research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, hydrogen bonding and Hirshfeld surface analysis of 2-amino-4-meth­­oxy-6-methyl­pyrimidinium 4-chloro­benzoate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Government Arts College (Autonomous), Thanthonimalai, Karur 639 005, Tamil Nadu, India, and bDepartment of Chemistry, Government Arts College, Tiruchirappalli 620 022, Tamil Nadu, India
*Correspondence e-mail: manavaibala@gmail.com

Edited by G. Smith, Queensland University of Technology, Australia (Received 21 February 2018; accepted 10 April 2018; online 12 April 2018)

In the crystal structure of the title salt, C6H10N3O+·C7H4ClO2, the dihedral angle between the pyrimidine ring of the 2-amino-4-meth­oxy-6-methyl­pyrimidine cation and the the benzene ring of the 2-chloro­benzoate anion is 2.2 (1)°. In the anion, the benzene ring forms a dihedral angle of 8.5 (2)° with the carboxyl group. The pyrimidine N atom of the cation is protonated and the meth­oxy substituent is essentially coplanar with the parent ring. The protonated N atom and the N atom of the 2-amino group are hydrogen bonded to the 4-chloro­benzoate anion through a pair of N—H⋯Ocarbox­yl hydrogen bonds, forming an R22(8) ring motif linked through a centrosymmetric R24(8) ring motif, resulting in a pseudo­tetra­meric DDAA array. These units are linked through inter­molecular meth­oxy C—H⋯Cl hydrogen bonds into ribbon-like chains extending along the c-axis direction. The crystal structure also features ππ stacking inter­actions between the rings in the cation and anion [minimum ring centroid separation = 3.7707 (12) Å].

1. Chemical context

Pyrimidine and amino­pyrimidine derivatives are biologically important compounds and they occur in nature as components of nucleic acids such as cytosine, uracil and thymine. Pyrimidine derivatives are also important mol­ecules in biology and have many applications in the areas of pesticides and pharmaceutical agents (Condon et al., 1993[Condon, M. E., Brady, T. E., Feist, D., Malefyt, T., Marc, P., Quakenbush, L. S., Rodaway, S. J., Shaner, D. L. & Tecle, B. (1993). Brighton Crop Protection Conference on Weeds, pp. 41-46. Alton, Hampshire, England: BCPC Publications.]). For example, imazosulfuron, ethirmol and mepanipyrim have been commercialized as agrochemicals (Maeno et al., 1990[Maeno, S., Miura, I., Masuda, K. & Nagata, T. (1990). Brighton Crop Protection Conference on Pests and Diseases, pp. 415-422. Alton, Hampshire, England: BCPC Publications.]). Pyrimidine derivatives have also been developed as anti­viral agents, such as AZT, which is the most widely used anti-AIDS drug (Gilchrist, 1997[Gilchrist, T. L. (1997). Heterocyclic Chemistry, 3rd ed., pp. 261-276. Singapore: Addison Wesley Longman.]). In order to study the hydrogen-bonding inter­actions, the title compound, the 2-amino-4-meth­oxy-6-methyl­pyrimidinium salt of 4-chloro­benzoate, C6H10N3O+·C7H4ClO2, was synthesized and its structure, hydrogen-bonding and Hirshfeld surface analysis are reported herein.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound contains a 2-amino-4-meth­oxy-6-methyl­pyrimidinium cation and a 4-chloro­benzoate anion (Fig. 1[link]), which are essentially coplanar, with a dihedral angle between the ring systems of the two species of 2.2 (1)°. In the cation, one of the pyrimidine nitro­gen atoms (N1) is protonated and this is reflected in an increase in bond angle at N1 [C11—N1—C13 = 120.53 (17)°], when compared with that at the unprotonated atom (N3) [C9—N3—C13 = 116.32 (18)°] and the corresponding angle of 116.01 (18)° in neutral 2-amino-4-meth­oxy-6-methyl­pyrimidine (Glidewell et al., 2003[Glidewell, C., Low, J. N., Melguizo, M. & Quesada, A. (2003). Acta Cryst. C59, o9-o13.]). The meth­oxy substituent group at C9 of the cation is essentially coplanar with the ring, the N3—C9—O3—C8 torsion angle being −2.9 (3)°. The bond lengths and angles are normal for the carboxyl­ate group of a 4-chloro­benzoate anion, and the benzene ring forms a dihedral angle of 8.5 (2)° with the carboxyl group.

[Figure 1]
Figure 1
The asymmetric unit of the the title compound with atom labels, showing non-hydrogen atoms as 30% probability displacement ellipsoids. Inter-species hydrogen bonds are shown as dashed lines.

3. Supra­molecular features

In the crystal, the protonated nitro­gen atom (N1) and the amino nitro­gen atom (N2) of the cation inter­act with the carboxyl oxygen atoms O2 and O1, respectively, of the anion through N—H⋯O hydrogen bonds (Table 1[link]), forming an eight-membered [R_{2}^{2}](8) ring motif. This is extended into a DDAA array (where D represents a hydrogen-bond donor and A represents a hydrogen-bond acceptor) by N2—H1N⋯O1i hydrogen bonds in a centrosymmetric [R_{4}^{2}](8) association [symmetry code: (i) −x + 1, −y + 2, −z + 1], the corresponding graph-set notations for the hetero­tetra­mer being [R_{2}^{2}](8), [R_{4}^{2}](8), [R_{2}^{2}](8). The hetero­tetra­meric units are linked through meth­oxy C8—H8A⋯Clii hydrogen bonds, forming one-dimensional ribbon-like structures (Fig. 2[link]) [symmetry code: (ii) x + 2, −y + [{3\over 2}], z + [{1\over 2}]]. Only very weak methyl C12—H⋯O2 inter­actions [C⋯O = 3.442 (3) Å; H⋯O2 = 2.76 Å] exist between ribbons. The crystal structure also features ππ stacking inter­actions between the aromatic pyrimidine ring of the cation (Fig. 3[link]) and the benzene ring of the anion, with minimum centroid–centroid and perpendicular inter­planar distances of 3.7780 (12) and 3.7075 (8) Å, respectively, and a slip angle of 19.44° (Hunter et al., 1994[Hunter, C. A. (1994). Chem. Soc. Rev. 23, 101-109.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O2 1.04 (3) 1.60 (3) 2.636 (3) 176 (2)
N2—H1N⋯O1i 0.86 2.12 2.846 (2) 142
N2—H2N⋯O1 0.86 1.97 2.824 (3) 169
C8—H8A⋯Cl1ii 0.96 2.82 3.770 (3) 171
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) [x+2, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Hydrogen bonding in the structure of the title compound showing the [R_{2}^{2}](8) and centrosymmetric [R_{4}^{2}](8) ring motifs and C—H⋯Cl extensions. Dashed lines indicate the hydrogen bonds.
[Figure 3]
Figure 3
The overall view of the packing and stacking inter­actions in the title compound.

4. Hirshfeld surface analysis

Three-dimensional (3D) dnorm surface analyis is a useful tool for analysing and visualizing the inter­molecular inter­actions. dnorm takes negative or positive values depending on whether the inter­molecular contact is shorter or longer, respectively, than the van der Waals radii (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]; McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun., pp. 3814-3816.]). The 3D dnorm surface of the title compound was shown in Fig. 4[link]. The red points represent closer contacts and negative dnorm values on the surface corres­ponding to the N—H⋯O interactions, while C—H⋯O inter­actions are light red in colour. Two-dimensional fingerprint plots from the Hirshfeld surface analysis are shown in Fig. 5[link], revealing the inter­molecular contacts and their percentage distributions on the Hirshfeld surface. H⋯H inter­actions (44.8%) are present as a major contributor while O⋯H/H⋯O (14.6%), H⋯Cl/Cl⋯H (13.3%), C⋯H/H⋯C (7.5%), C⋯C (6.6%), N⋯H/H⋯N (3.4%), C⋯N/N⋯C (3.3%), Cl⋯N/N⋯Cl (1.8%), C⋯Cl/Cl⋯C (1.0%) and Cl⋯O/O⋯Cl (0.7%) contacts also make significant contributions to the Hirshfeld surface. Two `wingtips' in the fingerprint plot are related to H⋯O and O⋯H inter­actions and are shown in Fig. 5[link].

[Figure 4]
Figure 4
The three-dimensional dnorm surface of the title compound.
[Figure 5]
Figure 5
Two-dimensional fingerprint plots with the relative contributions to the Hirshfeld surface.

5. Database survey

A search of the Cambridge Structural Database (Version 5.37, update February 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for 2-amino-4-meth­oxy-6-methyl­pyrimidine yielded only seven structures of proton-transfer salts with carb­oxy­lic acids: VAQSOW [with 3-(N,N-di­methyl­amino)­benzoic acid]; VAQSUC [with methyl­ene hydrogen succinic acid (a monohydrate)]; VAQSEM (with 3-nitro­benzoic acid); VAQSIQ (with benzoic acid); VAQRUB (with 2-fluoro­benzoic acid) and VAQSAI (with 3-chloro­benzoic acid) (all from Aakeröy et al., 2003[Aakeröy, B. C., Beffert, K., Desper, J. & Elisabeth, E. (2003). Cryst. Growth Des. 3, 837-846.]) and NUQTOJ (with picric acid; Jasinski et al., 2010[Jasinski, J. P., Butcher, R. J., Yathirajan, H. S., Narayana, B. & Prakash Kamath, K. (2010). Acta Cryst. E66, o1189-o1190.]).

6. Synthesis and crystallization

The title compound was synthesized by the reaction of a 1:1 stoichiometric mixture of 2-amino-4-meth­oxy-6-methyl­pyrimidine [0.139 mg (Aldrich)] and 4-chloro­benzoic acid [0.156 mg (Merck)] in 20 ml of a hot methano­lic solution. After warming for a few minutes over a water bath, the solution was cooled and kept at room temperature. Within a few days, colourless block-shaped crystals suitable for the X-ray analysis were obtained (yield: 65%).

7. refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. N-bound pyrimidinium H atoms were located in a difference-Fourier map and refined freely [N—H = 1.03 (3) Å]. The remaining H atoms were positioned geometrically and refined using a riding model with (N—H = 0.86 Å and C—H = 0.93 or 0.96 Å) and Uiso(H) = 1.2 Ueq(C,N) or 1.5Ueq(methyl C). A rotating-group model was used for the methyl groups.

Table 2
Experimental details

Crystal data
Chemical formula C6H10N3O+·C7H4ClO2
Mr 295.72
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 10.1148 (8), 11.2236 (8), 14.579 (1)
β (°) 120.940 (5)
V3) 1419.57 (19)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.28
Crystal size (mm) 0.35 × 0.30 × 0.20
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.909, 0.946
No. of measured, independent and observed [I > 2σ(I)] reflections 10962, 3423, 2125
Rint 0.024
(sin θ/λ)max−1) 0.669
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.152, 0.99
No. of reflections 3423
No. of parameters 188
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.26, −0.35
Computer programs: APEX2, SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR92 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]), SHELXL2017 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015); molecular graphics: ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2017 (Sheldrick, 2015).

(I) top
Crystal data top
C6H10N3O+·C7H4ClO2F(000) = 616
Mr = 295.72Dx = 1.384 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.1148 (8) ÅCell parameters from 3319 reflections
b = 11.2236 (8) Åθ = 4.7–53.1°
c = 14.579 (1) ŵ = 0.28 mm1
β = 120.940 (5)°T = 296 K
V = 1419.57 (19) Å3Block, colorless
Z = 40.35 × 0.30 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2125 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.024
ω and φ scanθmax = 28.4°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1312
Tmin = 0.909, Tmax = 0.946k = 1414
10962 measured reflectionsl = 1518
3423 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.152 w = 1/[σ2(Fo2) + (0.0728P)2 + 0.324P]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.003
3423 reflectionsΔρmax = 0.26 e Å3
188 parametersΔρmin = 0.34 e Å3
0 restraintsExtinction correction: SHELXL2017 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.020 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O31.08061 (18)0.73298 (18)0.57812 (14)0.0840 (5)
N10.62562 (18)0.71035 (13)0.45066 (13)0.0513 (4)
N20.61625 (18)0.91121 (14)0.47011 (15)0.0649 (5)
H1N0.6597610.9798820.4894080.078*
H2N0.5182510.9048820.4425780.078*
N30.85256 (18)0.82711 (15)0.52563 (13)0.0555 (4)
C81.1555 (3)0.8473 (3)0.6048 (2)0.0926 (9)
H8A1.2583890.8389880.6181610.139*
H8B1.1592540.8778510.6675770.139*
H8C1.0987040.9014350.5463050.139*
C90.9288 (2)0.7287 (2)0.53678 (16)0.0616 (6)
C100.8601 (3)0.6168 (2)0.50699 (19)0.0703 (6)
H100.9193480.5489520.5185040.084*
C110.7049 (3)0.60891 (17)0.46085 (17)0.0595 (5)
C120.6128 (3)0.49752 (19)0.4188 (2)0.0872 (8)
H12A0.5317260.5097320.3460140.131*
H12B0.5689130.4770630.4614570.131*
H12C0.6784100.4339950.4216630.131*
C130.6995 (2)0.81598 (16)0.48261 (15)0.0489 (4)
Cl10.42873 (6)0.70123 (7)0.18780 (6)0.0859 (3)
O10.30336 (15)0.87707 (12)0.40502 (13)0.0710 (5)
O20.32766 (15)0.68727 (12)0.37489 (12)0.0648 (4)
C10.2501 (2)0.77506 (16)0.37387 (15)0.0506 (5)
C20.0808 (2)0.75559 (16)0.33048 (14)0.0455 (4)
C30.0178 (2)0.64290 (17)0.30515 (16)0.0532 (5)
H30.0815050.5777400.3171810.064*
C40.1384 (2)0.62496 (19)0.26221 (16)0.0591 (5)
H40.1797430.5485350.2456530.071*
C50.2314 (2)0.72173 (19)0.24443 (16)0.0552 (5)
C60.1725 (2)0.83473 (19)0.26959 (17)0.0615 (5)
H60.2370070.8994260.2572490.074*
C70.0160 (2)0.85154 (17)0.31355 (16)0.0559 (5)
H70.0250120.9279320.3320140.067*
H1N10.508 (3)0.700 (2)0.418 (2)0.089 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0495 (9)0.1165 (14)0.0927 (12)0.0275 (9)0.0414 (9)0.0152 (11)
N10.0479 (9)0.0476 (9)0.0551 (9)0.0080 (7)0.0242 (8)0.0032 (7)
N20.0389 (8)0.0483 (9)0.0946 (13)0.0010 (7)0.0251 (8)0.0125 (8)
N30.0411 (9)0.0722 (11)0.0533 (10)0.0081 (7)0.0243 (7)0.0019 (8)
C80.0457 (13)0.140 (3)0.0899 (19)0.0033 (14)0.0337 (13)0.0031 (17)
C90.0507 (12)0.0858 (15)0.0564 (13)0.0194 (10)0.0333 (10)0.0100 (11)
C100.0728 (15)0.0697 (14)0.0839 (16)0.0340 (12)0.0514 (13)0.0182 (12)
C110.0738 (14)0.0508 (11)0.0653 (13)0.0173 (9)0.0439 (11)0.0081 (9)
C120.112 (2)0.0478 (12)0.121 (2)0.0116 (12)0.0732 (18)0.0017 (13)
C130.0406 (9)0.0533 (10)0.0497 (11)0.0050 (8)0.0210 (8)0.0029 (8)
Cl10.0454 (3)0.1120 (6)0.0929 (5)0.0142 (3)0.0302 (3)0.0069 (4)
O10.0424 (7)0.0458 (8)0.1021 (12)0.0028 (6)0.0210 (7)0.0149 (7)
O20.0454 (8)0.0481 (7)0.0872 (11)0.0023 (6)0.0242 (7)0.0098 (7)
C10.0404 (9)0.0449 (10)0.0527 (11)0.0003 (7)0.0141 (8)0.0010 (8)
C20.0406 (9)0.0447 (9)0.0424 (10)0.0005 (7)0.0149 (8)0.0012 (7)
C30.0495 (11)0.0465 (10)0.0573 (11)0.0031 (8)0.0230 (9)0.0053 (8)
C40.0549 (12)0.0578 (12)0.0623 (13)0.0144 (9)0.0285 (10)0.0095 (10)
C50.0416 (10)0.0722 (13)0.0468 (11)0.0074 (9)0.0191 (8)0.0020 (9)
C60.0429 (10)0.0607 (12)0.0702 (14)0.0087 (9)0.0215 (10)0.0076 (10)
C70.0442 (10)0.0459 (10)0.0643 (12)0.0007 (8)0.0184 (9)0.0034 (9)
Geometric parameters (Å, º) top
O3—C91.331 (2)C12—H12A0.9600
O3—C81.438 (4)C12—H12B0.9600
N1—C131.350 (2)C12—H12C0.9600
N1—C111.356 (2)Cl1—C51.7385 (19)
N1—H1N11.03 (3)O1—C11.247 (2)
N2—C131.314 (2)O2—C11.255 (2)
N2—H1N0.8600C1—C21.506 (2)
N2—H2N0.8600C2—C31.379 (3)
N3—C91.308 (3)C2—C71.389 (3)
N3—C131.344 (2)C3—C41.383 (3)
C8—H8A0.9600C3—H30.9300
C8—H8B0.9600C4—C51.372 (3)
C8—H8C0.9600C4—H40.9300
C9—C101.392 (3)C5—C61.369 (3)
C10—C111.356 (3)C6—C71.381 (3)
C10—H100.9300C6—H60.9300
C11—C121.490 (3)C7—H70.9300
C9—O3—C8118.61 (18)H12A—C12—H12C109.5
C13—N1—C11120.53 (17)H12B—C12—H12C109.5
C13—N1—H1N1124.1 (13)N2—C13—N3119.43 (17)
C11—N1—H1N1115.4 (13)N2—C13—N1117.68 (16)
C13—N2—H1N120.0N3—C13—N1122.89 (16)
C13—N2—H2N120.0O1—C1—O2124.51 (17)
H1N—N2—H2N120.0O1—C1—C2118.10 (16)
C9—N3—C13116.32 (18)O2—C1—C2117.39 (16)
O3—C8—H8A109.5C3—C2—C7118.48 (17)
O3—C8—H8B109.5C3—C2—C1121.00 (16)
H8A—C8—H8B109.5C7—C2—C1120.51 (16)
O3—C8—H8C109.5C2—C3—C4121.22 (18)
H8A—C8—H8C109.5C2—C3—H3119.4
H8B—C8—H8C109.5C4—C3—H3119.4
N3—C9—O3119.7 (2)C5—C4—C3118.90 (18)
N3—C9—C10123.68 (19)C5—C4—H4120.5
O3—C9—C10116.64 (19)C3—C4—H4120.5
C11—C10—C9118.62 (18)C6—C5—C4121.40 (18)
C11—C10—H10120.7C6—C5—Cl1119.04 (16)
C9—C10—H10120.7C4—C5—Cl1119.55 (16)
C10—C11—N1117.9 (2)C5—C6—C7119.23 (18)
C10—C11—C12125.36 (19)C5—C6—H6120.4
N1—C11—C12116.74 (19)C7—C6—H6120.4
C11—C12—H12A109.5C6—C7—C2120.74 (18)
C11—C12—H12B109.5C6—C7—H7119.6
H12A—C12—H12B109.5C2—C7—H7119.6
C11—C12—H12C109.5
O1—C1—C2—C3173.20 (19)C4—C5—C6—C70.2 (3)
O1—C1—C2—C77.8 (3)C5—C6—C7—C21.2 (3)
O2—C1—C2—C37.7 (3)C13—N1—C11—C102.1 (3)
O2—C1—C2—C7171.35 (18)C13—N1—C11—C12177.2 (2)
C1—C2—C3—C4177.99 (18)C11—N1—C13—N2179.63 (19)
C7—C2—C3—C41.0 (3)C11—N1—C13—N30.1 (3)
C1—C2—C7—C6177.29 (19)C13—N3—C9—O3179.53 (18)
C3—C2—C7—C61.8 (3)C13—N3—C9—C100.1 (3)
C2—C3—C4—C50.3 (3)C9—N3—C13—N10.9 (3)
C8—O3—C9—C10176.7 (2)C9—N3—C13—N2179.37 (19)
C8—O3—C9—N32.9 (3)O3—C9—C10—C11177.6 (2)
C3—C4—C5—C60.9 (3)N3—C9—C10—C112.0 (4)
C3—C4—C5—Cl1178.62 (16)C9—C10—C11—N12.9 (3)
Cl1—C5—C6—C7179.32 (16)C9—C10—C11—C12176.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O21.04 (3)1.60 (3)2.636 (3)176 (2)
N2—H1N···O1i0.862.122.846 (2)142
N2—H2N···O10.861.972.824 (3)169
C8—H8A···Cl1ii0.962.823.770 (3)171
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+2, y+3/2, z+1/2.
 

Acknowledgements

The authors thank the Sophisticated Analytical Instrumentation Facility (SAIF) at STIC, Cochin University of Science and Technology, Cochin, for X-ray data collection.

Funding information

PS and KB thank the Department of Science and Technology (DST–SERB), grant No. SB/FT/CS-058/2013, New Delhi, India, for financial support.

References

First citationAakeröy, B. C., Beffert, K., Desper, J. & Elisabeth, E. (2003). Cryst. Growth Des. 3, 837–846.  Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2004). APEX2, SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCondon, M. E., Brady, T. E., Feist, D., Malefyt, T., Marc, P., Quakenbush, L. S., Rodaway, S. J., Shaner, D. L. & Tecle, B. (1993). Brighton Crop Protection Conference on Weeds, pp. 41–46. Alton, Hampshire, England: BCPC Publications.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGilchrist, T. L. (1997). Heterocyclic Chemistry, 3rd ed., pp. 261–276. Singapore: Addison Wesley Longman.  Google Scholar
First citationGlidewell, C., Low, J. N., Melguizo, M. & Quesada, A. (2003). Acta Cryst. C59, o9–o13.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHunter, C. A. (1994). Chem. Soc. Rev. 23, 101–109.  CrossRef CAS Web of Science Google Scholar
First citationJasinski, J. P., Butcher, R. J., Yathirajan, H. S., Narayana, B. & Prakash Kamath, K. (2010). Acta Cryst. E66, o1189–o1190.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMaeno, S., Miura, I., Masuda, K. & Nagata, T. (1990). Brighton Crop Protection Conference on Pests and Diseases, pp. 415–422. Alton, Hampshire, England: BCPC Publications.  Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun., pp. 3814–3816.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds