research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of strontium and barium acesulafame (6-methyl-4-oxo-4H-1,2,3-oxa­thia­zin-3-ide 2,2-dioxide)

CROSSMARK_Color_square_no_text.svg

aChemistry Department, SUNY Buffalo State, 1300 Elmwood Ave, Buffalo, NY 14222, USA
*Correspondence e-mail: nazareay@buffalostate.edu

Edited by M. Zeller, Purdue University, USA (Received 17 April 2018; accepted 19 April 2018; online 24 April 2018)

Both strontium and barium acesulfames, namely poly[aqua­bis­(μ3-6-methyl-2,2-dioxo-1,2λ6,3-oxa­thia­zin-4-olato)strontium(II)], [Sr(C4H4NO4S)2(H2O)]n, and the barium(II) analogue, [Ba(C4H4NO4S)2(H2O)]n, crystallize in nearly identical isotypic forms, with barium–oxygen inter­atomic distances being longer due to the larger ionic radius of the barium(II) ion. The coordination number of the metal ion is 9; the coordination polyhedra can be described as distorted capped square anti­prisms [Johnson solid J10; Johnson (1966). Can. J. Math. 18, 169–200]. The conformation of the acesulafame ions is a distorted envelope with an out-of-plane S atom. Metal and acesulfame ions are assembled into infinitive chains along the [100] axis. These chains are connected via hydrogen bonds into a three-dimensional network.

1. Chemical context

Acesulfame is one of the most common sweeteners; usually it is used in the form of a potassium salt. Salts with all alkali metals, ammonium, magnesium, and calcium ions, as well as its protonated mol­ecular form, are also known. The almost identical crystal structures of the strontium and barium salts are reported here.

[Scheme 1]

2. Structural commentary

Both the strontium and barium compounds crystallize in nearly identical isotypic forms (Fig. 1[link]), with the barium–oxygen inter­atomic distances being longer due to the larger ionic radius of the barium(II) ion (Tables 1[link] and 2[link]). Because of the similarity of the structures, representations would be visually identical, and all figures are shown for the strontium salt only. In both cases, the coordination sphere of the metal ion contains a water mol­ecule, two O atoms from carbonyl groups, two O atoms from sulfonyl fragments, and two bidentate amide groups coordinated through both their carbonyl group and the adjacent deprotonated N atom (Fig. 2[link]). The total coordination number is nine. This coordination polyhedron can be described as a distorted capped square anti­prism. The corresponding ideal polyhedron is a gyro­elongated square pyramid, a Johnson solid J10 (Johnson, 1966[Johnson, N. W. (1966). Can. J. Math. 18, 169-200.]). In this case, the base of the polyhedron is not a square but a rectangle formed by two N and two O atoms from two bidentate amide groups. Nitro­gen–oxygen distances within each of the groups are practically the same: N1i⋯O2i = 2.232 (2) Å and N2iii⋯O6iii = 2.233 (2) Å (Sr); and N1i⋯O2i = 2.233 (3) Å and N2iii⋯O6iii = 2.239 (2) Å (Ba). The inter­atomic separations between these groups are much longer: N1i⋯O6iii = 3.0609 (19) (Sr) and 3.174 (3) Å (Ba), and N2iii⋯O2i = 3.0787 (18) (Sr) and 3.184 (3) Å (Ba) [symmetry codes: (i) −x + 1, −y + 1, −z + 1; (iii) −x + 2, −y + 1, −z + 1.]

Table 1
Selected bond lengths (Å) for Sr[link]

Sr1—O1 2.6000 (14) Sr1—O6iii 2.8070 (13)
Sr1—O2i 2.9039 (14) Sr1—O9iv 2.5782 (12)
Sr1—O2 2.5026 (12) Sr1—N1i 2.7553 (15)
Sr1—O5ii 2.5790 (13) Sr1—N2iii 2.7447 (14)
Sr1—O6 2.5116 (12)    
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1, y, z; (iii) -x+2, -y+1, -z+1; (iv) x-1, y, z.

Table 2
Selected bond lengths (Å) for Ba[link]

Ba1—O1 2.732 (2) Ba1—O6iii 2.9192 (18)
Ba1—O2i 2.9714 (19) Ba1—O9iv 2.7478 (18)
Ba1—O2 2.6812 (17) Ba1—N1i 2.921 (2)
Ba1—O5ii 2.7560 (18) Ba1—N2iii 2.9077 (19)
Ba1—O6 2.6788 (16)    
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1, y, z; (iii) -x+2, -y+1, -z+1; (iv) x-1, y, z.
[Figure 1]
Figure 1
The numbering scheme of strontium acesulfame monohydrate, shown with 50% probability displacement elipsoids.
[Figure 2]
Figure 2
The coordination polyhedron of the Sr metal ion. Symmetry codes for the base rectangle atoms are: N1 and O2 at (−x + 1, −y + 1, −z + 1), N2 and O6 at (−x + 2, −y + 1, −z + 1). For the upper rectangle: O9 is at (x − 1, y, z) and O5 is at (x + 1, y, z).

Deviations from exact right angles are around 5° for the Sr and 1.5° for the Ba structure. The upper square of the coordination polyhedron is less distorted, with angles very close (mostly within 1°) to 90°. The two average planes of the base rectangle and upper square are nearly coplanar, with the angles between them being 1.17 (4) (Sr) and 0.99 (6)° (Ba). The line between the metal ions and the capping oxygen of the water mol­ecules are nearly perpendicular to these planes: the angles between the upper plane normal and the connecting line are 4.90 (4) (Sr) and 5.58 (6)° (Ba).

The geometries of the two acesulfame anions in each structure are very similar to each other (Fig. 3[link]), as well as to those of previously reported compounds. The six-membered rings have only one atom with a tetra­hedral environment (S). The other five atoms deviate only slightly from their average planes (Fig. 4[link]). This conformation can be described as an envelope, slightly distorted toward a boat.

[Figure 3]
Figure 3
Overlay of the two acesulafame ions in the Sr structure.
[Figure 4]
Figure 4
View of the acesulafame anion in the Sr structure. Deviations from the average plane of five atoms in six-membered ring are 0.031 (N1), −0.010 (O3), −0.011 (C3), +0.042 (C2), −0.052 (C1) and 0.5377 (15) Å (S1).

3. Supra­molecular features

Each acesulfame anion is connected to three strontium (or barium) ions via a bridging O atom of the amide carbonyl group, an N atom of this group, and one of the O atoms of a sulfonyl group. Each metal ion is directly connected to six acesulfame anions. As a result, metal ions and acesulfame anions form infinite chains along the [100] axis (Fig. 5[link]). The O atoms of the two sulfonyl groups that are not connected to metal ions form, instead, strong hydrogen bonds with both H atoms of the water mol­ecule. These hydrogen bonds (Tables 3[link] and 4[link]) connect each chain to four neighboring parellel chains, thus creating a three-dimensional assembly (Fig. 6[link]). There are also two short C—H⋯O contacts (Tables 3[link] and 4[link]) which may additionally stabilize the crystal structures.

Table 3
Hydrogen-bond geometry (Å, °) for Sr[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O4v 0.79 (3) 2.18 (3) 2.899 (2) 151 (3)
O1—H1B⋯O8vi 0.83 (3) 2.22 (3) 2.9850 (19) 152 (3)
C4—H4B⋯O5v 0.98 2.37 3.273 (3) 153
C6—H6⋯O8vi 0.95 2.47 3.318 (2) 148
Symmetry codes: (v) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (vi) -x+2, -y+1, -z.

Table 4
Hydrogen-bond geometry (Å, °) for Ba[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O4v 0.74 (4) 2.12 (4) 2.829 (3) 162 (4)
O1—H1B⋯O8vi 0.74 (4) 2.20 (4) 2.889 (3) 156 (4)
C4—H4B⋯O5v 0.98 2.44 3.361 (4) 155
C6—H6⋯O8vi 0.95 2.52 3.357 (3) 147
Symmetry codes: (v) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (vi) -x+2, -y+1, -z.
[Figure 5]
Figure 5
The infinite chain of metal ions and acesulafame anions along the [100] axis. The view is along the [010] vector.
[Figure 6]
Figure 6
The packing of Sr acesulafame, viewed along the [100] axis.

4. Database survey

There are over 40 acesulfame structures deposited in the Cambridge Structural Database (CSD; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]; Version 5.38). Of these structures, alkali metal, ammonium, and thallium salts FEQPUP (Piro et al., 2017[Piro, O. E., Echeverría, G. A., Parajón-Costa, B. S. & Baran, E. J. (2017). J. Chem. Crystallogr. 47, 226-232.]), KMTOZD (Paulus, 1975[Paulus, E. F. (1975). Acta Cryst. B31, 1191-1193.]), SUQTOP, SURCIT and SURCOZ (Piro et al., 2015[Piro, O. E., Echeverría, G. A., Castellano, E. E., Parajón-Costa, B. S. & Baran, E. J. (2015). Z. Naturforsch. Teil B, 70, 491-496.]), TOFPEL (Echeverría et al., 2014[Echeverría, G. A., Piro, O. E., Parajón-Costa, B. S. & Baran, E. J. (2014). Z. Naturforsch. Teil B, 69, 737-741.]), OCAHUY (Baran et al., 2015[Baran, E. J., Parajón-Costa, B. S., Echeverría, G. A. & Piro, O. E. (2015). Maced. J. Chem. Chem. Eng. 34, 95-100.]), magnesium salt XAGVAF (Piro et al., 2016[Piro, O. E., Echeverría, G. A., Parajón-Costa, B. S. & Baran, E. J. (2016). Z. Naturforsch. Teil B, 71, 51-56.]), calcium salt EXUCOR (Demirtas et al., 2012[Demirtas, G., Dege, N., Icbudak, H., Yurdakul, O. & Buyukgungor, H. (2012). J. Inorg. Organomet. Polym. 22, 671-679.]), and protonated forms WURMOM and WURMOM01 (Velaga et al., 2010[Velaga, S. P., Vangala, V. R., Basavoju, S. & Bostrom, D. (2010). Chem. Commun. 46, 3562-3564.]) are closely related to the structures of the title compounds. Several other structures describe coordination compounds with transition-metal ions and various salts of bulky organic cations.

5. Synthesis and crystallization

The protonated form of acesulfame, 6-methyl-1,2,3-oxa­thia­zin-4(3H)-one 2,2-dioxide, was synthesized following a published procedure (Velaga et al., 2010[Velaga, S. P., Vangala, V. R., Basavoju, S. & Bostrom, D. (2010). Chem. Commun. 46, 3562-3564.]). The starting compound, potassium acesulfame, was obtained at a stated purity of 99% and no attempt was made at further purification. 2 g (0.01 mol) of it were dissolved in water (10 ml), acidified with 10 ml of 6 M HCl, and extracted with several portions of methyl­ene chloride (15 ml each). Evaporation of the methyl­ene chloride extract resulted in crystals of protonated acesulfame (identified by X-ray diffraction; CSD refcode WURMOM). Both strontium oxide (100 mg, 0.001 mol) and barium oxide (150 mg, 0.001 mol) were treated with a small amount of water (ca 10 ml), forming the corresponding hydroxides. Stoichiometric amounts (0.002 mol, 320 mg) of 6-methyl-1,2,3-oxa­thia­zin-4(3H)-one 2,2-dioxide were added under gentle heating to neutralize the alkaline solutions. Slow evaporation of the filtrated solutions resulted in colorless crystals (around 100 mg), some of which were suitable for X-ray investigation. No attempts to optimize the reaction conditions or to recover more material were made. Several crystals were tested; the best results obtained are reported here. FT-IR-ATR, Sr–acesulfame (cm−1): 3620, 3550 (H2O), 1641 (amide), 1555, 1173 (SO2), 938.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. All H atoms of water mol­ecules are refined in isotropic approximation. All other H atoms are refined with riding coordinates; methyl H atoms are refined as rotating idealized methyl groups and with Uiso(H) = 1.5Uiso(C).

Table 5
Experimental details

  Sr complex Ba complex
Crystal data
Chemical formula [Sr(C4H4NO4S)2(H2O)] [Ba(C4H4NO4S)2(H2O)]
Mr 429.92 479.64
Crystal system, space group Monoclinic, P21/n Monoclinic, P21/n
Temperature (K) 173 173
a, b, c (Å) 7.9695 (3), 18.5217 (8), 9.7310 (4) 8.2086 (5), 18.8899 (11), 9.8999 (6)
β (°) 99.651 (1) 99.5197 (10)
V3) 1416.05 (10) 1513.93 (16)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 4.15 2.94
Crystal size (mm) 0.55 × 0.13 × 0.07 0.52 × 0.21 × 0.20
 
Data collection
Diffractometer Bruker PHOTON-100 CMOS Bruker PHOTON-100 CMOS
Absorption correction Numerical (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Numerical (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.228, 0.797 0.309, 0.635
No. of measured, independent and observed [I > 2σ(I)] reflections 54583, 5414, 4548 41654, 6324, 5218
Rint 0.043 0.048
(sin θ/λ)max−1) 0.771 0.794
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.062, 1.04 0.032, 0.059, 1.09
No. of reflections 5414 6324
No. of parameters 209 209
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.73, −0.46 1.02, −0.61
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013). Program(s) used to solve structure: SHELXT (Sheldrick, 2015a) for Sr. Program(s) used to refine structure: SHELXLL2016 (Sheldrick, 2015b) for Sr; SHELXL97 (Sheldrick, 2008) for Ba. For both structures, molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Poly[aquabis(µ3-6-methyl-2,2-dioxo-1,2λ6,3-oxathiazin-4-olato)strontium(II)] (Sr) top
Crystal data top
[Sr(C4H4NO4S)2(H2O)]F(000) = 856
Mr = 429.92Dx = 2.017 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.9695 (3) ÅCell parameters from 9082 reflections
b = 18.5217 (8) Åθ = 3.1–33.3°
c = 9.7310 (4) ŵ = 4.15 mm1
β = 99.651 (1)°T = 173 K
V = 1416.05 (10) Å3Needle, colourless
Z = 40.55 × 0.13 × 0.07 mm
Data collection top
Bruker PHOTON-100 CMOS
diffractometer
4548 reflections with I > 2σ(I)
φ and ω scansRint = 0.043
Absorption correction: numerical
(SADABS; Krause et al., 2015)
θmax = 33.2°, θmin = 3.1°
Tmin = 0.228, Tmax = 0.797h = 1212
54583 measured reflectionsk = 2828
5414 independent reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: mixed
wR(F2) = 0.062H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0247P)2 + 1.3759P]
where P = (Fo2 + 2Fc2)/3
5414 reflections(Δ/σ)max = 0.001
209 parametersΔρmax = 0.73 e Å3
0 restraintsΔρmin = 0.46 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sr10.73894 (2)0.46960 (2)0.43922 (2)0.01161 (4)
S10.07248 (5)0.32528 (2)0.53917 (4)0.01432 (7)
S21.37055 (5)0.52355 (2)0.16245 (4)0.01457 (8)
O10.69696 (19)0.37734 (8)0.23495 (15)0.0236 (3)
H1A0.703 (4)0.3346 (16)0.232 (3)0.038 (8)*
H1B0.656 (4)0.3914 (17)0.155 (3)0.049 (9)*
O20.46642 (16)0.41317 (7)0.48048 (14)0.0216 (3)
O30.04339 (16)0.28794 (7)0.38723 (14)0.0207 (3)
O40.11859 (18)0.26877 (7)0.63821 (14)0.0247 (3)
O50.08823 (16)0.35905 (7)0.54351 (14)0.0200 (2)
O61.00611 (16)0.48946 (7)0.33932 (13)0.0185 (2)
O71.34454 (16)0.44775 (8)0.07948 (14)0.0218 (3)
O81.31994 (17)0.57900 (8)0.06234 (13)0.0223 (3)
O91.54716 (15)0.52276 (7)0.22320 (13)0.0197 (2)
N10.21644 (18)0.38308 (8)0.53881 (15)0.0159 (3)
N21.25495 (18)0.51967 (8)0.27867 (14)0.0162 (3)
C10.3450 (2)0.36951 (9)0.46730 (17)0.0149 (3)
C20.3318 (2)0.30990 (10)0.36758 (18)0.0191 (3)
H20.43000.29560.33110.023*
C30.1853 (2)0.27495 (10)0.32641 (18)0.0188 (3)
C40.1419 (3)0.22384 (12)0.2083 (2)0.0310 (4)
H4A0.09830.17890.24190.046*
H4B0.24410.21350.16800.046*
H4C0.05480.24540.13700.046*
C51.1042 (2)0.48462 (9)0.25133 (17)0.0142 (3)
C61.0638 (2)0.43825 (10)0.12897 (17)0.0175 (3)
H60.95110.42030.10400.021*
C71.1800 (2)0.42032 (10)0.05129 (17)0.0186 (3)
C81.1604 (3)0.36965 (12)0.0686 (2)0.0312 (4)
H8A1.18120.39540.15210.047*
H8B1.04460.35000.08480.047*
H8C1.24240.33010.04800.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sr10.01046 (6)0.01363 (7)0.01116 (6)0.00146 (5)0.00300 (4)0.00080 (5)
S10.01438 (17)0.01221 (16)0.01734 (18)0.00014 (13)0.00547 (13)0.00002 (13)
S20.01118 (16)0.0224 (2)0.01036 (16)0.00041 (14)0.00245 (12)0.00008 (14)
O10.0324 (7)0.0183 (6)0.0196 (6)0.0036 (5)0.0034 (5)0.0044 (5)
O20.0156 (6)0.0261 (7)0.0230 (6)0.0074 (5)0.0032 (5)0.0018 (5)
O30.0161 (6)0.0236 (6)0.0235 (6)0.0044 (5)0.0061 (5)0.0086 (5)
O40.0291 (7)0.0179 (6)0.0278 (7)0.0027 (5)0.0068 (5)0.0079 (5)
O50.0156 (5)0.0187 (6)0.0280 (7)0.0015 (5)0.0101 (5)0.0016 (5)
O60.0160 (5)0.0223 (6)0.0189 (6)0.0016 (5)0.0085 (5)0.0008 (5)
O70.0185 (6)0.0283 (7)0.0202 (6)0.0013 (5)0.0077 (5)0.0082 (5)
O80.0196 (6)0.0301 (7)0.0168 (6)0.0013 (5)0.0020 (5)0.0068 (5)
O90.0113 (5)0.0322 (7)0.0153 (5)0.0004 (5)0.0016 (4)0.0019 (5)
N10.0139 (6)0.0156 (6)0.0190 (6)0.0005 (5)0.0049 (5)0.0018 (5)
N20.0132 (6)0.0233 (7)0.0124 (6)0.0028 (5)0.0029 (5)0.0021 (5)
C10.0129 (6)0.0160 (7)0.0155 (7)0.0003 (5)0.0014 (5)0.0042 (5)
C20.0178 (7)0.0211 (8)0.0201 (8)0.0020 (6)0.0077 (6)0.0022 (6)
C30.0213 (8)0.0174 (8)0.0190 (8)0.0012 (6)0.0066 (6)0.0017 (6)
C40.0377 (11)0.0292 (10)0.0274 (10)0.0034 (9)0.0092 (8)0.0135 (8)
C50.0120 (6)0.0177 (7)0.0130 (7)0.0006 (5)0.0024 (5)0.0028 (5)
C60.0162 (7)0.0220 (8)0.0138 (7)0.0033 (6)0.0008 (6)0.0008 (6)
C70.0217 (8)0.0199 (8)0.0137 (7)0.0022 (6)0.0016 (6)0.0014 (6)
C80.0420 (12)0.0308 (10)0.0223 (9)0.0102 (9)0.0099 (8)0.0113 (8)
Geometric parameters (Å, º) top
Sr1—Sr1i4.2816 (3)O5—Sr1iv2.5789 (13)
Sr1—O12.6000 (14)O6—Sr1i2.8070 (13)
Sr1—O2ii2.9039 (14)O6—C51.2556 (19)
Sr1—O22.5026 (12)O7—C71.390 (2)
Sr1—O5iii2.5790 (13)O9—Sr1iii2.5782 (12)
Sr1—O62.5116 (12)N1—Sr1ii2.7553 (15)
Sr1—O6i2.8070 (13)N1—C11.355 (2)
Sr1—O9iv2.5782 (12)N2—Sr1i2.7448 (14)
Sr1—N1ii2.7553 (15)N2—C51.352 (2)
Sr1—N2i2.7447 (14)C1—Sr1ii3.2186 (17)
Sr1—C1ii3.2186 (17)C1—C21.462 (2)
Sr1—C5i3.1761 (16)C2—H20.9500
S1—O31.6134 (13)C2—C31.336 (2)
S1—O41.4285 (13)C3—C41.484 (3)
S1—O51.4323 (13)C4—H4A0.9800
S1—N11.5697 (15)C4—H4B0.9800
S2—O71.6156 (14)C4—H4C0.9800
S2—O81.4264 (13)C5—Sr1i3.1762 (16)
S2—O91.4324 (13)C5—C61.460 (2)
S2—N21.5755 (14)C6—H60.9500
O1—H1A0.79 (3)C6—C71.332 (2)
O1—H1B0.84 (3)C7—C81.485 (3)
O2—Sr1ii2.9040 (14)C8—H8A0.9800
O2—C11.251 (2)C8—H8B0.9800
O3—C31.383 (2)C8—H8C0.9800
O1—Sr1—Sr1i112.25 (3)O4—S1—O5115.48 (8)
O1—Sr1—O2ii133.71 (4)O4—S1—N1113.32 (8)
O1—Sr1—O6i138.44 (4)O5—S1—O3102.85 (7)
O1—Sr1—N1ii135.12 (5)O5—S1—N1111.08 (8)
O1—Sr1—N2i142.25 (5)N1—S1—O3106.45 (7)
O1—Sr1—C1ii144.92 (5)O8—S2—O7106.65 (8)
O1—Sr1—C5i151.65 (5)O8—S2—O9115.79 (8)
O2—Sr1—Sr1i153.49 (3)O8—S2—N2113.00 (8)
O2ii—Sr1—Sr1i107.12 (3)O9—S2—O7103.43 (8)
O2—Sr1—O181.04 (5)O9—S2—N2110.83 (8)
O2—Sr1—O2ii74.08 (5)N2—S2—O7106.12 (7)
O2—Sr1—O5iii91.48 (4)Sr1—O1—H1A133 (2)
O2—Sr1—O6159.74 (4)Sr1—O1—H1B119 (2)
O2—Sr1—O6i121.71 (4)H1A—O1—H1B107 (3)
O2—Sr1—O9iv83.02 (4)Sr1—O2—Sr1ii105.92 (5)
O2—Sr1—N1ii120.35 (4)C1—O2—Sr1158.55 (12)
O2—Sr1—N2i74.94 (4)C1—O2—Sr1ii92.84 (10)
O2ii—Sr1—C1ii22.85 (4)C3—O3—S1117.69 (11)
O2—Sr1—C1ii96.57 (4)S1—O5—Sr1iv139.14 (7)
O2ii—Sr1—C5i72.26 (4)Sr1—O6—Sr1i107.09 (4)
O2—Sr1—C5i100.00 (4)C5—O6—Sr1i95.14 (10)
O5iii—Sr1—Sr1i70.73 (3)C5—O6—Sr1156.71 (12)
O5iii—Sr1—O176.75 (5)C7—O7—S2117.00 (11)
O5iii—Sr1—O2ii140.87 (4)S2—O9—Sr1iii138.38 (8)
O5iii—Sr1—O6i69.04 (4)S1—N1—Sr1ii139.48 (8)
O5iii—Sr1—N1ii134.61 (4)C1—N1—Sr1ii97.17 (10)
O5iii—Sr1—N2i75.24 (4)C1—N1—S1119.36 (12)
O5iii—Sr1—C1ii138.28 (4)S2—N2—Sr1i143.15 (8)
O5iii—Sr1—C5i74.90 (4)C5—N2—Sr1i95.61 (9)
O6i—Sr1—Sr1i34.10 (2)C5—N2—S2119.20 (12)
O6—Sr1—Sr1i38.80 (3)O2—C1—Sr1ii64.31 (9)
O6—Sr1—O179.00 (4)O2—C1—N1117.77 (16)
O6i—Sr1—O2ii87.68 (4)O2—C1—C2121.63 (15)
O6—Sr1—O2ii123.18 (4)N1—C1—Sr1ii58.14 (9)
O6—Sr1—O5iii80.62 (4)N1—C1—C2120.30 (15)
O6—Sr1—O6i72.91 (4)C2—C1—Sr1ii153.07 (11)
O6—Sr1—O9iv93.08 (4)C1—C2—H2119.1
O6—Sr1—N1ii77.19 (4)C3—C2—C1121.80 (15)
O6—Sr1—N2i120.16 (4)C3—C2—H2119.1
O6i—Sr1—C1ii71.99 (4)O3—C3—C4109.98 (16)
O6—Sr1—C1ii101.74 (4)C2—C3—O3121.56 (16)
O6—Sr1—C5i95.93 (4)C2—C3—C4128.27 (17)
O6i—Sr1—C5i23.19 (4)C3—C4—H4A109.5
O9iv—Sr1—Sr1i122.73 (3)C3—C4—H4B109.5
O9iv—Sr1—O169.20 (5)C3—C4—H4C109.5
O9iv—Sr1—O2ii69.51 (4)H4A—C4—H4B109.5
O9iv—Sr1—O5iii145.95 (4)H4A—C4—H4C109.5
O9iv—Sr1—O6i140.95 (4)H4B—C4—H4C109.5
O9iv—Sr1—N1ii74.71 (4)O6—C5—Sr1i61.67 (9)
O9iv—Sr1—N2i134.15 (4)O6—C5—N2117.76 (15)
O9iv—Sr1—C1ii75.76 (4)O6—C5—C6121.39 (15)
O9iv—Sr1—C5i139.15 (4)N2—C5—Sr1i59.32 (8)
N1ii—Sr1—Sr1i67.12 (3)N2—C5—C6120.67 (14)
N1ii—Sr1—O2ii46.36 (4)C6—C5—Sr1i158.19 (11)
N1ii—Sr1—O6i66.77 (4)C5—C6—H6119.0
N1ii—Sr1—C1ii24.69 (4)C7—C6—C5122.03 (16)
N1ii—Sr1—C5i68.71 (4)C7—C6—H6119.0
N2i—Sr1—Sr1i81.44 (3)O7—C7—C8110.95 (16)
N2i—Sr1—O2ii65.98 (4)C6—C7—O7121.31 (15)
N2i—Sr1—O6i47.42 (4)C6—C7—C8127.71 (17)
N2i—Sr1—N1ii82.54 (4)C7—C8—H8A109.5
N2i—Sr1—C1ii67.66 (4)C7—C8—H8B109.5
N2i—Sr1—C5i25.07 (4)C7—C8—H8C109.5
C1ii—Sr1—Sr1i85.22 (3)H8A—C8—H8B109.5
C5i—Sr1—Sr1i57.18 (3)H8A—C8—H8C109.5
C5i—Sr1—C1ii63.40 (4)H8B—C8—H8C109.5
O4—S1—O3106.58 (8)
Sr1—O2—C1—Sr1ii151.3 (3)O3—S1—N1—C135.06 (15)
Sr1—O2—C1—N1175.1 (2)O4—S1—O3—C382.71 (14)
Sr1ii—O2—C1—N123.76 (15)O4—S1—O5—Sr1iv170.15 (11)
Sr1—O2—C1—C21.4 (4)O4—S1—N1—Sr1ii126.76 (12)
Sr1ii—O2—C1—C2149.95 (14)O4—S1—N1—C181.76 (15)
Sr1—O6—C5—Sr1i162.9 (3)O5—S1—O3—C3155.40 (13)
Sr1i—O6—C5—N220.16 (16)O5—S1—N1—Sr1ii5.17 (15)
Sr1—O6—C5—N2177.0 (2)O5—S1—N1—C1146.30 (13)
Sr1—O6—C5—C67.8 (4)O6—C5—C6—C7165.34 (17)
Sr1i—O6—C5—C6155.04 (14)O7—S2—O9—Sr1iii82.06 (12)
Sr1ii—N1—C1—O225.31 (16)O7—S2—N2—Sr1i123.73 (13)
Sr1ii—N1—C1—C2148.50 (13)O7—S2—N2—C535.08 (15)
Sr1i—N2—C5—O620.65 (16)O8—S2—O7—C779.80 (14)
Sr1i—N2—C5—C6154.58 (13)O8—S2—O9—Sr1iii161.68 (10)
Sr1ii—C1—C2—C367.2 (3)O8—S2—N2—Sr1i119.74 (13)
Sr1i—C5—C6—C773.7 (4)O8—S2—N2—C581.44 (15)
S1—O3—C3—C219.8 (2)O9—S2—O7—C7157.64 (12)
S1—O3—C3—C4164.84 (13)O9—S2—N2—Sr1i12.10 (16)
S1—N1—C1—Sr1ii161.78 (14)O9—S2—N2—C5146.71 (13)
S1—N1—C1—O2172.91 (13)N1—S1—O3—C338.52 (15)
S1—N1—C1—C213.3 (2)N1—S1—O5—Sr1iv39.33 (14)
S2—O7—C7—C624.5 (2)N1—C1—C2—C311.3 (3)
S2—O7—C7—C8157.25 (14)N2—S2—O7—C740.92 (14)
S2—N2—C5—Sr1i167.42 (14)N2—S2—O9—Sr1iii31.28 (14)
S2—N2—C5—O6171.93 (13)N2—C5—C6—C79.7 (3)
S2—N2—C5—C612.8 (2)C1—C2—C3—O37.2 (3)
O2—C1—C2—C3162.30 (17)C1—C2—C3—C4167.20 (19)
O3—S1—O5—Sr1iv74.19 (13)C5—C6—C7—O73.0 (3)
O3—S1—N1—Sr1ii116.42 (12)C5—C6—C7—C8175.01 (18)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y, z; (iv) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O4v0.79 (3)2.18 (3)2.899 (2)151 (3)
O1—H1B···O8vi0.83 (3)2.22 (3)2.9850 (19)152 (3)
C4—H4B···O5v0.982.373.273 (3)153
C6—H6···O8vi0.952.473.318 (2)148
Symmetry codes: (v) x+1/2, y+1/2, z1/2; (vi) x+2, y+1, z.
Aquabis(µ3-6-methyl-2,2-dioxo-1,2λ6,3-oxathiazin-4-olato)barium(II) (Ba) top
Crystal data top
[Ba(C4H4NO4S)2(H2O)]F(000) = 928
Mr = 479.64Dx = 2.104 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.2086 (5) ÅCell parameters from 9794 reflections
b = 18.8899 (11) Åθ = 3.0–36.3°
c = 9.8999 (6) ŵ = 2.94 mm1
β = 99.5197 (10)°T = 173 K
V = 1513.93 (16) Å3Block, colourless
Z = 40.52 × 0.21 × 0.20 mm
Data collection top
Bruker PHOTON-100 CMOS
diffractometer
5218 reflections with I > 2σ(I)
Radiation source: sealedtubeRint = 0.048
φ and ω scansθmax = 34.3°, θmin = 3.0°
Absorption correction: numerical
(SADABS; Krause et al., 2015)
h = 1313
Tmin = 0.309, Tmax = 0.635k = 2929
41654 measured reflectionsl = 1515
6324 independent reflections
Refinement top
Refinement on F2Primary atom site location: isomorphous structure methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.059 w = 1/[σ2(Fo2) + (0.0158P)2 + 2.2204P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
6324 reflectionsΔρmax = 1.02 e Å3
209 parametersΔρmin = 0.61 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ba10.73689 (2)0.46819 (2)0.43614 (2)0.01376 (3)
S10.07538 (7)0.32148 (3)0.54490 (6)0.01768 (10)
S21.36455 (6)0.52303 (3)0.15371 (6)0.01847 (11)
O10.6927 (3)0.37493 (12)0.2222 (2)0.0313 (4)
H1A0.692 (5)0.336 (2)0.213 (4)0.047 (12)*
H1B0.664 (5)0.389 (2)0.153 (4)0.041 (11)*
O20.4531 (2)0.40981 (10)0.48151 (19)0.0255 (4)
O30.0469 (2)0.28363 (10)0.39659 (19)0.0259 (4)
O40.1222 (3)0.26718 (10)0.6433 (2)0.0314 (4)
O50.0809 (2)0.35404 (9)0.5498 (2)0.0260 (4)
O61.0152 (2)0.48791 (10)0.33283 (18)0.0227 (4)
O71.3411 (2)0.44828 (10)0.07381 (19)0.0270 (4)
O81.3107 (2)0.57651 (11)0.05494 (18)0.0270 (4)
O91.5363 (2)0.52380 (11)0.21146 (18)0.0257 (4)
N10.2129 (2)0.37885 (10)0.5425 (2)0.0190 (4)
N21.2552 (2)0.51888 (11)0.27018 (19)0.0190 (4)
C10.3361 (3)0.36655 (12)0.4691 (2)0.0185 (4)
C20.3227 (3)0.30894 (13)0.3700 (3)0.0240 (5)
H20.4167160.2966090.3305150.029*
C30.1826 (3)0.27297 (13)0.3330 (3)0.0233 (5)
C40.1416 (4)0.22233 (17)0.2179 (3)0.0381 (7)
H4A0.1043200.1775520.2524070.057*
H4B0.2399320.2138460.1759370.057*
H4C0.0535960.2421280.1493860.057*
C51.1101 (3)0.48350 (12)0.2459 (2)0.0169 (4)
C61.0711 (3)0.43709 (13)0.1272 (2)0.0213 (4)
H60.9624550.4185110.1046900.026*
C71.1828 (3)0.41992 (14)0.0493 (2)0.0237 (5)
C81.1637 (5)0.36907 (18)0.0670 (3)0.0422 (8)
H8A1.1845680.3934770.1498310.063*
H8B1.0511520.3500130.0823910.063*
H8C1.2429290.3302400.0454210.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba10.01155 (5)0.01638 (6)0.01386 (6)0.00196 (5)0.00359 (4)0.00155 (5)
S10.0171 (2)0.0136 (2)0.0238 (3)0.00023 (19)0.0076 (2)0.0012 (2)
S20.0133 (2)0.0298 (3)0.0126 (2)0.0002 (2)0.00297 (18)0.0006 (2)
O10.0517 (13)0.0203 (10)0.0211 (10)0.0050 (9)0.0039 (9)0.0042 (8)
O20.0182 (8)0.0281 (9)0.0304 (10)0.0065 (7)0.0049 (7)0.0006 (8)
O30.0212 (8)0.0291 (9)0.0286 (9)0.0067 (7)0.0076 (7)0.0093 (8)
O40.0402 (11)0.0195 (9)0.0348 (11)0.0034 (8)0.0072 (9)0.0098 (8)
O50.0188 (8)0.0224 (8)0.0397 (11)0.0023 (7)0.0135 (7)0.0028 (8)
O60.0171 (7)0.0319 (9)0.0211 (8)0.0024 (7)0.0093 (6)0.0025 (7)
O70.0230 (8)0.0367 (10)0.0232 (9)0.0001 (7)0.0098 (7)0.0092 (8)
O80.0237 (8)0.0377 (11)0.0195 (9)0.0005 (8)0.0026 (7)0.0089 (8)
O90.0139 (7)0.0438 (11)0.0193 (8)0.0010 (7)0.0023 (6)0.0032 (8)
N10.0163 (8)0.0172 (9)0.0244 (10)0.0023 (7)0.0065 (7)0.0016 (7)
N20.0154 (8)0.0290 (11)0.0131 (8)0.0037 (7)0.0045 (7)0.0021 (7)
C10.0146 (9)0.0190 (10)0.0217 (11)0.0016 (8)0.0021 (8)0.0032 (8)
C20.0227 (11)0.0232 (12)0.0282 (13)0.0035 (9)0.0109 (10)0.0014 (10)
C30.0263 (12)0.0225 (11)0.0220 (11)0.0014 (9)0.0072 (9)0.0030 (9)
C40.0475 (18)0.0343 (15)0.0342 (16)0.0044 (13)0.0123 (14)0.0140 (13)
C50.0154 (9)0.0202 (10)0.0153 (10)0.0007 (8)0.0028 (8)0.0020 (8)
C60.0197 (10)0.0264 (12)0.0172 (11)0.0047 (9)0.0014 (8)0.0023 (9)
C70.0283 (12)0.0256 (12)0.0171 (11)0.0021 (10)0.0036 (9)0.0017 (9)
C80.058 (2)0.0421 (18)0.0293 (15)0.0127 (15)0.0151 (14)0.0172 (13)
Geometric parameters (Å, º) top
Ba1—Ba1i4.4491 (3)O1—H1B0.74 (4)
Ba1—O12.732 (2)O2—C11.252 (3)
Ba1—O2i2.9714 (19)O3—C31.382 (3)
Ba1—O22.6812 (17)O6—C51.256 (3)
Ba1—O5ii2.7560 (18)O7—C71.389 (3)
Ba1—O62.6788 (16)N1—C11.359 (3)
Ba1—O6iii2.9192 (18)N2—C51.352 (3)
Ba1—O9iv2.7478 (18)C1—C21.457 (3)
Ba1—N1i2.921 (2)C2—H20.9500
Ba1—N2iii2.9077 (19)C2—C31.334 (4)
Ba1—C1i3.342 (2)C3—C41.483 (4)
Ba1—C5iii3.318 (2)C4—H4A0.9800
S1—O31.6149 (19)C4—H4B0.9800
S1—O41.4232 (19)C4—H4C0.9800
S1—O51.4309 (17)C5—C61.459 (3)
S1—N11.568 (2)C6—H60.9500
S2—O71.6143 (19)C6—C71.332 (3)
S2—O81.4245 (19)C7—C81.488 (4)
S2—O91.4313 (17)C8—H8A0.9800
S2—N21.5758 (19)C8—H8B0.9800
O1—H1A0.75 (4)C8—H8C0.9800
O1—Ba1—Ba1i112.59 (5)O4—S1—O5115.39 (12)
O1—Ba1—O2i134.76 (6)O4—S1—N1113.25 (12)
O1—Ba1—O5ii78.79 (7)O5—S1—O3103.03 (11)
O1—Ba1—O6iii140.94 (6)O5—S1—N1110.81 (11)
O1—Ba1—O9iv68.53 (7)N1—S1—O3106.77 (10)
O1—Ba1—N1i133.85 (6)O8—S2—O7106.60 (11)
O1—Ba1—N2iii143.83 (6)O8—S2—O9116.14 (11)
O1—Ba1—C1i144.37 (7)O8—S2—N2112.82 (11)
O1—Ba1—C5iii153.32 (7)O9—S2—O7103.55 (11)
O2i—Ba1—Ba1i35.84 (3)O9—S2—N2110.54 (10)
O2—Ba1—Ba1i40.45 (4)N2—S2—O7106.20 (10)
O2—Ba1—O181.78 (6)Ba1—O1—H1A137 (3)
O2—Ba1—O2i76.29 (6)Ba1—O1—H1B118 (3)
O2—Ba1—O5ii92.16 (5)H1A—O1—H1B105 (4)
O2—Ba1—O6iii119.87 (5)Ba1—O2—Ba1i103.71 (6)
O2—Ba1—O9iv82.65 (5)C1—O2—Ba1157.81 (16)
O2—Ba1—N1i120.71 (5)C1—O2—Ba1i95.98 (14)
O2—Ba1—N2iii75.13 (5)C3—O3—S1118.19 (16)
O2i—Ba1—C1i21.87 (5)S1—O5—Ba1iv138.72 (10)
O2—Ba1—C1i97.82 (6)Ba1—O6—Ba1iii105.57 (5)
O2—Ba1—C5iii99.04 (5)C5—O6—Ba1iii97.13 (14)
O2i—Ba1—C5iii70.11 (5)C5—O6—Ba1156.59 (16)
O5ii—Ba1—Ba1i122.42 (4)C7—O7—S2117.07 (15)
O5ii—Ba1—O2i140.25 (5)S2—O9—Ba1ii137.59 (10)
O5ii—Ba1—O6iii68.99 (5)S1—N1—Ba1i140.88 (10)
O5ii—Ba1—N1i133.14 (6)C1—N1—Ba1i95.70 (13)
O5ii—Ba1—N2iii74.73 (6)C1—N1—S1119.41 (17)
O5ii—Ba1—C1i136.60 (6)S2—N2—Ba1iii143.73 (10)
O5ii—Ba1—C5iii74.53 (6)C5—N2—Ba1iii95.30 (13)
O6—Ba1—Ba1i155.73 (4)C5—N2—S2119.09 (16)
O6iii—Ba1—Ba1i103.27 (3)O2—C1—Ba1i62.15 (13)
O6—Ba1—O178.82 (6)O2—C1—N1117.5 (2)
O6iii—Ba1—O2i83.93 (5)O2—C1—C2121.7 (2)
O6—Ba1—O2160.13 (6)N1—C1—Ba1i60.43 (12)
O6—Ba1—O2i121.09 (5)N1—C1—C2120.5 (2)
O6—Ba1—O5ii79.94 (5)C2—C1—Ba1i152.82 (16)
O6—Ba1—O6iii74.43 (5)C1—C2—H2119.0
O6—Ba1—O9iv94.15 (5)C3—C2—C1122.1 (2)
O6iii—Ba1—N1i65.83 (5)C3—C2—H2119.0
O6—Ba1—N1i76.77 (5)O3—C3—C4110.3 (2)
O6—Ba1—N2iii119.39 (5)C2—C3—O3121.6 (2)
O6iii—Ba1—C1i69.44 (5)C2—C3—C4128.0 (2)
O6—Ba1—C1i100.43 (5)C3—C4—H4A109.5
O6—Ba1—C5iii96.38 (5)C3—C4—H4B109.5
O6iii—Ba1—C5iii22.06 (5)C3—C4—H4C109.5
O9iv—Ba1—Ba1i72.06 (4)H4A—C4—H4B109.5
O9iv—Ba1—O2i69.77 (5)H4A—C4—H4C109.5
O9iv—Ba1—O5ii147.31 (6)H4B—C4—H4C109.5
O9iv—Ba1—O6iii140.57 (6)O6—C5—Ba1iii60.81 (12)
O9iv—Ba1—N1i74.86 (6)O6—C5—N2118.3 (2)
O9iv—Ba1—N2iii133.52 (6)O6—C5—C6120.9 (2)
O9iv—Ba1—C1i76.05 (6)N2—C5—Ba1iii60.77 (11)
O9iv—Ba1—C5iii138.14 (6)N2—C5—C6120.65 (19)
N1i—Ba1—Ba1i80.31 (4)C6—C5—Ba1iii158.10 (16)
N1i—Ba1—O2i44.54 (5)C5—C6—H6118.9
N1i—Ba1—C1i23.87 (5)C7—C6—C5122.1 (2)
N1i—Ba1—C5iii68.44 (6)C7—C6—H6118.9
N2iii—Ba1—Ba1i64.48 (4)O7—C7—C8111.1 (2)
N2iii—Ba1—O2i65.57 (5)C6—C7—O7121.2 (2)
N2iii—Ba1—O6iii45.20 (5)C6—C7—C8127.6 (3)
N2iii—Ba1—N1i82.24 (6)C7—C8—H8A109.5
N2iii—Ba1—C1i67.43 (6)C7—C8—H8B109.5
N2iii—Ba1—C5iii23.94 (5)C7—C8—H8C109.5
C1i—Ba1—Ba1i57.47 (4)H8A—C8—H8B109.5
C5iii—Ba1—Ba1i82.39 (4)H8A—C8—H8C109.5
C5iii—Ba1—C1i62.23 (6)H8B—C8—H8C109.5
O4—S1—O3106.60 (11)
Ba1—O2—C1—Ba1i152.6 (4)O3—S1—N1—C133.6 (2)
Ba1—O2—C1—N1177.7 (3)O4—S1—O3—C384.9 (2)
Ba1i—O2—C1—N125.2 (2)O4—S1—O5—Ba1iv170.65 (15)
Ba1—O2—C1—C23.7 (6)O4—S1—N1—Ba1i125.67 (17)
Ba1i—O2—C1—C2148.9 (2)O4—S1—N1—C183.4 (2)
Ba1—O6—C5—Ba1iii165.9 (4)O5—S1—O3—C3153.20 (18)
Ba1iii—O6—C5—N220.6 (2)O5—S1—N1—Ba1i5.8 (2)
Ba1—O6—C5—N2173.5 (3)O5—S1—N1—C1145.06 (19)
Ba1—O6—C5—C611.1 (5)O6—C5—C6—C7165.8 (2)
Ba1iii—O6—C5—C6154.73 (19)O7—S2—O9—Ba1ii80.89 (17)
Ba1i—N1—C1—O225.6 (2)O7—S2—N2—Ba1iii124.24 (18)
Ba1i—N1—C1—C2148.52 (19)O7—S2—N2—C535.3 (2)
Ba1iii—N2—C5—O620.6 (2)O8—S2—O7—C779.77 (19)
Ba1iii—N2—C5—C6154.73 (19)O8—S2—O9—Ba1ii162.65 (14)
Ba1i—C1—C2—C374.1 (4)O8—S2—N2—Ba1iii119.34 (18)
Ba1iii—C5—C6—C777.8 (5)O8—S2—N2—C581.1 (2)
S1—O3—C3—C218.7 (3)O9—S2—O7—C7157.23 (18)
S1—O3—C3—C4165.55 (19)O9—S2—N2—Ba1iii12.6 (2)
S1—N1—C1—Ba1i162.0 (2)O9—S2—N2—C5146.95 (19)
S1—N1—C1—O2172.35 (18)N1—S1—O3—C336.4 (2)
S1—N1—C1—C213.5 (3)N1—S1—O5—Ba1iv40.3 (2)
S2—O7—C7—C624.1 (3)N1—C1—C2—C39.8 (4)
S2—O7—C7—C8157.7 (2)N2—S2—O7—C740.8 (2)
S2—N2—C5—Ba1iii168.0 (2)N2—S2—O9—Ba1ii32.5 (2)
S2—N2—C5—O6171.40 (18)N2—C5—C6—C79.4 (4)
S2—N2—C5—C613.3 (3)C1—C2—C3—O36.5 (4)
O2—C1—C2—C3164.1 (2)C1—C2—C3—C4168.5 (3)
O3—S1—O5—Ba1iv73.61 (18)C5—C6—C7—O73.1 (4)
O3—S1—N1—Ba1i117.32 (17)C5—C6—C7—C8174.7 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x+2, y+1, z+1; (iv) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O4v0.74 (4)2.12 (4)2.829 (3)162 (4)
O1—H1B···O8vi0.74 (4)2.20 (4)2.889 (3)156 (4)
C4—H4B···O5v0.982.443.361 (4)155
C6—H6···O8vi0.952.523.357 (3)147
Symmetry codes: (v) x+1/2, y+1/2, z1/2; (vi) x+2, y+1, z.
 

Acknowledgements

Financial support from the State University of New York for acquisition and maintenance of the X-ray diffractometer is gratefully acknowledged.

References

First citationBaran, E. J., Parajón-Costa, B. S., Echeverría, G. A. & Piro, O. E. (2015). Maced. J. Chem. Chem. Eng. 34, 95–100.  CrossRef CAS Google Scholar
First citationBruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDemirtas, G., Dege, N., Icbudak, H., Yurdakul, O. & Buyukgungor, H. (2012). J. Inorg. Organomet. Polym. 22, 671–679.  CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEcheverría, G. A., Piro, O. E., Parajón-Costa, B. S. & Baran, E. J. (2014). Z. Naturforsch. Teil B, 69, 737–741.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJohnson, N. W. (1966). Can. J. Math. 18, 169–200.  CrossRef Web of Science Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPaulus, E. F. (1975). Acta Cryst. B31, 1191–1193.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationPiro, O. E., Echeverría, G. A., Castellano, E. E., Parajón-Costa, B. S. & Baran, E. J. (2015). Z. Naturforsch. Teil B, 70, 491–496.  CAS Google Scholar
First citationPiro, O. E., Echeverría, G. A., Parajón-Costa, B. S. & Baran, E. J. (2016). Z. Naturforsch. Teil B, 71, 51–56.  CAS Google Scholar
First citationPiro, O. E., Echeverría, G. A., Parajón-Costa, B. S. & Baran, E. J. (2017). J. Chem. Crystallogr. 47, 226–232.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVelaga, S. P., Vangala, V. R., Basavoju, S. & Bostrom, D. (2010). Chem. Commun. 46, 3562–3564.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds