research communications
of 2-{5-[2-(2-hydroxyphenyl)diazen-1-yl]-1-methylpyrrol-2-yl}phenol methanol monosolvate
aCollege of Chemistry, Tianjin Key Laboratory of Structure and Performance for, Functional Molecule, Tianjin Normal University, Tianjin 300387, People's Republic of China;, Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry, (Tianjin Normal University), Ministry of Education, Tianjin 300387, People's Republic of China
*Correspondence e-mail: tjyinzm@aliyun.com
In the title azopyrrole compound, C17H15N3O2·CH3OH, the azo N=N bond adopts a trans configuration and the pyrrole N and azo group are in an anti orientation. The dihedral angles between the pyrrole ring and the two phenyl rings are 6.7 (3) and 54.7 (3)°. In the crystal, a supramolecular ring structure is formed between two azopyrrole and two methanol solvent molecules through four O—H⋯O hydrogen bonds.
Keywords: azopyrrole; crystal structure; hydrogen bonding.
CCDC reference: 1845021
1. Chemical context
Recently, azopyrrole dyes have received much attention for their promising use in the design of advanced materials and devices. For example, some thienylpyrrole azo dyes bearing heterocyclic groups have good non-linear optical properties (Raposo et al., 2011). Mikroyannidis and coworkers found that many azopyrrole dyes are efficient bulk heterojunction solar cell materials (Sharma et al., 2012). In a previous work, we reported the crystal engineering of some 5,5′-bis(phenyldiazo)dipyrromethane compounds and demonstrated their interlocked type self-assemblies in the solid state via quadruple N—H⋯N hydrogen bonds (Yin et al., 2008, 2009). In a continuation of this research, we report herein the of 2-{5-[2-(2-hydroxyphenyl)diazen-1-yl]-1-methylpyrrol-2-yl}phenol methanol monosolvate.
2. Structural commentary
The structure of the title compound is shown in Fig. 1. The contains one azopyrrole molecule and one methanol solvent molecule. The azoylazopyrrole group is almost planar, reflected by the dihedral angle between the pyrrole ring (N3/C7–C10) and the benzene ring (C1–C6) of only 6.7 (3)°, which may be due to the existence of the intramolecular O1—H1⋯N2 hydrogen bond (Table 1) between the hydroxy group and the azo N atom. The dihedral angle between pyrrole ring and the other benzene ring (C12–C17) is 54.7 (3)°, which may be caused by the steric repulsion between hydroxy group and methyl group. The azo N=N bond adopts a trans configuration and its length is 1.286 (2) Å, which is shorter than that in the crystal of 2,5-bis(2-hydroxyphenylazo)-1H-pyrrole (1.293 Å; Li et al. 2009). It is worth mentioning that the N1 atom of the azo group and the N3 atom of the pyrrole ring are arranged on opposite sides with respect to the C7—N2 bond, which is the same as in the crystal of 2-phenylazo-1-vinyl pyrrole (Trofimov et al., 2006) but different to many other observations (Li et al., 2009; Yin et al., 2008). The bond lengths in the pyrrole ring are more equal compared to those normally observed.
3. Supramolecular features
In the crystal, two azopyrrole molecules are bridged by two methanol solvent molecules through four O—H⋯O hydrogen bonds forming a large supramolecular ring structure, in which the methanol acts as both a hydrogen-bond acceptor and a donor (Fig. 2, Table 1). This type of coordination environment is most populated (occupying 70%) for methanol molecules as revealed by a search of the Cambridge Structural Database (CSD) (Brychczynska et al. 2008). The methyl groups point to the inside of the ring. The rings are further held together through C—H⋯π contacts involving the benzene rings (Table 1). There are no π–π interactions between the aromatic rings. The packing is shown in Fig. 3.
4. Database survey
A search in the Cambridge Structural Database (Version 5.38; Groom et al., 2016) returned 45 entries for azopyrrole derivatives, including three entries for N-vinylphenylazopyrrole (Trofimov et al., 2006; Rusakov et al., 2007), four entries for mono- or bisazopyrroles (Li et al., 2009), two entries for azo calix[4]pyrroles (Nishiyabu et al., 2006), five entries for pyrrole-azocrown (Wagner-Wysiecka et al., 2011; Szczygelska-Tao et al., 2008), two entries for azopyrrole boron difluoride complexes (Li et al., 2009; Lee et al., 2012), ten entries for metal complexes (Li et al., 2008; Li, & Dolphin, 2011; Yin et al., 2012; Zhang et al., 2015; Ghorui et al., 2016); the majority are for mono- or bisphenylazodipyrromethanes (Yin et al., 2008, 2009; Chen & Yin, 2014; Zhang & Yin, 2014).
5. Synthesis and crystallization
A 273 K solution of 2-aminophenol 0.272 g (2.5 mmol) and aqueous HCl (2 mL) in water (2 mL) was treated with another 273 K solution of NaNO2 (0.18 g, 2.5 mmol) in 3 mL water, and the mixture was stirred at 273 K for 30 min. The diazonium salt solution was added dropwise to a solution of N-methylpyrrole (81 mg, 1 mmol) in acetonitrile (25 mL) and three drops of acetic acid. The combined solution was maintained at 273 K for 2 h with stirring. After that, EtOAc (25 mL) and water (25 mL) were added. The organic layer was separated and washed with water (20 mL) and dried with anhydrous MgSO4. The solution was evaporated and the residue was purified by on silica (ethyl acetate/petroleum ether = 1:2), which gave the title compound as an orange powder (200 mg, 68%, m.p. 404 K).
1H NMR (400MHz, DMSO-d6): δ 3.73 (s, 3H, –CH3), 6.32 (d, J = 4 Hz, 1H, pyrrole C—H), 6.86 (d, J = 4 Hz, 1H, pyrrole C–H), 6.90–6.95 (m, 2H, Ar C-H), 6.99 (t, 2H, J = 8 Hz, Ar C—H), 7.23–7.31 (m, 3H, Ar C-H), 7.65 (d, J = 8Hz, 1H, Ar C—H), 9.95 (s, 1H, –OH), 10.43 (s, 1H, –OH) . Crystals suitable X-ray were obtained by the slow evaporation of a CHCl3/CH3OH solution of the title compound.
6. Refinement
Crystal data, data collection and structure . O—H atoms were located in a difference-Fourier map and refined freely. Other H atoms were positioned geometrically (C—H = 0.95 or 0.98 Å) and included in the final cycles of using a riding model, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl).
details are summarized in Table 2
|
Supporting information
CCDC reference: 1845021
https://doi.org/10.1107/S2056989018007764/ff2153sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018007764/ff2153Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989018007764/ff2153Isup3.cml
Data collection: APEX2 (Bruker, 2005); cell
SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C17H15N3O2·CH4O | Z = 2 |
Mr = 325.36 | F(000) = 344 |
Triclinic, P1 | Dx = 1.341 Mg m−3 |
a = 7.1597 (11) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.8762 (16) Å | Cell parameters from 1104 reflections |
c = 12.243 (2) Å | θ = 2.3–28.1° |
α = 110.426 (3)° | µ = 0.09 mm−1 |
β = 94.051 (3)° | T = 173 K |
γ = 93.378 (3)° | BLOCK, yellow |
V = 806.0 (2) Å3 | 0.14 × 0.13 × 0.12 mm |
Bruker APEXII CCD diffractometer | 2830 independent reflections |
Radiation source: fine-focus sealed tube | 2071 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.025 |
φ and ω scans | θmax = 25.0°, θmin = 1.8° |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | h = −8→8 |
Tmin = 0.987, Tmax = 0.989 | k = −11→9 |
4168 measured reflections | l = −14→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.045 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.109 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0437P)2 + 0.2373P] where P = (Fo2 + 2Fc2)/3 |
2830 reflections | (Δ/σ)max < 0.001 |
222 parameters | Δρmax = 0.21 e Å−3 |
0 restraints | Δρmin = −0.23 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.2218 (2) | 0.53355 (15) | −0.07978 (12) | 0.0254 (4) | |
H1 | 0.2260 | 0.5941 | −0.0113 | 0.038* | |
O2 | 0.4830 (2) | 1.13606 (14) | 0.27561 (13) | 0.0221 (4) | |
H2 | 0.5527 | 1.1998 | 0.2636 | 0.033* | |
O3 | 0.2725 (2) | 0.68674 (17) | 0.77244 (15) | 0.0304 (4) | |
H3A | 0.2900 | 0.6375 | 0.8154 | 0.046* | |
N1 | 0.2920 (2) | 0.48800 (18) | 0.14369 (15) | 0.0191 (4) | |
N2 | 0.2614 (2) | 0.61395 (18) | 0.14132 (14) | 0.0181 (4) | |
N3 | 0.2453 (2) | 0.86125 (17) | 0.24967 (14) | 0.0166 (4) | |
C1 | 0.2840 (3) | 0.3796 (2) | 0.03169 (18) | 0.0180 (5) | |
C2 | 0.2539 (3) | 0.4013 (2) | −0.07572 (18) | 0.0196 (5) | |
C3 | 0.2592 (3) | 0.2857 (2) | −0.18007 (19) | 0.0247 (5) | |
H3 | 0.2390 | 0.3001 | −0.2526 | 0.030* | |
C4 | 0.2933 (3) | 0.1506 (2) | −0.17897 (19) | 0.0243 (5) | |
H4 | 0.2988 | 0.0728 | −0.2508 | 0.029* | |
C5 | 0.3199 (3) | 0.1269 (2) | −0.07380 (19) | 0.0235 (5) | |
H5 | 0.3407 | 0.0329 | −0.0735 | 0.028* | |
C6 | 0.3159 (3) | 0.2406 (2) | 0.02965 (19) | 0.0206 (5) | |
H6 | 0.3353 | 0.2244 | 0.1015 | 0.025* | |
C7 | 0.2752 (3) | 0.7239 (2) | 0.24820 (17) | 0.0170 (5) | |
C8 | 0.3197 (3) | 0.7316 (2) | 0.36227 (17) | 0.0190 (5) | |
H8 | 0.3478 | 0.6533 | 0.3870 | 0.023* | |
C9 | 0.3152 (3) | 0.8753 (2) | 0.43346 (18) | 0.0190 (5) | |
H9 | 0.3386 | 0.9128 | 0.5164 | 0.023* | |
C10 | 0.2708 (3) | 0.9552 (2) | 0.36319 (17) | 0.0172 (5) | |
C11 | 0.1888 (3) | 0.8954 (2) | 0.14600 (18) | 0.0210 (5) | |
H11A | 0.1466 | 0.9933 | 0.1702 | 0.032* | |
H11B | 0.0858 | 0.8251 | 0.0986 | 0.032* | |
H11C | 0.2959 | 0.8908 | 0.0997 | 0.032* | |
C12 | 0.2552 (3) | 1.1127 (2) | 0.39959 (17) | 0.0167 (5) | |
C13 | 0.3645 (3) | 1.2011 (2) | 0.35662 (17) | 0.0166 (5) | |
C14 | 0.3540 (3) | 1.3501 (2) | 0.39739 (17) | 0.0184 (5) | |
H14 | 0.4266 | 1.4092 | 0.3664 | 0.022* | |
C15 | 0.2372 (3) | 1.4124 (2) | 0.48346 (18) | 0.0203 (5) | |
H15 | 0.2299 | 1.5144 | 0.5113 | 0.024* | |
C16 | 0.1314 (3) | 1.3269 (2) | 0.52895 (18) | 0.0211 (5) | |
H16 | 0.0526 | 1.3699 | 0.5886 | 0.025* | |
C17 | 0.1411 (3) | 1.1790 (2) | 0.48707 (18) | 0.0201 (5) | |
H17 | 0.0682 | 1.1207 | 0.5187 | 0.024* | |
C18 | 0.0860 (3) | 0.7274 (3) | 0.7761 (2) | 0.0310 (6) | |
H18A | 0.0712 | 0.7970 | 0.8541 | 0.046* | |
H18B | −0.0020 | 0.6411 | 0.7594 | 0.046* | |
H18C | 0.0596 | 0.7720 | 0.7173 | 0.046* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0358 (9) | 0.0192 (8) | 0.0215 (8) | 0.0050 (7) | 0.0042 (7) | 0.0068 (7) |
O2 | 0.0216 (8) | 0.0161 (8) | 0.0286 (8) | 0.0020 (6) | 0.0093 (7) | 0.0066 (7) |
O3 | 0.0220 (8) | 0.0362 (10) | 0.0448 (10) | 0.0055 (7) | 0.0064 (7) | 0.0279 (8) |
N1 | 0.0188 (9) | 0.0144 (9) | 0.0233 (10) | 0.0014 (7) | 0.0030 (8) | 0.0053 (8) |
N2 | 0.0164 (9) | 0.0155 (10) | 0.0216 (9) | 0.0004 (7) | 0.0024 (7) | 0.0057 (8) |
N3 | 0.0157 (9) | 0.0155 (9) | 0.0188 (9) | 0.0018 (7) | 0.0022 (7) | 0.0062 (7) |
C1 | 0.0120 (10) | 0.0167 (11) | 0.0226 (11) | 0.0005 (8) | 0.0008 (9) | 0.0040 (9) |
C2 | 0.0165 (11) | 0.0176 (12) | 0.0253 (12) | 0.0020 (9) | 0.0015 (9) | 0.0083 (9) |
C3 | 0.0235 (12) | 0.0296 (13) | 0.0199 (11) | 0.0021 (10) | 0.0022 (10) | 0.0072 (10) |
C4 | 0.0209 (11) | 0.0210 (12) | 0.0236 (12) | 0.0036 (9) | 0.0026 (9) | −0.0015 (10) |
C5 | 0.0212 (12) | 0.0160 (12) | 0.0304 (13) | 0.0036 (9) | 0.0001 (10) | 0.0049 (10) |
C6 | 0.0172 (11) | 0.0211 (12) | 0.0230 (11) | 0.0008 (9) | −0.0021 (9) | 0.0080 (9) |
C7 | 0.0152 (10) | 0.0136 (11) | 0.0215 (11) | 0.0004 (8) | 0.0032 (9) | 0.0052 (9) |
C8 | 0.0222 (11) | 0.0143 (11) | 0.0216 (11) | 0.0022 (9) | 0.0025 (9) | 0.0077 (9) |
C9 | 0.0198 (11) | 0.0184 (11) | 0.0179 (11) | 0.0012 (9) | 0.0031 (9) | 0.0051 (9) |
C10 | 0.0143 (10) | 0.0160 (11) | 0.0195 (11) | 0.0004 (8) | 0.0028 (9) | 0.0042 (9) |
C11 | 0.0239 (12) | 0.0176 (11) | 0.0198 (11) | 0.0019 (9) | −0.0034 (9) | 0.0054 (9) |
C12 | 0.0151 (10) | 0.0142 (11) | 0.0197 (11) | 0.0000 (8) | −0.0022 (9) | 0.0055 (9) |
C13 | 0.0148 (10) | 0.0174 (11) | 0.0160 (10) | 0.0031 (8) | −0.0001 (8) | 0.0040 (9) |
C14 | 0.0181 (11) | 0.0154 (11) | 0.0211 (11) | −0.0006 (8) | −0.0010 (9) | 0.0066 (9) |
C15 | 0.0210 (11) | 0.0141 (11) | 0.0227 (11) | 0.0027 (9) | −0.0009 (9) | 0.0031 (9) |
C16 | 0.0206 (11) | 0.0200 (12) | 0.0216 (11) | 0.0047 (9) | 0.0048 (9) | 0.0050 (9) |
C17 | 0.0171 (11) | 0.0202 (12) | 0.0239 (11) | −0.0005 (9) | 0.0028 (9) | 0.0090 (9) |
C18 | 0.0216 (12) | 0.0363 (14) | 0.0367 (14) | 0.0030 (10) | 0.0015 (11) | 0.0153 (12) |
O1—C2 | 1.357 (2) | C7—C8 | 1.385 (3) |
O1—H1 | 0.8400 | C8—C9 | 1.386 (3) |
O2—C13 | 1.362 (2) | C8—H8 | 0.9500 |
O2—H2 | 0.8400 | C9—C10 | 1.389 (3) |
O3—C18 | 1.416 (3) | C9—H9 | 0.9500 |
O3—H3A | 0.8400 | C10—C12 | 1.475 (3) |
N1—N2 | 1.286 (2) | C11—H11A | 0.9800 |
N1—C1 | 1.410 (2) | C11—H11B | 0.9800 |
N2—C7 | 1.371 (2) | C11—H11C | 0.9800 |
N3—C10 | 1.367 (2) | C12—C17 | 1.393 (3) |
N3—C7 | 1.380 (3) | C12—C13 | 1.396 (3) |
N3—C11 | 1.460 (3) | C13—C14 | 1.388 (3) |
C1—C6 | 1.397 (3) | C14—C15 | 1.386 (3) |
C1—C2 | 1.409 (3) | C14—H14 | 0.9500 |
C2—C3 | 1.390 (3) | C15—C16 | 1.382 (3) |
C3—C4 | 1.375 (3) | C15—H15 | 0.9500 |
C3—H3 | 0.9500 | C16—C17 | 1.378 (3) |
C4—C5 | 1.389 (3) | C16—H16 | 0.9500 |
C4—H4 | 0.9500 | C17—H17 | 0.9500 |
C5—C6 | 1.372 (3) | C18—H18A | 0.9800 |
C5—H5 | 0.9500 | C18—H18B | 0.9800 |
C6—H6 | 0.9500 | C18—H18C | 0.9800 |
C2—O1—H1 | 109.5 | C10—C9—H9 | 125.7 |
C13—O2—H2 | 109.5 | N3—C10—C9 | 107.62 (17) |
C18—O3—H3A | 109.5 | N3—C10—C12 | 124.35 (19) |
N2—N1—C1 | 113.64 (18) | C9—C10—C12 | 128.03 (18) |
N1—N2—C7 | 115.61 (18) | N3—C11—H11A | 109.5 |
C10—N3—C7 | 108.49 (17) | N3—C11—H11B | 109.5 |
C10—N3—C11 | 127.06 (17) | H11A—C11—H11B | 109.5 |
C7—N3—C11 | 124.41 (17) | N3—C11—H11C | 109.5 |
C6—C1—C2 | 118.50 (19) | H11A—C11—H11C | 109.5 |
C6—C1—N1 | 115.80 (19) | H11B—C11—H11C | 109.5 |
C2—C1—N1 | 125.66 (19) | C17—C12—C13 | 118.08 (19) |
O1—C2—C3 | 119.0 (2) | C17—C12—C10 | 119.67 (19) |
O1—C2—C1 | 121.41 (18) | C13—C12—C10 | 122.00 (19) |
C3—C2—C1 | 119.6 (2) | O2—C13—C14 | 121.74 (19) |
C4—C3—C2 | 120.4 (2) | O2—C13—C12 | 117.65 (18) |
C4—C3—H3 | 119.8 | C14—C13—C12 | 120.60 (19) |
C2—C3—H3 | 119.8 | C15—C14—C13 | 119.8 (2) |
C3—C4—C5 | 120.6 (2) | C15—C14—H14 | 120.1 |
C3—C4—H4 | 119.7 | C13—C14—H14 | 120.1 |
C5—C4—H4 | 119.7 | C16—C15—C14 | 120.3 (2) |
C6—C5—C4 | 119.3 (2) | C16—C15—H15 | 119.9 |
C6—C5—H5 | 120.3 | C14—C15—H15 | 119.9 |
C4—C5—H5 | 120.3 | C17—C16—C15 | 119.5 (2) |
C5—C6—C1 | 121.5 (2) | C17—C16—H16 | 120.3 |
C5—C6—H6 | 119.3 | C15—C16—H16 | 120.3 |
C1—C6—H6 | 119.3 | C16—C17—C12 | 121.7 (2) |
N2—C7—N3 | 117.55 (18) | C16—C17—H17 | 119.2 |
N2—C7—C8 | 133.93 (19) | C12—C17—H17 | 119.2 |
N3—C7—C8 | 108.49 (17) | O3—C18—H18A | 109.5 |
C7—C8—C9 | 106.85 (19) | O3—C18—H18B | 109.5 |
C7—C8—H8 | 126.6 | H18A—C18—H18B | 109.5 |
C9—C8—H8 | 126.6 | O3—C18—H18C | 109.5 |
C8—C9—C10 | 108.55 (18) | H18A—C18—H18C | 109.5 |
C8—C9—H9 | 125.7 | H18B—C18—H18C | 109.5 |
C1—N1—N2—C7 | −177.49 (17) | C7—C8—C9—C10 | −0.8 (2) |
N2—N1—C1—C6 | −179.85 (17) | C7—N3—C10—C9 | −0.6 (2) |
N2—N1—C1—C2 | 2.6 (3) | C11—N3—C10—C9 | 177.13 (18) |
C6—C1—C2—O1 | 179.88 (19) | C7—N3—C10—C12 | 178.51 (18) |
N1—C1—C2—O1 | −2.6 (3) | C11—N3—C10—C12 | −3.7 (3) |
C6—C1—C2—C3 | −0.9 (3) | C8—C9—C10—N3 | 0.9 (2) |
N1—C1—C2—C3 | 176.63 (19) | C8—C9—C10—C12 | −178.2 (2) |
O1—C2—C3—C4 | 179.32 (19) | N3—C10—C12—C17 | 128.7 (2) |
C1—C2—C3—C4 | 0.1 (3) | C9—C10—C12—C17 | −52.3 (3) |
C2—C3—C4—C5 | 1.1 (3) | N3—C10—C12—C13 | −57.2 (3) |
C3—C4—C5—C6 | −1.4 (3) | C9—C10—C12—C13 | 121.8 (2) |
C4—C5—C6—C1 | 0.6 (3) | C17—C12—C13—O2 | 176.58 (17) |
C2—C1—C6—C5 | 0.6 (3) | C10—C12—C13—O2 | 2.4 (3) |
N1—C1—C6—C5 | −177.19 (18) | C17—C12—C13—C14 | −2.3 (3) |
N1—N2—C7—N3 | 179.37 (17) | C10—C12—C13—C14 | −176.47 (18) |
N1—N2—C7—C8 | 1.5 (3) | O2—C13—C14—C15 | −177.29 (17) |
C10—N3—C7—N2 | −178.23 (17) | C12—C13—C14—C15 | 1.5 (3) |
C11—N3—C7—N2 | 3.9 (3) | C13—C14—C15—C16 | 0.0 (3) |
C10—N3—C7—C8 | 0.2 (2) | C14—C15—C16—C17 | −0.8 (3) |
C11—N3—C7—C8 | −177.69 (18) | C15—C16—C17—C12 | 0.0 (3) |
N2—C7—C8—C9 | 178.4 (2) | C13—C12—C17—C16 | 1.5 (3) |
N3—C7—C8—C9 | 0.4 (2) | C10—C12—C17—C16 | 175.89 (18) |
Cg1 and Cg2 are the centroids of the C1–C6 and C12-C17 rings, respectively |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N2 | 0.84 | 1.81 | 2.530 (2) | 143 |
O2—H2···O3i | 0.84 | 1.81 | 2.641 (2) | 171 |
O3—H3A···O1ii | 0.84 | 1.97 | 2.763 (2) | 157 |
C11—H11B···Cg1iii | 0.98 | 2.73 | 3.587 (2) | 147 |
C18—H18C···Cg2iv | 0.98 | 2.75 | 3.483 (3) | 132 |
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) x, y, z+1; (iii) −x, −y+1, −z; (iv) −x, −y+2, −z+1. |
Funding information
Funding for this research was provided by: National Natural Science Foundation of China (award No. 21172174).
References
Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Brychczynska, M., Davey, R. J. & Pidcock, E. (2008). New J. Chem. 32, 1754–1760. Web of Science CrossRef CAS Google Scholar
Chen, J. & Yin, Z. (2014). Dyes Pigments, 102, 94–99. CrossRef CAS Google Scholar
Ghorui, T., Roy, S., Pramanik, S. & Pramanik, K. (2016). Dalton Trans. 45, 5720–5729. CrossRef Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Lee, H. Y., Olasz, A., Chen, C.-H. & Lee, D. (2012). Org. Lett. 14, 6286–6289. CrossRef CAS Google Scholar
Li, Y. & Dolphin, D. (2011). Can. J. Chem. 89, 481–487. CrossRef Google Scholar
Li, W.-Y., Mao, L.-S., Lu, L. & He, H.-W. (2008). Acta Cryst. E64, m490. Web of Science CSD CrossRef IUCr Journals Google Scholar
Li, Y., Patrick, B. O. & Dolphin, D. (2009). J. Org. Chem. 74, 5237–5243. CrossRef CAS Google Scholar
Nishiyabu, R., Palacios, M. A., Dehaen, W. & Anzenbacher, P. Jr (2006). J. Am. Chem. Soc. 128, 11496–11504. CrossRef Google Scholar
Raposo, M. M. M. M., Castro, C. R., Fonseca, A. M. C., Schellenberg, P. & Belsley, M. (2011). Tetrahedron, 67, 5189–5198. CrossRef Google Scholar
Rusakov, Y. Y., Krivdin, L. B., Senotrusova, E. Y., Schmidt, E. Y., Vasiltsov, A. M., Mikhaleva, A. I., Trofimov, B. A., Dyachenko, O. A., Chekhlov, A. N. & Kazheva, O. N. (2007). Magn. Reson. Chem. 45, 142–151. CrossRef Google Scholar
Sharma, G. D., Mikroyannidis, J. A., Sharma, S. S. & Justin Thomas, K. R. (2012). Dyes Pigments, 94, 320–329. CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Szczygelska-Tao, J., Fonari, M. S. & Biernat, J. F. (2008). Supramol. Chem. 20, 651–658. Google Scholar
Trofimov, B. A., Schmidt, Y. E., Mikhaleva, A. I., Vasil'tsov, A. M., Zaitsev, A. B., Smolyanina, N. S., Senotrusova, E. Y., Afonin, A. V., Ushakov, I. A., Petrushenko, K. B., Kazheva, O. N., Dyachenko, O. A., Smirnov, V. V., Schmidt, A. F., Markova, M. V. & Morozova, L. V. (2006). Eur. J. Org. Chem. pp. 4021–4033. CrossRef Google Scholar
Wagner-Wysiecka, E., Rzymowski, T., Fonari, M. S., Kulmaczewski, R. & Luboch, E. (2011). Tetrahedron, 67, 1862–1872. Google Scholar
Yin, Z., Wang, W., Du, M., Wang, X. & Guo, J. (2009). CrystEngComm, 11, 2441–2446. Web of Science CSD CrossRef CAS Google Scholar
Yin, Z., Wang, W., Guo, J., Wang, J., He, J. & Cheng, J.-P. (2008). CrystEngComm, 10, 957–959. CrossRef CAS Google Scholar
Yin, Z., Yan, Y., Sun, S. & Wang, W. (2012). J. Coord. Chem. 65, 865–874. CrossRef Google Scholar
Zhang, H., Chen, J. & Yin, Z. (2015). Chin. J. Struct. Chem. 34, 1876–1882. Google Scholar
Zhang, H. & Yin, Z. (2014). Chin. J. Struct. Chem. 33, 1813–1818. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.