research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-{5-[2-(2-hy­dr­oxy­phen­yl)diazen-1-yl]-1-methyl­pyrrol-2-yl}phenol methanol monosolvate

CROSSMARK_Color_square_no_text.svg

aCollege of Chemistry, Tianjin Key Laboratory of Structure and Performance for, Functional Molecule, Tianjin Normal University, Tianjin 300387, People's Republic of China;, Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry, (Tianjin Normal University), Ministry of Education, Tianjin 300387, People's Republic of China
*Correspondence e-mail: tjyinzm@aliyun.com

Edited by K. Fejfarova, Institute of Biotechnology CAS, Czech Republic (Received 12 April 2018; accepted 24 May 2018; online 31 May 2018)

In the title azo­pyrrole compound, C17H15N3O2·CH3OH, the azo N=N bond adopts a trans configuration and the pyrrole N and azo group are in an anti orientation. The dihedral angles between the pyrrole ring and the two phenyl rings are 6.7 (3) and 54.7 (3)°. In the crystal, a supra­molecular ring structure is formed between two azo­pyrrole and two methanol solvent mol­ecules through four O—H⋯O hydrogen bonds.

1. Chemical context

Recently, azo­pyrrole dyes have received much attention for their promising use in the design of advanced materials and devices. For example, some thienyl­pyrrole azo dyes bearing heterocyclic groups have good non-linear optical properties (Raposo et al., 2011[Raposo, M. M. M. M., Castro, C. R., Fonseca, A. M. C., Schellenberg, P. & Belsley, M. (2011). Tetrahedron, 67, 5189-5198.]). Mikroyannidis and coworkers found that many azo­pyrrole dyes are efficient bulk heterojunction solar cell materials (Sharma et al., 2012[Sharma, G. D., Mikroyannidis, J. A., Sharma, S. S. & Justin Thomas, K. R. (2012). Dyes Pigments, 94, 320-329.]). In a previous work, we reported the crystal engineering of some 5,5′-bis­(phenyl­diazo)­dipyrro­methane compounds and demonstrated their inter­locked type self-assemblies in the solid state via quadruple N—H⋯N hydrogen bonds (Yin et al., 2008[Yin, Z., Wang, W., Guo, J., Wang, J., He, J. & Cheng, J.-P. (2008). CrystEngComm, 10, 957-959.], 2009[Yin, Z., Wang, W., Du, M., Wang, X. & Guo, J. (2009). CrystEngComm, 11, 2441-2446.]). In a continuation of this research, we report herein the crystal structure of 2-{5-[2-(2-hy­droxy­phen­yl)diazen-1-yl]-1-methyl­pyrrol-2-yl}phenol methanol monosolvate.

[Scheme 1]

2. Structural commentary

The structure of the title compound is shown in Fig. 1[link]. The asymmetric unit contains one azo­pyrrole mol­ecule and one methanol solvent mol­ecule. The azoylazo­pyrrole group is almost planar, reflected by the dihedral angle between the pyrrole ring (N3/C7–C10) and the benzene ring (C1–C6) of only 6.7 (3)°, which may be due to the existence of the intra­molecular O1—H1⋯N2 hydrogen bond (Table 1[link]) between the hy­droxy group and the azo N atom. The dihedral angle between pyrrole ring and the other benzene ring (C12–C17) is 54.7 (3)°, which may be caused by the steric repulsion between hy­droxy group and methyl group. The azo N=N bond adopts a trans configuration and its length is 1.286 (2) Å, which is shorter than that in the crystal of 2,5-bis­(2-hy­droxy­phenyl­azo)-1H-pyrrole (1.293 Å; Li et al. 2009[Li, Y., Patrick, B. O. & Dolphin, D. (2009). J. Org. Chem. 74, 5237-5243.]). It is worth mentioning that the N1 atom of the azo group and the N3 atom of the pyrrole ring are arranged on opposite sides with respect to the C7—N2 bond, which is the same as in the crystal of 2-phenyl­azo-1-vinyl pyrrole (Trofimov et al., 2006[Trofimov, B. A., Schmidt, Y. E., Mikhaleva, A. I., Vasil'tsov, A. M., Zaitsev, A. B., Smolyanina, N. S., Senotrusova, E. Y., Afonin, A. V., Ushakov, I. A., Petrushenko, K. B., Kazheva, O. N., Dyachenko, O. A., Smirnov, V. V., Schmidt, A. F., Markova, M. V. & Morozova, L. V. (2006). Eur. J. Org. Chem. pp. 4021-4033.]) but different to many other observations (Li et al., 2009[Li, Y., Patrick, B. O. & Dolphin, D. (2009). J. Org. Chem. 74, 5237-5243.]; Yin et al., 2008[Yin, Z., Wang, W., Guo, J., Wang, J., He, J. & Cheng, J.-P. (2008). CrystEngComm, 10, 957-959.]). The bond lengths in the pyrrole ring are more equal compared to those normally observed.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C12-C17 rings, respectively

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2 0.84 1.81 2.530 (2) 143
O2—H2⋯O3i 0.84 1.81 2.641 (2) 171
O3—H3A⋯O1ii 0.84 1.97 2.763 (2) 157
C11—H11BCg1iii 0.98 2.73 3.587 (2) 147
C18—H18CCg2iv 0.98 2.75 3.483 (3) 132
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) x, y, z+1; (iii) -x, -y+1, -z; (iv) -x, -y+2, -z+1.
[Figure 1]
Figure 1
ORTEP diagram for the title compound, with displacement ellipsoids drawn at the 30% probability level. The methanol solvent mol­ecule was omitted for clarity.

3. Supra­molecular features

In the crystal, two azo­pyrrole mol­ecules are bridged by two methanol solvent mol­ecules through four O—H⋯O hydrogen bonds forming a large supra­molecular ring structure, in which the methanol acts as both a hydrogen-bond acceptor and a donor (Fig. 2[link], Table 1[link]). This type of coordination environment is most populated (occupying 70%) for methanol mol­ecules as revealed by a search of the Cambridge Structural Database (CSD) (Brychczynska et al. 2008[Brychczynska, M., Davey, R. J. & Pidcock, E. (2008). New J. Chem. 32, 1754-1760.]). The methyl groups point to the inside of the ring. The rings are further held together through C—H⋯π contacts involving the benzene rings (Table 1[link]). There are no ππ inter­actions between the aromatic rings. The packing is shown in Fig. 3[link].

[Figure 2]
Figure 2
O—H⋯O hydrogen-bonded (Table 1[link]) supra­molecular ring structure.
[Figure 3]
Figure 3
A view of the crystal packing along the b axis.

4. Database survey

A search in the Cambridge Structural Database (Version 5.38; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) returned 45 entries for azo­pyrrole derivatives, including three entries for N-vinyl­phenyl­azo­pyrrole (Trofimov et al., 2006[Trofimov, B. A., Schmidt, Y. E., Mikhaleva, A. I., Vasil'tsov, A. M., Zaitsev, A. B., Smolyanina, N. S., Senotrusova, E. Y., Afonin, A. V., Ushakov, I. A., Petrushenko, K. B., Kazheva, O. N., Dyachenko, O. A., Smirnov, V. V., Schmidt, A. F., Markova, M. V. & Morozova, L. V. (2006). Eur. J. Org. Chem. pp. 4021-4033.]; Rusakov et al., 2007[Rusakov, Y. Y., Krivdin, L. B., Senotrusova, E. Y., Schmidt, E. Y., Vasiltsov, A. M., Mikhaleva, A. I., Trofimov, B. A., Dyachenko, O. A., Chekhlov, A. N. & Kazheva, O. N. (2007). Magn. Reson. Chem. 45, 142-151.]), four entries for mono- or bis­azo­pyrroles (Li et al., 2009[Li, Y., Patrick, B. O. & Dolphin, D. (2009). J. Org. Chem. 74, 5237-5243.]), two entries for azo calix[4]pyrroles (Nishiyabu et al., 2006[Nishiyabu, R., Palacios, M. A., Dehaen, W. & Anzenbacher, P. Jr (2006). J. Am. Chem. Soc. 128, 11496-11504.]), five entries for pyrrole-azocrown ethers (Wagner-Wysiecka et al., 2011[Wagner-Wysiecka, E., Rzymowski, T., Fonari, M. S., Kulmaczewski, R. & Luboch, E. (2011). Tetrahedron, 67, 1862-1872.]; Szczygelska-Tao et al., 2008[Szczygelska-Tao, J., Fonari, M. S. & Biernat, J. F. (2008). Supramol. Chem. 20, 651-658.]), two entries for azo­pyrrole boron difluoride complexes (Li et al., 2009[Li, Y., Patrick, B. O. & Dolphin, D. (2009). J. Org. Chem. 74, 5237-5243.]; Lee et al., 2012[Lee, H. Y., Olasz, A., Chen, C.-H. & Lee, D. (2012). Org. Lett. 14, 6286-6289.]), ten entries for metal complexes (Li et al., 2008[Li, W.-Y., Mao, L.-S., Lu, L. & He, H.-W. (2008). Acta Cryst. E64, m490.]; Li, & Dolphin, 2011[Li, Y. & Dolphin, D. (2011). Can. J. Chem. 89, 481-487.]; Yin et al., 2012[Yin, Z., Yan, Y., Sun, S. & Wang, W. (2012). J. Coord. Chem. 65, 865-874.]; Zhang et al., 2015[Zhang, H., Chen, J. & Yin, Z. (2015). Chin. J. Struct. Chem. 34, 1876-1882.]; Ghorui et al., 2016[Ghorui, T., Roy, S., Pramanik, S. & Pramanik, K. (2016). Dalton Trans. 45, 5720-5729.]); the majority are for mono- or bis­phenyl­azodipyrro­methanes (Yin et al., 2008[Yin, Z., Wang, W., Guo, J., Wang, J., He, J. & Cheng, J.-P. (2008). CrystEngComm, 10, 957-959.], 2009[Yin, Z., Wang, W., Du, M., Wang, X. & Guo, J. (2009). CrystEngComm, 11, 2441-2446.]; Chen & Yin, 2014[Chen, J. & Yin, Z. (2014). Dyes Pigments, 102, 94-99.]; Zhang & Yin, 2014[Zhang, H. & Yin, Z. (2014). Chin. J. Struct. Chem. 33, 1813-1818.]).

5. Synthesis and crystallization

A 273 K solution of 2-amino­phenol 0.272 g (2.5 mmol) and aqueous HCl (2 mL) in water (2 mL) was treated with another 273 K solution of NaNO2 (0.18 g, 2.5 mmol) in 3 mL water, and the mixture was stirred at 273 K for 30 min. The diazo­nium salt solution was added dropwise to a solution of N-methyl­pyrrole (81 mg, 1 mmol) in aceto­nitrile (25 mL) and three drops of acetic acid. The combined solution was maintained at 273 K for 2 h with stirring. After that, EtOAc (25 mL) and water (25 mL) were added. The organic layer was separated and washed with water (20 mL) and dried with anhydrous MgSO4. The solution was evaporated and the residue was purified by column chromatography on silica (ethyl acetate/petroleum ether = 1:2), which gave the title compound as an orange powder (200 mg, 68%, m.p. 404 K).

1H NMR (400MHz, DMSO-d6): δ 3.73 (s, 3H, –CH3), 6.32 (d, J = 4 Hz, 1H, pyrrole C—H), 6.86 (d, J = 4 Hz, 1H, pyrrole C–H), 6.90–6.95 (m, 2H, Ar C-H), 6.99 (t, 2H, J = 8 Hz, Ar C—H), 7.23–7.31 (m, 3H, Ar C-H), 7.65 (d, J = 8Hz, 1H, Ar C—H), 9.95 (s, 1H, –OH), 10.43 (s, 1H, –OH) . Crystals suitable X-ray diffraction analysis were obtained by the slow evaporation of a CHCl3/CH3OH solution of the title compound.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. O—H atoms were located in a difference-Fourier map and refined freely. Other H atoms were positioned geometrically (C—H = 0.95 or 0.98 Å) and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmeth­yl).

Table 2
Experimental details

Crystal data
Chemical formula C17H15N3O2·CH4O
Mr 325.36
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 173
a, b, c (Å) 7.1597 (11), 9.8762 (16), 12.243 (2)
α, β, γ (°) 110.426 (3), 94.051 (3), 93.378 (3)
V3) 806.0 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.14 × 0.13 × 0.12
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.987, 0.989
No. of measured, independent and observed [I > 2σ(I)] reflections 4168, 2830, 2071
Rint 0.025
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.109, 1.03
No. of reflections 2830
No. of parameters 222
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.21, −0.23
Computer programs: APEX2 and SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97, SHELXL97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

2-{5-[2-(2-Hydroxyphenyl)diazen-1-yl]-1-methylpyrrol-2-yl}phenol methanol monosolvate top
Crystal data top
C17H15N3O2·CH4OZ = 2
Mr = 325.36F(000) = 344
Triclinic, P1Dx = 1.341 Mg m3
a = 7.1597 (11) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.8762 (16) ÅCell parameters from 1104 reflections
c = 12.243 (2) Åθ = 2.3–28.1°
α = 110.426 (3)°µ = 0.09 mm1
β = 94.051 (3)°T = 173 K
γ = 93.378 (3)°BLOCK, yellow
V = 806.0 (2) Å30.14 × 0.13 × 0.12 mm
Data collection top
Bruker APEXII CCD
diffractometer
2830 independent reflections
Radiation source: fine-focus sealed tube2071 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
φ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 88
Tmin = 0.987, Tmax = 0.989k = 119
4168 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0437P)2 + 0.2373P]
where P = (Fo2 + 2Fc2)/3
2830 reflections(Δ/σ)max < 0.001
222 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.23 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2218 (2)0.53355 (15)0.07978 (12)0.0254 (4)
H10.22600.59410.01130.038*
O20.4830 (2)1.13606 (14)0.27561 (13)0.0221 (4)
H20.55271.19980.26360.033*
O30.2725 (2)0.68674 (17)0.77244 (15)0.0304 (4)
H3A0.29000.63750.81540.046*
N10.2920 (2)0.48800 (18)0.14369 (15)0.0191 (4)
N20.2614 (2)0.61395 (18)0.14132 (14)0.0181 (4)
N30.2453 (2)0.86125 (17)0.24967 (14)0.0166 (4)
C10.2840 (3)0.3796 (2)0.03169 (18)0.0180 (5)
C20.2539 (3)0.4013 (2)0.07572 (18)0.0196 (5)
C30.2592 (3)0.2857 (2)0.18007 (19)0.0247 (5)
H30.23900.30010.25260.030*
C40.2933 (3)0.1506 (2)0.17897 (19)0.0243 (5)
H40.29880.07280.25080.029*
C50.3199 (3)0.1269 (2)0.07380 (19)0.0235 (5)
H50.34070.03290.07350.028*
C60.3159 (3)0.2406 (2)0.02965 (19)0.0206 (5)
H60.33530.22440.10150.025*
C70.2752 (3)0.7239 (2)0.24820 (17)0.0170 (5)
C80.3197 (3)0.7316 (2)0.36227 (17)0.0190 (5)
H80.34780.65330.38700.023*
C90.3152 (3)0.8753 (2)0.43346 (18)0.0190 (5)
H90.33860.91280.51640.023*
C100.2708 (3)0.9552 (2)0.36319 (17)0.0172 (5)
C110.1888 (3)0.8954 (2)0.14600 (18)0.0210 (5)
H11A0.14660.99330.17020.032*
H11B0.08580.82510.09860.032*
H11C0.29590.89080.09970.032*
C120.2552 (3)1.1127 (2)0.39959 (17)0.0167 (5)
C130.3645 (3)1.2011 (2)0.35662 (17)0.0166 (5)
C140.3540 (3)1.3501 (2)0.39739 (17)0.0184 (5)
H140.42661.40920.36640.022*
C150.2372 (3)1.4124 (2)0.48346 (18)0.0203 (5)
H150.22991.51440.51130.024*
C160.1314 (3)1.3269 (2)0.52895 (18)0.0211 (5)
H160.05261.36990.58860.025*
C170.1411 (3)1.1790 (2)0.48707 (18)0.0201 (5)
H170.06821.12070.51870.024*
C180.0860 (3)0.7274 (3)0.7761 (2)0.0310 (6)
H18A0.07120.79700.85410.046*
H18B0.00200.64110.75940.046*
H18C0.05960.77200.71730.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0358 (9)0.0192 (8)0.0215 (8)0.0050 (7)0.0042 (7)0.0068 (7)
O20.0216 (8)0.0161 (8)0.0286 (8)0.0020 (6)0.0093 (7)0.0066 (7)
O30.0220 (8)0.0362 (10)0.0448 (10)0.0055 (7)0.0064 (7)0.0279 (8)
N10.0188 (9)0.0144 (9)0.0233 (10)0.0014 (7)0.0030 (8)0.0053 (8)
N20.0164 (9)0.0155 (10)0.0216 (9)0.0004 (7)0.0024 (7)0.0057 (8)
N30.0157 (9)0.0155 (9)0.0188 (9)0.0018 (7)0.0022 (7)0.0062 (7)
C10.0120 (10)0.0167 (11)0.0226 (11)0.0005 (8)0.0008 (9)0.0040 (9)
C20.0165 (11)0.0176 (12)0.0253 (12)0.0020 (9)0.0015 (9)0.0083 (9)
C30.0235 (12)0.0296 (13)0.0199 (11)0.0021 (10)0.0022 (10)0.0072 (10)
C40.0209 (11)0.0210 (12)0.0236 (12)0.0036 (9)0.0026 (9)0.0015 (10)
C50.0212 (12)0.0160 (12)0.0304 (13)0.0036 (9)0.0001 (10)0.0049 (10)
C60.0172 (11)0.0211 (12)0.0230 (11)0.0008 (9)0.0021 (9)0.0080 (9)
C70.0152 (10)0.0136 (11)0.0215 (11)0.0004 (8)0.0032 (9)0.0052 (9)
C80.0222 (11)0.0143 (11)0.0216 (11)0.0022 (9)0.0025 (9)0.0077 (9)
C90.0198 (11)0.0184 (11)0.0179 (11)0.0012 (9)0.0031 (9)0.0051 (9)
C100.0143 (10)0.0160 (11)0.0195 (11)0.0004 (8)0.0028 (9)0.0042 (9)
C110.0239 (12)0.0176 (11)0.0198 (11)0.0019 (9)0.0034 (9)0.0054 (9)
C120.0151 (10)0.0142 (11)0.0197 (11)0.0000 (8)0.0022 (9)0.0055 (9)
C130.0148 (10)0.0174 (11)0.0160 (10)0.0031 (8)0.0001 (8)0.0040 (9)
C140.0181 (11)0.0154 (11)0.0211 (11)0.0006 (8)0.0010 (9)0.0066 (9)
C150.0210 (11)0.0141 (11)0.0227 (11)0.0027 (9)0.0009 (9)0.0031 (9)
C160.0206 (11)0.0200 (12)0.0216 (11)0.0047 (9)0.0048 (9)0.0050 (9)
C170.0171 (11)0.0202 (12)0.0239 (11)0.0005 (9)0.0028 (9)0.0090 (9)
C180.0216 (12)0.0363 (14)0.0367 (14)0.0030 (10)0.0015 (11)0.0153 (12)
Geometric parameters (Å, º) top
O1—C21.357 (2)C7—C81.385 (3)
O1—H10.8400C8—C91.386 (3)
O2—C131.362 (2)C8—H80.9500
O2—H20.8400C9—C101.389 (3)
O3—C181.416 (3)C9—H90.9500
O3—H3A0.8400C10—C121.475 (3)
N1—N21.286 (2)C11—H11A0.9800
N1—C11.410 (2)C11—H11B0.9800
N2—C71.371 (2)C11—H11C0.9800
N3—C101.367 (2)C12—C171.393 (3)
N3—C71.380 (3)C12—C131.396 (3)
N3—C111.460 (3)C13—C141.388 (3)
C1—C61.397 (3)C14—C151.386 (3)
C1—C21.409 (3)C14—H140.9500
C2—C31.390 (3)C15—C161.382 (3)
C3—C41.375 (3)C15—H150.9500
C3—H30.9500C16—C171.378 (3)
C4—C51.389 (3)C16—H160.9500
C4—H40.9500C17—H170.9500
C5—C61.372 (3)C18—H18A0.9800
C5—H50.9500C18—H18B0.9800
C6—H60.9500C18—H18C0.9800
C2—O1—H1109.5C10—C9—H9125.7
C13—O2—H2109.5N3—C10—C9107.62 (17)
C18—O3—H3A109.5N3—C10—C12124.35 (19)
N2—N1—C1113.64 (18)C9—C10—C12128.03 (18)
N1—N2—C7115.61 (18)N3—C11—H11A109.5
C10—N3—C7108.49 (17)N3—C11—H11B109.5
C10—N3—C11127.06 (17)H11A—C11—H11B109.5
C7—N3—C11124.41 (17)N3—C11—H11C109.5
C6—C1—C2118.50 (19)H11A—C11—H11C109.5
C6—C1—N1115.80 (19)H11B—C11—H11C109.5
C2—C1—N1125.66 (19)C17—C12—C13118.08 (19)
O1—C2—C3119.0 (2)C17—C12—C10119.67 (19)
O1—C2—C1121.41 (18)C13—C12—C10122.00 (19)
C3—C2—C1119.6 (2)O2—C13—C14121.74 (19)
C4—C3—C2120.4 (2)O2—C13—C12117.65 (18)
C4—C3—H3119.8C14—C13—C12120.60 (19)
C2—C3—H3119.8C15—C14—C13119.8 (2)
C3—C4—C5120.6 (2)C15—C14—H14120.1
C3—C4—H4119.7C13—C14—H14120.1
C5—C4—H4119.7C16—C15—C14120.3 (2)
C6—C5—C4119.3 (2)C16—C15—H15119.9
C6—C5—H5120.3C14—C15—H15119.9
C4—C5—H5120.3C17—C16—C15119.5 (2)
C5—C6—C1121.5 (2)C17—C16—H16120.3
C5—C6—H6119.3C15—C16—H16120.3
C1—C6—H6119.3C16—C17—C12121.7 (2)
N2—C7—N3117.55 (18)C16—C17—H17119.2
N2—C7—C8133.93 (19)C12—C17—H17119.2
N3—C7—C8108.49 (17)O3—C18—H18A109.5
C7—C8—C9106.85 (19)O3—C18—H18B109.5
C7—C8—H8126.6H18A—C18—H18B109.5
C9—C8—H8126.6O3—C18—H18C109.5
C8—C9—C10108.55 (18)H18A—C18—H18C109.5
C8—C9—H9125.7H18B—C18—H18C109.5
C1—N1—N2—C7177.49 (17)C7—C8—C9—C100.8 (2)
N2—N1—C1—C6179.85 (17)C7—N3—C10—C90.6 (2)
N2—N1—C1—C22.6 (3)C11—N3—C10—C9177.13 (18)
C6—C1—C2—O1179.88 (19)C7—N3—C10—C12178.51 (18)
N1—C1—C2—O12.6 (3)C11—N3—C10—C123.7 (3)
C6—C1—C2—C30.9 (3)C8—C9—C10—N30.9 (2)
N1—C1—C2—C3176.63 (19)C8—C9—C10—C12178.2 (2)
O1—C2—C3—C4179.32 (19)N3—C10—C12—C17128.7 (2)
C1—C2—C3—C40.1 (3)C9—C10—C12—C1752.3 (3)
C2—C3—C4—C51.1 (3)N3—C10—C12—C1357.2 (3)
C3—C4—C5—C61.4 (3)C9—C10—C12—C13121.8 (2)
C4—C5—C6—C10.6 (3)C17—C12—C13—O2176.58 (17)
C2—C1—C6—C50.6 (3)C10—C12—C13—O22.4 (3)
N1—C1—C6—C5177.19 (18)C17—C12—C13—C142.3 (3)
N1—N2—C7—N3179.37 (17)C10—C12—C13—C14176.47 (18)
N1—N2—C7—C81.5 (3)O2—C13—C14—C15177.29 (17)
C10—N3—C7—N2178.23 (17)C12—C13—C14—C151.5 (3)
C11—N3—C7—N23.9 (3)C13—C14—C15—C160.0 (3)
C10—N3—C7—C80.2 (2)C14—C15—C16—C170.8 (3)
C11—N3—C7—C8177.69 (18)C15—C16—C17—C120.0 (3)
N2—C7—C8—C9178.4 (2)C13—C12—C17—C161.5 (3)
N3—C7—C8—C90.4 (2)C10—C12—C17—C16175.89 (18)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C12-C17 rings, respectively
D—H···AD—HH···AD···AD—H···A
O1—H1···N20.841.812.530 (2)143
O2—H2···O3i0.841.812.641 (2)171
O3—H3A···O1ii0.841.972.763 (2)157
C11—H11B···Cg1iii0.982.733.587 (2)147
C18—H18C···Cg2iv0.982.753.483 (3)132
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y, z+1; (iii) x, y+1, z; (iv) x, y+2, z+1.
 

Funding information

Funding for this research was provided by: National Natural Science Foundation of China (award No. 21172174).

References

First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBrychczynska, M., Davey, R. J. & Pidcock, E. (2008). New J. Chem. 32, 1754–1760.  Web of Science CrossRef CAS Google Scholar
First citationChen, J. & Yin, Z. (2014). Dyes Pigments, 102, 94–99.  CrossRef CAS Google Scholar
First citationGhorui, T., Roy, S., Pramanik, S. & Pramanik, K. (2016). Dalton Trans. 45, 5720–5729.  CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLee, H. Y., Olasz, A., Chen, C.-H. & Lee, D. (2012). Org. Lett. 14, 6286–6289.  CrossRef CAS Google Scholar
First citationLi, Y. & Dolphin, D. (2011). Can. J. Chem. 89, 481–487.  CrossRef Google Scholar
First citationLi, W.-Y., Mao, L.-S., Lu, L. & He, H.-W. (2008). Acta Cryst. E64, m490.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, Y., Patrick, B. O. & Dolphin, D. (2009). J. Org. Chem. 74, 5237–5243.  CrossRef CAS Google Scholar
First citationNishiyabu, R., Palacios, M. A., Dehaen, W. & Anzenbacher, P. Jr (2006). J. Am. Chem. Soc. 128, 11496–11504.  CrossRef Google Scholar
First citationRaposo, M. M. M. M., Castro, C. R., Fonseca, A. M. C., Schellenberg, P. & Belsley, M. (2011). Tetrahedron, 67, 5189–5198.  CrossRef Google Scholar
First citationRusakov, Y. Y., Krivdin, L. B., Senotrusova, E. Y., Schmidt, E. Y., Vasiltsov, A. M., Mikhaleva, A. I., Trofimov, B. A., Dyachenko, O. A., Chekhlov, A. N. & Kazheva, O. N. (2007). Magn. Reson. Chem. 45, 142–151.  CrossRef Google Scholar
First citationSharma, G. D., Mikroyannidis, J. A., Sharma, S. S. & Justin Thomas, K. R. (2012). Dyes Pigments, 94, 320–329.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSzczygelska-Tao, J., Fonari, M. S. & Biernat, J. F. (2008). Supramol. Chem. 20, 651–658.  Google Scholar
First citationTrofimov, B. A., Schmidt, Y. E., Mikhaleva, A. I., Vasil'tsov, A. M., Zaitsev, A. B., Smolyanina, N. S., Senotrusova, E. Y., Afonin, A. V., Ushakov, I. A., Petrushenko, K. B., Kazheva, O. N., Dyachenko, O. A., Smirnov, V. V., Schmidt, A. F., Markova, M. V. & Morozova, L. V. (2006). Eur. J. Org. Chem. pp. 4021–4033.  CrossRef Google Scholar
First citationWagner-Wysiecka, E., Rzymowski, T., Fonari, M. S., Kulmaczewski, R. & Luboch, E. (2011). Tetrahedron, 67, 1862–1872.  Google Scholar
First citationYin, Z., Wang, W., Du, M., Wang, X. & Guo, J. (2009). CrystEngComm, 11, 2441–2446.  Web of Science CSD CrossRef CAS Google Scholar
First citationYin, Z., Wang, W., Guo, J., Wang, J., He, J. & Cheng, J.-P. (2008). CrystEngComm, 10, 957–959.  CrossRef CAS Google Scholar
First citationYin, Z., Yan, Y., Sun, S. & Wang, W. (2012). J. Coord. Chem. 65, 865–874.  CrossRef Google Scholar
First citationZhang, H., Chen, J. & Yin, Z. (2015). Chin. J. Struct. Chem. 34, 1876–1882.  Google Scholar
First citationZhang, H. & Yin, Z. (2014). Chin. J. Struct. Chem. 33, 1813–1818.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds