research communications
μ-trans-1,2-bis{2-[(2-oxidophenyl)methylidene]hydrazin-1-ylidene}ethane-1,2-diolato-κ3O,O′,N)bis[di-tert-butyltin(IV)]
of (aDépartement de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, bDépartement de Chimie, Faculté des Sciences, Université de Nouakchott, Nouakchott, Mauritania, and cIMN Institut ds Matériaux Jean Rouxel, 2 rue de la Houssiniere, 44322 Nantes, France
*Correspondence e-mail: mlgayeastou@yahoo.fr
The binuclear complex, [Sn2(C4H9)4(C16H10N4O4)], contains two Sn4+ ions, connected by doubly N-deprotonated oxalylbis[(2-oxidobenzylidene)hydrazide] ligands, and each Sn4+ ion is linked to two tert-butyl groups. The coordination sphere of each Sn atom is best described as a distorted trigonal bipyramid. Each stannic ion in the complex is in a C2O2N environment. The two homologous parts of the doubly deprotonated ligand are located in trans positions with respect to the C—C bond of the oxalamide group. The oxalamide group exhibits an asymmetric coordination geometry, as seen by the slight difference between the C—O and C—N bond lengths. The three-dimensional network is a multilayer of complex molecules with no strong supramolecular interactions.
Keywords: crystal structure; tin; Schiff base.
CCDC reference: 1842349
1. Chemical context
Stannic Schiff base complexes formed using a salicylaldehyde derivative as a keto precursor have been widely studied in recent decades (Reisi et al., 2010; Kumar & Nath, 2018; Tan et al., 2017; Paul et al., 2014; Pérez-Pérez et al., 2016). These may have both hard-atom donors, such as nitrogen or oxygen (Stadler et al., 2009; Rehman et al., 2008; Yin et al., 2008), and/or soft-atom donors, such as sulfur (Hong et al., 2010), which allow them to bind to different types of metal ions, yielding complexes with interesting properties. Due to the ability of the Sn4+ ion to form very stable complexes with or carbanions, many studies have been carried out with regard to their potential applications in medicine (Beltrán et al., 2007), catalysis (Orita et al., 1999) and biotechnology (Pellerito & Nagy, 2002). with O and N hard-donor sites, which can generate five- and six-membered rings upon coordination to metal ions, can be obtained from the condensation of a salicylaldehyde derivative and (Pellerito & Nagy, 2002). Many research groups have designed hydrazone ligands to prepare metal complexes with particular properties. Thus, organotin(IV) complexes were synthesized from ligands having a hydrazone moiety. The antibacterial (Rehman et al., 2016), antifungal (Öztaş et al., 2009) and antitumour (Lee et al., 2015) properties of these complexes have been studied. The structures of these organotin(IV) complexes and their properties can be diverse depending on the number of linked to Sn4+ (Lima et al., 2015; Luna-García et al., 2009). In this context, we have synthesized a symmetric ligand by a condensation reaction between salicylaldehyde and oxalohydrazide. This ligand was used to synthesize the organostannic(IV) complex, the structure of which is described herein.
2. Structural commentary
The structure of the title complex is shown in Fig. 1. The compound is a neutral pseudocentrosymmetric complex, which crystallizes in the P21/n In the one organic ligand links two [Sn(tBu)2]2+ units in a tridentate fashion. The stannic units are connected by the doubly deprotonated ligand which play a bridging role in a trans conformation. Each stannic unit is coordinated to the ligand via an iminolate O atom, a phenolate O atom and an imine N atom. Each Sn atom is pentacoordinated. The Sn—C bond lengths [2.158 (3)–2.168 (3) Å] are slightly shorter than the values reported for complexes containing the [Sn(tBu)2]2+ unit (Reichelt & Reuter, 2013, 2014). The binding lengths Sn—Ophenolate [2.0973 (18) and 2.0979 (18) Å, respectively, for Sn1 and Sn2] are shorter than the Sn—Oiminolate bond lengths [2.1497 (16) and 2.1633 (16) Å, respectively, for Sn1 and Sn2] (Table 1). The phenolate O atoms are more strongly coordinated to the Sn atom than the iminolate O atoms. Consequently, the respective C—O bond lengths are unequal: the C—Ophenolate distances associated with the strong coordination [1.302 (3)–1.308 (3) Å] are longer than the C—Oiminolate bonds associated with the less strong coordination [1.283 (3)–1.288 (3) Å]. The coordination sphere SnNC2O2 for each of the two Sn atoms can be characterized by the trigonality parameter τ = (β − α)/60, with α and β being the two largest angles around Sn (Addison et al., 1984). The value of τ is 1 in the case of a trigonal bipyramidal geometry, whereas τ = 0 for a perfect square-based pyramid. In the case of our complex, the values of τ (0.44 for Sn1 and 0.41 for Sn2) indicate intermediate geometries between the two perfect environments. For the two Sn atoms, the comparison of the values of the angles found in the coordination sphere with the ideal values of the angles for trigonal bipyramidal geometry indicates that the environment around the Sn atoms is best described as a strongly distorted trigonal bipyramid. The bond angles between the tert-butyl groups around Sn [C—Sn—C = 128.35 (12)° for Sn1 and 130.02 (12)° for Sn2] result in compression of the bond angles with the third atom which forms the equatorial plane with the two tert-butyl groups [N—Sn—C = 113.85 (10) and 117.79 (10)° for Sn1, and 113.63 (11) and 116.29 (10)° for Sn2]. The sum of the angles in the basal planes are, respectively, 359.99° for Sn1 and 359.94° for Sn2. The O atoms occupy the apical positions with comparable angles of 154.61 (7)° for Sn1 and 154.73 (7)° for Sn2. The angles between the apical O atoms and the atoms in the basal plane are in the range 72.35 (7)–97.12 (11)° for Sn1 and between 72.39 (6) and 96.48 (9)° for Sn2. The ligand, which acts in a tridentate fashion, forms two rings upon coordination with the tin centres, i.e. a five-membered OCNNSn ring and a six-membered OCCCNSn ring, sharing atom N1 for Sn1 and N4 for Sn2. The angles resulting from the five-membered ring [N1—Sn1—O2 = 72.35 (7)° and N4—Sn2—O3 = 72.39 (6)°] are much smaller than the angles resulting from the six-membered ring [N1—Sn1—O1 = 82.32 (8)° and N4—Sn2—O4 = 82.39 (7)°]. The better flexibility of the six-membered ring can explain this observed difference in values. The five- and six-membered rings obtained after coordination of the ligand are not planar, as indicated by the torsion angles for the two Sn atoms in the complex: Sn1—N1—N2—C8 0.6, Sn1—O2—C8—N2 0.5, Sn1—O1—C1—C6 6.3, Sn1—N1—C7—C6 − 2, Sn2—N4—N3—C9 2.1, Sn2—O3—C9—N3 − 1.2, Sn2—O4—C16—C11 − 3.7 and Sn2—N4—C10—C11 − 0.5°. For all four tBu groups, the angles around the central C atom (Sn—C—C and C—C—C) vary in the range from 106.0 (3) to 112.3 (4)° and indicate a tetrahedral environment around the central C atom. Both tBu groups reveal an eclipsed conformation regarding the methyl groups. The C—C bond lengths are in the range 1.81 (5)–1.542 (9) Å and are comparable to the values found in the literature (Reichelt & Reuter, 2013).
|
3. Supramolecular features
The overall structure is a complex three-dimensional network which is constructed from neutral quasi-centrosymmetric complexes disposed in different orientations onto intersecting multilayers (Fig. 2). The complex molecules display no strong supramolecular interactions and there are no hydrogen-bonding contacts in the crystal. This may be a consequence of a generated by the tert-butyl groups which could keep the complex molecules distant from each other.
5. Synthesis and crystallization
To a solution of oxalyldihydrazine (1 mmol) in a mixture of water and methanol (1:3 v/v, 10 ml) was added a solution of salicylaldehyde (2 mmol) in 10 ml of the same mixture. A white precipitate appeared and the resulting mixture was stirred at room temperature for 24 h. The suspension was filtered and the solid was washed with 2 × 10 ml of water and 2 × 10 ml of ether. The solid was recrystallized from a mixture of chloroform and methanol (1:1 v/v). The white powder collected was dried under P2O5. Yield 90% (H4L). Calculated for C16H14N4O4: C 58.89, H 4.32, N 17.17%; found: C 59.02, H 4.37, N 17.24%. IR (cm−1): 3277 (ν O—H), 1664 (ν C=O), 1601 (ν C=N), 1533, 1486, 1457, 1357, 1304, 1259, 1218, 1161 (ν C—O), 776, 673. 1H NMR: δ 12.6 (2H, broad, H—Ophenolic), 11.00 (s, 2H, broad, H—Oiminolic), 8.85 (s, 2H, broad, H—C=N), 7.6–7.00 (mult, 8H, H—Ph). 13C NMR: δ 158.5, 156.8, 151.98, 148.00, 132.93, 130.27, 120.37, 119.54, 117.39. To a mixture of H4L (2 mmol) and triethylamine (4 mmol) in 10 ml of ethanol was added SnCl2tBu2 (2 mmol) in ethanol (10 ml). The resulting yellow mixture was stirred under reflux for 120 min and the resulting brown solution was filtered. The filtrate was kept at 298 K and after one week yellow crystals suitable for X-ray analysis appeared and were collected by filtration. Yield 40%, m.p. 243°C. Calculated for C32H46N4Sn2O4: C 48.77, H 5.88, N 7.11%; found: C 48.64, H 5.96, N 7.09%. IR (cm−1): 1609, 1537, 1516, 1468, 1441, 1367, 1310, 1275, 1198, 1167, 1150, 870, 771, 754. 1H NMR: δ 8.85 (s, 2H, broad, H—C=N); 7.13–6.69 (mult, 8H, H—Ph); 1.33 (s, 36H, –tBu). 13C NMR: δ 168.80, 163.68, 135.85, 134.72, 122.22, 116.99, 41.53, 29.96.
6. Refinement
Crystal data, data collection and structure . All H atoms were geometrically optimized and refined as riding, with Uiso(H) = 1.2Ueq(C) (1.5 for CH3 groups).
details are summarized in Table 2Supporting information
CCDC reference: 1842349
https://doi.org/10.1107/S2056989018007077/ex2008sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018007077/ex2008Isup2.hkl
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b).[Sn2(C4H9)4(C16H10N4O4)] | F(000) = 1592 |
Mr = 788.11 | Dx = 1.463 Mg m−3 Dm = not messured Mg m−3 Dm measured by ? |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 16.3836 (8) Å | Cell parameters from 4920 reflections |
b = 13.2683 (9) Å | θ = 2.4–28.6° |
c = 16.8153 (9) Å | µ = 1.43 mm−1 |
β = 101.829 (5)° | T = 293 K |
V = 3577.7 (4) Å3 | Block, colourless |
Z = 4 | 0.12 × 0.09 × 0.07 mm |
Nonius KappaCCD diffractometer | 7650 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.048 |
Detector resolution: 9 pixels mm-1 | θmax = 29.9°, θmin = 3.4° |
CCD scans | h = −22→22 |
59628 measured reflections | k = −17→18 |
9468 independent reflections | l = −20→21 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.030 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.073 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0319P)2 + 1.6129P] where P = (Fo2 + 2Fc2)/3 |
9468 reflections | (Δ/σ)max = 0.002 |
379 parameters | Δρmax = 0.45 e Å−3 |
0 restraints | Δρmin = −0.71 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Sn1 | 0.36223 (2) | 0.41469 (2) | 0.79310 (2) | 0.03755 (5) | |
Sn2 | 0.63988 (2) | 0.79558 (2) | 0.68119 (2) | 0.03934 (5) | |
O1 | 0.24901 (12) | 0.34843 (18) | 0.73636 (14) | 0.0703 (6) | |
O2 | 0.46637 (11) | 0.51524 (15) | 0.80024 (11) | 0.0525 (5) | |
O3 | 0.53626 (11) | 0.69220 (14) | 0.67204 (10) | 0.0474 (4) | |
O4 | 0.75082 (13) | 0.86525 (18) | 0.74008 (12) | 0.0694 (7) | |
N1 | 0.34011 (12) | 0.50542 (15) | 0.68228 (11) | 0.0393 (4) | |
N2 | 0.40219 (13) | 0.57578 (16) | 0.67497 (12) | 0.0428 (4) | |
N3 | 0.58678 (13) | 0.65449 (16) | 0.80715 (12) | 0.0442 (5) | |
N4 | 0.65020 (12) | 0.72276 (16) | 0.79931 (12) | 0.0414 (4) | |
C1 | 0.19341 (15) | 0.3673 (2) | 0.67079 (18) | 0.0528 (6) | |
C2 | 0.11932 (19) | 0.3098 (3) | 0.6553 (2) | 0.0711 (9) | |
H2 | 0.110885 | 0.261020 | 0.692523 | 0.085* | |
C3 | 0.0599 (2) | 0.3247 (3) | 0.5865 (3) | 0.0853 (12) | |
H3 | 0.011867 | 0.285444 | 0.577350 | 0.102* | |
C4 | 0.0698 (2) | 0.3965 (3) | 0.5307 (3) | 0.0850 (12) | |
H4 | 0.028528 | 0.405890 | 0.484257 | 0.102* | |
C5 | 0.14110 (19) | 0.4550 (3) | 0.5433 (2) | 0.0686 (9) | |
H5 | 0.147829 | 0.503344 | 0.505177 | 0.082* | |
C6 | 0.20378 (15) | 0.4417 (2) | 0.61383 (17) | 0.0503 (6) | |
C7 | 0.27601 (16) | 0.5052 (2) | 0.62256 (15) | 0.0471 (6) | |
H7 | 0.276901 | 0.551011 | 0.580904 | 0.056* | |
C8 | 0.46227 (13) | 0.57313 (16) | 0.73846 (13) | 0.0344 (4) | |
C9 | 0.53356 (13) | 0.64555 (17) | 0.73865 (13) | 0.0356 (4) | |
C10 | 0.70722 (16) | 0.7344 (2) | 0.86415 (15) | 0.0493 (6) | |
H10 | 0.700861 | 0.696916 | 0.909235 | 0.059* | |
C11 | 0.77885 (16) | 0.7980 (2) | 0.87465 (15) | 0.0465 (6) | |
C12 | 0.83292 (19) | 0.7991 (3) | 0.95231 (17) | 0.0619 (8) | |
H12 | 0.819572 | 0.760608 | 0.994057 | 0.074* | |
C13 | 0.90410 (18) | 0.8556 (3) | 0.96701 (18) | 0.0655 (8) | |
H13 | 0.938677 | 0.855760 | 1.018321 | 0.079* | |
C14 | 0.92427 (17) | 0.9124 (2) | 0.90516 (19) | 0.0567 (7) | |
H14 | 0.973175 | 0.950086 | 0.914915 | 0.068* | |
C15 | 0.87323 (16) | 0.9143 (2) | 0.82924 (18) | 0.0506 (6) | |
H15 | 0.888326 | 0.952862 | 0.788380 | 0.061* | |
C16 | 0.79855 (15) | 0.8587 (2) | 0.81248 (15) | 0.0450 (5) | |
C17 | 0.5658 (2) | 0.9320 (2) | 0.6679 (2) | 0.0669 (8) | |
C18 | 0.4847 (3) | 0.9143 (4) | 0.6085 (4) | 0.142 (3) | |
H18A | 0.454931 | 0.860176 | 0.627670 | 0.213* | |
H18B | 0.451533 | 0.974447 | 0.603517 | 0.213* | |
H18C | 0.496052 | 0.896819 | 0.556398 | 0.213* | |
C19 | 0.6150 (3) | 1.0174 (3) | 0.6397 (3) | 0.0981 (14) | |
H19A | 0.666229 | 1.027155 | 0.678515 | 0.147* | |
H19B | 0.627256 | 1.000674 | 0.587824 | 0.147* | |
H19C | 0.582737 | 1.078302 | 0.634943 | 0.147* | |
C20 | 0.5514 (4) | 0.9567 (4) | 0.7526 (4) | 0.137 (2) | |
H20A | 0.604119 | 0.967599 | 0.788836 | 0.206* | |
H20B | 0.518037 | 1.016579 | 0.750218 | 0.206* | |
H20C | 0.523032 | 0.901603 | 0.772148 | 0.206* | |
C21 | 0.69982 (17) | 0.7192 (2) | 0.59457 (17) | 0.0540 (7) | |
C22 | 0.7587 (2) | 0.6409 (3) | 0.6418 (2) | 0.0801 (10) | |
H22A | 0.727044 | 0.592205 | 0.665022 | 0.120* | |
H22B | 0.788490 | 0.607630 | 0.605812 | 0.120* | |
H22C | 0.797641 | 0.673657 | 0.684458 | 0.120* | |
C23 | 0.6346 (2) | 0.6689 (3) | 0.5285 (2) | 0.0817 (11) | |
H23A | 0.603860 | 0.620308 | 0.552904 | 0.122* | |
H23B | 0.597028 | 0.719105 | 0.500825 | 0.122* | |
H23C | 0.661852 | 0.635758 | 0.490429 | 0.122* | |
C24 | 0.7494 (2) | 0.7965 (3) | 0.5577 (2) | 0.0803 (11) | |
H24A | 0.712025 | 0.845560 | 0.528066 | 0.121* | |
H24B | 0.788287 | 0.829454 | 0.600229 | 0.121* | |
H24C | 0.779136 | 0.763427 | 0.521582 | 0.121* | |
C25 | 0.43127 (19) | 0.2757 (2) | 0.7933 (2) | 0.0578 (7) | |
C26 | 0.4308 (3) | 0.2502 (3) | 0.7050 (3) | 0.0927 (13) | |
H26A | 0.374299 | 0.242582 | 0.675844 | 0.139* | |
H26B | 0.457188 | 0.303542 | 0.681016 | 0.139* | |
H26C | 0.460630 | 0.188421 | 0.702427 | 0.139* | |
C27 | 0.5201 (2) | 0.2885 (3) | 0.8417 (3) | 0.0956 (14) | |
H27A | 0.518815 | 0.304510 | 0.897070 | 0.143* | |
H27B | 0.550483 | 0.226908 | 0.839912 | 0.143* | |
H27C | 0.547041 | 0.342028 | 0.818502 | 0.143* | |
C28 | 0.3865 (2) | 0.1936 (2) | 0.8315 (2) | 0.0755 (10) | |
H28A | 0.387192 | 0.210408 | 0.887113 | 0.113* | |
H28B | 0.329886 | 0.188329 | 0.802171 | 0.113* | |
H28C | 0.414414 | 0.130347 | 0.829091 | 0.113* | |
C29 | 0.3129 (2) | 0.4803 (2) | 0.89081 (17) | 0.0596 (7) | |
C30 | 0.2509 (3) | 0.5633 (3) | 0.8534 (3) | 0.0962 (14) | |
H30A | 0.208371 | 0.534604 | 0.811715 | 0.144* | |
H30B | 0.225771 | 0.592226 | 0.894872 | 0.144* | |
H30C | 0.280030 | 0.614798 | 0.830230 | 0.144* | |
C31 | 0.2614 (3) | 0.4006 (4) | 0.9233 (3) | 0.1040 (15) | |
H31A | 0.218264 | 0.376591 | 0.879876 | 0.156* | |
H31B | 0.296795 | 0.345402 | 0.945335 | 0.156* | |
H31C | 0.236661 | 0.429417 | 0.965076 | 0.156* | |
C32 | 0.3804 (3) | 0.5197 (5) | 0.9557 (3) | 0.122 (2) | |
H32A | 0.411643 | 0.569682 | 0.933459 | 0.183* | |
H32B | 0.356563 | 0.549440 | 0.997807 | 0.183* | |
H32C | 0.416697 | 0.465424 | 0.978065 | 0.183* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sn1 | 0.03209 (8) | 0.03814 (9) | 0.04242 (9) | −0.00636 (6) | 0.00766 (6) | 0.00305 (6) |
Sn2 | 0.03622 (9) | 0.04356 (10) | 0.03705 (9) | −0.00783 (6) | 0.00475 (6) | 0.01043 (6) |
O1 | 0.0483 (11) | 0.0805 (16) | 0.0749 (14) | −0.0318 (11) | −0.0044 (10) | 0.0142 (12) |
O2 | 0.0436 (9) | 0.0602 (12) | 0.0478 (9) | −0.0227 (8) | −0.0045 (7) | 0.0194 (8) |
O3 | 0.0447 (9) | 0.0569 (11) | 0.0384 (8) | −0.0174 (8) | 0.0033 (7) | 0.0114 (8) |
O4 | 0.0593 (12) | 0.0872 (16) | 0.0530 (11) | −0.0384 (11) | −0.0086 (9) | 0.0260 (11) |
N1 | 0.0336 (9) | 0.0424 (11) | 0.0407 (10) | −0.0046 (8) | 0.0052 (8) | 0.0004 (8) |
N2 | 0.0397 (10) | 0.0473 (12) | 0.0406 (10) | −0.0100 (9) | 0.0064 (8) | 0.0061 (8) |
N3 | 0.0415 (10) | 0.0494 (12) | 0.0406 (10) | −0.0155 (9) | 0.0057 (8) | 0.0106 (9) |
N4 | 0.0407 (10) | 0.0445 (11) | 0.0381 (10) | −0.0118 (8) | 0.0056 (8) | 0.0077 (8) |
C1 | 0.0349 (12) | 0.0554 (16) | 0.0661 (17) | −0.0053 (11) | 0.0055 (11) | −0.0130 (13) |
C2 | 0.0411 (15) | 0.074 (2) | 0.095 (2) | −0.0147 (14) | 0.0064 (15) | −0.0158 (18) |
C3 | 0.0419 (16) | 0.085 (3) | 0.120 (3) | −0.0102 (17) | −0.0045 (18) | −0.035 (2) |
C4 | 0.0466 (17) | 0.096 (3) | 0.095 (3) | 0.0031 (18) | −0.0275 (18) | −0.033 (2) |
C5 | 0.0541 (17) | 0.072 (2) | 0.0687 (19) | 0.0045 (15) | −0.0143 (14) | −0.0171 (16) |
C6 | 0.0339 (12) | 0.0562 (16) | 0.0563 (15) | 0.0024 (11) | −0.0018 (11) | −0.0197 (12) |
C7 | 0.0432 (13) | 0.0523 (15) | 0.0422 (12) | −0.0004 (11) | 0.0008 (10) | −0.0024 (11) |
C8 | 0.0319 (10) | 0.0343 (11) | 0.0384 (11) | −0.0024 (8) | 0.0105 (8) | 0.0001 (9) |
C9 | 0.0342 (10) | 0.0352 (11) | 0.0387 (11) | −0.0028 (9) | 0.0107 (9) | 0.0028 (9) |
C10 | 0.0475 (14) | 0.0603 (16) | 0.0377 (12) | −0.0163 (12) | 0.0032 (10) | 0.0105 (11) |
C11 | 0.0419 (13) | 0.0537 (15) | 0.0414 (13) | −0.0096 (11) | 0.0029 (10) | 0.0020 (11) |
C12 | 0.0564 (17) | 0.082 (2) | 0.0424 (14) | −0.0167 (15) | −0.0019 (12) | 0.0067 (13) |
C13 | 0.0504 (16) | 0.088 (2) | 0.0518 (16) | −0.0162 (16) | −0.0053 (12) | −0.0062 (15) |
C14 | 0.0402 (13) | 0.0623 (18) | 0.0650 (17) | −0.0119 (12) | 0.0046 (12) | −0.0111 (14) |
C15 | 0.0422 (13) | 0.0506 (15) | 0.0585 (16) | −0.0122 (11) | 0.0094 (11) | −0.0020 (12) |
C16 | 0.0397 (12) | 0.0462 (14) | 0.0469 (13) | −0.0093 (10) | 0.0041 (10) | 0.0006 (10) |
C17 | 0.0647 (19) | 0.0472 (16) | 0.089 (2) | 0.0057 (14) | 0.0171 (17) | 0.0156 (15) |
C18 | 0.072 (3) | 0.083 (3) | 0.240 (7) | 0.017 (2) | −0.041 (4) | 0.041 (4) |
C19 | 0.111 (3) | 0.050 (2) | 0.133 (4) | −0.002 (2) | 0.027 (3) | 0.031 (2) |
C20 | 0.201 (6) | 0.079 (3) | 0.164 (5) | 0.042 (4) | 0.114 (5) | 0.011 (3) |
C21 | 0.0475 (14) | 0.0667 (18) | 0.0516 (15) | −0.0002 (13) | 0.0194 (12) | 0.0093 (13) |
C22 | 0.068 (2) | 0.078 (2) | 0.100 (3) | 0.0197 (18) | 0.032 (2) | 0.022 (2) |
C23 | 0.084 (2) | 0.103 (3) | 0.0611 (19) | −0.005 (2) | 0.0222 (18) | −0.0192 (19) |
C24 | 0.077 (2) | 0.097 (3) | 0.080 (2) | −0.0037 (19) | 0.0441 (19) | 0.025 (2) |
C25 | 0.0543 (16) | 0.0437 (15) | 0.078 (2) | 0.0058 (12) | 0.0202 (14) | 0.0083 (13) |
C26 | 0.127 (4) | 0.066 (2) | 0.100 (3) | 0.010 (2) | 0.059 (3) | −0.008 (2) |
C27 | 0.0511 (19) | 0.082 (3) | 0.149 (4) | 0.0168 (18) | 0.008 (2) | 0.035 (3) |
C28 | 0.082 (2) | 0.0448 (17) | 0.102 (3) | −0.0003 (16) | 0.025 (2) | 0.0177 (17) |
C29 | 0.0664 (18) | 0.0682 (19) | 0.0484 (15) | 0.0080 (15) | 0.0212 (13) | 0.0051 (13) |
C30 | 0.114 (3) | 0.099 (3) | 0.078 (2) | 0.046 (3) | 0.025 (2) | 0.002 (2) |
C31 | 0.105 (3) | 0.128 (4) | 0.096 (3) | 0.001 (3) | 0.062 (3) | 0.023 (3) |
C32 | 0.085 (3) | 0.200 (6) | 0.078 (3) | 0.001 (3) | 0.009 (2) | −0.058 (3) |
Sn1—O1 | 2.0973 (18) | C17—C20 | 1.527 (6) |
Sn1—O2 | 2.1497 (16) | C18—H18A | 0.9600 |
Sn1—C29 | 2.158 (3) | C18—H18B | 0.9600 |
Sn1—C25 | 2.163 (3) | C18—H18C | 0.9600 |
Sn1—N1 | 2.1855 (19) | C19—H19A | 0.9600 |
Sn2—O4 | 2.0979 (18) | C19—H19B | 0.9600 |
Sn2—O3 | 2.1633 (16) | C19—H19C | 0.9600 |
Sn2—C17 | 2.166 (3) | C20—H20A | 0.9600 |
Sn2—C21 | 2.168 (3) | C20—H20B | 0.9600 |
Sn2—N4 | 2.1840 (19) | C20—H20C | 0.9600 |
O1—C1 | 1.302 (3) | C21—C24 | 1.517 (4) |
O2—C8 | 1.283 (3) | C21—C22 | 1.525 (4) |
O3—C9 | 1.288 (3) | C21—C23 | 1.528 (4) |
O4—C16 | 1.308 (3) | C22—H22A | 0.9600 |
N1—C7 | 1.296 (3) | C22—H22B | 0.9600 |
N1—N2 | 1.404 (3) | C22—H22C | 0.9600 |
N2—C8 | 1.296 (3) | C23—H23A | 0.9600 |
N3—C9 | 1.300 (3) | C23—H23B | 0.9600 |
N3—N4 | 1.405 (3) | C23—H23C | 0.9600 |
N4—C10 | 1.291 (3) | C24—H24A | 0.9600 |
C1—C6 | 1.410 (4) | C24—H24B | 0.9600 |
C1—C2 | 1.412 (4) | C24—H24C | 0.9600 |
C2—C3 | 1.365 (5) | C25—C26 | 1.522 (5) |
C2—H2 | 0.9300 | C25—C27 | 1.524 (5) |
C3—C4 | 1.370 (6) | C25—C28 | 1.526 (4) |
C3—H3 | 0.9300 | C26—H26A | 0.9600 |
C4—C5 | 1.382 (5) | C26—H26B | 0.9600 |
C4—H4 | 0.9300 | C26—H26C | 0.9600 |
C5—C6 | 1.411 (4) | C27—H27A | 0.9600 |
C5—H5 | 0.9300 | C27—H27B | 0.9600 |
C6—C7 | 1.435 (4) | C27—H27C | 0.9600 |
C7—H7 | 0.9300 | C28—H28A | 0.9600 |
C8—C9 | 1.512 (3) | C28—H28B | 0.9600 |
C10—C11 | 1.427 (3) | C28—H28C | 0.9600 |
C10—H10 | 0.9300 | C29—C32 | 1.481 (5) |
C11—C16 | 1.409 (4) | C29—C31 | 1.523 (5) |
C11—C12 | 1.420 (3) | C29—C30 | 1.542 (5) |
C12—C13 | 1.365 (4) | C30—H30A | 0.9600 |
C12—H12 | 0.9300 | C30—H30B | 0.9600 |
C13—C14 | 1.378 (4) | C30—H30C | 0.9600 |
C13—H13 | 0.9300 | C31—H31A | 0.9600 |
C14—C15 | 1.375 (4) | C31—H31B | 0.9600 |
C14—H14 | 0.9300 | C31—H31C | 0.9600 |
C15—C16 | 1.406 (3) | C32—H32A | 0.9600 |
C15—H15 | 0.9300 | C32—H32B | 0.9600 |
C17—C18 | 1.508 (6) | C32—H32C | 0.9600 |
C17—C19 | 1.522 (5) | ||
O1—Sn1—O2 | 154.61 (7) | H18A—C18—H18B | 109.5 |
O1—Sn1—C29 | 94.65 (11) | C17—C18—H18C | 109.5 |
O2—Sn1—C29 | 97.12 (11) | H18A—C18—H18C | 109.5 |
O1—Sn1—C25 | 93.27 (11) | H18B—C18—H18C | 109.5 |
O2—Sn1—C25 | 96.90 (10) | C17—C19—H19A | 109.5 |
C29—Sn1—C25 | 128.35 (12) | C17—C19—H19B | 109.5 |
O1—Sn1—N1 | 82.32 (8) | H19A—C19—H19B | 109.5 |
O2—Sn1—N1 | 72.35 (7) | C17—C19—H19C | 109.5 |
C29—Sn1—N1 | 113.85 (10) | H19A—C19—H19C | 109.5 |
C25—Sn1—N1 | 117.79 (10) | H19B—C19—H19C | 109.5 |
O4—Sn2—O3 | 154.73 (7) | C17—C20—H20A | 109.5 |
O4—Sn2—C17 | 95.37 (12) | C17—C20—H20B | 109.5 |
O3—Sn2—C17 | 96.17 (10) | H20A—C20—H20B | 109.5 |
O4—Sn2—C21 | 93.16 (11) | C17—C20—H20C | 109.5 |
O3—Sn2—C21 | 96.48 (9) | H20A—C20—H20C | 109.5 |
C17—Sn2—C21 | 130.02 (12) | H20B—C20—H20C | 109.5 |
O4—Sn2—N4 | 82.39 (7) | C24—C21—C22 | 109.8 (3) |
O3—Sn2—N4 | 72.39 (6) | C24—C21—C23 | 110.6 (3) |
C17—Sn2—N4 | 113.63 (11) | C22—C21—C23 | 110.8 (3) |
C21—Sn2—N4 | 116.29 (10) | C24—C21—Sn2 | 108.2 (2) |
C1—O1—Sn1 | 134.77 (19) | C22—C21—Sn2 | 107.1 (2) |
C8—O2—Sn1 | 114.66 (14) | C23—C21—Sn2 | 110.3 (2) |
C9—O3—Sn2 | 114.15 (14) | C21—C22—H22A | 109.5 |
C16—O4—Sn2 | 134.83 (17) | C21—C22—H22B | 109.5 |
C7—N1—N2 | 114.9 (2) | H22A—C22—H22B | 109.5 |
C7—N1—Sn1 | 128.74 (17) | C21—C22—H22C | 109.5 |
N2—N1—Sn1 | 116.38 (13) | H22A—C22—H22C | 109.5 |
C8—N2—N1 | 110.57 (18) | H22B—C22—H22C | 109.5 |
C9—N3—N4 | 110.51 (18) | C21—C23—H23A | 109.5 |
C10—N4—N3 | 114.75 (19) | C21—C23—H23B | 109.5 |
C10—N4—Sn2 | 128.52 (16) | H23A—C23—H23B | 109.5 |
N3—N4—Sn2 | 116.73 (14) | C21—C23—H23C | 109.5 |
O1—C1—C6 | 123.3 (2) | H23A—C23—H23C | 109.5 |
O1—C1—C2 | 118.5 (3) | H23B—C23—H23C | 109.5 |
C6—C1—C2 | 118.2 (3) | C21—C24—H24A | 109.5 |
C3—C2—C1 | 121.0 (4) | C21—C24—H24B | 109.5 |
C3—C2—H2 | 119.5 | H24A—C24—H24B | 109.5 |
C1—C2—H2 | 119.5 | C21—C24—H24C | 109.5 |
C2—C3—C4 | 121.2 (3) | H24A—C24—H24C | 109.5 |
C2—C3—H3 | 119.4 | H24B—C24—H24C | 109.5 |
C4—C3—H3 | 119.4 | C26—C25—C27 | 111.0 (3) |
C3—C4—C5 | 120.0 (3) | C26—C25—C28 | 110.1 (3) |
C3—C4—H4 | 120.0 | C27—C25—C28 | 110.1 (3) |
C5—C4—H4 | 120.0 | C26—C25—Sn1 | 106.9 (2) |
C4—C5—C6 | 120.4 (4) | C27—C25—Sn1 | 110.4 (2) |
C4—C5—H5 | 119.8 | C28—C25—Sn1 | 108.3 (2) |
C6—C5—H5 | 119.8 | C25—C26—H26A | 109.5 |
C1—C6—C5 | 119.3 (3) | C25—C26—H26B | 109.5 |
C1—C6—C7 | 123.6 (2) | H26A—C26—H26B | 109.5 |
C5—C6—C7 | 117.1 (3) | C25—C26—H26C | 109.5 |
N1—C7—C6 | 126.9 (3) | H26A—C26—H26C | 109.5 |
N1—C7—H7 | 116.5 | H26B—C26—H26C | 109.5 |
C6—C7—H7 | 116.5 | C25—C27—H27A | 109.5 |
O2—C8—N2 | 126.0 (2) | C25—C27—H27B | 109.5 |
O2—C8—C9 | 117.82 (19) | H27A—C27—H27B | 109.5 |
N2—C8—C9 | 116.1 (2) | C25—C27—H27C | 109.5 |
O3—C9—N3 | 126.2 (2) | H27A—C27—H27C | 109.5 |
O3—C9—C8 | 117.89 (19) | H27B—C27—H27C | 109.5 |
N3—C9—C8 | 115.94 (19) | C25—C28—H28A | 109.5 |
N4—C10—C11 | 127.5 (2) | C25—C28—H28B | 109.5 |
N4—C10—H10 | 116.2 | H28A—C28—H28B | 109.5 |
C11—C10—H10 | 116.2 | C25—C28—H28C | 109.5 |
C16—C11—C12 | 118.8 (2) | H28A—C28—H28C | 109.5 |
C16—C11—C10 | 123.7 (2) | H28B—C28—H28C | 109.5 |
C12—C11—C10 | 117.5 (2) | C32—C29—C31 | 111.4 (4) |
C13—C12—C11 | 121.4 (3) | C32—C29—C30 | 112.3 (4) |
C13—C12—H12 | 119.3 | C31—C29—C30 | 106.0 (3) |
C11—C12—H12 | 119.3 | C32—C29—Sn1 | 111.3 (2) |
C12—C13—C14 | 119.4 (3) | C31—C29—Sn1 | 108.3 (2) |
C12—C13—H13 | 120.3 | C30—C29—Sn1 | 107.2 (2) |
C14—C13—H13 | 120.3 | C29—C30—H30A | 109.5 |
C15—C14—C13 | 121.1 (3) | C29—C30—H30B | 109.5 |
C15—C14—H14 | 119.5 | H30A—C30—H30B | 109.5 |
C13—C14—H14 | 119.5 | C29—C30—H30C | 109.5 |
C14—C15—C16 | 121.0 (3) | H30A—C30—H30C | 109.5 |
C14—C15—H15 | 119.5 | H30B—C30—H30C | 109.5 |
C16—C15—H15 | 119.5 | C29—C31—H31A | 109.5 |
O4—C16—C15 | 118.8 (2) | C29—C31—H31B | 109.5 |
O4—C16—C11 | 123.0 (2) | H31A—C31—H31B | 109.5 |
C15—C16—C11 | 118.2 (2) | C29—C31—H31C | 109.5 |
C18—C17—C19 | 111.2 (4) | H31A—C31—H31C | 109.5 |
C18—C17—C20 | 111.7 (4) | H31B—C31—H31C | 109.5 |
C19—C17—C20 | 108.9 (4) | C29—C32—H32A | 109.5 |
C18—C17—Sn2 | 109.7 (3) | C29—C32—H32B | 109.5 |
C19—C17—Sn2 | 109.4 (2) | H32A—C32—H32B | 109.5 |
C20—C17—Sn2 | 105.9 (3) | C29—C32—H32C | 109.5 |
C17—C18—H18A | 109.5 | H32A—C32—H32C | 109.5 |
C17—C18—H18B | 109.5 | H32B—C32—H32C | 109.5 |
Funding information
Funding for this research was provided by: Sonatel Foundation.
References
Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356. CSD CrossRef Web of Science Google Scholar
Beltrán, I. H., Damian-Zea, C., Hernández-Ortega, S., Nieto-Camacho, A. & Ramírez-Apan, M. T. (2007). J. Inorg. Biochem. 101, 1070–1085. Google Scholar
Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Hong, M., Yin, H.-D., Chen, S.-W. & Wang, D.-Q. (2010). J. Organomet. Chem. 695, 653–662. Web of Science CSD CrossRef CAS Google Scholar
Kumar, S. & Nath, M. (2018). J. Organomet. Chem. 856, 87–99. CrossRef Google Scholar
Lee, S. M., Sim, K. S. & Lo, K. M. (2015). Inorg. Chim. Acta, 429, 195–208. Web of Science CSD CrossRef CAS Google Scholar
Lima, V. S., Lemos, S. S. & Casagrande, G. A. (2015). Polyhedron, 89, 85–90. CrossRef Google Scholar
Luna-García, R., Damián-Murillo, B. M., Barba, V., Höpfl, H., Beltrán, H. I. & Zamudio-Rivera, L. S. (2009). J. Organomet. Chem. 694, 3965–3972. Google Scholar
Orita, K., Sakamoto, Y., Hamada, K., Mitsutome, A. & Otera, J. (1999). Tetrahedron, 55, 2899–2910. CrossRef Google Scholar
Öztaş, N. A., Yenişhirli, G., Ancın, N. S., Öztaş, G., Özcan, Y. & İde, S. (2009). Spectrochim. Acta Part A, 72, 929–935. Google Scholar
Paul, L. E. H., Foehn, I. C., Schwarzer, A., Brendler, E. & Böhme, U. (2014). Inorg. Chim. Acta, 423, 268–280. CrossRef Google Scholar
Pellerito, L. & Nagy, L. (2002). Coord. Chem. Rev. 224, 111–150. Web of Science CrossRef CAS Google Scholar
Pérez-Pérez, J., Alvarado-Rodríguez, J. G., Andrade-López, N., Cruz Borbolla, J., Martínez- Otero, D. & Vásquez-Pérez, J. M. (2016). Inorg. Chem. Commun. 70, 75–78. Google Scholar
Rehman, W., Baloch, M. K. & Badshah, A. (2008). Eur. J. Med. Chem. 43, 2380–2385. CrossRef Google Scholar
Rehman, W., Yasmeen, R., Rahim, F., Waseem, M., Guo, C.-Y., Hassan, Z., Rashid, U. & Ayub, K. (2016). J. Photochem. Photobiol. B, 164, 65–72. CrossRef Google Scholar
Reichelt, M. & Reuter, H. (2013). Acta Cryst. E69, m254. CSD CrossRef IUCr Journals Google Scholar
Reichelt, M. & Reuter, H. (2014). Acta Cryst. E70, m133. CSD CrossRef IUCr Journals Google Scholar
Reisi, R., Misran, M., Lo, K. M. & Ng, S. W. (2010). Acta Cryst. E66, m482. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Stadler, A.-M. & Harrowfield, J. (2009). Inorg. Chim. Acta, 362, 4298–4314. CrossRef Google Scholar
Tan, Y.-X., Zhang, Z.-J., Liu, Y., Yu, J.-X., Zhu, X.-M., Kuang, D.-Z. & Jiang, W.-J. (2017). J. Mol. Struct. 1149, 874–881. CrossRef Google Scholar
Yin, H.-D., Cui, J.-C. & Qiao, Y.-L. (2008). Polyhedron, 27, 2157–2166. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.