research communications
A correction has been published for this article. To view the correction, click here.
β-arabinopyranosyl)sulfanyl]-4,6-diphenylpyridine-3-carbonitrile
of racemic 2-[(aPharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt, bChemistry Department, Faculty of Science, Helwan University, Cairo, Egypt, and cInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, D-38106 Braunschweig, Germany
*Correspondence e-mail: p.jones@tu-bs.de
In the racemic title compound, C23H20N2O4S, the sulfur atom is attached equatorially to the sugar ring with unequal S—C bonds, viz.: S—Cs = 1.808 (2) and S—Cp = 1.770 (2) Å (s = sugar, p = pyridyl). The dihedral angles between the pyridine ring and its attached phenyl groups are 42.24 (8) and 6.37 (14)°. In the crystal, a system of classical O—H⋯O and O—H⋯(O,O) hydrogen bonds links the molecules to form tube-like assemblies propagating parallel to the c-axis direction. Weak C—H⋯N interactions are also observed.
Keywords: crystal structure; arabinose; pyridine; hydrogen bond.
CCDC reference: 1843269
1. Chemical context
In recent years, nucleoside analogues of pyrimidines and purines have been shown to be effective as chemical therapeutic agents against cancer cells (Yoshimura et al., 2000; Elgemeie et al., 2016, 2017a,b). Recently, heterocyclic thioglycosides have been used as antimetabolic agents in medicinal chemistry (Dinkelaar et al., 2006; Kananovich et al., 2014; Elgemeie & Abu-Zaied, 2017). We and others have designed new syntheses for pyridine thioglycosides, which have shown strong cytotoxicity against various human cancer cell lines and block proliferation of various cancer cell lines (Komor et al., 2012; Elgemeie et al., 2015). It has also been shown that thioglycosides involving pyridine and dihydropyridine groups exert inhibitory effects on both DNA-containing viruses and inhibitors of protein glycosylation (Agrawal et al., 2017; Elgemeie et al., 2010; Masoud et al., 2017). Based on these significant biological findings and with the aim of identifying new potent chemotherapeutics as new anticancer agents with improved pharmacological and safety profiles, we have prepared several new non-classical thioglycosides containing the pyridine ring.
Here we report a one-step synthesis of the pyridine-2-thioarabinoside (4) by the reaction of the pyridine-2 (1H)-thione derivative (1) with 2,3,4-tri-O-acetyl-α-D-arabinopyranosyl bromide (2). Thus, (1) reacted with (2) in KOH in acetone to give a product for which two isomeric N- or S-arabinoside structures were conceivable, corresponding to two possible modes of glycosylation. The final deprotected product (see Scheme) would then be either the pyridine-2-thioarabinoside (4) or its regioisomer pyridine-2-thione-N-arabinoside (5). Spectroscopic data cannot differentiate between these two structures.
2. Structural commentary
The 4) as the only product in the solid state. We suggest that the 2,3,4-tri-O-acetyl-α-D-arabinopranosyl bromide (2) interacts via a simple SN2 reaction to give the β-glycoside product (3), which after deprotection leads to the free 2-(β-D/L-arabinopyranosylthio)-pyridine-3-carbonitrile (4). This separates as a presumably because of thermodynamic during synthesis or crystallization (Brands & Davies, 2006).
determination indicated unambiguously the formation of the pyridine-2-thioarabinoside (The molecular structure of (4) is shown in Fig. 1. The sulfur atom is attached equatorially to the sugar ring. Similarly to the structure of a related glucose derivative (Masoud et al., 2017), the C—S bond lengths are unequal, with S—Cs 1.808 (2) and S—Cp 1.770 (2) Å (s = sugar, p = pyridyl). The phenyl ring at C31 is approximately coplanar with the pyridyl ring, but the ring at C21 is significantly rotated (interplanar angles = 6.4 (2) and 42.24 (8)°, respectively). The relative orientation of the pyridyl ring and the sugar moiety is defined by the torsion angles N1—C2—S1—C11 9.7 (2) and C2—S1—C11—C12 162.73 (12)°. The intramolecular contact O1—H01⋯S1, with H⋯S 2.79 (4) Å and an angle of 109 (3)°, is probably too long and has too narrow an angle to be considered a hydrogen bond.
3. Supramolecular features
In the crystal, the molecules are connected by two-centre O2—H02⋯O3ii and O3—H03⋯O3ii hydrogen bonds and a three-centre O1—H01⋯O1i,O2i hydrogen bond (Table 1), via the operator, thus forming tube-like assemblies parallel to the c axis (Figs. 2 and 3). The short S1⋯O1 (1 − y, x, 1 − z) contact of 3.2374 (16) Å (van der Waals' contact distance = 3.32 Å) may play a supporting role, but is not shown explicitly.
4. Database survey
There is one other structure involving arabinose with a sulfur substituent at the C2 position; the arabinose is triacetylated and the sulfur atom, which is axially bonded to the sugar ring, acts as a bridge to a pyranopyrimidine ring system (Tomas et al., 1993; refcode WACJAL).
5. Synthesis and crystallization
To a solution of the pyridine-2-(1H)-thione (1) (2.88 g, 0.01 mol) in aqueous potassium hydroxide (6 ml, 0.56 g, 0.01 mol) was added a solution of 2,3,4-tri-O-acetyl-α-D-arabinopyranosyl bromide (2) (3.73 g, 0.011 mol) in acetone (30 ml). The reaction mixture was stirred at room temperature until the reaction was judged complete by TLC (30 min to 2 h). The mixture was evaporated under reduced pressure at 313 K and the residue was washed with distilled water to remove the potassium bromide. The solid was collected by filtration and crystallized from ethanol to give compound (3) in 70% yield (m. p. 440–442 K). Dry gaseous ammonia was then passed through a solution of the protected thioglycoside (3) (0.5 g) in dry methanol (20 ml) at 273 K for 15 min, and the mixture was stirred at 273 K until the reaction was complete (TLC, 1–2 h). The mixture was evaporated at 313 K to give a solid residue, which was recrystallized from methanol solution to give compound (4) in 60% yield (m.p. 479–480 K), IR (KBr): 3370–3480 (OH); 2222 (CN) cm−1. 1H NMR (400 MHz, DMSO-d6): δ 3.10–3.70 (m, 5H, 2H-5′, H-4′, H-3′, H-2′); 4.81–5.20 (m, 3H, 3OH); 5.52 (d, 1H, H-1′), 7.05–7.78 (m, 10H, 2C6H5), 7.99 (s, 1H, pyridine H-5). Analysis calculated for C23H20N2O4S (420.47): C, 65.60%; H, 4.76%; N, 6.66%. Found: C, 65.48%; H, 4.84%; N, 6.41%.
6. Refinement
Crystal data, data collection and structure . OH hydrogen atoms were refined freely. Other hydrogen atoms were included using a riding model starting from calculated positions (C—Haromatic = 0.95, C—Hmethylene = 0.99, C—Hmethine = 1.00 Å) with Uiso(H) = 1.2–1.5Ueq(C).
details are summarized in Table 2
|
Supporting information
CCDC reference: 1843269
https://doi.org/10.1107/S2056989018007284/hb7743sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018007284/hb7743Isup2.hkl
Data collection: CrysAlis PRO (Rigaku OD, 2015); cell
CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2017/1 (Sheldrick, 2015); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL2017/1 (Sheldrick, 2015).C23H20N2O4S | Dx = 1.351 Mg m−3 |
Mr = 420.47 | Cu Kα radiation, λ = 1.54184 Å |
Tetragonal, P421c | Cell parameters from 11865 reflections |
a = 21.8333 (2) Å | θ = 4.0–75.7° |
c = 8.67551 (17) Å | µ = 1.67 mm−1 |
V = 4135.54 (11) Å3 | T = 100 K |
Z = 8 | Irregular tablet, colourless |
F(000) = 1760 | 0.2 × 0.2 × 0.1 mm |
Oxford Diffraction Xcalibur, Atlas, Nova diffractometer | 4067 independent reflections |
Radiation source: micro-focus sealed X-ray tube | 3766 reflections with I > 2σ(I) |
Detector resolution: 10.3543 pixels mm-1 | Rint = 0.050 |
ω–scan | θmax = 76.0°, θmin = 4.1° |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2015) | h = −27→19 |
Tmin = 0.631, Tmax = 1.000 | k = −23→26 |
22380 measured reflections | l = −10→10 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.029 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.072 | w = 1/[σ2(Fo2) + (0.0406P)2 + 0.206P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.001 |
4067 reflections | Δρmax = 0.14 e Å−3 |
283 parameters | Δρmin = −0.21 e Å−3 |
0 restraints | Absolute structure: Flack x determined using 1455 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.001 (9) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane) 9.6921 (0.0225) x - 5.4261 (0.0258) y - 7.4689 (0.0051) z = 2.9936 (0.0259) * -0.0092 (0.0019) C21 * 0.0029 (0.0022) C22 * 0.0049 (0.0023) C23 * -0.0063 (0.0021) C24 * -0.0001 (0.0019) C25 * 0.0078 (0.0018) C26 Rms deviation of fitted atoms = 0.0060 7.1279 (0.0186) x + 10.0786 (0.0190) y - 7.1557 (0.0046) z = 5.9951 (0.0155) Angle to previous plane (with approximate esd) = 42.243 ( 0.080 ) * 0.0110 (0.0015) N1 * 0.0192 (0.0017) C2 * -0.0324 (0.0017) C3 * 0.0172 (0.0016) C4 * 0.0119 (0.0016) C5 * -0.0269 (0.0016) C6 Rms deviation of fitted atoms = 0.0212 9.0031 (0.0245) x + 8.5392 (0.0229) y - 7.1382 (0.0057) z = 7.0241 (0.0183) Angle to previous plane (with approximate esd) = 6.371 ( 0.143 ) * -0.0055 (0.0018) C31 * 0.0027 (0.0023) C32 * 0.0001 (0.0024) C33 * -0.0001 (0.0021) C34 * -0.0028 (0.0019) C35 * 0.0056 (0.0018) C36 Rms deviation of fitted atoms = 0.0036 |
x | y | z | Uiso*/Ueq | ||
S1 | 0.66558 (2) | 0.40955 (2) | 0.37773 (7) | 0.01892 (12) | |
N1 | 0.71332 (8) | 0.30150 (8) | 0.2959 (2) | 0.0193 (4) | |
C2 | 0.72285 (9) | 0.35219 (9) | 0.3756 (3) | 0.0188 (4) | |
C3 | 0.77798 (10) | 0.36462 (10) | 0.4552 (3) | 0.0196 (4) | |
C4 | 0.82688 (10) | 0.32328 (10) | 0.4388 (3) | 0.0213 (5) | |
C5 | 0.81609 (10) | 0.27034 (10) | 0.3542 (3) | 0.0228 (5) | |
H5 | 0.847932 | 0.241118 | 0.341532 | 0.027* | |
C6 | 0.75894 (10) | 0.25972 (10) | 0.2878 (3) | 0.0206 (5) | |
C7 | 0.78113 (10) | 0.41680 (10) | 0.5556 (3) | 0.0216 (5) | |
N2 | 0.78087 (9) | 0.45778 (9) | 0.6383 (3) | 0.0282 (5) | |
C11 | 0.60285 (9) | 0.36958 (10) | 0.2861 (3) | 0.0180 (4) | |
H11 | 0.600243 | 0.326953 | 0.327770 | 0.022* | |
C12 | 0.54261 (10) | 0.40390 (10) | 0.3205 (3) | 0.0175 (4) | |
H12 | 0.545412 | 0.447100 | 0.282823 | 0.021* | |
C13 | 0.49053 (9) | 0.37047 (9) | 0.2379 (3) | 0.0174 (4) | |
H13 | 0.485720 | 0.329883 | 0.289917 | 0.021* | |
C14 | 0.50479 (10) | 0.35742 (10) | 0.0692 (3) | 0.0205 (5) | |
H14 | 0.472970 | 0.329428 | 0.025478 | 0.025* | |
C15 | 0.56731 (10) | 0.32792 (11) | 0.0554 (3) | 0.0228 (5) | |
H15A | 0.567252 | 0.287793 | 0.108559 | 0.027* | |
H15B | 0.577236 | 0.320966 | −0.054522 | 0.027* | |
O1 | 0.52797 (7) | 0.40316 (7) | 0.4791 (2) | 0.0205 (3) | |
H01 | 0.5536 (17) | 0.4259 (16) | 0.526 (5) | 0.046 (10)* | |
O2 | 0.43389 (7) | 0.40239 (8) | 0.2568 (2) | 0.0210 (3) | |
H02 | 0.4290 (15) | 0.4296 (16) | 0.194 (4) | 0.035 (9)* | |
O3 | 0.50739 (7) | 0.41263 (8) | −0.0200 (2) | 0.0237 (4) | |
H03 | 0.4738 (18) | 0.4298 (17) | −0.019 (5) | 0.047 (10)* | |
O4 | 0.61261 (7) | 0.36736 (7) | 0.1238 (2) | 0.0211 (3) | |
C21 | 0.88763 (10) | 0.33451 (11) | 0.5093 (3) | 0.0235 (5) | |
C22 | 0.91531 (11) | 0.39202 (12) | 0.5018 (4) | 0.0333 (6) | |
H22 | 0.895156 | 0.424849 | 0.450852 | 0.040* | |
C23 | 0.97250 (12) | 0.40132 (13) | 0.5690 (4) | 0.0399 (7) | |
H23 | 0.991202 | 0.440544 | 0.563513 | 0.048* | |
C24 | 1.00232 (11) | 0.35385 (13) | 0.6436 (4) | 0.0348 (6) | |
H24 | 1.041042 | 0.360614 | 0.690570 | 0.042* | |
C25 | 0.97528 (11) | 0.29625 (12) | 0.6496 (3) | 0.0288 (5) | |
H25 | 0.995712 | 0.263483 | 0.700037 | 0.035* | |
C26 | 0.91861 (10) | 0.28654 (11) | 0.5820 (3) | 0.0235 (5) | |
H26 | 0.900651 | 0.246932 | 0.585205 | 0.028* | |
C31 | 0.74451 (11) | 0.20354 (10) | 0.1993 (3) | 0.0222 (5) | |
C32 | 0.68866 (11) | 0.19904 (11) | 0.1223 (4) | 0.0328 (6) | |
H32 | 0.660698 | 0.232346 | 0.125814 | 0.039* | |
C33 | 0.67336 (13) | 0.14672 (13) | 0.0408 (4) | 0.0388 (7) | |
H33 | 0.634972 | 0.144225 | −0.010425 | 0.047* | |
C34 | 0.71408 (13) | 0.09782 (11) | 0.0337 (3) | 0.0332 (6) | |
H34 | 0.703694 | 0.061962 | −0.022583 | 0.040* | |
C35 | 0.76943 (12) | 0.10168 (10) | 0.1085 (3) | 0.0285 (5) | |
H35 | 0.797126 | 0.068164 | 0.104383 | 0.034* | |
C36 | 0.78530 (11) | 0.15421 (10) | 0.1901 (3) | 0.0244 (5) | |
H36 | 0.823987 | 0.156588 | 0.239892 | 0.029* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0153 (2) | 0.0177 (2) | 0.0237 (3) | 0.00191 (17) | −0.0005 (2) | −0.0018 (2) |
N1 | 0.0185 (8) | 0.0196 (8) | 0.0198 (10) | 0.0026 (7) | 0.0021 (7) | 0.0003 (8) |
C2 | 0.0165 (9) | 0.0198 (9) | 0.0199 (11) | 0.0019 (7) | 0.0029 (9) | 0.0025 (9) |
C3 | 0.0193 (10) | 0.0185 (10) | 0.0210 (11) | 0.0010 (8) | 0.0007 (9) | 0.0029 (9) |
C4 | 0.0185 (10) | 0.0235 (10) | 0.0220 (12) | 0.0010 (8) | 0.0029 (9) | 0.0066 (9) |
C5 | 0.0212 (10) | 0.0231 (10) | 0.0243 (13) | 0.0058 (8) | 0.0044 (9) | 0.0041 (9) |
C6 | 0.0208 (10) | 0.0208 (10) | 0.0201 (13) | 0.0037 (8) | 0.0043 (9) | 0.0035 (9) |
C7 | 0.0167 (9) | 0.0221 (11) | 0.0260 (12) | 0.0004 (8) | −0.0020 (9) | 0.0068 (10) |
N2 | 0.0277 (10) | 0.0226 (9) | 0.0343 (13) | 0.0010 (7) | −0.0043 (9) | −0.0011 (10) |
C11 | 0.0168 (9) | 0.0196 (9) | 0.0174 (11) | −0.0003 (8) | 0.0016 (8) | −0.0019 (9) |
C12 | 0.0182 (9) | 0.0173 (9) | 0.0169 (11) | −0.0005 (8) | 0.0015 (8) | −0.0001 (8) |
C13 | 0.0153 (9) | 0.0173 (9) | 0.0195 (11) | 0.0004 (7) | 0.0007 (8) | 0.0002 (8) |
C14 | 0.0206 (10) | 0.0211 (10) | 0.0200 (12) | −0.0030 (8) | 0.0000 (9) | −0.0012 (9) |
C15 | 0.0235 (10) | 0.0235 (10) | 0.0215 (12) | −0.0014 (9) | −0.0003 (9) | −0.0057 (9) |
O1 | 0.0189 (7) | 0.0255 (8) | 0.0170 (8) | −0.0009 (6) | 0.0013 (6) | −0.0033 (7) |
O2 | 0.0159 (7) | 0.0249 (8) | 0.0221 (9) | 0.0016 (6) | 0.0008 (6) | 0.0020 (7) |
O3 | 0.0187 (7) | 0.0305 (8) | 0.0219 (9) | 0.0003 (7) | 0.0006 (7) | 0.0056 (7) |
O4 | 0.0189 (7) | 0.0248 (7) | 0.0196 (9) | 0.0001 (6) | 0.0017 (6) | −0.0023 (7) |
C21 | 0.0191 (10) | 0.0277 (11) | 0.0237 (12) | 0.0026 (9) | 0.0010 (9) | 0.0031 (10) |
C22 | 0.0237 (11) | 0.0298 (12) | 0.0464 (17) | 0.0009 (9) | −0.0023 (12) | 0.0098 (12) |
C23 | 0.0256 (12) | 0.0336 (13) | 0.061 (2) | −0.0070 (10) | −0.0021 (13) | 0.0034 (14) |
C24 | 0.0189 (10) | 0.0448 (14) | 0.0407 (17) | 0.0004 (10) | −0.0018 (11) | 0.0000 (13) |
C25 | 0.0235 (11) | 0.0362 (13) | 0.0265 (14) | 0.0071 (10) | −0.0009 (10) | 0.0032 (11) |
C26 | 0.0203 (10) | 0.0275 (11) | 0.0228 (13) | 0.0045 (8) | 0.0033 (9) | 0.0010 (9) |
C31 | 0.0249 (11) | 0.0217 (10) | 0.0201 (12) | 0.0044 (9) | 0.0045 (9) | 0.0032 (9) |
C32 | 0.0304 (12) | 0.0273 (11) | 0.0406 (16) | 0.0092 (9) | −0.0058 (13) | −0.0102 (13) |
C33 | 0.0375 (14) | 0.0317 (13) | 0.0473 (18) | 0.0044 (11) | −0.0101 (13) | −0.0118 (13) |
C34 | 0.0448 (14) | 0.0214 (11) | 0.0333 (15) | 0.0011 (10) | 0.0064 (12) | −0.0060 (11) |
C35 | 0.0382 (13) | 0.0172 (10) | 0.0301 (14) | 0.0058 (9) | 0.0135 (12) | 0.0045 (10) |
C36 | 0.0262 (11) | 0.0214 (11) | 0.0256 (13) | 0.0048 (9) | 0.0059 (10) | 0.0061 (10) |
S1—C2 | 1.770 (2) | C15—H15B | 0.9900 |
S1—C11 | 1.808 (2) | O1—H01 | 0.85 (4) |
N1—C2 | 1.322 (3) | O2—H02 | 0.81 (3) |
N1—C6 | 1.352 (3) | O3—H03 | 0.82 (4) |
C2—C3 | 1.414 (3) | C21—C22 | 1.395 (3) |
C3—C4 | 1.405 (3) | C21—C26 | 1.397 (3) |
C3—C7 | 1.435 (3) | C22—C23 | 1.393 (4) |
C4—C5 | 1.389 (3) | C22—H22 | 0.9500 |
C4—C21 | 1.481 (3) | C23—C24 | 1.385 (4) |
C5—C6 | 1.394 (3) | C23—H23 | 0.9500 |
C5—H5 | 0.9500 | C24—C25 | 1.390 (4) |
C6—C31 | 1.481 (3) | C24—H24 | 0.9500 |
C7—N2 | 1.147 (3) | C25—C26 | 1.385 (3) |
C11—O4 | 1.425 (3) | C25—H25 | 0.9500 |
C11—C12 | 1.543 (3) | C26—H26 | 0.9500 |
C11—H11 | 1.0000 | C31—C32 | 1.394 (4) |
C12—O1 | 1.413 (3) | C31—C36 | 1.400 (3) |
C12—C13 | 1.529 (3) | C32—C33 | 1.384 (4) |
C12—H12 | 1.0000 | C32—H32 | 0.9500 |
C13—O2 | 1.429 (2) | C33—C34 | 1.391 (4) |
C13—C14 | 1.523 (3) | C33—H33 | 0.9500 |
C13—H13 | 1.0000 | C34—C35 | 1.374 (4) |
C14—O3 | 1.434 (3) | C34—H34 | 0.9500 |
C14—C15 | 1.514 (3) | C35—C36 | 1.392 (4) |
C14—H14 | 1.0000 | C35—H35 | 0.9500 |
C15—O4 | 1.439 (3) | C36—H36 | 0.9500 |
C15—H15A | 0.9900 | ||
C2—S1—C11 | 100.90 (10) | C14—C15—H15A | 109.8 |
C2—N1—C6 | 118.42 (19) | O4—C15—H15B | 109.8 |
N1—C2—C3 | 123.40 (19) | C14—C15—H15B | 109.8 |
N1—C2—S1 | 119.13 (17) | H15A—C15—H15B | 108.2 |
C3—C2—S1 | 117.41 (17) | C12—O1—H01 | 108 (3) |
C4—C3—C2 | 118.3 (2) | C13—O2—H02 | 113 (2) |
C4—C3—C7 | 122.3 (2) | C14—O3—H03 | 110 (3) |
C2—C3—C7 | 119.30 (19) | C11—O4—C15 | 108.96 (17) |
C5—C4—C3 | 117.3 (2) | C22—C21—C26 | 119.1 (2) |
C5—C4—C21 | 120.5 (2) | C22—C21—C4 | 121.2 (2) |
C3—C4—C21 | 122.1 (2) | C26—C21—C4 | 119.7 (2) |
C4—C5—C6 | 120.6 (2) | C23—C22—C21 | 120.0 (2) |
C4—C5—H5 | 119.7 | C23—C22—H22 | 120.0 |
C6—C5—H5 | 119.7 | C21—C22—H22 | 120.0 |
N1—C6—C5 | 121.7 (2) | C24—C23—C22 | 120.5 (3) |
N1—C6—C31 | 115.4 (2) | C24—C23—H23 | 119.7 |
C5—C6—C31 | 122.9 (2) | C22—C23—H23 | 119.7 |
N2—C7—C3 | 176.7 (2) | C23—C24—C25 | 119.7 (2) |
O4—C11—C12 | 109.55 (18) | C23—C24—H24 | 120.2 |
O4—C11—S1 | 109.72 (14) | C25—C24—H24 | 120.2 |
C12—C11—S1 | 109.07 (14) | C26—C25—C24 | 120.1 (2) |
O4—C11—H11 | 109.5 | C26—C25—H25 | 119.9 |
C12—C11—H11 | 109.5 | C24—C25—H25 | 119.9 |
S1—C11—H11 | 109.5 | C25—C26—C21 | 120.6 (2) |
O1—C12—C13 | 106.43 (17) | C25—C26—H26 | 119.7 |
O1—C12—C11 | 112.04 (18) | C21—C26—H26 | 119.7 |
C13—C12—C11 | 108.15 (17) | C32—C31—C36 | 118.4 (2) |
O1—C12—H12 | 110.0 | C32—C31—C6 | 119.5 (2) |
C13—C12—H12 | 110.0 | C36—C31—C6 | 122.1 (2) |
C11—C12—H12 | 110.0 | C33—C32—C31 | 120.9 (2) |
O2—C13—C14 | 112.23 (18) | C33—C32—H32 | 119.5 |
O2—C13—C12 | 110.90 (17) | C31—C32—H32 | 119.5 |
C14—C13—C12 | 112.80 (18) | C32—C33—C34 | 120.1 (3) |
O2—C13—H13 | 106.8 | C32—C33—H33 | 119.9 |
C14—C13—H13 | 106.8 | C34—C33—H33 | 119.9 |
C12—C13—H13 | 106.8 | C35—C34—C33 | 119.6 (2) |
O3—C14—C15 | 106.23 (19) | C35—C34—H34 | 120.2 |
O3—C14—C13 | 111.67 (18) | C33—C34—H34 | 120.2 |
C15—C14—C13 | 109.85 (19) | C34—C35—C36 | 120.7 (2) |
O3—C14—H14 | 109.7 | C34—C35—H35 | 119.7 |
C15—C14—H14 | 109.7 | C36—C35—H35 | 119.7 |
C13—C14—H14 | 109.7 | C35—C36—C31 | 120.3 (2) |
O4—C15—C14 | 109.43 (18) | C35—C36—H36 | 119.9 |
O4—C15—H15A | 109.8 | C31—C36—H36 | 119.9 |
C6—N1—C2—C3 | −1.1 (4) | C12—C13—C14—C15 | 49.6 (2) |
C6—N1—C2—S1 | 176.09 (17) | O3—C14—C15—O4 | 63.7 (2) |
C11—S1—C2—N1 | 9.7 (2) | C13—C14—C15—O4 | −57.2 (2) |
C11—S1—C2—C3 | −172.95 (19) | C12—C11—O4—C15 | −68.6 (2) |
N1—C2—C3—C4 | 5.2 (4) | S1—C11—O4—C15 | 171.64 (14) |
S1—C2—C3—C4 | −172.01 (18) | C14—C15—O4—C11 | 67.9 (2) |
N1—C2—C3—C7 | −171.6 (2) | C5—C4—C21—C22 | 136.5 (3) |
S1—C2—C3—C7 | 11.2 (3) | C3—C4—C21—C22 | −44.1 (4) |
C2—C3—C4—C5 | −4.8 (3) | C5—C4—C21—C26 | −42.2 (3) |
C7—C3—C4—C5 | 171.9 (2) | C3—C4—C21—C26 | 137.2 (3) |
C2—C3—C4—C21 | 175.9 (2) | C26—C21—C22—C23 | −1.3 (4) |
C7—C3—C4—C21 | −7.4 (4) | C4—C21—C22—C23 | −180.0 (3) |
C3—C4—C5—C6 | 0.7 (3) | C21—C22—C23—C24 | −0.1 (5) |
C21—C4—C5—C6 | −180.0 (2) | C22—C23—C24—C25 | 0.9 (5) |
C2—N1—C6—C5 | −3.3 (3) | C23—C24—C25—C26 | −0.5 (4) |
C2—N1—C6—C31 | 178.8 (2) | C24—C25—C26—C21 | −0.9 (4) |
C4—C5—C6—N1 | 3.6 (4) | C22—C21—C26—C25 | 1.7 (4) |
C4—C5—C6—C31 | −178.7 (2) | C4—C21—C26—C25 | −179.5 (2) |
C2—S1—C11—O4 | −77.26 (16) | N1—C6—C31—C32 | 4.8 (3) |
C2—S1—C11—C12 | 162.73 (16) | C5—C6—C31—C32 | −173.1 (3) |
O4—C11—C12—O1 | 175.15 (17) | N1—C6—C31—C36 | −175.2 (2) |
S1—C11—C12—O1 | −64.7 (2) | C5—C6—C31—C36 | 7.0 (4) |
O4—C11—C12—C13 | 58.2 (2) | C36—C31—C32—C33 | 1.0 (4) |
S1—C11—C12—C13 | 178.27 (14) | C6—C31—C32—C33 | −178.9 (3) |
O1—C12—C13—O2 | 63.3 (2) | C31—C32—C33—C34 | −0.5 (5) |
C11—C12—C13—O2 | −176.15 (17) | C32—C33—C34—C35 | 0.2 (5) |
O1—C12—C13—C14 | −169.85 (17) | C33—C34—C35—C36 | −0.5 (4) |
C11—C12—C13—C14 | −49.3 (2) | C34—C35—C36—C31 | 1.1 (4) |
O2—C13—C14—O3 | 58.2 (2) | C32—C31—C36—C35 | −1.3 (4) |
C12—C13—C14—O3 | −68.0 (2) | C6—C31—C36—C35 | 178.6 (2) |
O2—C13—C14—C15 | 175.75 (17) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H01···O2i | 0.85 (4) | 2.12 (4) | 2.831 (2) | 140 (3) |
O1—H01···O1i | 0.85 (4) | 2.42 (3) | 3.133 (2) | 141 (3) |
O2—H02···O3ii | 0.81 (3) | 2.07 (4) | 2.883 (2) | 175 (3) |
O3—H03···O3ii | 0.82 (4) | 1.94 (4) | 2.729 (2) | 159 (4) |
C13—H13···N2iii | 1.00 | 2.57 | 3.547 (3) | 165 |
C34—H34···N2iv | 0.95 | 2.51 | 3.404 (3) | 157 |
Symmetry codes: (i) −y+1, x, −z+1; (ii) y, −x+1, −z; (iii) y, −x+1, −z+1; (iv) −x+3/2, y−1/2, −z+1/2. |
References
Agrawal, S., Wozniak, M., Luc, M., Walaszek, K., Pielka, E., Szeja, W., Pastuch-Gawolek, G., Gamian, A. & Ziolkowski, P. (2017). Oncotarget, 8, 114173–114182. CrossRef Google Scholar
Brands, K. M. J. & Davies, A. J. (2006). Chem. Rev. 106, 2711–2733. CrossRef Google Scholar
Dinkelaar, J., Witte, M. D., van den Bos, L. J., Overkleeft, H. S. & van der Marel, G. A. (2006). Carbohydr. Res. 341, 1723–1729. CrossRef Google Scholar
Elgemeie, G. H., Abou-Zeid, M., Alsaid, S., Hebishy, A. & Essa, H. (2015). Nucleosides, Nucleotides, Nucleic Acids, 34, 659–673. Google Scholar
Elgemeie, G. H., Abou-Zeid, M. & Azzam, R. (2016). Nucleosides, Nucleotides, Nucleic Acids, 35, 211–222. Google Scholar
Elgemeie, G. H. & Abu-Zaied, M. A. (2017). Nucleosides, Nucleotides, Nucleic Acids, 36, 511–519. Google Scholar
Elgemeie, G. H., Abu-Zaied, M. A. & Loutfy, S. A. (2017a). Tetrahedron, 73, 5853–5861. CrossRef Google Scholar
Elgemeie, G. H., Mahdy, E. M., Elgawish, M. A., Ahmed, M. M., Shousha, W. G. & Eldin, M. E. (2010). Z. Naturforsch. Teil C, 65, 577–587. Google Scholar
Elgemeie, G. H., Salah, A. M., Abbas, N. S., Hussein, H. A. & Mohamed, R. A. (2017b). Nucleosides, Nucleotides & Nucleic Acids, 36, 139–150. Google Scholar
Kananovich, D. G., Reino, A., Ilmarinen, K., Rõõmusoks, M., Karelson, M. & Lopp, M. A. (2014). Org. Biomol. Chem. 12, 5634–5644. CrossRef Google Scholar
Komor, R., Pastuch-Gawołek, G., Sobania, A., Jadwiński, M. & Szeja, W. (2012). Acta Pol. Pharm. 69, 1259–1269. Google Scholar
Masoud, D. M., Hammad, S. F., Elgemeie, G. H. & Jones, P. G. (2017). Acta Cryst. E73, 1751–1754. CrossRef IUCr Journals Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Siemens (1994). XP. Siemens Analytical X–Ray Instruments, Madison, Wisconsin, USA. Google Scholar
Tomas, A., Dung, N.-H., Viossat, B., Esanu, A. & Rolland, A. (1993). Acta Cryst. C49, 626–628. CrossRef IUCr Journals Google Scholar
Yoshimura, Y., Kitano, K., Yamada, K., Sakata, S., Miura, S., Ashida, N. & Machida, H. (2000). Bioorg. Med. Chem. 8, 1545–1558. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.