research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 1-[3,5-bis­­(tri­fluoro­meth­yl)phen­yl]-2-bromo­ethan-1-one

crossmark logo

aInstitute for Stem Cell Biology and Regenerative Medicine (inStem), GKVK Campus, Bellary Road, Bangalore 560 065, Karnataka, India, bDepartment of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, Maharashtra, India, and cDepartment of Biotechnology and Food Technology, Faculty of Applied Science, Durban University of Technology, Durban 4001, South Africa
*Correspondence e-mail: katharigattav@dut.ac.za, sknayak@chm.vnit.ac.in

Edited by P. Dastidar, Indian Association for the Cultivation of Science, India (Received 22 March 2018; accepted 17 May 2018; online 31 May 2018)

The title compound, C10H5BrF6O, synthesized via continuous stirring of 3,5-bis­(tri­fluoro­meth­yl) aceto­phenone with bromine in an acidic medium and concentrated under reduced pressure, crystallizes with four mol­ecules in the unit cell (Z = 4) and one formula unit in the asymmetric unit. In the crystal, mol­ecules are linked in a head-to-tail fashion into dimers along the b-axis direction through weak C—H⋯Br and C—O⋯Csp2 inter­actions. C—H⋯O, C—F⋯π and F⋯F inter­actions are also observed.

1. Chemical context

Substituted phenacyl bromides can be achieved by α-bromination of substituted ketones employing suitable bromination reagents such as mol­ecular bromine (Curran & Chang, 1989[Curran, D. P. & Chang, C. T. (1989). J. Org. Chem. 54, 3140-3157.]), copper bromide (King & Ostrum, 1964[King, L. C. & Ostrum, G. K. (1964). J. Org. Chem. 29, 3459-3461.]), N-bromo­succinimide (Tanemura et al., 2004[Tanemura, K., Suzuki, T., Nishida, Y., Satsumabayashi, K. & Horaguchi, T. (2004). Chem. Commun. pp. 470-471.]), 3-methyl­imidazolium tribromide (Chiappe et al., 2004[Chiappe, C., Leandri, E. & Pieraccini, D. (2004). Chem. Commun. pp. 2536-2537.]) and hydrogen bromide (Podgoršek et al., 2009[Podgoršek, A., Jurisch, M., Stavber, S., Zupan, M., Iskra, J. & Gladysz, J. A. (2009). J. Org. Chem. 74, 3133-3140.]). In our previous communications, we tried to develop inter­mediates (Chopra et al., 2007[Chopra, D., Venugopala, K. N. & Rao, G. K. (2007). Acta Cryst. E63, o4872.]) for the construction of biologically active heterocyclic compounds (Kasumbwe et al., 2017[Kasumbwe, K., Venugopala, K. N., Mohanlall, V. & Odhav, B. (2017). Anticancer Agents Med. Chem. 17, 276-285.]). In this context, the title compound serves as a synthetic precursor and finds application in the construction of pharmacologically active heterocyclic compounds (Venugopala et al., 2018[Venugopala, K. N. (2018). Asian J. Chem. 30, 684-688.], 2007[Venugopala, K. N., Rao, G. K., Pal, P. N. S. & Ganesh, G. L. (2007). Orient. J. Chem. 23, 1093-1096.]).

[Scheme 1]

2. Structural commentary

A displacement ellipsoid plot of the title compound with the atom labelling is shown in Fig. 1[link]. The compound crystallizes in the monoclinic space group P21/c with one mol­ecule in the asymmetric unit and four mol­ecules in the unit cell (Z = 4). The torsion angle between the alkyl bromide unit and the phenyl ring (C3—C2—C1—Br1) is −179.6 (3)° whereas that between the alkyl bromide and carbonyl parts (O1—C2—C1—Br1) is 0.3 (5)°, which shows a preference for a syn orientation of the alkyl bromide unit with respect to the carbonyl group.

[Figure 1]
Figure 1
The asymmetric unit of the title compound, with 50% probability ellipsoids.

3. Supra­molecular features

In the crystal, the mol­ecules are arranged in a head-to-tail fashion, forming dimers sustained by C—Br⋯H and >C=O⋯π(>C=O) (O⋯π = 3.252 Å) inter­actions. The dimers are linked along the c-axis direction by C—H⋯O and C—F⋯π inter­actions (Table 1[link], Fig. 2[link]). The assembly of dimers is further extended along the a-axis direction by F1⋯F4(x, [{3\over 2}] − y, [1\over2] + z) [2.868 (4) Å] inter­actions, resulting in a bilayer which further packs in parallel fashion along the a-axis direction (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O1i 0.99 2.57 3.501 (5) 157
C1—Br1⋯H4ii 1.92 (1) 2.94 (11) 3.882 169
C2—O1⋯C2iii 1.20 (1) 3.05 (1) 4.126 149 (1)
C9—F2⋯πiv 1.32 (1) 3.89 4.848 130
Symmetry codes: (i) x, y+1, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x, y-1, z].
[Figure 2]
Figure 2
Dimer assembled through C—H⋯Br and >C=O⋯π(>C=O) inter­actions (left) and dimers extending along the b-axis direction via C—H⋯O and C—F⋯π inter­actions (Table 1[link]).
[Figure 3]
Figure 3
F⋯F inter­actions resulting in a bilayer that packs in a parallel fashion along the a-axis direction.

4. Database survey

There are more than 1000 crystal structure of phenyl ethanone derivatives in the Cambridge Structural Database (CSD) (Conquest Version 1.17; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) but none of them gave a hit for 1-[3,5-bis­(tri­fluoro­meth­yl)phen­yl]-2-bromo­ethanone. However, the crystal structures of related derivatives have been reported. These include phenyl 2-bromo­ethanone (URELEJ; Betz et al., 2011[Betz, R., McCleland, C. & Marchand, H. (2011). Acta Cryst. E67, o1207.]) and a phenyl 2-bromo­ethanone complex (VIVFIP; Laube et al., 1991[Laube, T., Weidenhaupt, A. & Hunziker, R. (1991). J. Am. Chem. Soc. 113, 2561-2567.]). The first compound, Z = 4, features two prominent hydrogen bonds involving the oxygen atom while in the second, also Z = 4, the oxygen atom forms a complex with anti­mony penta­chloride.

5. Synthesis and crystallization

A stirred solution of 3,5-bis­(tri­fluoro­meth­yl) aceto­phenone (0.5 g, 1.95 mmol) in acetic acid (5 mL) was added dropwise to bromine (0.312 g, 1.95 mmol) in acetic acid. The reaction medium was stirred at room temperature for 5 h. To the resulting mixture, water (5 mL) was added and the mixture was concentrated under reduced pressure. The residue obtained was diluted with ethyl­acetate (10 mL), the organic layer washed with water (10 mL) and a sodium bicarbonate solution (5 mL), and filtered through dried sodium sulfate and evaporated to obtain 1-(3,5-bis­(tri­fluoro­meth­yl)phen­yl)-2-bromo­ethanone as a light-yellow solid in 62% yield. m.p: 317–318 K. 1H NMR: (CDCl3, 600 MHz): 8.44 (2H, s), 8.13 (1H, s), 4.48 (2H, s); 13C NMR: (CDCl3, 150 MHz): 188.81, 135.31, 133.06, 132.83, 132.60, 128.99, 127.08, 127.06, 125.42, 123.61, 121.80, 120.00, 29.46.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen atoms were placed in idealized positions (C—H = 0.95–0.99 Å) and refined using a riding model with Uiso(H) = 1.2–1.5Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C10H5BrF6O
Mr 335.04
Crystal system, space group Monoclinic, P21/c
Temperature (K) 153
a, b, c (Å) 14.156 (5), 5.0111 (16), 15.535 (5)
β (°) 104.316 (5)
V3) 1067.7 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 3.92
Crystal size (mm) 0.23 × 0.09 × 0.06
 
Data collection
Diffractometer Bruker Kappa APEXII DUO
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.442, 0.759
No. of measured, independent and observed [I > 2σ(I)] reflections 11628, 2405, 1741
Rint 0.060
(sin θ/λ)max−1) 0.646
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.103, 1.03
No. of reflections 2405
No. of parameters 163
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.78, −1.12
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009) and PARST (Nardelli, 1995).

1-[3,5-Bis(trifluoromethyl)phenyl]-2-bromoethan-1-one top
Crystal data top
C10H5BrF6OF(000) = 648
Mr = 335.04Dx = 2.084 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2405 reflections
a = 14.156 (5) Åθ = 2.7–27.4°
b = 5.0111 (16) ŵ = 3.92 mm1
c = 15.535 (5) ÅT = 153 K
β = 104.316 (5)°Needle, colorless
V = 1067.7 (6) Å30.23 × 0.09 × 0.06 mm
Z = 4
Data collection top
Bruker Kappa APEXII DUO
diffractometer
2405 independent reflections
Radiation source: fine-focus sealed tube1741 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
ω scansθmax = 27.4°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 1818
Tmin = 0.442, Tmax = 0.759k = 66
11628 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0541P)2 + 0.3605P]
where P = (Fo2 + 2Fc2)/3
2405 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.78 e Å3
0 restraintsΔρmin = 1.12 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.60416 (2)0.14882 (9)0.09433 (3)0.03259 (16)
F10.21893 (17)0.1990 (6)0.38145 (15)0.0468 (7)
F20.1420 (2)0.0983 (6)0.29661 (17)0.0597 (8)
F30.07527 (19)0.2781 (7)0.3050 (2)0.0655 (9)
F40.19332 (17)0.8957 (5)0.00403 (18)0.0480 (7)
F50.07651 (19)0.8912 (5)0.06942 (16)0.0484 (7)
F60.07736 (15)0.6137 (5)0.03417 (14)0.0362 (6)
O10.45527 (18)0.0571 (6)0.18612 (18)0.0329 (6)
C10.4825 (2)0.3126 (8)0.0979 (3)0.0278 (9)
H1A0.49550.49210.12490.033*
H1B0.44230.33520.03650.033*
C20.4258 (3)0.1506 (8)0.1506 (2)0.0258 (8)
C30.3301 (2)0.2646 (8)0.1557 (2)0.0237 (8)
C40.2889 (3)0.1673 (8)0.2217 (2)0.0264 (8)
H40.32180.03530.26200.032*
C50.1991 (2)0.2642 (8)0.2285 (2)0.0255 (8)
C60.1483 (2)0.4474 (8)0.1686 (2)0.0259 (8)
H60.08570.50700.17220.031*
C70.1901 (2)0.5434 (8)0.1028 (2)0.0239 (8)
C80.2806 (3)0.4557 (8)0.0968 (2)0.0255 (8)
H80.30910.52610.05240.031*
C90.1583 (3)0.1609 (9)0.3022 (3)0.0313 (9)
C100.1348 (3)0.7374 (9)0.0362 (3)0.0308 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0200 (2)0.0386 (3)0.0398 (3)0.00282 (17)0.00868 (15)0.0043 (2)
F10.0405 (14)0.072 (2)0.0306 (13)0.0144 (13)0.0130 (11)0.0053 (12)
F20.093 (2)0.044 (2)0.0531 (17)0.0302 (15)0.0394 (16)0.0108 (13)
F30.0370 (14)0.094 (2)0.077 (2)0.0245 (15)0.0356 (14)0.0359 (17)
F40.0332 (13)0.0366 (17)0.0686 (18)0.0044 (11)0.0020 (12)0.0237 (13)
F50.0500 (14)0.0464 (18)0.0440 (14)0.0282 (13)0.0024 (11)0.0025 (12)
F60.0292 (11)0.0432 (17)0.0324 (12)0.0001 (10)0.0005 (9)0.0029 (10)
O10.0285 (14)0.0294 (18)0.0420 (16)0.0055 (12)0.0109 (12)0.0065 (13)
C10.0188 (16)0.029 (3)0.036 (2)0.0010 (15)0.0074 (15)0.0008 (17)
C20.0235 (17)0.023 (2)0.030 (2)0.0036 (16)0.0046 (14)0.0040 (17)
C30.0203 (17)0.023 (2)0.028 (2)0.0016 (15)0.0056 (15)0.0021 (16)
C40.0237 (17)0.022 (2)0.032 (2)0.0005 (15)0.0052 (15)0.0020 (16)
C50.0230 (18)0.025 (2)0.028 (2)0.0036 (15)0.0061 (15)0.0023 (16)
C60.0189 (16)0.025 (2)0.034 (2)0.0007 (15)0.0056 (15)0.0002 (17)
C70.0190 (16)0.021 (2)0.029 (2)0.0009 (14)0.0017 (14)0.0010 (16)
C80.0274 (18)0.021 (2)0.028 (2)0.0007 (15)0.0071 (15)0.0012 (16)
C90.0253 (18)0.032 (3)0.037 (2)0.0022 (17)0.0085 (16)0.0016 (18)
C100.0263 (19)0.029 (2)0.034 (2)0.0032 (17)0.0013 (16)0.0008 (18)
Geometric parameters (Å, º) top
Br1—C11.921 (4)C3—C41.388 (5)
F1—C91.329 (4)C3—C81.389 (5)
F2—C91.319 (5)C4—C51.388 (5)
F3—C91.325 (4)C4—H40.9500
F4—C101.330 (5)C5—C61.377 (5)
F5—C101.324 (5)C5—C91.497 (5)
F6—C101.343 (4)C6—C71.388 (5)
O1—C21.203 (5)C6—H60.9500
C1—C21.516 (5)C7—C81.378 (5)
C1—H1A0.9900C7—C101.492 (5)
C1—H1B0.9900C8—H80.9500
C2—C31.490 (5)
C2—C1—Br1112.7 (3)C7—C6—H6120.6
C2—C1—H1A109.1C8—C7—C6120.8 (3)
Br1—C1—H1A109.1C8—C7—C10119.9 (3)
C2—C1—H1B109.1C6—C7—C10119.3 (3)
Br1—C1—H1B109.1C7—C8—C3120.1 (3)
H1A—C1—H1B107.8C7—C8—H8119.9
O1—C2—C3121.6 (3)C3—C8—H8119.9
O1—C2—C1122.7 (3)F2—C9—F3107.2 (3)
C3—C2—C1115.7 (3)F2—C9—F1105.4 (3)
C4—C3—C8119.5 (3)F3—C9—F1106.3 (3)
C4—C3—C2117.3 (3)F2—C9—C5112.7 (3)
C8—C3—C2123.1 (3)F3—C9—C5112.7 (3)
C5—C4—C3119.5 (4)F1—C9—C5112.1 (3)
C5—C4—H4120.2F5—C10—F4107.8 (4)
C3—C4—H4120.2F5—C10—F6106.0 (3)
C6—C5—C4121.2 (3)F4—C10—F6106.1 (3)
C6—C5—C9120.8 (3)F5—C10—C7112.4 (3)
C4—C5—C9118.0 (4)F4—C10—C7112.4 (3)
C5—C6—C7118.8 (3)F6—C10—C7111.8 (3)
C5—C6—H6120.6
Br1—C1—C2—O10.3 (5)C10—C7—C8—C3176.6 (4)
Br1—C1—C2—C3179.6 (3)C4—C3—C8—C71.4 (6)
O1—C2—C3—C417.6 (5)C2—C3—C8—C7176.9 (3)
C1—C2—C3—C4162.5 (3)C6—C5—C9—F2117.1 (4)
O1—C2—C3—C8160.8 (4)C4—C5—C9—F262.1 (5)
C1—C2—C3—C819.1 (5)C6—C5—C9—F34.4 (6)
C8—C3—C4—C50.6 (6)C4—C5—C9—F3176.5 (4)
C2—C3—C4—C5179.0 (3)C6—C5—C9—F1124.2 (4)
C3—C4—C5—C62.7 (6)C4—C5—C9—F156.6 (5)
C3—C4—C5—C9178.1 (3)C8—C7—C10—F5151.0 (4)
C4—C5—C6—C72.7 (6)C6—C7—C10—F530.9 (5)
C9—C5—C6—C7178.2 (3)C8—C7—C10—F429.3 (5)
C5—C6—C7—C80.5 (6)C6—C7—C10—F4152.6 (4)
C5—C6—C7—C10178.7 (4)C8—C7—C10—F689.9 (4)
C6—C7—C8—C31.5 (6)C6—C7—C10—F688.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O1i0.992.573.501 (5)157
C1—Br1···H4ii1.92 (1)2.94 (11)3.882169
C2—O1···C2iii1.20 (1)3.05 (1)4.126149 (1)
C9—F2···πiv1.32 (1)3.894.848130
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y1/2, z+1/2; (iv) x, y1, z.
 

Funding information

The authors are thankful to the National Research Foundation (96807 and 98884), South Africa and Durban University of Technology, South Africa, for support and encouragement. KMB thanks VNIT Nagpur for the support of a research fellowship.

References

First citationBetz, R., McCleland, C. & Marchand, H. (2011). Acta Cryst. E67, o1207.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChiappe, C., Leandri, E. & Pieraccini, D. (2004). Chem. Commun. pp. 2536–2537.  CrossRef Google Scholar
First citationChopra, D., Venugopala, K. N. & Rao, G. K. (2007). Acta Cryst. E63, o4872.  CrossRef IUCr Journals Google Scholar
First citationCurran, D. P. & Chang, C. T. (1989). J. Org. Chem. 54, 3140–3157.  CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKasumbwe, K., Venugopala, K. N., Mohanlall, V. & Odhav, B. (2017). Anticancer Agents Med. Chem. 17, 276–285.  Web of Science CrossRef Google Scholar
First citationKing, L. C. & Ostrum, G. K. (1964). J. Org. Chem. 29, 3459–3461.  CrossRef Google Scholar
First citationLaube, T., Weidenhaupt, A. & Hunziker, R. (1991). J. Am. Chem. Soc. 113, 2561–2567.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationPodgoršek, A., Jurisch, M., Stavber, S., Zupan, M., Iskra, J. & Gladysz, J. A. (2009). J. Org. Chem. 74, 3133–3140.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTanemura, K., Suzuki, T., Nishida, Y., Satsumabayashi, K. & Horaguchi, T. (2004). Chem. Commun. pp. 470–471.  CrossRef Google Scholar
First citationVenugopala, K. N. (2018). Asian J. Chem. 30, 684–688.  CrossRef Google Scholar
First citationVenugopala, K. N., Rao, G. K., Pal, P. N. S. & Ganesh, G. L. (2007). Orient. J. Chem. 23, 1093–1096.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds