research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (4bS,8aR)-1-iso­propyl-4b,8,8-tri­methyl-7-oxo-4b,7,8,8a,9,10-hexa­hydro­phenanthren-2-yl acetate

CROSSMARK_Color_square_no_text.svg

aLaboratory of Organic Synthesis and Physico-Molecular Chemistry, Department of Chemistry, Faculty of Sciences Semlalia, BP 2390, Marrakech 40001, Morocco, bInstitute of Molecular Chemistry of Reims, CNRS UMR 7312 Bat. Europol'Agro, Moulin of the Housse UFR Sciences, BP 1039-51687 Reims Cedex 2, France, and cLaboratory of Applied Spectro-Chemistry and Environment, University Sultan Moulay Slimane, Faculty of Science and Technology, PO Box 523, Beni-Mellal, Morocco
*Correspondence e-mail: a.auhmani@uca.ac.ma

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 4 April 2018; accepted 9 April 2018; online 27 April 2018)

The title compound, C22H28O3, was prepared by a direct acetyl­ation reaction of naturally occurring totarolenone. The mol­ecule contains three fused rings, which exhibit different conformations. The central ring has a half-chair conformation, while the non-aromatic oxo-substituted ring has a screw-boat conformation. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds and C—H⋯π inter­actions, forming sheets parallel to the bc plane. The carbonyl O atoms and the C atom at the 6-position of the cyclo­hexene ring are each disordered over two sets of sites with major occupancy components of 0.63 (7) and 0.793 (14), respectively.

1. Chemical context

Diterpene phenols are a family of natural products isolated from a variety of terrestrial plant sources. They exhibit a wide variety of inter­esting biological activities such as anti­tumour (Iwamoto et al., 2003[Iwamoto, M., Minami, T., Tokuda, H., Ohtsu, H. & Tanaka, R. (2003). Planta Med. 69, 69-72.]; Son et al. 2005[Son, K.-H., Oh, H.-M., Choi, S.-K., Han, D. C. & Kwon, B.-M. (2005). Bioorg. Med. Chem. Lett. 15, 2019-2021.]), anti­microbial (Yoshikawa et al., 2008[Yoshikawa, K., Kokudo, N., Tanaka, M., Nakano, T., Shibata, H., Aragaki, N., Higuchi, T. & Hashimoto, T. (2008). Chem. Pharm. Bull. 56, 89-92.]; Pereda-Miranda et al., 1992[Pereda-Miranda, R., Hernández, L. & López, R. (1992). Planta Med. 58, 223-224.]), anti­viral (Yang et al., 2011[Yang, L.-B., Li, L., Huang, S.-X., Pu, H.-X., Zhao, Y., Ma, Y.-B., Chen, J.-J., Leng, C.-H., Tao, Z.-M. & Sun, H.-D. (2011). Chem. Pharm. Bull. 59, 1102-1105.]; Wen et al., 2007[Wen, C.-C., Kuo, Y.-H., Jan, J.-T., Liang, P.-H., Wang, S.-Y., Liu, H.-G., Lee, C.-K., Chang, S.-T., Kuo, C.-J., Lee, S.-S., Hou, C.-C., Hsiao, P.-W., Chien, S.-C., Shyur, L.-F. & Yang, N.-S. (2007). J. Med. Chem. 50, 4087-4095.]) and anti-inflammatory (Chen et al. 2013[Chen, Y.-C., Li, Y.-C., You, B.-J., Chang, W.-T., Chao, L.-K., Lo, L.-C., Wang, S.-Y., Huang, G.-J. & Kuo, Y.-H. (2013). Molecules, 18, 682-689.]). In addition, derivatives of diterpene phenol natural products have been studied extensively as potential chemotherapeutic agents (Areche et al., 2007[Areche, C., Rodríguez, J. A., Razmilic, I., Yáñez, T., Theoduloz, C. & Schmeda-Hirschmann, G. (2007). J. Pharm. Pharmacol. 59, 289-300.]; Yang et al. 2001[Yang, Z., Kitano, Y., Chiba, K., Shibata, N., Kurokawa, H., Doi, Y., Arakawa, Y. & Tada, M. (2001). Bioorg. Med. Chem. 9, 347-356.]).

With the aim of preparing diterpene phenol derivatives, we report here the hemisynthesis (Fig. 1[link]) of (4bS,8aR)-1-isopropyl-4 b,8,8-trimethyl-7-oxo-4 b,7,8,8a,9,10-hexa­hydro­phenanthren-2-yl acetate, 2, from naturally occurring totarolenone, 1, extracted from the heartwood of Tetra­clinis articulata (Chow et al., 1960[Chow, Y. L. & Erdtman, H. (1960). Acta Chem. Scand. 14, 1852-1853.]). Treatment of 1 with acetic anhydride and pyridine provides compound 2 as colourless crystals in 88% yield. X-ray single crystal structure analysis allowed its structure to be confirmed unambiguously. Its structure was also characterized by 1H and 13C NMR measurements.

[Scheme 1]
[Figure 1]
Figure 1
Reaction scheme for the synthesis of the title compound 2.

2. Structural commentary

The mol­ecular structure is built up from three fused six-membered rings (Fig. 2[link]). In the mol­ecule, there are two chiral carbon atoms, C4b exhibits an S configuration and C8a exhibits an R configuration. The central six-membered ring (C4A, C4B, C8A, C9, C10, C10A) assumes a half-chair conformation, as indicated by the total puckering amplitude QT = 0.55 (2) Å and spherical polar angle θ = 51.0 (2)° with φ = 136.0 (2)°. The major component of the cyclo­hexene ring exhibits a screw-boat conformation [QT = 0.462 (2) Å, θ =113.7 (2)°, φ = 145.9 (2)°] while the minor component has a chair conformation [QT = 0.558 (6) Å, θ =159.4 (6)°, φ = 235.6 (14)°].

[Figure 2]
Figure 2
The mol­ecular structure of the title compound with the atom-numbering scheme. The displacement ellipsoids are drawn at the 30% probability level. Only the major disorder components are shown.

3. Supra­molecular features

In the crystal, mol­ecules are linked by C—H⋯O and C—H⋯π inter­actions, forming layers parallel to the bc plane (Table 1[link] and Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O1i 0.95 2.50 3.411 (10) 159
C4—H4⋯O1Ai 0.95 2.55 3.428 (17) 154
C10—H10B⋯O1Aii 0.99 2.55 3.328 (17) 136
C13—H13C⋯O3iii 0.98 2.59 3.530 (2) 161
C18—H18ACg1iv 0.98 2.55 3.504 (2) 165
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z]; (ii) [-x, y-{\script{1\over 2}}, -z]; (iii) [-x+1, y+{\script{1\over 2}}, -z+1]; (iv) [-x+1, y-{\script{1\over 2}}, -z+1].
[Figure 3]
Figure 3
A view along the a axis of the crystal packing of the title compound, showing the C—H⋯O hydrogen bonds (orange dashed lines) and C—H⋯π inter­actions (green dashed lines). For clarity, only the H atoms involved in these inter­actions have been included.

4. Database survey

A search of the Cambridge Structural Database using the 1,2,3,4,4a,9,10,10a-hexa­hydro­phenanthren ring system (Fig. 4[link]a) as the main skeleton, revealed the presence of 75 structures. These include several compounds similar to the title compound. One with a similar conformation has a hydroxyl substituent in place of the acetate in the title compound (Benharref et al., 2011[Benharref, A., Lassaba, E., Mazoir, N., Daran, J.-C. & Berraho, M. (2011). Acta Cryst. E67, o906.]), and three others have a meth­oxy group in position 4b and carbaldehyde/benzene­sulfono­hydrazide (Vo et al., 2008[Vo, N. T., Pace, R. D. M., O'Har, F. & Gaunt, M. J. (2008). J. Am. Chem. Soc. 130, 404-405.]) or bi­phenyl­sulfonyl (Gu & You, 2011[Gu, Q. & You, S.-L. (2011). Org. Lett. 13, 5192-5195.]) in position 9 (Fig. 4[link]b), while six entries (Oubabi et al., 2014a[Oubabi, R., Auhmani, A., Ait Itto, M. Y., Auhmani, A. & Daran, J.-C. (2014a). Acta Cryst. E70, o317.],b[Oubabi, R., Auhmani, A., Ait Itto, M. Y., Auhmani, A. & Daran, J.-C. (2014b). Acta Cryst. E70, o866-o867.]; Zeroual et al., 2007[Zeroual, A., Mazoir, N., Berraho, M., Auhmani, A. & Benharref, A. (2007). Acta Cryst. E63, o3497-o3498.], 2008[Zeroual, A., Mazoir, N., Daran, J.-C., Akssira, M. & Benharref, A. (2008). Acta Cryst. E64, o604-o605.]; Cutfield et al., 1974[Cutfield, F., Waters, T. N. & Clark, G. R. (1974). J. Chem. Soc. Perkin Trans. 2, pp. 150-157.]; Pettit et al., 2004[Pettit, G. R., Tan, R., Northen, J. S., Herald, D. L., Chapuis, J. C. & Pettit, R. K. (2004). J. Nat. Prod. 67, 1476-1482.]) have 1-isopropyl-4b,8,8-trimethyl substit­uents (Fig. 4[link]c).

[Figure 4]
Figure 4
The core structures for database survey: (a) 1,2,3,4,4a,9,10,10a-hexa­hydro­phenanthren, and its (b) 7-oxo with double bond between C5 and C6, (c) 1-isopropyl-4 b,8,8-trimethyl substituents; and (d) the title compound.

5. Synthesis and crystallization

A solution of totarolenone 1 (300 mg, 1.041 mmol) in acetic anhydride (10 mL) and sodium acetate (290 mg) was heated under reflux for 24 h. After cooling, the solution was extracted with ether (3 × 20 mL). The organic layer was washed with water, dried on anhydrous Na2SO4 and evaporated under reduced pressure. The obtained residue was chromatographed on silica gel column using hexane and ethyl acetate (95/5) as eluent, to give compound 2.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were placed in calculated positions and refined in the riding model: C—H = 0.95–1.00 Å with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-methyl). The carbonyl O atom is disordered over two sites having occupancies of 0.63 (7) and 0.37 (7). Atom C6 atom of the cyclo­hexene ring is disordered over two sites with an occupancy ratio of 0.793 (14):0.207 (14). The absolute structure was reliably determined based on the value of the Flack parameter [0.02 (5)].

Table 2
Experimental details

Crystal data
Chemical formula C22H28O3
Mr 340.44
Crystal system, space group Monoclinic, P21
Temperature (K) 100
a, b, c (Å) 7.4103 (2), 10.4681 (3), 12.8121 (3)
β (°) 102.235 (1)
V3) 971.28 (4)
Z 2
Radiation type Cu Kα
μ (mm−1) 0.60
Crystal size (mm) 0.41 × 0.30 × 0.18
 
Data collection
Diffractometer D8 Venture CMOS area detector
Absorption correction Numerical (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
No. of measured, independent and observed [I > 2σ(I)] reflections 17946, 3909, 3852
Rint 0.029
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.077, 1.05
No. of reflections 3909
No. of parameters 252
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.16, −0.17
Absolute structure Flack x determined using 1757 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.02 (5)
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg et al., 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg et al., 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

(4bS,8aR)-1-Isopropyl-4b,8,8-trimethyl-7-oxo-4b,7,8,8a,9,10-hexahydrophenanthren-2-yl acetate top
Crystal data top
C22H28O3F(000) = 368
Mr = 340.44Dx = 1.164 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54178 Å
a = 7.4103 (2) ÅCell parameters from 3909 reflections
b = 10.4681 (3) Åθ = 3.5–74.5°
c = 12.8121 (3) ŵ = 0.60 mm1
β = 102.235 (1)°T = 100 K
V = 971.28 (4) Å3Block, colourless
Z = 20.41 × 0.30 × 0.18 mm
Data collection top
D8 Venture CMOS area detector
diffractometer
3852 reflections with I > 2σ(I)
Radiation source: microsourceRint = 0.029
φ and ω scansθmax = 74.5°, θmin = 3.5°
Absorption correction: numerical
(SADABS; Bruker, 2012)
h = 99
k = 1313
17946 measured reflectionsl = 1615
3909 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.030 w = 1/[σ2(Fo2) + (0.0376P)2 + 0.2106P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.077(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.16 e Å3
3909 reflectionsΔρmin = 0.17 e Å3
252 parametersAbsolute structure: Flack x determined using 1757 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.02 (5)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O20.31864 (16)0.17015 (11)0.35741 (9)0.0169 (2)
O30.57128 (17)0.12685 (12)0.48549 (10)0.0228 (3)
C10.1762 (2)0.03631 (15)0.31947 (13)0.0149 (3)
C20.3194 (2)0.04717 (15)0.31317 (12)0.0141 (3)
C30.4591 (2)0.01616 (16)0.26178 (12)0.0165 (3)
H30.55320.07640.25750.020*
C40.4606 (2)0.10335 (17)0.21673 (12)0.0160 (3)
H40.55710.12530.18170.019*
C4A0.3228 (2)0.19262 (15)0.22171 (12)0.0140 (3)
C4B0.3352 (2)0.32561 (16)0.17177 (13)0.0167 (3)
C50.3964 (3)0.31576 (18)0.06569 (14)0.0242 (4)
H50.47470.24760.05440.029*
C70.2283 (3)0.5140 (2)0.00216 (14)0.0262 (4)
C80.1175 (3)0.51452 (17)0.08559 (13)0.0217 (4)
C8A0.1410 (2)0.38675 (17)0.14900 (12)0.0166 (3)
H8A0.05950.32430.10210.020*
C90.0693 (2)0.39088 (17)0.25247 (13)0.0195 (3)
H9A0.16180.43250.30950.023*
H9B0.04610.44150.24130.023*
C100.0326 (2)0.25550 (16)0.28606 (13)0.0181 (3)
H10A0.02040.25690.36150.022*
H10B0.08660.22600.24230.022*
C10A0.1817 (2)0.16011 (16)0.27480 (12)0.0143 (3)
C110.0867 (3)0.5279 (2)0.02894 (17)0.0308 (4)
H11A0.10380.60760.01220.046*
H11B0.16390.52940.08230.046*
H11C0.12230.45540.01940.046*
C120.1723 (4)0.63433 (19)0.15482 (19)0.0409 (6)
H12A0.14630.71080.11010.061*
H12B0.30440.63100.18740.061*
H12C0.10110.63740.21110.061*
C130.4868 (3)0.40095 (19)0.24898 (16)0.0252 (4)
H13A0.50140.48540.21880.038*
H13B0.60390.35430.25920.038*
H13C0.45110.41090.31800.038*
C140.0212 (2)0.00178 (18)0.37495 (14)0.0220 (4)
H140.07890.06310.35380.026*
C150.0844 (3)0.0071 (3)0.49646 (16)0.0347 (5)
H15A0.18500.05380.52090.052*
H15B0.01930.01320.53000.052*
H15C0.12800.09390.51630.052*
C160.0662 (3)0.1325 (2)0.3410 (2)0.0352 (5)
H16A0.09920.13730.26290.053*
H16B0.17740.14330.37010.053*
H16C0.02240.20030.36850.053*
C170.4501 (2)0.19878 (16)0.44565 (13)0.0165 (3)
C180.4186 (3)0.32928 (18)0.48463 (16)0.0285 (4)
H18A0.50950.34690.55060.043*
H18B0.43160.39240.43020.043*
H18C0.29390.33440.49880.043*
C60.3407 (7)0.4028 (4)0.0124 (3)0.0322 (13)0.793 (14)
H60.37740.39050.07840.039*0.793 (14)
C6A0.4227 (16)0.4506 (11)0.0182 (8)0.014 (3)0.207 (14)
H6A0.53350.48610.00470.017*0.207 (14)
O10.222 (3)0.6074 (7)0.0588 (15)0.040 (3)0.63 (7)
O1A0.185 (3)0.575 (6)0.084 (3)0.059 (7)0.37 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0188 (5)0.0125 (5)0.0173 (5)0.0001 (4)0.0009 (4)0.0017 (4)
O30.0257 (6)0.0197 (6)0.0195 (6)0.0038 (5)0.0032 (5)0.0020 (5)
C10.0147 (7)0.0179 (8)0.0122 (7)0.0008 (6)0.0026 (6)0.0017 (6)
C20.0173 (8)0.0117 (7)0.0116 (7)0.0003 (6)0.0006 (6)0.0008 (6)
C30.0167 (7)0.0189 (8)0.0139 (7)0.0058 (6)0.0028 (6)0.0016 (6)
C40.0153 (8)0.0205 (8)0.0131 (7)0.0004 (6)0.0050 (6)0.0002 (6)
C4A0.0182 (8)0.0139 (7)0.0095 (7)0.0002 (6)0.0022 (6)0.0000 (6)
C4B0.0233 (8)0.0145 (7)0.0135 (7)0.0003 (6)0.0067 (6)0.0014 (6)
C50.0375 (10)0.0191 (8)0.0201 (8)0.0019 (8)0.0153 (7)0.0021 (7)
C70.0286 (9)0.0265 (9)0.0229 (8)0.0030 (8)0.0040 (7)0.0099 (8)
C80.0302 (9)0.0153 (8)0.0193 (8)0.0023 (7)0.0043 (7)0.0048 (7)
C8A0.0248 (8)0.0129 (7)0.0124 (7)0.0018 (6)0.0043 (6)0.0017 (6)
C90.0277 (9)0.0150 (7)0.0178 (8)0.0080 (7)0.0095 (6)0.0019 (6)
C100.0223 (8)0.0177 (8)0.0166 (8)0.0066 (6)0.0093 (6)0.0047 (6)
C10A0.0173 (7)0.0152 (7)0.0105 (7)0.0031 (6)0.0030 (6)0.0009 (5)
C110.0303 (10)0.0309 (10)0.0317 (10)0.0100 (8)0.0074 (8)0.0162 (8)
C120.0713 (17)0.0125 (9)0.0354 (11)0.0019 (9)0.0030 (11)0.0015 (8)
C130.0272 (9)0.0194 (8)0.0287 (9)0.0055 (7)0.0053 (7)0.0001 (7)
C140.0174 (8)0.0239 (9)0.0272 (9)0.0060 (7)0.0103 (7)0.0119 (7)
C150.0367 (11)0.0482 (12)0.0249 (9)0.0116 (10)0.0192 (8)0.0138 (9)
C160.0174 (8)0.0298 (11)0.0587 (13)0.0018 (8)0.0084 (8)0.0144 (10)
C170.0203 (8)0.0149 (8)0.0139 (7)0.0044 (6)0.0025 (6)0.0001 (6)
C180.0363 (11)0.0171 (9)0.0273 (10)0.0016 (8)0.0037 (8)0.0071 (7)
C60.048 (3)0.0312 (18)0.0220 (14)0.0010 (19)0.0181 (16)0.0045 (13)
C6A0.014 (5)0.016 (5)0.014 (4)0.010 (4)0.004 (4)0.001 (4)
O10.042 (5)0.033 (3)0.051 (4)0.010 (2)0.026 (3)0.028 (2)
O1A0.033 (5)0.095 (17)0.048 (8)0.014 (7)0.012 (5)0.055 (9)
Geometric parameters (Å, º) top
O2—C171.360 (2)C9—H9A0.9900
O2—C21.4071 (19)C9—H9B0.9900
O3—C171.200 (2)C10—C10A1.519 (2)
C1—C21.390 (2)C10—H10A0.9900
C1—C10A1.421 (2)C10—H10B0.9900
C1—C141.526 (2)C11—H11A0.9800
C2—C31.378 (2)C11—H11B0.9800
C3—C41.379 (2)C11—H11C0.9800
C3—H30.9500C12—H12A0.9800
C4—C4A1.396 (2)C12—H12B0.9800
C4—H40.9500C12—H12C0.9800
C4A—C10A1.404 (2)C13—H13A0.9800
C4A—C4B1.543 (2)C13—H13B0.9800
C4B—C51.525 (2)C13—H13C0.9800
C4B—C8A1.545 (2)C14—C151.531 (3)
C4B—C131.546 (2)C14—C161.537 (3)
C5—C61.352 (3)C14—H141.0000
C5—C6A1.565 (11)C15—H15A0.9800
C5—H50.9500C15—H15B0.9800
C7—O11.213 (10)C15—H15C0.9800
C7—O1A1.215 (16)C16—H16A0.9800
C7—C61.453 (4)C16—H16B0.9800
C7—C81.526 (3)C16—H16C0.9800
C7—C6A1.557 (9)C17—C181.490 (2)
C8—C111.540 (3)C18—H18A0.9800
C8—C121.540 (3)C18—H18B0.9800
C8—C8A1.556 (2)C18—H18C0.9800
C8A—C91.530 (2)C6—H60.9500
C8A—H8A1.0000C6A—H6A0.9500
C9—C101.522 (2)
C17—O2—C2118.24 (12)C4A—C10A—C1120.28 (14)
C2—C1—C10A117.54 (14)C4A—C10A—C10121.20 (14)
C2—C1—C14121.45 (14)C1—C10A—C10118.53 (14)
C10A—C1—C14120.98 (14)C8—C11—H11A109.5
C3—C2—C1122.65 (15)C8—C11—H11B109.5
C3—C2—O2118.38 (14)H11A—C11—H11B109.5
C1—C2—O2118.92 (14)C8—C11—H11C109.5
C2—C3—C4119.16 (15)H11A—C11—H11C109.5
C2—C3—H3120.4H11B—C11—H11C109.5
C4—C3—H3120.4C8—C12—H12A109.5
C3—C4—C4A121.16 (15)C8—C12—H12B109.5
C3—C4—H4119.4H12A—C12—H12B109.5
C4A—C4—H4119.4C8—C12—H12C109.5
C4—C4A—C10A119.13 (14)H12A—C12—H12C109.5
C4—C4A—C4B118.45 (14)H12B—C12—H12C109.5
C10A—C4A—C4B122.38 (14)C4B—C13—H13A109.5
C5—C4B—C4A111.34 (13)C4B—C13—H13B109.5
C5—C4B—C8A107.50 (13)H13A—C13—H13B109.5
C4A—C4B—C8A108.47 (13)C4B—C13—H13C109.5
C5—C4B—C13106.98 (14)H13A—C13—H13C109.5
C4A—C4B—C13107.10 (13)H13B—C13—H13C109.5
C8A—C4B—C13115.50 (14)C1—C14—C15111.07 (15)
C6—C5—C4B120.85 (18)C1—C14—C16114.48 (16)
C4B—C5—C6A111.8 (4)C15—C14—C16111.19 (17)
C6—C5—H5119.6C1—C14—H14106.5
C4B—C5—H5119.6C15—C14—H14106.5
O1—C7—C8118.7 (5)C16—C14—H14106.5
O1A—C7—C8123.5 (13)C14—C15—H15A109.5
C6—C7—C8118.54 (17)C14—C15—H15B109.5
C8—C7—C6A120.1 (3)H15A—C15—H15B109.5
C7—C8—C11106.34 (15)C14—C15—H15C109.5
C7—C8—C12108.06 (17)H15A—C15—H15C109.5
C11—C8—C12108.06 (18)H15B—C15—H15C109.5
C7—C8—C8A111.32 (15)C14—C16—H16A109.5
C11—C8—C8A108.33 (15)C14—C16—H16B109.5
C12—C8—C8A114.38 (14)H16A—C16—H16B109.5
C9—C8A—C4B109.20 (13)C14—C16—H16C109.5
C9—C8A—C8114.04 (14)H16A—C16—H16C109.5
C4B—C8A—C8116.83 (14)H16B—C16—H16C109.5
C9—C8A—H8A105.2O3—C17—O2123.70 (15)
C4B—C8A—H8A105.2O3—C17—C18126.10 (15)
C8—C8A—H8A105.2O2—C17—C18110.19 (14)
C10—C9—C8A109.53 (14)C17—C18—H18A109.5
C10—C9—H9A109.8C17—C18—H18B109.5
C8A—C9—H9A109.8H18A—C18—H18B109.5
C10—C9—H9B109.8C17—C18—H18C109.5
C8A—C9—H9B109.8H18A—C18—H18C109.5
H9A—C9—H9B108.2H18B—C18—H18C109.5
C10A—C10—C9114.07 (14)C5—C6—C7124.3 (2)
C10A—C10—H10A108.7C5—C6—H6117.9
C9—C10—H10A108.7C7—C6—H6117.9
C10A—C10—H10B108.7C7—C6A—C5105.2 (7)
C9—C10—H10B108.7C7—C6A—H6A127.4
H10A—C10—H10B107.6C5—C6A—H6A127.4
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the benzene ring.
D—H···AD—HH···AD···AD—H···A
C4—H4···O1i0.952.503.411 (10)159
C4—H4···O1Ai0.952.553.428 (17)154
C10—H10B···O1Aii0.992.553.328 (17)136
C13—H13C···O3iii0.982.593.530 (2)161
C18—H18A···Cg1iv0.982.553.504 (2)165
Symmetry codes: (i) x+1, y1/2, z; (ii) x, y1/2, z; (iii) x+1, y+1/2, z+1; (iv) x+1, y1/2, z+1.
 

Funding information

Funding for this research was provided by: Cadi Ayyad University.

References

First citationAreche, C., Rodríguez, J. A., Razmilic, I., Yáñez, T., Theoduloz, C. & Schmeda-Hirschmann, G. (2007). J. Pharm. Pharmacol. 59, 289–300.  CrossRef CAS Google Scholar
First citationBenharref, A., Lassaba, E., Mazoir, N., Daran, J.-C. & Berraho, M. (2011). Acta Cryst. E67, o906.  CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Y.-C., Li, Y.-C., You, B.-J., Chang, W.-T., Chao, L.-K., Lo, L.-C., Wang, S.-Y., Huang, G.-J. & Kuo, Y.-H. (2013). Molecules, 18, 682–689.  CrossRef CAS Google Scholar
First citationChow, Y. L. & Erdtman, H. (1960). Acta Chem. Scand. 14, 1852–1853.  CrossRef CAS Google Scholar
First citationCutfield, F., Waters, T. N. & Clark, G. R. (1974). J. Chem. Soc. Perkin Trans. 2, pp. 150–157.  CrossRef Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGu, Q. & You, S.-L. (2011). Org. Lett. 13, 5192–5195.  CrossRef CAS Google Scholar
First citationIwamoto, M., Minami, T., Tokuda, H., Ohtsu, H. & Tanaka, R. (2003). Planta Med. 69, 69–72.  CrossRef CAS Google Scholar
First citationOubabi, R., Auhmani, A., Ait Itto, M. Y., Auhmani, A. & Daran, J.-C. (2014a). Acta Cryst. E70, o317.  CrossRef IUCr Journals Google Scholar
First citationOubabi, R., Auhmani, A., Ait Itto, M. Y., Auhmani, A. & Daran, J.-C. (2014b). Acta Cryst. E70, o866–o867.  CrossRef IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPereda-Miranda, R., Hernández, L. & López, R. (1992). Planta Med. 58, 223–224.  CAS Google Scholar
First citationPettit, G. R., Tan, R., Northen, J. S., Herald, D. L., Chapuis, J. C. & Pettit, R. K. (2004). J. Nat. Prod. 67, 1476–1482.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSon, K.-H., Oh, H.-M., Choi, S.-K., Han, D. C. & Kwon, B.-M. (2005). Bioorg. Med. Chem. Lett. 15, 2019–2021.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVo, N. T., Pace, R. D. M., O'Har, F. & Gaunt, M. J. (2008). J. Am. Chem. Soc. 130, 404–405.  CrossRef CAS Google Scholar
First citationWen, C.-C., Kuo, Y.-H., Jan, J.-T., Liang, P.-H., Wang, S.-Y., Liu, H.-G., Lee, C.-K., Chang, S.-T., Kuo, C.-J., Lee, S.-S., Hou, C.-C., Hsiao, P.-W., Chien, S.-C., Shyur, L.-F. & Yang, N.-S. (2007). J. Med. Chem. 50, 4087–4095.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, Z., Kitano, Y., Chiba, K., Shibata, N., Kurokawa, H., Doi, Y., Arakawa, Y. & Tada, M. (2001). Bioorg. Med. Chem. 9, 347–356.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYang, L.-B., Li, L., Huang, S.-X., Pu, H.-X., Zhao, Y., Ma, Y.-B., Chen, J.-J., Leng, C.-H., Tao, Z.-M. & Sun, H.-D. (2011). Chem. Pharm. Bull. 59, 1102–1105.  CrossRef CAS Google Scholar
First citationYoshikawa, K., Kokudo, N., Tanaka, M., Nakano, T., Shibata, H., Aragaki, N., Higuchi, T. & Hashimoto, T. (2008). Chem. Pharm. Bull. 56, 89–92.  CrossRef CAS Google Scholar
First citationZeroual, A., Mazoir, N., Berraho, M., Auhmani, A. & Benharref, A. (2007). Acta Cryst. E63, o3497–o3498.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZeroual, A., Mazoir, N., Daran, J.-C., Akssira, M. & Benharref, A. (2008). Acta Cryst. E64, o604–o605.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds