research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (μ-trans-1,2-bis­­{2-[(2-oxido­phen­yl)methyl­­idene]hydrazin-1-yl­­idene}ethane-1,2-diolato-κ3O,O′,N)bis­­[di-tert-butyl­tin(IV)]

CROSSMARK_Color_square_no_text.svg

aDépartement de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, bDépartement de Chimie, Faculté des Sciences, Université de Nouakchott, Nouakchott, Mauritania, and cIMN Institut ds Matériaux Jean Rouxel, 2 rue de la Houssiniere, 44322 Nantes, France
*Correspondence e-mail: mlgayeastou@yahoo.fr

Edited by J. Ellena, Universidade de Sâo Paulo, Brazil (Received 13 April 2018; accepted 9 May 2018; online 15 May 2018)

The binuclear complex, [Sn2(C4H9)4(C16H10N4O4)], contains two Sn4+ ions, connected by doubly N-deprotonated oxalylbis[(2-oxido­benzyl­idene)hydrazide] ligands, and each Sn4+ ion is linked to two tert-butyl groups. The coordination sphere of each Sn atom is best described as a distorted trigonal bipyramid. Each stannic ion in the complex is in a C2O2N environment. The two homologous parts of the doubly deprotonated ligand are located in trans positions with respect to the C—C bond of the oxalamide group. The oxalamide group exhibits an asymmetric coordination geometry, as seen by the slight difference between the C—O and C—N bond lengths. The three-dimensional network is a multilayer of complex mol­ecules with no strong supramolecular inter­actions.

1. Chemical context

Stannic Schiff base complexes formed using a salicyl­aldehyde derivative as a keto precursor have been widely studied in recent decades (Reisi et al., 2010[Reisi, R., Misran, M., Lo, K. M. & Ng, S. W. (2010). Acta Cryst. E66, m482.]; Kumar & Nath, 2018[Kumar, S. & Nath, M. (2018). J. Organomet. Chem. 856, 87-99.]; Tan et al., 2017[Tan, Y.-X., Zhang, Z.-J., Liu, Y., Yu, J.-X., Zhu, X.-M., Kuang, D.-Z. & Jiang, W.-J. (2017). J. Mol. Struct. 1149, 874-881.]; Paul et al., 2014[Paul, L. E. H., Foehn, I. C., Schwarzer, A., Brendler, E. & Böhme, U. (2014). Inorg. Chim. Acta, 423, 268-280.]; Pérez-Pérez et al., 2016[Pérez-Pérez, J., Alvarado-Rodríguez, J. G., Andrade-López, N., Cruz Borbolla, J., Martínez- Otero, D. & Vásquez-Pérez, J. M. (2016). Inorg. Chem. Commun. 70, 75-78.]). These Schiff bases may have both hard-atom donors, such as nitro­gen or oxygen (Stadler et al., 2009[Stadler, A.-M. & Harrowfield, J. (2009). Inorg. Chim. Acta, 362, 4298-4314.]; Rehman et al., 2008[Rehman, W., Baloch, M. K. & Badshah, A. (2008). Eur. J. Med. Chem. 43, 2380-2385.]; Yin et al., 2008[Yin, H.-D., Cui, J.-C. & Qiao, Y.-L. (2008). Polyhedron, 27, 2157-2166.]), and/or soft-atom donors, such as sulfur (Hong et al., 2010[Hong, M., Yin, H.-D., Chen, S.-W. & Wang, D.-Q. (2010). J. Organomet. Chem. 695, 653-662.]), which allow them to bind to different types of metal ions, yielding complexes with inter­esting properties. Due to the ability of the Sn4+ ion to form very stable complexes with Schiff bases or carbanions, many studies have been carried out with regard to their potential applications in medicine (Beltrán et al., 2007[Beltrán, I. H., Damian-Zea, C., Hernández-Ortega, S., Nieto-Camacho, A. & Ramírez-Apan, M. T. (2007). J. Inorg. Biochem. 101, 1070-1085.]), catalysis (Orita et al., 1999[Orita, K., Sakamoto, Y., Hamada, K., Mitsutome, A. & Otera, J. (1999). Tetrahedron, 55, 2899-2910.]) and biotechnology (Pellerito & Nagy, 2002[Pellerito, L. & Nagy, L. (2002). Coord. Chem. Rev. 224, 111-150.]). Schiff bases with O and N hard-donor sites, which can generate five- and six-membered rings upon coordination to metal ions, can be obtained from the condensation of a salicyl­aldehyde derivative and hydrazides (Pellerito & Nagy, 2002[Pellerito, L. & Nagy, L. (2002). Coord. Chem. Rev. 224, 111-150.]). Many research groups have designed hydrazone ligands to prepare metal complexes with particular properties. Thus, organotin(IV) complexes were synthesized from ligands having a hydrazone moiety. The anti­bacterial (Rehman et al., 2016[Rehman, W., Yasmeen, R., Rahim, F., Waseem, M., Guo, C.-Y., Hassan, Z., Rashid, U. & Ayub, K. (2016). J. Photochem. Photobiol. B, 164, 65-72.]), anti­fungal (Öztaş et al., 2009[Öztaş, N. A., Yenişhirli, G., Ancın, N. S., Öztaş, G., Özcan, Y. & İde, S. (2009). Spectrochim. Acta Part A, 72, 929-935.]) and anti­tumour (Lee et al., 2015[Lee, S. M., Sim, K. S. & Lo, K. M. (2015). Inorg. Chim. Acta, 429, 195-208.]) properties of these complexes have been studied. The structures of these organotin(IV) complexes and their properties can be diverse depending on the number of alkyl groups linked to Sn4+ (Lima et al., 2015[Lima, V. S., Lemos, S. S. & Casagrande, G. A. (2015). Polyhedron, 89, 85-90.]; Luna-García et al., 2009[Luna-García, R., Damián-Murillo, B. M., Barba, V., Höpfl, H., Beltrán, H. I. & Zamudio-Rivera, L. S. (2009). J. Organomet. Chem. 694, 3965-3972.]). In this context, we have synthesized a symmetric ligand by a condensation reaction between salicyl­aldehyde and oxalohydrazide. This ligand was used to synthesize the organostannic(IV) complex, the structure of which is described herein.

[Scheme 1]

2. Structural commentary

The structure of the title complex is shown in Fig. 1[link]. The compound is a neutral pseudocentrosymmetric complex, which crystallizes in the P21/n space group. In the asymmetric unit, one organic ligand links two [Sn(tBu)2]2+ units in a tridentate fashion. The stannic units are connected by the doubly deprotonated ligand which play a bridging role in a trans conformation. Each stannic unit is coordinated to the ligand via an imino­late O atom, a phenolate O atom and an imine N atom. Each Sn atom is penta­coordinated. The Sn—C bond lengths [2.158 (3)–2.168 (3) Å] are slightly shorter than the values reported for complexes containing the [Sn(tBu)2]2+ unit (Reichelt & Reuter, 2013[Reichelt, M. & Reuter, H. (2013). Acta Cryst. E69, m254.], 2014[Reichelt, M. & Reuter, H. (2014). Acta Cryst. E70, m133.]). The binding lengths Sn—Ophenolate [2.0973 (18) and 2.0979 (18) Å, respectively, for Sn1 and Sn2] are shorter than the Sn—Oimino­late bond lengths [2.1497 (16) and 2.1633 (16) Å, respectively, for Sn1 and Sn2] (Table 1[link]). The phenolate O atoms are more strongly coordinated to the Sn atom than the imino­late O atoms. Consequently, the respective C—O bond lengths are unequal: the C—Ophenolate distances associated with the strong coordination [1.302 (3)–1.308 (3) Å] are longer than the C—Oimino­late bonds associated with the less strong coordination [1.283 (3)–1.288 (3) Å]. The coordination sphere SnNC2O2 for each of the two Sn atoms can be characterized by the trigonality parameter τ = (βα)/60, with α and β being the two largest angles around Sn (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]). The value of τ is 1 in the case of a trigonal bipyramidal geometry, whereas τ = 0 for a perfect square-based pyramid. In the case of our complex, the values of τ (0.44 for Sn1 and 0.41 for Sn2) indicate inter­mediate geometries between the two perfect environments. For the two Sn atoms, the comparison of the values of the angles found in the coordination sphere with the ideal values of the angles for trigonal bipyramidal geometry indicates that the environment around the Sn atoms is best described as a strongly distorted trigonal bipyramid. The bond angles between the tert-butyl groups around Sn [C—Sn—C = 128.35 (12)° for Sn1 and 130.02 (12)° for Sn2] result in compression of the bond angles with the third atom which forms the equatorial plane with the two tert-butyl groups [N—Sn—C = 113.85 (10) and 117.79 (10)° for Sn1, and 113.63 (11) and 116.29 (10)° for Sn2]. The sum of the angles in the basal planes are, respectively, 359.99° for Sn1 and 359.94° for Sn2. The O atoms occupy the apical positions with comparable angles of 154.61 (7)° for Sn1 and 154.73 (7)° for Sn2. The angles between the apical O atoms and the atoms in the basal plane are in the range 72.35 (7)–97.12 (11)° for Sn1 and between 72.39 (6) and 96.48 (9)° for Sn2. The ligand, which acts in a tridentate fashion, forms two rings upon coordination with the tin centres, i.e. a five-membered OCNNSn ring and a six-membered OCCCNSn ring, sharing atom N1 for Sn1 and N4 for Sn2. The angles resulting from the five-membered ring [N1—Sn1—O2 = 72.35 (7)° and N4—Sn2—O3 = 72.39 (6)°] are much smaller than the angles resulting from the six-membered ring [N1—Sn1—O1 = 82.32 (8)° and N4—Sn2—O4 = 82.39 (7)°]. The better flexibility of the six-membered ring can explain this observed difference in values. The five- and six-membered rings obtained after coordination of the ligand are not planar, as indicated by the torsion angles for the two Sn atoms in the complex: Sn1—N1—N2—C8 0.6, Sn1—O2—C8—N2 0.5, Sn1—O1—C1—C6 6.3, Sn1—N1—C7—C6 − 2, Sn2—N4—N3—C9 2.1, Sn2—O3—C9—N3 − 1.2, Sn2—O4—C16—C11 − 3.7 and Sn2—N4—C10—C11 − 0.5°. For all four tBu groups, the angles around the central C atom (Sn—C—C and C—C—C) vary in the range from 106.0 (3) to 112.3 (4)° and indicate a tetra­hedral environment around the central C atom. Both tBu groups reveal an eclipsed conformation regarding the methyl groups. The C—C bond lengths are in the range 1.81 (5)–1.542 (9) Å and are comparable to the values found in the literature (Reichelt & Reuter, 2013[Reichelt, M. & Reuter, H. (2013). Acta Cryst. E69, m254.]).

Table 1
Selected geometric parameters (Å, °)

Sn1—O1 2.0973 (18) Sn2—O4 2.0979 (18)
Sn1—O2 2.1497 (16) Sn2—O3 2.1633 (16)
Sn1—C29 2.158 (3) Sn2—C17 2.166 (3)
Sn1—C25 2.163 (3) Sn2—C21 2.168 (3)
Sn1—N1 2.1855 (19) Sn2—N4 2.1840 (19)
       
O1—Sn1—O2 154.61 (7) O4—Sn2—O3 154.73 (7)
C29—Sn1—C25 128.35 (12) C17—Sn2—C21 130.02 (12)
C29—Sn1—N1 113.85 (10) C17—Sn2—N4 113.63 (11)
C25—Sn1—N1 117.79 (10) C21—Sn2—N4 116.29 (10)
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are plotted at the 50% probability level.

3. Supra­molecular features

The overall structure is a complex three-dimensional network which is constructed from neutral quasi-centrosymmetric complexes disposed in different orientations onto inter­secting multilayers (Fig. 2[link]). The complex mol­ecules display no strong supramolecular inter­actions and there are no hydrogen-bonding contacts in the crystal. This may be a consequence of a steric hindrance generated by the tert-butyl groups which could keep the complex mol­ecules distant from each other.

[Figure 2]
Figure 2
A view of the crystal packing of the title compound.

4. Database survey

No information was found in the databases for this ligand.

5. Synthesis and crystallization

To a solution of oxalyldihydrazine (1 mmol) in a mixture of water and methanol (1:3 v/v, 10 ml) was added a solution of salicyl­aldehyde (2 mmol) in 10 ml of the same mixture. A white precipitate appeared and the resulting mixture was stirred at room temperature for 24 h. The suspension was filtered and the solid was washed with 2 × 10 ml of water and 2 × 10 ml of ether. The solid was recrystallized from a mixture of chloro­form and methanol (1:1 v/v). The white powder collected was dried under P2O5. Yield 90% (H4L). Calculated for C16H14N4O4: C 58.89, H 4.32, N 17.17%; found: C 59.02, H 4.37, N 17.24%. IR (cm−1): 3277 (ν O—H), 1664 (ν C=O), 1601 (ν C=N), 1533, 1486, 1457, 1357, 1304, 1259, 1218, 1161 (ν C—O), 776, 673. 1H NMR: δ 12.6 (2H, broad, H—Ophenolic), 11.00 (s, 2H, broad, H—Oimino­lic), 8.85 (s, 2H, broad, H—C=N), 7.6–7.00 (mult, 8H, H—Ph). 13C NMR: δ 158.5, 156.8, 151.98, 148.00, 132.93, 130.27, 120.37, 119.54, 117.39. To a mixture of H4L (2 mmol) and tri­ethyl­amine (4 mmol) in 10 ml of ethanol was added SnCl2tBu2 (2 mmol) in ethanol (10 ml). The resulting yellow mixture was stirred under reflux for 120 min and the resulting brown solution was filtered. The filtrate was kept at 298 K and after one week yellow crystals suitable for X-ray analysis appeared and were collected by filtration. Yield 40%, m.p. 243°C. Calculated for C32H46N4Sn2O4: C 48.77, H 5.88, N 7.11%; found: C 48.64, H 5.96, N 7.09%. IR (cm−1): 1609, 1537, 1516, 1468, 1441, 1367, 1310, 1275, 1198, 1167, 1150, 870, 771, 754. 1H NMR: δ 8.85 (s, 2H, broad, H—C=N); 7.13–6.69 (mult, 8H, H—Ph); 1.33 (s, 36H, –tBu). 13C NMR: δ 168.80, 163.68, 135.85, 134.72, 122.22, 116.99, 41.53, 29.96.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were geometrically optimized and refined as riding, with Uiso(H) = 1.2Ueq(C) (1.5 for CH3 groups).

Table 2
Experimental details

Crystal data
Chemical formula [Sn2(C4H9)4(C16H10N4O4)]
Mr 788.11
Crystal system, space group Monoclinic, P21/n
Temperature (K) 293
a, b, c (Å) 16.3836 (8), 13.2683 (9), 16.8153 (9)
β (°) 101.829 (5)
V3) 3577.7 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.43
Crystal size (mm) 0.12 × 0.09 × 0.07
 
Data collection
Diffractometer Nonius KappaCCD
No. of measured, independent and observed [I > 2σ(I)] reflections 59628, 9468, 7650
Rint 0.048
(sin θ/λ)max−1) 0.702
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.073, 1.04
No. of reflections 9468
No. of parameters 379
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.45, −0.71
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b).

(µ-1,2-Bis{2-[(2-oxidophenyl)methylidene]hydrazin-1-ylidene}ethane-1,2-diolato-κ3O,O',N}bis[di-tert-butyltin(IV)] top
Crystal data top
[Sn2(C4H9)4(C16H10N4O4)]F(000) = 1592
Mr = 788.11Dx = 1.463 Mg m3
Dm = not messured Mg m3
Dm measured by ?
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 16.3836 (8) ÅCell parameters from 4920 reflections
b = 13.2683 (9) Åθ = 2.4–28.6°
c = 16.8153 (9) ŵ = 1.43 mm1
β = 101.829 (5)°T = 293 K
V = 3577.7 (4) Å3Block, colourless
Z = 40.12 × 0.09 × 0.07 mm
Data collection top
Nonius KappaCCD
diffractometer
7650 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.048
Detector resolution: 9 pixels mm-1θmax = 29.9°, θmin = 3.4°
CCD scansh = 2222
59628 measured reflectionsk = 1718
9468 independent reflectionsl = 2021
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0319P)2 + 1.6129P]
where P = (Fo2 + 2Fc2)/3
9468 reflections(Δ/σ)max = 0.002
379 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.71 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.36223 (2)0.41469 (2)0.79310 (2)0.03755 (5)
Sn20.63988 (2)0.79558 (2)0.68119 (2)0.03934 (5)
O10.24901 (12)0.34843 (18)0.73636 (14)0.0703 (6)
O20.46637 (11)0.51524 (15)0.80024 (11)0.0525 (5)
O30.53626 (11)0.69220 (14)0.67204 (10)0.0474 (4)
O40.75082 (13)0.86525 (18)0.74008 (12)0.0694 (7)
N10.34011 (12)0.50542 (15)0.68228 (11)0.0393 (4)
N20.40219 (13)0.57578 (16)0.67497 (12)0.0428 (4)
N30.58678 (13)0.65449 (16)0.80715 (12)0.0442 (5)
N40.65020 (12)0.72276 (16)0.79931 (12)0.0414 (4)
C10.19341 (15)0.3673 (2)0.67079 (18)0.0528 (6)
C20.11932 (19)0.3098 (3)0.6553 (2)0.0711 (9)
H20.1108850.2610200.6925230.085*
C30.0599 (2)0.3247 (3)0.5865 (3)0.0853 (12)
H30.0118670.2854440.5773500.102*
C40.0698 (2)0.3965 (3)0.5307 (3)0.0850 (12)
H40.0285280.4058900.4842570.102*
C50.14110 (19)0.4550 (3)0.5433 (2)0.0686 (9)
H50.1478290.5033440.5051770.082*
C60.20378 (15)0.4417 (2)0.61383 (17)0.0503 (6)
C70.27601 (16)0.5052 (2)0.62256 (15)0.0471 (6)
H70.2769010.5510110.5809040.056*
C80.46227 (13)0.57313 (16)0.73846 (13)0.0344 (4)
C90.53356 (13)0.64555 (17)0.73865 (13)0.0356 (4)
C100.70722 (16)0.7344 (2)0.86415 (15)0.0493 (6)
H100.7008610.6969160.9092350.059*
C110.77885 (16)0.7980 (2)0.87465 (15)0.0465 (6)
C120.83292 (19)0.7991 (3)0.95231 (17)0.0619 (8)
H120.8195720.7606080.9940570.074*
C130.90410 (18)0.8556 (3)0.96701 (18)0.0655 (8)
H130.9386770.8557601.0183210.079*
C140.92427 (17)0.9124 (2)0.90516 (19)0.0567 (7)
H140.9731750.9500860.9149150.068*
C150.87323 (16)0.9143 (2)0.82924 (18)0.0506 (6)
H150.8883260.9528620.7883800.061*
C160.79855 (15)0.8587 (2)0.81248 (15)0.0450 (5)
C170.5658 (2)0.9320 (2)0.6679 (2)0.0669 (8)
C180.4847 (3)0.9143 (4)0.6085 (4)0.142 (3)
H18A0.4549310.8601760.6276700.213*
H18B0.4515330.9744470.6035170.213*
H18C0.4960520.8968190.5563980.213*
C190.6150 (3)1.0174 (3)0.6397 (3)0.0981 (14)
H19A0.6662291.0271550.6785150.147*
H19B0.6272561.0006740.5878240.147*
H19C0.5827371.0783020.6349430.147*
C200.5514 (4)0.9567 (4)0.7526 (4)0.137 (2)
H20A0.6041190.9675990.7888360.206*
H20B0.5180371.0165790.7502180.206*
H20C0.5230320.9016030.7721480.206*
C210.69982 (17)0.7192 (2)0.59457 (17)0.0540 (7)
C220.7587 (2)0.6409 (3)0.6418 (2)0.0801 (10)
H22A0.7270440.5922050.6650220.120*
H22B0.7884900.6076300.6058120.120*
H22C0.7976410.6736570.6844580.120*
C230.6346 (2)0.6689 (3)0.5285 (2)0.0817 (11)
H23A0.6038600.6203080.5529040.122*
H23B0.5970280.7191050.5008250.122*
H23C0.6618520.6357580.4904290.122*
C240.7494 (2)0.7965 (3)0.5577 (2)0.0803 (11)
H24A0.7120250.8455600.5280660.121*
H24B0.7882870.8294540.6002290.121*
H24C0.7791360.7634270.5215820.121*
C250.43127 (19)0.2757 (2)0.7933 (2)0.0578 (7)
C260.4308 (3)0.2502 (3)0.7050 (3)0.0927 (13)
H26A0.3742990.2425820.6758440.139*
H26B0.4571880.3035420.6810160.139*
H26C0.4606300.1884210.7024270.139*
C270.5201 (2)0.2885 (3)0.8417 (3)0.0956 (14)
H27A0.5188150.3045100.8970700.143*
H27B0.5504830.2269080.8399120.143*
H27C0.5470410.3420280.8185020.143*
C280.3865 (2)0.1936 (2)0.8315 (2)0.0755 (10)
H28A0.3871920.2104080.8871130.113*
H28B0.3298860.1883290.8021710.113*
H28C0.4144140.1303470.8290910.113*
C290.3129 (2)0.4803 (2)0.89081 (17)0.0596 (7)
C300.2509 (3)0.5633 (3)0.8534 (3)0.0962 (14)
H30A0.2083710.5346040.8117150.144*
H30B0.2257710.5922260.8948720.144*
H30C0.2800300.6147980.8302300.144*
C310.2614 (3)0.4006 (4)0.9233 (3)0.1040 (15)
H31A0.2182640.3765910.8798760.156*
H31B0.2967950.3454020.9453350.156*
H31C0.2366610.4294170.9650760.156*
C320.3804 (3)0.5197 (5)0.9557 (3)0.122 (2)
H32A0.4116430.5696820.9334590.183*
H32B0.3565630.5494400.9978070.183*
H32C0.4166970.4654240.9780650.183*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.03209 (8)0.03814 (9)0.04242 (9)0.00636 (6)0.00766 (6)0.00305 (6)
Sn20.03622 (9)0.04356 (10)0.03705 (9)0.00783 (6)0.00475 (6)0.01043 (6)
O10.0483 (11)0.0805 (16)0.0749 (14)0.0318 (11)0.0044 (10)0.0142 (12)
O20.0436 (9)0.0602 (12)0.0478 (9)0.0227 (8)0.0045 (7)0.0194 (8)
O30.0447 (9)0.0569 (11)0.0384 (8)0.0174 (8)0.0033 (7)0.0114 (8)
O40.0593 (12)0.0872 (16)0.0530 (11)0.0384 (11)0.0086 (9)0.0260 (11)
N10.0336 (9)0.0424 (11)0.0407 (10)0.0046 (8)0.0052 (8)0.0004 (8)
N20.0397 (10)0.0473 (12)0.0406 (10)0.0100 (9)0.0064 (8)0.0061 (8)
N30.0415 (10)0.0494 (12)0.0406 (10)0.0155 (9)0.0057 (8)0.0106 (9)
N40.0407 (10)0.0445 (11)0.0381 (10)0.0118 (8)0.0056 (8)0.0077 (8)
C10.0349 (12)0.0554 (16)0.0661 (17)0.0053 (11)0.0055 (11)0.0130 (13)
C20.0411 (15)0.074 (2)0.095 (2)0.0147 (14)0.0064 (15)0.0158 (18)
C30.0419 (16)0.085 (3)0.120 (3)0.0102 (17)0.0045 (18)0.035 (2)
C40.0466 (17)0.096 (3)0.095 (3)0.0031 (18)0.0275 (18)0.033 (2)
C50.0541 (17)0.072 (2)0.0687 (19)0.0045 (15)0.0143 (14)0.0171 (16)
C60.0339 (12)0.0562 (16)0.0563 (15)0.0024 (11)0.0018 (11)0.0197 (12)
C70.0432 (13)0.0523 (15)0.0422 (12)0.0004 (11)0.0008 (10)0.0024 (11)
C80.0319 (10)0.0343 (11)0.0384 (11)0.0024 (8)0.0105 (8)0.0001 (9)
C90.0342 (10)0.0352 (11)0.0387 (11)0.0028 (9)0.0107 (9)0.0028 (9)
C100.0475 (14)0.0603 (16)0.0377 (12)0.0163 (12)0.0032 (10)0.0105 (11)
C110.0419 (13)0.0537 (15)0.0414 (13)0.0096 (11)0.0029 (10)0.0020 (11)
C120.0564 (17)0.082 (2)0.0424 (14)0.0167 (15)0.0019 (12)0.0067 (13)
C130.0504 (16)0.088 (2)0.0518 (16)0.0162 (16)0.0053 (12)0.0062 (15)
C140.0402 (13)0.0623 (18)0.0650 (17)0.0119 (12)0.0046 (12)0.0111 (14)
C150.0422 (13)0.0506 (15)0.0585 (16)0.0122 (11)0.0094 (11)0.0020 (12)
C160.0397 (12)0.0462 (14)0.0469 (13)0.0093 (10)0.0041 (10)0.0006 (10)
C170.0647 (19)0.0472 (16)0.089 (2)0.0057 (14)0.0171 (17)0.0156 (15)
C180.072 (3)0.083 (3)0.240 (7)0.017 (2)0.041 (4)0.041 (4)
C190.111 (3)0.050 (2)0.133 (4)0.002 (2)0.027 (3)0.031 (2)
C200.201 (6)0.079 (3)0.164 (5)0.042 (4)0.114 (5)0.011 (3)
C210.0475 (14)0.0667 (18)0.0516 (15)0.0002 (13)0.0194 (12)0.0093 (13)
C220.068 (2)0.078 (2)0.100 (3)0.0197 (18)0.032 (2)0.022 (2)
C230.084 (2)0.103 (3)0.0611 (19)0.005 (2)0.0222 (18)0.0192 (19)
C240.077 (2)0.097 (3)0.080 (2)0.0037 (19)0.0441 (19)0.025 (2)
C250.0543 (16)0.0437 (15)0.078 (2)0.0058 (12)0.0202 (14)0.0083 (13)
C260.127 (4)0.066 (2)0.100 (3)0.010 (2)0.059 (3)0.008 (2)
C270.0511 (19)0.082 (3)0.149 (4)0.0168 (18)0.008 (2)0.035 (3)
C280.082 (2)0.0448 (17)0.102 (3)0.0003 (16)0.025 (2)0.0177 (17)
C290.0664 (18)0.0682 (19)0.0484 (15)0.0080 (15)0.0212 (13)0.0051 (13)
C300.114 (3)0.099 (3)0.078 (2)0.046 (3)0.025 (2)0.002 (2)
C310.105 (3)0.128 (4)0.096 (3)0.001 (3)0.062 (3)0.023 (3)
C320.085 (3)0.200 (6)0.078 (3)0.001 (3)0.009 (2)0.058 (3)
Geometric parameters (Å, º) top
Sn1—O12.0973 (18)C17—C201.527 (6)
Sn1—O22.1497 (16)C18—H18A0.9600
Sn1—C292.158 (3)C18—H18B0.9600
Sn1—C252.163 (3)C18—H18C0.9600
Sn1—N12.1855 (19)C19—H19A0.9600
Sn2—O42.0979 (18)C19—H19B0.9600
Sn2—O32.1633 (16)C19—H19C0.9600
Sn2—C172.166 (3)C20—H20A0.9600
Sn2—C212.168 (3)C20—H20B0.9600
Sn2—N42.1840 (19)C20—H20C0.9600
O1—C11.302 (3)C21—C241.517 (4)
O2—C81.283 (3)C21—C221.525 (4)
O3—C91.288 (3)C21—C231.528 (4)
O4—C161.308 (3)C22—H22A0.9600
N1—C71.296 (3)C22—H22B0.9600
N1—N21.404 (3)C22—H22C0.9600
N2—C81.296 (3)C23—H23A0.9600
N3—C91.300 (3)C23—H23B0.9600
N3—N41.405 (3)C23—H23C0.9600
N4—C101.291 (3)C24—H24A0.9600
C1—C61.410 (4)C24—H24B0.9600
C1—C21.412 (4)C24—H24C0.9600
C2—C31.365 (5)C25—C261.522 (5)
C2—H20.9300C25—C271.524 (5)
C3—C41.370 (6)C25—C281.526 (4)
C3—H30.9300C26—H26A0.9600
C4—C51.382 (5)C26—H26B0.9600
C4—H40.9300C26—H26C0.9600
C5—C61.411 (4)C27—H27A0.9600
C5—H50.9300C27—H27B0.9600
C6—C71.435 (4)C27—H27C0.9600
C7—H70.9300C28—H28A0.9600
C8—C91.512 (3)C28—H28B0.9600
C10—C111.427 (3)C28—H28C0.9600
C10—H100.9300C29—C321.481 (5)
C11—C161.409 (4)C29—C311.523 (5)
C11—C121.420 (3)C29—C301.542 (5)
C12—C131.365 (4)C30—H30A0.9600
C12—H120.9300C30—H30B0.9600
C13—C141.378 (4)C30—H30C0.9600
C13—H130.9300C31—H31A0.9600
C14—C151.375 (4)C31—H31B0.9600
C14—H140.9300C31—H31C0.9600
C15—C161.406 (3)C32—H32A0.9600
C15—H150.9300C32—H32B0.9600
C17—C181.508 (6)C32—H32C0.9600
C17—C191.522 (5)
O1—Sn1—O2154.61 (7)H18A—C18—H18B109.5
O1—Sn1—C2994.65 (11)C17—C18—H18C109.5
O2—Sn1—C2997.12 (11)H18A—C18—H18C109.5
O1—Sn1—C2593.27 (11)H18B—C18—H18C109.5
O2—Sn1—C2596.90 (10)C17—C19—H19A109.5
C29—Sn1—C25128.35 (12)C17—C19—H19B109.5
O1—Sn1—N182.32 (8)H19A—C19—H19B109.5
O2—Sn1—N172.35 (7)C17—C19—H19C109.5
C29—Sn1—N1113.85 (10)H19A—C19—H19C109.5
C25—Sn1—N1117.79 (10)H19B—C19—H19C109.5
O4—Sn2—O3154.73 (7)C17—C20—H20A109.5
O4—Sn2—C1795.37 (12)C17—C20—H20B109.5
O3—Sn2—C1796.17 (10)H20A—C20—H20B109.5
O4—Sn2—C2193.16 (11)C17—C20—H20C109.5
O3—Sn2—C2196.48 (9)H20A—C20—H20C109.5
C17—Sn2—C21130.02 (12)H20B—C20—H20C109.5
O4—Sn2—N482.39 (7)C24—C21—C22109.8 (3)
O3—Sn2—N472.39 (6)C24—C21—C23110.6 (3)
C17—Sn2—N4113.63 (11)C22—C21—C23110.8 (3)
C21—Sn2—N4116.29 (10)C24—C21—Sn2108.2 (2)
C1—O1—Sn1134.77 (19)C22—C21—Sn2107.1 (2)
C8—O2—Sn1114.66 (14)C23—C21—Sn2110.3 (2)
C9—O3—Sn2114.15 (14)C21—C22—H22A109.5
C16—O4—Sn2134.83 (17)C21—C22—H22B109.5
C7—N1—N2114.9 (2)H22A—C22—H22B109.5
C7—N1—Sn1128.74 (17)C21—C22—H22C109.5
N2—N1—Sn1116.38 (13)H22A—C22—H22C109.5
C8—N2—N1110.57 (18)H22B—C22—H22C109.5
C9—N3—N4110.51 (18)C21—C23—H23A109.5
C10—N4—N3114.75 (19)C21—C23—H23B109.5
C10—N4—Sn2128.52 (16)H23A—C23—H23B109.5
N3—N4—Sn2116.73 (14)C21—C23—H23C109.5
O1—C1—C6123.3 (2)H23A—C23—H23C109.5
O1—C1—C2118.5 (3)H23B—C23—H23C109.5
C6—C1—C2118.2 (3)C21—C24—H24A109.5
C3—C2—C1121.0 (4)C21—C24—H24B109.5
C3—C2—H2119.5H24A—C24—H24B109.5
C1—C2—H2119.5C21—C24—H24C109.5
C2—C3—C4121.2 (3)H24A—C24—H24C109.5
C2—C3—H3119.4H24B—C24—H24C109.5
C4—C3—H3119.4C26—C25—C27111.0 (3)
C3—C4—C5120.0 (3)C26—C25—C28110.1 (3)
C3—C4—H4120.0C27—C25—C28110.1 (3)
C5—C4—H4120.0C26—C25—Sn1106.9 (2)
C4—C5—C6120.4 (4)C27—C25—Sn1110.4 (2)
C4—C5—H5119.8C28—C25—Sn1108.3 (2)
C6—C5—H5119.8C25—C26—H26A109.5
C1—C6—C5119.3 (3)C25—C26—H26B109.5
C1—C6—C7123.6 (2)H26A—C26—H26B109.5
C5—C6—C7117.1 (3)C25—C26—H26C109.5
N1—C7—C6126.9 (3)H26A—C26—H26C109.5
N1—C7—H7116.5H26B—C26—H26C109.5
C6—C7—H7116.5C25—C27—H27A109.5
O2—C8—N2126.0 (2)C25—C27—H27B109.5
O2—C8—C9117.82 (19)H27A—C27—H27B109.5
N2—C8—C9116.1 (2)C25—C27—H27C109.5
O3—C9—N3126.2 (2)H27A—C27—H27C109.5
O3—C9—C8117.89 (19)H27B—C27—H27C109.5
N3—C9—C8115.94 (19)C25—C28—H28A109.5
N4—C10—C11127.5 (2)C25—C28—H28B109.5
N4—C10—H10116.2H28A—C28—H28B109.5
C11—C10—H10116.2C25—C28—H28C109.5
C16—C11—C12118.8 (2)H28A—C28—H28C109.5
C16—C11—C10123.7 (2)H28B—C28—H28C109.5
C12—C11—C10117.5 (2)C32—C29—C31111.4 (4)
C13—C12—C11121.4 (3)C32—C29—C30112.3 (4)
C13—C12—H12119.3C31—C29—C30106.0 (3)
C11—C12—H12119.3C32—C29—Sn1111.3 (2)
C12—C13—C14119.4 (3)C31—C29—Sn1108.3 (2)
C12—C13—H13120.3C30—C29—Sn1107.2 (2)
C14—C13—H13120.3C29—C30—H30A109.5
C15—C14—C13121.1 (3)C29—C30—H30B109.5
C15—C14—H14119.5H30A—C30—H30B109.5
C13—C14—H14119.5C29—C30—H30C109.5
C14—C15—C16121.0 (3)H30A—C30—H30C109.5
C14—C15—H15119.5H30B—C30—H30C109.5
C16—C15—H15119.5C29—C31—H31A109.5
O4—C16—C15118.8 (2)C29—C31—H31B109.5
O4—C16—C11123.0 (2)H31A—C31—H31B109.5
C15—C16—C11118.2 (2)C29—C31—H31C109.5
C18—C17—C19111.2 (4)H31A—C31—H31C109.5
C18—C17—C20111.7 (4)H31B—C31—H31C109.5
C19—C17—C20108.9 (4)C29—C32—H32A109.5
C18—C17—Sn2109.7 (3)C29—C32—H32B109.5
C19—C17—Sn2109.4 (2)H32A—C32—H32B109.5
C20—C17—Sn2105.9 (3)C29—C32—H32C109.5
C17—C18—H18A109.5H32A—C32—H32C109.5
C17—C18—H18B109.5H32B—C32—H32C109.5
 

Funding information

Funding for this research was provided by: Sonatel Foundation.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBeltrán, I. H., Damian-Zea, C., Hernández-Ortega, S., Nieto-Camacho, A. & Ramírez-Apan, M. T. (2007). J. Inorg. Biochem. 101, 1070–1085.  Google Scholar
First citationBruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHong, M., Yin, H.-D., Chen, S.-W. & Wang, D.-Q. (2010). J. Organomet. Chem. 695, 653–662.  Web of Science CSD CrossRef CAS Google Scholar
First citationKumar, S. & Nath, M. (2018). J. Organomet. Chem. 856, 87–99.  CrossRef Google Scholar
First citationLee, S. M., Sim, K. S. & Lo, K. M. (2015). Inorg. Chim. Acta, 429, 195–208.  Web of Science CSD CrossRef CAS Google Scholar
First citationLima, V. S., Lemos, S. S. & Casagrande, G. A. (2015). Polyhedron, 89, 85–90.  CrossRef Google Scholar
First citationLuna-García, R., Damián-Murillo, B. M., Barba, V., Höpfl, H., Beltrán, H. I. & Zamudio-Rivera, L. S. (2009). J. Organomet. Chem. 694, 3965–3972.  Google Scholar
First citationOrita, K., Sakamoto, Y., Hamada, K., Mitsutome, A. & Otera, J. (1999). Tetrahedron, 55, 2899–2910.  CrossRef Google Scholar
First citationÖztaş, N. A., Yenişhirli, G., Ancın, N. S., Öztaş, G., Özcan, Y. & İde, S. (2009). Spectrochim. Acta Part A, 72, 929–935.  Google Scholar
First citationPaul, L. E. H., Foehn, I. C., Schwarzer, A., Brendler, E. & Böhme, U. (2014). Inorg. Chim. Acta, 423, 268–280.  CrossRef Google Scholar
First citationPellerito, L. & Nagy, L. (2002). Coord. Chem. Rev. 224, 111–150.  Web of Science CrossRef CAS Google Scholar
First citationPérez-Pérez, J., Alvarado-Rodríguez, J. G., Andrade-López, N., Cruz Borbolla, J., Martínez- Otero, D. & Vásquez-Pérez, J. M. (2016). Inorg. Chem. Commun. 70, 75–78.  Google Scholar
First citationRehman, W., Baloch, M. K. & Badshah, A. (2008). Eur. J. Med. Chem. 43, 2380–2385.  CrossRef Google Scholar
First citationRehman, W., Yasmeen, R., Rahim, F., Waseem, M., Guo, C.-Y., Hassan, Z., Rashid, U. & Ayub, K. (2016). J. Photochem. Photobiol. B, 164, 65–72.  CrossRef Google Scholar
First citationReichelt, M. & Reuter, H. (2013). Acta Cryst. E69, m254.  CSD CrossRef IUCr Journals Google Scholar
First citationReichelt, M. & Reuter, H. (2014). Acta Cryst. E70, m133.  CSD CrossRef IUCr Journals Google Scholar
First citationReisi, R., Misran, M., Lo, K. M. & Ng, S. W. (2010). Acta Cryst. E66, m482.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStadler, A.-M. & Harrowfield, J. (2009). Inorg. Chim. Acta, 362, 4298–4314.  CrossRef Google Scholar
First citationTan, Y.-X., Zhang, Z.-J., Liu, Y., Yu, J.-X., Zhu, X.-M., Kuang, D.-Z. & Jiang, W.-J. (2017). J. Mol. Struct. 1149, 874–881.  CrossRef Google Scholar
First citationYin, H.-D., Cui, J.-C. & Qiao, Y.-L. (2008). Polyhedron, 27, 2157–2166.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds