research communications
of 1-[3,5-bis(trifluoromethyl)phenyl]-2-bromoethan-1-one
aInstitute for Stem Cell Biology and Regenerative Medicine (inStem), GKVK Campus, Bellary Road, Bangalore 560 065, Karnataka, India, bDepartment of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, Maharashtra, India, and cDepartment of Biotechnology and Food Technology, Faculty of Applied Science, Durban University of Technology, Durban 4001, South Africa
*Correspondence e-mail: katharigattav@dut.ac.za, sknayak@chm.vnit.ac.in
The title compound, C10H5BrF6O, synthesized via continuous stirring of 3,5-bis(trifluoromethyl) acetophenone with bromine in an acidic medium and concentrated under reduced pressure, crystallizes with four molecules in the (Z = 4) and one formula unit in the In the crystal, molecules are linked in a head-to-tail fashion into dimers along the b-axis direction through weak C—H⋯Br and C—O⋯Csp2 interactions. C—H⋯O, C—F⋯π and F⋯F interactions are also observed.
CCDC reference: 1843826
1. Chemical context
Substituted phenacyl bromides can be achieved by α-bromination of substituted employing suitable bromination reagents such as molecular bromine (Curran & Chang, 1989), copper bromide (King & Ostrum, 1964), N-bromosuccinimide (Tanemura et al., 2004), 3-methylimidazolium tribromide (Chiappe et al., 2004) and hydrogen bromide (Podgoršek et al., 2009). In our previous communications, we tried to develop intermediates (Chopra et al., 2007) for the construction of biologically active (Kasumbwe et al., 2017). In this context, the title compound serves as a synthetic precursor and finds application in the construction of pharmacologically active (Venugopala et al., 2018, 2007).
2. Structural commentary
A displacement ellipsoid plot of the title compound with the atom labelling is shown in Fig. 1. The compound crystallizes in the monoclinic P21/c with one molecule in the and four molecules in the (Z = 4). The torsion angle between the alkyl bromide unit and the phenyl ring (C3—C2—C1—Br1) is −179.6 (3)° whereas that between the alkyl bromide and carbonyl parts (O1—C2—C1—Br1) is 0.3 (5)°, which shows a preference for a syn orientation of the alkyl bromide unit with respect to the carbonyl group.
3. Supramolecular features
In the crystal, the molecules are arranged in a head-to-tail fashion, forming dimers sustained by C—Br⋯H and >C=O⋯π(>C=O) (O⋯π = 3.252 Å) interactions. The dimers are linked along the c-axis direction by C—H⋯O and C—F⋯π interactions (Table 1, Fig. 2). The assembly of dimers is further extended along the a-axis direction by F1⋯F4(x, − y, + z) [2.868 (4) Å] interactions, resulting in a bilayer which further packs in parallel fashion along the a-axis direction (Fig. 3).
4. Database survey
There are more than 1000 et al., 2016) but none of them gave a hit for 1-[3,5-bis(trifluoromethyl)phenyl]-2-bromoethanone. However, the crystal structures of related derivatives have been reported. These include phenyl 2-bromoethanone (URELEJ; Betz et al., 2011) and a phenyl 2-bromoethanone complex (VIVFIP; Laube et al., 1991). The first compound, Z = 4, features two prominent hydrogen bonds involving the oxygen atom while in the second, also Z = 4, the oxygen atom forms a complex with antimony pentachloride.
of phenyl ethanone derivatives in the Cambridge Structural Database (CSD) (Conquest Version 1.17; Groom5. Synthesis and crystallization
A stirred solution of 3,5-bis(trifluoromethyl) acetophenone (0.5 g, 1.95 mmol) in acetic acid (5 mL) was added dropwise to bromine (0.312 g, 1.95 mmol) in acetic acid. The reaction medium was stirred at room temperature for 5 h. To the resulting mixture, water (5 mL) was added and the mixture was concentrated under reduced pressure. The residue obtained was diluted with ethylacetate (10 mL), the organic layer washed with water (10 mL) and a sodium bicarbonate solution (5 mL), and filtered through dried sodium sulfate and evaporated to obtain 1-(3,5-bis(trifluoromethyl)phenyl)-2-bromoethanone as a light-yellow solid in 62% yield. m.p: 317–318 K. 1H NMR: (CDCl3, 600 MHz): 8.44 (2H, s), 8.13 (1H, s), 4.48 (2H, s); 13C NMR: (CDCl3, 150 MHz): 188.81, 135.31, 133.06, 132.83, 132.60, 128.99, 127.08, 127.06, 125.42, 123.61, 121.80, 120.00, 29.46.
6. Refinement
Crystal data, data collection and structure . Hydrogen atoms were placed in idealized positions (C—H = 0.95–0.99 Å) and refined using a riding model with Uiso(H) = 1.2–1.5Ueq(C).
details are summarized in Table 2Supporting information
CCDC reference: 1843826
https://doi.org/10.1107/S2056989018007478/ds2250sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018007478/ds2250Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989018007478/ds2250Isup3.cml
Data collection: APEX2 (Bruker, 2012); cell
SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009) and PARST (Nardelli, 1995).C10H5BrF6O | F(000) = 648 |
Mr = 335.04 | Dx = 2.084 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2405 reflections |
a = 14.156 (5) Å | θ = 2.7–27.4° |
b = 5.0111 (16) Å | µ = 3.92 mm−1 |
c = 15.535 (5) Å | T = 153 K |
β = 104.316 (5)° | Needle, colorless |
V = 1067.7 (6) Å3 | 0.23 × 0.09 × 0.06 mm |
Z = 4 |
Bruker Kappa APEXII DUO diffractometer | 2405 independent reflections |
Radiation source: fine-focus sealed tube | 1741 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.060 |
ω scans | θmax = 27.4°, θmin = 2.7° |
Absorption correction: multi-scan (SADABS; Bruker, 2012) | h = −18→18 |
Tmin = 0.442, Tmax = 0.759 | k = −6→6 |
11628 measured reflections | l = −20→20 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.103 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0541P)2 + 0.3605P] where P = (Fo2 + 2Fc2)/3 |
2405 reflections | (Δ/σ)max < 0.001 |
163 parameters | Δρmax = 0.78 e Å−3 |
0 restraints | Δρmin = −1.12 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.60416 (2) | 0.14882 (9) | 0.09433 (3) | 0.03259 (16) | |
F1 | 0.21893 (17) | 0.1990 (6) | 0.38145 (15) | 0.0468 (7) | |
F2 | 0.1420 (2) | −0.0983 (6) | 0.29661 (17) | 0.0597 (8) | |
F3 | 0.07527 (19) | 0.2781 (7) | 0.3050 (2) | 0.0655 (9) | |
F4 | 0.19332 (17) | 0.8957 (5) | 0.00403 (18) | 0.0480 (7) | |
F5 | 0.07651 (19) | 0.8912 (5) | 0.06942 (16) | 0.0484 (7) | |
F6 | 0.07736 (15) | 0.6137 (5) | −0.03417 (14) | 0.0362 (6) | |
O1 | 0.45527 (18) | −0.0571 (6) | 0.18612 (18) | 0.0329 (6) | |
C1 | 0.4825 (2) | 0.3126 (8) | 0.0979 (3) | 0.0278 (9) | |
H1A | 0.4955 | 0.4921 | 0.1249 | 0.033* | |
H1B | 0.4423 | 0.3352 | 0.0365 | 0.033* | |
C2 | 0.4258 (3) | 0.1506 (8) | 0.1506 (2) | 0.0258 (8) | |
C3 | 0.3301 (2) | 0.2646 (8) | 0.1557 (2) | 0.0237 (8) | |
C4 | 0.2889 (3) | 0.1673 (8) | 0.2217 (2) | 0.0264 (8) | |
H4 | 0.3218 | 0.0353 | 0.2620 | 0.032* | |
C5 | 0.1991 (2) | 0.2642 (8) | 0.2285 (2) | 0.0255 (8) | |
C6 | 0.1483 (2) | 0.4474 (8) | 0.1686 (2) | 0.0259 (8) | |
H6 | 0.0857 | 0.5070 | 0.1722 | 0.031* | |
C7 | 0.1901 (2) | 0.5434 (8) | 0.1028 (2) | 0.0239 (8) | |
C8 | 0.2806 (3) | 0.4557 (8) | 0.0968 (2) | 0.0255 (8) | |
H8 | 0.3091 | 0.5261 | 0.0524 | 0.031* | |
C9 | 0.1583 (3) | 0.1609 (9) | 0.3022 (3) | 0.0313 (9) | |
C10 | 0.1348 (3) | 0.7374 (9) | 0.0362 (3) | 0.0308 (9) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0200 (2) | 0.0386 (3) | 0.0398 (3) | 0.00282 (17) | 0.00868 (15) | −0.0043 (2) |
F1 | 0.0405 (14) | 0.072 (2) | 0.0306 (13) | −0.0144 (13) | 0.0130 (11) | −0.0053 (12) |
F2 | 0.093 (2) | 0.044 (2) | 0.0531 (17) | −0.0302 (15) | 0.0394 (16) | −0.0108 (13) |
F3 | 0.0370 (14) | 0.094 (2) | 0.077 (2) | 0.0245 (15) | 0.0356 (14) | 0.0359 (17) |
F4 | 0.0332 (13) | 0.0366 (17) | 0.0686 (18) | −0.0044 (11) | 0.0020 (12) | 0.0237 (13) |
F5 | 0.0500 (14) | 0.0464 (18) | 0.0440 (14) | 0.0282 (13) | 0.0024 (11) | −0.0025 (12) |
F6 | 0.0292 (11) | 0.0432 (17) | 0.0324 (12) | −0.0001 (10) | 0.0005 (9) | −0.0029 (10) |
O1 | 0.0285 (14) | 0.0294 (18) | 0.0420 (16) | 0.0055 (12) | 0.0109 (12) | 0.0065 (13) |
C1 | 0.0188 (16) | 0.029 (3) | 0.036 (2) | 0.0010 (15) | 0.0074 (15) | −0.0008 (17) |
C2 | 0.0235 (17) | 0.023 (2) | 0.030 (2) | −0.0036 (16) | 0.0046 (14) | −0.0040 (17) |
C3 | 0.0203 (17) | 0.023 (2) | 0.028 (2) | −0.0016 (15) | 0.0056 (15) | −0.0021 (16) |
C4 | 0.0237 (17) | 0.022 (2) | 0.032 (2) | −0.0005 (15) | 0.0052 (15) | −0.0020 (16) |
C5 | 0.0230 (18) | 0.025 (2) | 0.028 (2) | −0.0036 (15) | 0.0061 (15) | −0.0023 (16) |
C6 | 0.0189 (16) | 0.025 (2) | 0.034 (2) | 0.0007 (15) | 0.0056 (15) | −0.0002 (17) |
C7 | 0.0190 (16) | 0.021 (2) | 0.029 (2) | 0.0009 (14) | 0.0017 (14) | −0.0010 (16) |
C8 | 0.0274 (18) | 0.021 (2) | 0.028 (2) | −0.0007 (15) | 0.0071 (15) | −0.0012 (16) |
C9 | 0.0253 (18) | 0.032 (3) | 0.037 (2) | −0.0022 (17) | 0.0085 (16) | −0.0016 (18) |
C10 | 0.0263 (19) | 0.029 (2) | 0.034 (2) | 0.0032 (17) | 0.0013 (16) | −0.0008 (18) |
Br1—C1 | 1.921 (4) | C3—C4 | 1.388 (5) |
F1—C9 | 1.329 (4) | C3—C8 | 1.389 (5) |
F2—C9 | 1.319 (5) | C4—C5 | 1.388 (5) |
F3—C9 | 1.325 (4) | C4—H4 | 0.9500 |
F4—C10 | 1.330 (5) | C5—C6 | 1.377 (5) |
F5—C10 | 1.324 (5) | C5—C9 | 1.497 (5) |
F6—C10 | 1.343 (4) | C6—C7 | 1.388 (5) |
O1—C2 | 1.203 (5) | C6—H6 | 0.9500 |
C1—C2 | 1.516 (5) | C7—C8 | 1.378 (5) |
C1—H1A | 0.9900 | C7—C10 | 1.492 (5) |
C1—H1B | 0.9900 | C8—H8 | 0.9500 |
C2—C3 | 1.490 (5) | ||
C2—C1—Br1 | 112.7 (3) | C7—C6—H6 | 120.6 |
C2—C1—H1A | 109.1 | C8—C7—C6 | 120.8 (3) |
Br1—C1—H1A | 109.1 | C8—C7—C10 | 119.9 (3) |
C2—C1—H1B | 109.1 | C6—C7—C10 | 119.3 (3) |
Br1—C1—H1B | 109.1 | C7—C8—C3 | 120.1 (3) |
H1A—C1—H1B | 107.8 | C7—C8—H8 | 119.9 |
O1—C2—C3 | 121.6 (3) | C3—C8—H8 | 119.9 |
O1—C2—C1 | 122.7 (3) | F2—C9—F3 | 107.2 (3) |
C3—C2—C1 | 115.7 (3) | F2—C9—F1 | 105.4 (3) |
C4—C3—C8 | 119.5 (3) | F3—C9—F1 | 106.3 (3) |
C4—C3—C2 | 117.3 (3) | F2—C9—C5 | 112.7 (3) |
C8—C3—C2 | 123.1 (3) | F3—C9—C5 | 112.7 (3) |
C5—C4—C3 | 119.5 (4) | F1—C9—C5 | 112.1 (3) |
C5—C4—H4 | 120.2 | F5—C10—F4 | 107.8 (4) |
C3—C4—H4 | 120.2 | F5—C10—F6 | 106.0 (3) |
C6—C5—C4 | 121.2 (3) | F4—C10—F6 | 106.1 (3) |
C6—C5—C9 | 120.8 (3) | F5—C10—C7 | 112.4 (3) |
C4—C5—C9 | 118.0 (4) | F4—C10—C7 | 112.4 (3) |
C5—C6—C7 | 118.8 (3) | F6—C10—C7 | 111.8 (3) |
C5—C6—H6 | 120.6 | ||
Br1—C1—C2—O1 | 0.3 (5) | C10—C7—C8—C3 | −176.6 (4) |
Br1—C1—C2—C3 | −179.6 (3) | C4—C3—C8—C7 | −1.4 (6) |
O1—C2—C3—C4 | 17.6 (5) | C2—C3—C8—C7 | 176.9 (3) |
C1—C2—C3—C4 | −162.5 (3) | C6—C5—C9—F2 | 117.1 (4) |
O1—C2—C3—C8 | −160.8 (4) | C4—C5—C9—F2 | −62.1 (5) |
C1—C2—C3—C8 | 19.1 (5) | C6—C5—C9—F3 | −4.4 (6) |
C8—C3—C4—C5 | −0.6 (6) | C4—C5—C9—F3 | 176.5 (4) |
C2—C3—C4—C5 | −179.0 (3) | C6—C5—C9—F1 | −124.2 (4) |
C3—C4—C5—C6 | 2.7 (6) | C4—C5—C9—F1 | 56.6 (5) |
C3—C4—C5—C9 | −178.1 (3) | C8—C7—C10—F5 | −151.0 (4) |
C4—C5—C6—C7 | −2.7 (6) | C6—C7—C10—F5 | 30.9 (5) |
C9—C5—C6—C7 | 178.2 (3) | C8—C7—C10—F4 | −29.3 (5) |
C5—C6—C7—C8 | 0.5 (6) | C6—C7—C10—F4 | 152.6 (4) |
C5—C6—C7—C10 | 178.7 (4) | C8—C7—C10—F6 | 89.9 (4) |
C6—C7—C8—C3 | 1.5 (6) | C6—C7—C10—F6 | −88.2 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1A···O1i | 0.99 | 2.57 | 3.501 (5) | 157 |
C1—Br1···H4ii | 1.92 (1) | 2.94 (11) | 3.882 | 169 |
C2—O1···C2iii | 1.20 (1) | 3.05 (1) | 4.126 | 149 (1) |
C9—F2···πiv | 1.32 (1) | 3.89 | 4.848 | 130 |
Symmetry codes: (i) x, y+1, z; (ii) −x+1, y+1/2, −z+1/2; (iii) −x+1, y−1/2, −z+1/2; (iv) x, y−1, z. |
Funding information
The authors are thankful to the National Research Foundation (96807 and 98884), South Africa and Durban University of Technology, South Africa, for support and encouragement. KMB thanks VNIT Nagpur for the support of a research fellowship.
References
Betz, R., McCleland, C. & Marchand, H. (2011). Acta Cryst. E67, o1207. Web of Science CrossRef IUCr Journals Google Scholar
Bruker (2012). APEX2, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chiappe, C., Leandri, E. & Pieraccini, D. (2004). Chem. Commun. pp. 2536–2537. CrossRef Google Scholar
Chopra, D., Venugopala, K. N. & Rao, G. K. (2007). Acta Cryst. E63, o4872. CrossRef IUCr Journals Google Scholar
Curran, D. P. & Chang, C. T. (1989). J. Org. Chem. 54, 3140–3157. CrossRef Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Kasumbwe, K., Venugopala, K. N., Mohanlall, V. & Odhav, B. (2017). Anticancer Agents Med. Chem. 17, 276–285. Web of Science CrossRef Google Scholar
King, L. C. & Ostrum, G. K. (1964). J. Org. Chem. 29, 3459–3461. CrossRef Google Scholar
Laube, T., Weidenhaupt, A. & Hunziker, R. (1991). J. Am. Chem. Soc. 113, 2561–2567. CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Nardelli, M. (1995). J. Appl. Cryst. 28, 659. CrossRef IUCr Journals Google Scholar
Podgoršek, A., Jurisch, M., Stavber, S., Zupan, M., Iskra, J. & Gladysz, J. A. (2009). J. Org. Chem. 74, 3133–3140. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tanemura, K., Suzuki, T., Nishida, Y., Satsumabayashi, K. & Horaguchi, T. (2004). Chem. Commun. pp. 470–471. CrossRef Google Scholar
Venugopala, K. N. (2018). Asian J. Chem. 30, 684–688. CrossRef Google Scholar
Venugopala, K. N., Rao, G. K., Pal, P. N. S. & Ganesh, G. L. (2007). Orient. J. Chem. 23, 1093–1096. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.