research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of a pyridiniminium bromide salt: 1-[2-([1,1′-biphen­yl]-4-yl)-2-oxoeth­yl]-3-methyl-1,4-di­hydro­pyridin-4-iminium bromide

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, GSSS Institute of Engineering & Technology for Women, Mysuru 570 016, Karnataka, India, bSchool of Chemical Sciences, Universiti Sains Malaysia, Penang 11800 USM, Malaysia, cDepartment of Engineering Chemistry, Vidya Vikas Institute of Engineering & Technology, Visvesvaraya Technological University, Alanahally, Mysuru 570 028, Karnataka, India, dX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, eDepartment of Chemistry, Cauvery Institute of Technology, Mandya 571 402, Karnataka, India, fDepartment of Chemistry, Sri Siddhartha Institute of Technology, Tumkur 572 105, Karnataka, India, and gDepartment of Chemistry, Science College, An-Najah National University, PO Box 7, Nablus, West Bank, Palestinian Territories
*Correspondence e-mail: chidankumar@gmail.com, khalil.i@najah.edu

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 12 April 2018; accepted 23 April 2018; online 27 April 2018)

In the cation of the title salt, C20H19N2O+·Br, the phenyl rings are inclined to one another by 38.38 (8)°, whereas the central phenyl ring and the pyridiniminium ring are almost perpendicular with a dihedral angle of 87.37 (9)°. The N+=C cationic double bond was verified by the shortened bond length of 1.337 (2) Å. In the crystal, the Br anion is linked to the cation by an N—H⋯Br hydrogen bond. C—H⋯O hydrogen bonds link adjacent pyridiniminium cations into inversion dimers with an R22(18) graph-set motif. These dimers are stacked in a phen­yl–phenyl T-shaped geometry through C—H⋯π inter­actions. A Hirshfeld surface analysis was conducted to verify the contributions of the different inter­molecular inter­actions.

1. Chemical context

Over the past decade, ionic liquids have been the subject of intense research as a customizable replacement for volatile organic solvents because of their negligible vapor pressure, excellent thermal stability, high ionic conductivity and solvation ability (Davis, 2004[Davis, J. H. Jr (2004). Chem. Lett. 33, 1072-1077.]). A wide range of applications using ionic liquids has been reported in many areas, such as their use as homogeneous and heterogeneous catalysts (Dong et al., 2016[Dong, B., Song, H., Zhang, W., He, A. & Yao, S. (2016). Curr. Org. Chem. 20, 2894-2910.]) and biological reaction media (Lopes et al., 2017[Lopes, J., Bermejo, M., Martín, Á. & Cocero, M. (2017). ChemEngineering 1, 10; doi: 10.3390/chemengineering1020010]), and in nuclear waste treatment (Ha et al., 2010[Ha, S. H., Menchavez, R. N. & Koo, Y.-M. (2010). Korean J. Chem. Eng. 27, 1360-1365.]) and water purification (Fuerhacker et al., 2012[Fuerhacker, M., Haile, T. M., Kogelnig, D., Stojanovic, A. & Keppler, B. (2012). Water Sci. Technol. 65, 1765-1773.]; Wang & Wei, 2017[Wang, H. & Wei, Y. (2017). RSC Adv. 7, 9079-9089.]).

In the view of the above and of our research inter­est in the synthesis of ionic liquids, we present in this study the crystal structure and Hirshfeld surface analysis of the title pyridin­iminium halide salt.

[Scheme 1]

2. Structural commentary

Fig. 1[link] shows the asymmetric unit of the title salt, consisting of one 1-(2-([1,1′-biphen­yl]-4-yl)-2-oxoeth­yl)-3-methyl­pyridin-4(1H)-iminium cation and one bromide anion. The cation is constructed from a pyridiniminium ring (N1/C15–C19) and a biphenyl unit (C1–C6 and C7–C12), inter­connected by a (C=O)—C ketone bridge. The biphenyl conformation experiences non-bounded steric repulsion between ortho-hydrogen atoms (Poater et al., 2006[Poater, J., Solà, M. & Bickelhaupt, F. M. (2006). Chem. Eur. J. 12, 2889-2895.]), with the phenyl rings inclined to one another by 38.38 (8)°. The second phenyl ring (C7–C12) is nearly parallel to the ketone bridge (O1/C13–C14), as shown by the torsion angles C9—C10—C13—O1 [−179.10 (18)°] and C9—C10—C13—C14 [1.7 (2)°]. Conversely, this phenyl ring is almost perpendicular to the pyridin­iminium ring [dihedral angle = 87.37 (9)°]. The bond lengths and angles in the cation are generally within normal ranges. However, the N2—C17 bond [1.337 (2) Å] is shorter than expected for an NH2—Car single bond [1.38 (3) Å] although similar bond lengths have been observed in related compounds with an N+=C double bond (Chidan Kumar et al., 2017[Chidan Kumar, C. S., Sim, A. J., Ng, W. Z., Chia, T. S., Loh, W.-S., Kwong, H. C., Quah, C. K., Naveen, S., Lokanath, N. K. & Warad, I. (2017). Acta Cryst. E73, 927-931.]; Sharmila et al., 2014[Sharmila, N., Sundar, T. V., Yasodha, A., Puratchikody, A. & Sridhar, B. (2014). Acta Cryst. E70, o1293-o1294.]; Yue et al., 2013[Yue, W.-W., Li, H.-J., Xiang, T., Qin, H., Sun, S.-D. & Zhao, C.-S. (2013). J. Membr. Sci. 446, 79-91.]).

[Figure 1]
Figure 1
The mol­ecular structure of the component ions of the title salt, indicating the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, the bromide anion is linked to the cation via an N2—H2N2⋯Br1 hydrogen bond (Table 1[link]). The bromide anion is surrounded by three other cations with short H⋯Br contracts varying from 2.52 to 2.88 Å (Table 1[link]). Pairs of C1—H1A⋯O1 hydrogen bonds link the pyridiniminium cations into inversion dimers with an [R_{2}^{2}](18) graph-set motif (Table 1[link], Fig. 2[link]). The dimers are stacked in a phen­yl–phenyl T-shaped geometry through C3—H3ACg1 inter­actions (Cg1 is the centroid of the C1–C6 phenyl ring).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯Br1 0.83 (2) 2.61 (2) 3.3514 (17) 150 (2)
N2—H2N2⋯Br1i 0.86 (2) 2.52 (2) 3.3763 (17) 174 (2)
C1—H1A⋯O1ii 0.95 2.52 3.431 (2) 162
C14—H14A⋯Br1iii 0.99 2.88 3.710 (2) 141
C19—H19A⋯Br1iv 0.95 2.82 3.5415 (18) 134
C3—H3ACg1v 0.95 2.81 3.6963 (19) 155
Symmetry codes: (i) -x+2, -y+3, -z+1; (ii) -x+1, -y+1, -z+1; (iii) -x+2, -y+2, -z+1; (iv) [x, -y+{\script{5\over 2}}, z+{\script{1\over 2}}]; (v) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
Partial packing diagram of the cation showing the C1—H1A⋯O1 hydrogen bonds (blue dashed lines) and C3—H3Aπ inter­actions (green dashed lines).

4. Hirshfeld surface analysis

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) of the title salt was generated by CrystalExplorer3.1 (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). University of Western Australia.]), and comprised dnorm surface plots, electrostatic potentials and 2D fingerprint plots (Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]). The ball-and-stick model, dnorm surface plots and electrostatic potentials of the title salt are shown in Fig. 3[link]. Those plots were generated to qu­antify and visualize the inter­molecular inter­actions and to explain the observed crystal packing. The dark-red spots on the dnorm surface arise as a result of short inter­atomic contacts, while the other weak inter­molecular inter­actions appear as light-red spots. Furthermore, negative electrostatic potential (red regions) in the electrostatic potential map indicates hydrogen-acceptor potential, whereas the hydrogen donors are represented by positive electrostatic potential (blue regions) (Spackman et al., 2008[Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377-388.]).

[Figure 3]
Figure 3
dnorm and electrostatic potential mapped on Hirshfeld surfaces for visualizing the inter­molecular contacts in the title salt. The ball-and-stick models shown here and in the following figures represent the different orientations corresponding to the Hirshfeld surfaces and their electrostatic potentials.

The dnorm surface of the title salt shows a dark-red spot on the N–H hydrogen atom and on the bromide atom, which is the result of the strong N2—H1N2⋯Br1 and N2—H2N2⋯Br1 hydrogen bonds present in the structure (Fig. 4[link]a). These observations are further confirmed by the respective electrostatic potential maps, where the atoms involved in strong hydrogen bonds are seen as dark-blue and dark-red regions (Fig. 4[link]b). Beside those two short inter­molecular contacts, the C—H⋯O and C—H⋯Br inter­actions are shown as light-red spots on the dnorm surface (Fig. 5[link]). Finally, the C—H⋯π inter­action is shown as a light-red spot on the dnorm surface (Fig. 6[link]).

[Figure 4]
Figure 4
Visualization of N—H⋯O hydrogen bond inter­actions through the (a) dnorm and (b) electrostatic potential maps. Hydrogen bonds are represented by dashed lines.
[Figure 5]
Figure 5
Visualization of (a) C—H⋯O hydrogen bonds and (b) C—H⋯Br inter­actions through the dnorm maps. Hydrogen bonds are represented by dashed lines.
[Figure 6]
Figure 6
Visualization of C—H⋯π inter­actions through the dnorm maps.

A qu­anti­tative analysis of the inter­molecular inter­actions can be made by studying the fingerprint plots (FP). The FP is shown with characteristic pseudo-symmetry wings in the de and di diagonal axes represent the overall two-dimensional FP and those delineated into H⋯H, H⋯C/C⋯H, H⋯Br/Br⋯H and H⋯O/O⋯H contacts, respectively (Fig. 7[link]). The most significant inter­molecular inter­actions are the H⋯H inter­action (41.8%), which appear at the central region of the FP with de = di ≃ 2.2 Å (Fig. 7[link]b). The reciprocal H⋯C/C⋯H inter­actions appear as two symmetrical broad wings with de + di ≃ 2.7 Å and contribute 29.2% to the Hirshfeld surface (Fig. 7[link]c). The reciprocal H⋯Br/Br⋯H and H⋯O/O⋯H inter­actions with 16.7% and 7.3% contributions are present as sharp symmetrical spikes at diagonal axes de + di ≃ 2.3 and 2.4 Å, respectively (Fig. 7[link]de). The percentage contributions for other inter­molecular contacts are less than 5% in the Hirshfeld surface mapping.

[Figure 7]
Figure 7
Two-dimensional fingerprint plots of the title salt showing the different percentage contributions for the various types of inter­actions.

5. Synthesis and crystallization

The synthesis of the title compound is illustrated in Fig. 8[link]. A mixture of 1-([1,1′-biphen­yl]-4-yl)-2-bromo­ethan-1-one (2.75 g, 10 mmol) and 3-methyl­pyridin-4-amine (0.11 g, 1mmol) was dissolved in 10 ml of toluene at room temperature, followed by stirring at 358 K for 18 h. The completion of the reaction was marked by the amount of the separated solid from the initially clear and homogenous mixture of the starting materials. The solid was filtered from the unreacted starting materials and solvent, and subsequently washed with ethyl acetate. The final pyridiniminium salt was obtained after the solid was dried under reduced pressure to remove all volatile organic compounds (Said et al., 2017[Said, M. A., Aouad, M. R., Hughes, D. L., Almehmadi, M. A. & Messali, M. (2017). Acta Cryst. E73, 1831-1834.]). Plate-like yellow crystals were obtained by slow evaporation of a solution in acetone.

[Figure 8]
Figure 8
Synthesis of the title compound.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. C-bound H atoms were positioned geometrically [C—H = 0.95–0.99 Å] and refined using a riding model with Uiso(H) = 1.2 or 1.5Ueq(C). All N-bound H atoms were located from a difference-Fourier map and freely refined.

Table 2
Experimental details

Crystal data
Chemical formula C20H19N2O+·Br
Mr 383.28
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 15.3991 (10), 7.9078 (5), 15.7645 (10)
β (°) 113.037 (1)
V3) 1766.6 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.34
Crystal size (mm) 0.27 × 0.11 × 0.08
 
Data collection
Diffractometer Bruker APEXII DUO CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.499, 0.574
No. of measured, independent and observed [I > 2σ(I)] reflections 28949, 4731, 3913
Rint 0.040
(sin θ/λ)max−1) 0.685
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.075, 1.03
No. of reflections 4731
No. of parameters 226
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.70, −0.23
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: SHELXL2013 (Sheldrick, 2015) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2015) and PLATON (Spek, 2009).

1-[2-([1,1'-Biphenyl]-4-yl)-2-oxoethyl]-3-methyl-1,4-dihydropyridin-4-iminium bromide top
Crystal data top
C20H19N2O+·BrF(000) = 784
Mr = 383.28Dx = 1.441 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 15.3991 (10) ÅCell parameters from 7970 reflections
b = 7.9078 (5) Åθ = 2.6–28.7°
c = 15.7645 (10) ŵ = 2.34 mm1
β = 113.037 (1)°T = 100 K
V = 1766.6 (2) Å3Plate, yellow
Z = 40.27 × 0.11 × 0.08 mm
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
4731 independent reflections
Radiation source: fine-focus sealed tube3913 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
φ and ω scansθmax = 29.2°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 2021
Tmin = 0.499, Tmax = 0.574k = 1010
28949 measured reflectionsl = 2121
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.075 w = 1/[σ2(Fo2) + (0.0375P)2 + 0.8608P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
4731 reflectionsΔρmax = 0.70 e Å3
226 parametersΔρmin = 0.23 e Å3
Special details top

Experimental. The following wavelength and cell were deduced by SADABS from the direction cosines etc. They are given here for emergency use only: CELL 0.71093 15.443 7.924 15.800 89.974 113.042 90.030

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.92732 (2)1.53732 (2)0.32391 (2)0.02112 (6)
N10.85797 (10)0.77203 (18)0.52316 (10)0.0165 (3)
N20.92877 (11)1.25846 (19)0.48455 (12)0.0191 (3)
H1N20.9168 (16)1.296 (3)0.4320 (17)0.028 (6)*
H2N20.9689 (16)1.310 (3)0.5315 (16)0.026 (6)*
O10.68941 (9)0.74507 (17)0.53143 (11)0.0288 (3)
C10.48304 (13)0.0147 (2)0.60543 (12)0.0190 (3)
H1A0.44420.06140.55970.023*
C20.44287 (13)0.1546 (2)0.62926 (12)0.0217 (4)
H2A0.37690.17390.59930.026*
C30.49803 (13)0.2662 (2)0.69624 (13)0.0232 (4)
H3A0.47030.36130.71270.028*
C40.59455 (14)0.2375 (2)0.73918 (13)0.0241 (4)
H4A0.63280.31300.78560.029*
C50.63554 (13)0.0997 (2)0.71483 (13)0.0209 (4)
H5A0.70180.08300.74360.025*
C60.57967 (12)0.0150 (2)0.64790 (12)0.0166 (3)
C70.62172 (12)0.1671 (2)0.62368 (11)0.0160 (3)
C80.71004 (12)0.1613 (2)0.61812 (12)0.0177 (3)
H8A0.74490.05870.63120.021*
C90.74715 (12)0.3039 (2)0.59364 (12)0.0176 (3)
H9A0.80720.29810.59000.021*
C100.69697 (12)0.4563 (2)0.57416 (12)0.0159 (3)
C110.60974 (12)0.4633 (2)0.58173 (12)0.0173 (3)
H11A0.57560.56670.57030.021*
C120.57262 (12)0.3209 (2)0.60576 (12)0.0181 (3)
H12A0.51290.32730.61020.022*
C130.73288 (12)0.6126 (2)0.54717 (12)0.0174 (3)
C140.82786 (12)0.6034 (2)0.53803 (13)0.0187 (3)
H14A0.87570.55390.59480.022*
H14B0.82240.52930.48560.022*
C150.83058 (12)0.8351 (2)0.43666 (12)0.0178 (3)
H15A0.79580.76420.38610.021*
C160.85084 (12)0.9961 (2)0.41921 (12)0.0181 (3)
C170.90417 (11)1.1006 (2)0.49601 (12)0.0160 (3)
C180.92986 (12)1.0325 (2)0.58534 (12)0.0168 (3)
H18A0.96381.09990.63780.020*
C190.90626 (12)0.8711 (2)0.59677 (12)0.0175 (3)
H19A0.92390.82700.65730.021*
C200.81947 (15)1.0614 (3)0.32252 (13)0.0268 (4)
H20A0.78900.97000.27900.040*
H20B0.87431.10260.31180.040*
H20C0.77451.15410.31350.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02487 (10)0.02019 (10)0.01683 (9)0.00208 (7)0.00658 (7)0.00115 (7)
N10.0153 (7)0.0152 (7)0.0203 (7)0.0005 (5)0.0083 (6)0.0004 (6)
N20.0222 (8)0.0166 (7)0.0195 (8)0.0018 (6)0.0091 (6)0.0010 (6)
O10.0230 (7)0.0184 (6)0.0487 (9)0.0050 (5)0.0179 (6)0.0081 (6)
C10.0190 (8)0.0230 (9)0.0155 (8)0.0001 (7)0.0072 (7)0.0000 (7)
C20.0197 (9)0.0271 (9)0.0200 (9)0.0050 (7)0.0097 (7)0.0031 (7)
C30.0284 (10)0.0218 (9)0.0233 (9)0.0050 (7)0.0144 (8)0.0009 (7)
C40.0272 (10)0.0219 (9)0.0245 (9)0.0033 (7)0.0116 (8)0.0063 (7)
C50.0197 (8)0.0205 (8)0.0230 (9)0.0004 (7)0.0090 (7)0.0026 (7)
C60.0193 (8)0.0172 (8)0.0155 (8)0.0003 (6)0.0093 (7)0.0008 (6)
C70.0165 (8)0.0174 (8)0.0134 (8)0.0011 (6)0.0052 (6)0.0001 (6)
C80.0173 (8)0.0158 (8)0.0201 (8)0.0011 (6)0.0073 (7)0.0006 (6)
C90.0163 (8)0.0178 (8)0.0204 (9)0.0007 (6)0.0089 (7)0.0007 (7)
C100.0160 (8)0.0165 (8)0.0145 (8)0.0005 (6)0.0052 (6)0.0005 (6)
C110.0161 (8)0.0164 (8)0.0181 (8)0.0030 (6)0.0053 (6)0.0011 (7)
C120.0147 (8)0.0203 (8)0.0198 (8)0.0020 (6)0.0072 (7)0.0008 (7)
C130.0151 (8)0.0162 (8)0.0198 (8)0.0005 (6)0.0054 (7)0.0011 (7)
C140.0189 (8)0.0136 (7)0.0248 (9)0.0001 (6)0.0096 (7)0.0012 (7)
C150.0166 (8)0.0196 (8)0.0164 (8)0.0010 (6)0.0056 (7)0.0014 (6)
C160.0145 (8)0.0225 (9)0.0171 (8)0.0010 (6)0.0059 (7)0.0009 (6)
C170.0141 (8)0.0163 (8)0.0199 (8)0.0019 (6)0.0092 (7)0.0007 (7)
C180.0181 (8)0.0183 (8)0.0152 (8)0.0007 (7)0.0078 (6)0.0023 (7)
C190.0179 (8)0.0189 (8)0.0178 (8)0.0024 (6)0.0093 (7)0.0016 (7)
C200.0282 (10)0.0311 (10)0.0169 (9)0.0046 (8)0.0044 (7)0.0049 (8)
Geometric parameters (Å, º) top
N1—C151.355 (2)C8—H8A0.9500
N1—C191.356 (2)C9—C101.400 (2)
N1—C141.460 (2)C9—H9A0.9500
N2—C171.337 (2)C10—C111.395 (2)
N2—H1N20.83 (2)C10—C131.483 (2)
N2—H2N20.86 (2)C11—C121.381 (2)
O1—C131.215 (2)C11—H11A0.9500
C1—C21.389 (3)C12—H12A0.9500
C1—C61.392 (2)C13—C141.526 (2)
C1—H1A0.9500C14—H14A0.9900
C2—C31.383 (3)C14—H14B0.9900
C2—H2A0.9500C15—C161.365 (2)
C3—C41.390 (3)C15—H15A0.9500
C3—H3A0.9500C16—C171.430 (2)
C4—C51.387 (3)C16—C201.499 (3)
C4—H4A0.9500C17—C181.412 (2)
C5—C61.402 (2)C18—C191.358 (2)
C5—H5A0.9500C18—H18A0.9500
C6—C71.485 (2)C19—H19A0.9500
C7—C81.397 (2)C20—H20A0.9800
C7—C121.401 (2)C20—H20B0.9800
C8—C91.385 (2)C20—H20C0.9800
C15—N1—C19119.94 (15)C12—C11—C10120.46 (16)
C15—N1—C14120.28 (15)C12—C11—H11A119.8
C19—N1—C14119.51 (15)C10—C11—H11A119.8
C17—N2—H1N2120.3 (16)C11—C12—C7120.95 (16)
C17—N2—H2N2118.3 (15)C11—C12—H12A119.5
H1N2—N2—H2N2120 (2)C7—C12—H12A119.5
C2—C1—C6120.64 (17)O1—C13—C10122.65 (16)
C2—C1—H1A119.7O1—C13—C14119.56 (16)
C6—C1—H1A119.7C10—C13—C14117.78 (15)
C3—C2—C1120.60 (17)N1—C14—C13110.35 (14)
C3—C2—H2A119.7N1—C14—H14A109.6
C1—C2—H2A119.7C13—C14—H14A109.6
C2—C3—C4119.21 (17)N1—C14—H14B109.6
C2—C3—H3A120.4C13—C14—H14B109.6
C4—C3—H3A120.4H14A—C14—H14B108.1
C5—C4—C3120.62 (17)N1—C15—C16122.72 (16)
C5—C4—H4A119.7N1—C15—H15A118.6
C3—C4—H4A119.7C16—C15—H15A118.6
C4—C5—C6120.33 (17)C15—C16—C17118.01 (16)
C4—C5—H5A119.8C15—C16—C20121.21 (17)
C6—C5—H5A119.8C17—C16—C20120.78 (16)
C1—C6—C5118.57 (16)N2—C17—C18120.51 (16)
C1—C6—C7120.31 (16)N2—C17—C16121.62 (16)
C5—C6—C7121.11 (16)C18—C17—C16117.87 (16)
C8—C7—C12118.53 (16)C19—C18—C17120.40 (16)
C8—C7—C6121.51 (15)C19—C18—H18A119.8
C12—C7—C6119.96 (15)C17—C18—H18A119.8
C9—C8—C7120.55 (16)N1—C19—C18121.01 (16)
C9—C8—H8A119.7N1—C19—H19A119.5
C7—C8—H8A119.7C18—C19—H19A119.5
C8—C9—C10120.64 (16)C16—C20—H20A109.5
C8—C9—H9A119.7C16—C20—H20B109.5
C10—C9—H9A119.7H20A—C20—H20B109.5
C11—C10—C9118.85 (16)C16—C20—H20C109.5
C11—C10—C13118.12 (15)H20A—C20—H20C109.5
C9—C10—C13123.02 (16)H20B—C20—H20C109.5
C6—C1—C2—C30.6 (3)C11—C10—C13—O10.1 (3)
C1—C2—C3—C40.5 (3)C9—C10—C13—O1179.10 (18)
C2—C3—C4—C50.6 (3)C11—C10—C13—C14179.35 (16)
C3—C4—C5—C61.5 (3)C9—C10—C13—C141.7 (2)
C2—C1—C6—C50.3 (3)C15—N1—C14—C1387.86 (19)
C2—C1—C6—C7178.51 (16)C19—N1—C14—C1386.16 (18)
C4—C5—C6—C11.4 (3)O1—C13—C14—N18.2 (2)
C4—C5—C6—C7177.47 (17)C10—C13—C14—N1172.54 (14)
C1—C6—C7—C8142.49 (18)C19—N1—C15—C161.1 (3)
C5—C6—C7—C838.7 (3)C14—N1—C15—C16175.11 (16)
C1—C6—C7—C1237.5 (2)N1—C15—C16—C170.7 (3)
C5—C6—C7—C12141.33 (18)N1—C15—C16—C20179.90 (17)
C12—C7—C8—C91.2 (3)C15—C16—C17—N2178.41 (16)
C6—C7—C8—C9178.73 (16)C20—C16—C17—N20.8 (3)
C7—C8—C9—C100.1 (3)C15—C16—C17—C182.1 (2)
C8—C9—C10—C111.4 (3)C20—C16—C17—C18178.76 (17)
C8—C9—C10—C13179.68 (16)N2—C17—C18—C19178.81 (16)
C9—C10—C11—C121.6 (3)C16—C17—C18—C191.7 (2)
C13—C10—C11—C12179.36 (16)C15—N1—C19—C181.6 (2)
C10—C11—C12—C70.5 (3)C14—N1—C19—C18175.62 (15)
C8—C7—C12—C111.0 (3)C17—C18—C19—N10.2 (3)
C6—C7—C12—C11179.00 (16)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N2—H1N2···Br10.83 (2)2.61 (2)3.3514 (17)150 (2)
N2—H2N2···Br1i0.86 (2)2.52 (2)3.3763 (17)174 (2)
C1—H1A···O1ii0.952.523.431 (2)162
C14—H14A···Br1iii0.992.883.710 (2)141
C19—H19A···Br1iv0.952.823.5415 (18)134
C3—H3A···Cg1v0.952.813.6963 (19)155
Symmetry codes: (i) x+2, y+3, z+1; (ii) x+1, y+1, z+1; (iii) x+2, y+2, z+1; (iv) x, y+5/2, z+1/2; (v) x+1, y1/2, z+3/2.
 

Acknowledgements

HCK thanks the Malaysian Government for a MyBrain15 (MyPhD) scholarship.

References

First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChidan Kumar, C. S., Sim, A. J., Ng, W. Z., Chia, T. S., Loh, W.-S., Kwong, H. C., Quah, C. K., Naveen, S., Lokanath, N. K. & Warad, I. (2017). Acta Cryst. E73, 927–931.  CrossRef IUCr Journals Google Scholar
First citationDavis, J. H. Jr (2004). Chem. Lett. 33, 1072–1077.  CAS Google Scholar
First citationDong, B., Song, H., Zhang, W., He, A. & Yao, S. (2016). Curr. Org. Chem. 20, 2894–2910.  CrossRef CAS Google Scholar
First citationFuerhacker, M., Haile, T. M., Kogelnig, D., Stojanovic, A. & Keppler, B. (2012). Water Sci. Technol. 65, 1765–1773.  CrossRef CAS Google Scholar
First citationHa, S. H., Menchavez, R. N. & Koo, Y.-M. (2010). Korean J. Chem. Eng. 27, 1360–1365.  CrossRef CAS Google Scholar
First citationLopes, J., Bermejo, M., Martín, Á. & Cocero, M. (2017). ChemEngineering 1, 10; doi: 10.3390/chemengineering1020010  CrossRef Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPoater, J., Solà, M. & Bickelhaupt, F. M. (2006). Chem. Eur. J. 12, 2889–2895.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSaid, M. A., Aouad, M. R., Hughes, D. L., Almehmadi, M. A. & Messali, M. (2017). Acta Cryst. E73, 1831–1834.  CrossRef IUCr Journals Google Scholar
First citationSharmila, N., Sundar, T. V., Yasodha, A., Puratchikody, A. & Sridhar, B. (2014). Acta Cryst. E70, o1293–o1294.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, H. & Wei, Y. (2017). RSC Adv. 7, 9079–9089.  CrossRef CAS Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). University of Western AustraliaGoogle Scholar
First citationYue, W.-W., Li, H.-J., Xiang, T., Qin, H., Sun, S.-D. & Zhao, C.-S. (2013). J. Membr. Sci. 446, 79–91.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds