 (3)C6—C1—C29—C31132.7 (3)
C33—C7—C12—C11177.9 (2)C2—C1—C29—C3150.6 (4)
C18—C13—C14—C151.1 (3)C6—C1—C29—C30111.3 (3)
C37—C13—C14—C15179.7 (2)C2—C1—C29—C3065.4 (4)
C13—C14—C15—C162.1 (3)C8—C7—C33—C36113.7 (3)
C13—C14—C15—C27173.5 (2)C12—C7—C33—C3666.8 (3)
C14—C15—C16—O4173.58 (19)C8—C7—C33—C34125.9 (3)
C27—C15—C16—O410.9 (3)C12—C7—C33—C3453.5 (3)
C14—C15—C16—C174.0 (3)C8—C7—C33—C357.8 (4)
C27—C15—C16—C17171.6 (2)C12—C7—C33—C35171.7 (3)
O4—C16—C17—C18175.0 (2)C14—C13—C37—C390.9 (4)
C15—C16—C17—C182.5 (3)C18—C13—C37—C39178.4 (2)
O4—C16—C17—C265.6 (3)C14—C13—C37—C38120.3 (3)
C15—C16—C17—C26176.9 (2)C18—C13—C37—C3860.5 (4)
C16—C17—C18—C130.9 (3)C14—C13—C37—C40118.2 (3)
C26—C17—C18—C13179.6 (2)C18—C13—C37—C4061.1 (3)
C14—C13—C18—C172.7 (3)C20—C19—C41—C42120.0 (4)
C37—C13—C18—C17178.1 (2)C24—C19—C41—C4258.9 (5)
C24—C19—C20—C211.3 (4)C20—C19—C41—C44119.8 (4)
C41—C19—C20—C21177.7 (2)C24—C19—C41—C4461.2 (4)
C19—C20—C21—C221.1 (3)C20—C19—C41—C432.7 (4)
C19—C20—C21—C28177.8 (2)C24—C19—C41—C43178.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H74···O90.67 (3)2.01 (8)2.673 (3)167 (3)
O2—H68···O10.83 (3)1.66 (4)2.490 (2)172 (3)
O3—H69···O10.89 (3)1.64 (3)2.520 (2)169 (3)
O4—H70···O20.90 (3)1.77 (3)2.650 (2)166 (3)
O5—H71···O1i0.88 (4)1.87 (4)2.714 (3)160 (4)
O6—H72···O4ii0.94 (5)1.81 (5)2.732 (3)165 (4)
O7—H73···O3i0.79 (6)1.91 (6)2.676 (3)163 (6)
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x+1/2, y+1/2, z+1/2.
Conformation of the four aromatic walls of the calix[4]arene host (°) top
AD are the mean planes passing through the four phenyl moieties of the host. The values reported are the angles formed with the mean plane passing through atoms O1–O4.
PlaneAngle
A136.01 (6)
B136.80 (6)
C108.21 (6)
D119.02 (6)
 

Funding information

Funding for this research was provided by: The Mazda Foundation (award No. 17KK-077); this work was also partially supported by a Postdoctoral Fellowship for an Overseas Researcher of the JSPS (grant No. 16F16353).

References

First citationBock, H., John, A., Naether, C. & Havlas, Z. (1995). J. Am. Chem. Soc. 117, 9367–9368.  CSD CrossRef CAS Google Scholar
First citationBruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDavidson, M. G., Howard, J. A. K., Lamb, S. & Lehmann, C. W. (1997). Chem. Commun. pp. 1607–1608.  CSD CrossRef Google Scholar
First citationDürr, S., Bechlars, B. & Radius, U. (2006). Inorg. Chim. Acta, 359, 4215–4226.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGueneau, E. D., Fromm, K. M. & Goesmann, H. (2003). Chem. Eur. J. 9, 509–514.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGuillemot, G., Solari, E., Rizzoli, C. & Floriani, C. (2002). Chem. Eur. J. 8, 2072–2080.  CSD CrossRef CAS Google Scholar
First citationGutsche, C. D. (1998). Calixarenes Revisited. Cambridge, UK: Royal Society of Chemistry.  Google Scholar
First citationHamada, F., Robinson, K. D., Orr, G. W. & Atwood, J. L. (1993). Supramol. Chem. 2, 19–24.  CSD CrossRef CAS Google Scholar
First citationHanna, T. A., Liu, L., Angeles-Boza, A. M., Kou, X., Gutsche, C. D., Ejsmont, K., Watson, W. H., Zakharov, L. N., Incarvito, C. D. & Rheingold, A. L. (2003). J. Am. Chem. Soc. 125, 6228–6238.  CSD CrossRef CAS Google Scholar
First citationHanna, T. A., Liu, L., Zakharov, L. N., Rheingold, A. L., Watson, W. H. & Gutsche, C. D. (2002). Tetrahedron, 58, 9751–9757.  CSD CrossRef CAS Google Scholar
First citationHarrowfield, J. M., Ogden, M. I., Richmond, W. R. & White, A. H. (1991). J. Chem. Soc. Chem. Commun. pp. 1159–1161.  CSD CrossRef Google Scholar
First citationKabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Crystallogr. Soc. Jpn, 51, 218–224.  CrossRef Google Scholar
First citationLee, D. S., Elsegood, M. R. J., Redshaw, C. & Zhan, S. (2009). Acta Cryst. C65, m291–m295.  CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVicens, J. & Böhmer, V. (1991). Editors. Calixarenes: A Versatile Class of Macrocyclic Compounds, Kluwer Academic Publishers: Dordrecht, The Netherlands.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds