research communications
Undecacarbonyl[(4-methylsulfanylphenyl)diphenylphosphane]triruthenium(0):
and Hirshfeld surface analysisaChemical Sciences Programme, School of Distance Education, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Chemistry, Alzaiem Alazhari University, 1933, Khartoum, Sudan, cDepartment of Physics, Bhavan's Sheth R. A. College of Science, Ahmedabad, Gujarat 380001, India, and dResearch Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: edwardt@sunway.edu.my
The title cluster compound, [Ru3(C19H17PS)(CO)11], comprises a triangle of Ru0 atoms, two of which are bonded to four carbonyl ligands. The third metal atom is bound to three carbonyl ligands and the phosphane-P atom of a dissymmetric phosphane ligand, PPh2(C6H4SMe-4); no Ru⋯S interactions are observed. The phosphane occupies an equatorial position and its proximity to an Ru—Ru edge results in the elongation of this bond with respect to the others [2.8933 (2) Å cf. 2.8575 (2) and 2.8594 (3) Å]. In the crystal, phenyl-C—H⋯O(carbonyl) and carbonyl-O⋯O(carbonyl) [2.817 (2) Å] interactions combine to form a supramolecular chain propagating along [111]; the chains pack without directional interactions between them. The carbonyl-O⋯O(carbonyl) and other weak contacts have an influence upon the Hirshfeld surfaces with O⋯H contacts making the greatest contribution, i.e. 37.4% cf. 15.8% for O⋯O and 15.6% for H⋯H contacts.
Keywords: crystal structure; ruthenium; cluster; carbonyl; Hirshfeld surface analysis.
CCDC reference: 1842044
1. Chemical context
Tertiary R3) have played a major role in the formation and subsequent chemistry of metal carbonyl clusters, often relating to the promising of the products (Bruce et al., 2005; Shawkataly et al., 2013; Park et al., 2016). In general, the thermal reaction of Ru3(CO)12 with PR3 leads to Ru3(CO)12 – n(PR3)n, n = 1–4, cluster compounds (Bruce et al., 1988, 1989). The steric and electronic effects of PR3 often results in the lengthening of Ru—Ru bonds in the Ru3 triangle as compared with the parent compound, Ru3(CO)12, thereby making the cluser more reactive (Bruce et al., 1989). The PPh2C6H4SMe ligand is of interest because it contains two different potential donor groups, i.e. P and S, which can result in variable substitution patterns. For example, in the Cu22Se6(SePh)10[PPh2(C6H4SMe)]8 cluster, only the P atom of the PPh2C6H4SMe ligand is coordinated to the metal centre while the thiomethyl group remains uncoordinated (Fuhr et al., 2002). However, the thiomethyl group can further react with other metal atoms to provide opportunities in surface chemistry (Fuhr et al., 2002). The known crystal structures of triruthenium clusters with the PPh2(C6H4SMe) ligand are surprisingly few in number (Shawkataly et al., 2011a,b). Herein, the crystal and molecular structures of the title compound, Ru3(CO)11PPh2(C6H4SMe-4) (I), are described as well as an analysis of the calculated Hirshfeld surface.
(P2. Structural commentary
The molecular structure of Ru3(CO)11PPh2(C6H4SMe-4), (I), is shown in Fig. 1. The molecule comprises an Ru3 triangle with one Ru centre being bound, equatorially, by the phosphane ligand. The Ru—Ru bond lengths in the Ru3 triangle are not equivalent with the Ru1—Ru2 bond of 2.8933 (2) Å being longer than the Ru1—Ru3 and Ru2—Ru3 bonds of 2.8575 (2) and 2.8594 (3) Å, respectively. This disparity probably reflects the exerted by the phosphane ligand which occupies the region in the vicinity of the Ru1—Ru2 bond. Some general trends in the geometric parameters involving the carbonyl ligands may be discerned, the relatively high errors in some of the parameters notwithstanding. Thus, the Ru—C bond distances involving carbonyl groups lying in the plane of the Ru3 ring are generally shorter than those occupying positions perpendicular to the plane, with the respective ranges in Ru—C bond lengths being 1.897 (3)–1.930 (3) Å and 1.937 (2)–1.953 (3) Å. While the Ru—C≡O angles are all close to linear, two distinctive ranges in angles are evident. The Ru—C≡O angles involving carbonyl groups lying in the plane of the Ru3 ring lie in the range 177.3 (2)–178.7 (2)° while the range for the perpendicularly orientated carbonyl groups is 172.1 (2)–174.6 (2)°. The trend for longer Ru—C distances and greater deviations from linearity of the Ru—C≡O angles for the axial carbonyl ligands, which occupy positions trans to other carbonyl ligands, is consistent with some semi-bridging character for these carbonyl ligands. Thus, the closest intramolecular Ru⋯C(carbonyl) contact of 3.233 (3) Å is formed by the C8-carbonyl ligand which exhibits the maximum deviation from linearity, i.e. 172.1 (2)°.
3. Supramolecular features
The molecular packing of (I) features phenyl-C—H⋯O(carbonyl) interactions occurring about a centre of inversion and leading to centrosymmetric dimers, Table 1. Connections between the dimers leading to a supramolecular chain along [111] are of the type carbonyl-O⋯O(carbonyl), Fig. 2a. The O3⋯O3i separation is 2.817 (2) Å, a distance less than the sum of the van der Waals radii of oxygen, i.e. 3.04 Å (Bondi, 1964); (i): 1 − x, 1 − y, 1 − z. Such intermolecular O⋯O interactions are examples of homoatomic chalcogen bonding which are rarest for the smaller oxygen atoms (Gleiter et al., 2018). The chains pack without directional interactions between them according to the criteria assumed in PLATON (Spek, 2009). A view of the unit-cell contents is shown in Fig. 2b.
4. Analysis of the Hirshfeld surface
The Hirshfeld surface calculations of (I) were performed in accordance with a recent publication on a related ruthenium cluster compound (Shawkataly et al., 2017). Two views of the Hirshfeld surface mapped over dnorm are shown in Fig. 3. A spot near the O8 atom in Fig. 3a, results from the C21—H⋯O8 interaction (Table 1). The presence of a diminutive red spot near the carbonyl-O3 atom in Fig. 3b reflects the significance of the short O3⋯O3 contact mentioned in Supramolecular features. The intense red spots near the methylsulfanylbenzene-C16 and phenyl-H28 atoms indicate the significance of this short interatomic C⋯H/H⋯C contact (Table 2; calculated in CrystalExplorer3.1 (Wolff et al., 2012). In addition, interactions involving several carbonyl groups results in short O⋯O and C⋯O/O⋯C contacts (Table 2) and are characterized as faint red spots in Fig. 3. The Hirshfeld surfaces mapped over the electrostatic potential illustrated in Fig. 4 also reflect the involvement of different atoms in the intermolecular interactions through the appearance of blue and red regions around the participating atoms, and correspond to positive and negative electrostatic potential, respectively. As highlighted in Fig. 4a, an intramolecular carbonyl-C4≡O4⋯Cg(C19–C24) contact is evident. Carbonyl⋯π(arene) interactions are known to be important in the structural chemistry of metal carbonyls (Zukerman-Schpector et al., 2011). Here, the O4⋯Cg(C19–C24) separation is 3.850 (3) Å and the angle subtended at the O4 atom is 90.1 (2)°, indicating a side-on (parallel) approach between the residues. The environment about a reference molecule, showing short interatomic O⋯O and C⋯H/H⋯C contacts significant in the molecule packing of (I), is illustrated in Fig. 5.
|
The overall two-dimensional fingerprint plot for (I) and those delineated into H⋯H, O⋯H/H⋯O, O⋯O, C⋯H/H⋯C and C⋯O/O⋯C contacts (McKinnon et al., 2007) are illustrated in Fig. 6; the percentage contributions from the different interatomic contacts to the Hirshfeld surfaces are summarized in Table 3. In the fingerprint plot delineated into H⋯H contacts, the relatively small, i.e. 15.6%, contribution from these contacts to the Hirshfeld surfaces is due to the presence of the carbonyl groups on the Ru-cluster which leads to an increase in the contribution of O⋯H/H⋯O contacts to the Hirshfeld surface, i.e. 37.4%. The single tip at de + di ∼2.4 Å in the H⋯H delineated fingerprint plot, which has a broad appearance, arises from a van der Waals contact between the methyl-H18B and phenyl-H20 atoms (Table 2). The two pairs of adjacent peaks at de + di ∼2.5 and 2.6 Å in the fingerprint plot delineated into O⋯H/H⋯O contacts are the result of the interatomic C—H⋯O interaction discussed above (Table 1) and a short interatomic O⋯H/H⋯O contact (Table 2), respectively. The influence of the significant interatomic O3⋯O3 contact (Fig. 5) and other such short interatomic contacts (Table 3) are viewed as the distribution of points with the rocket-like tip extending from de + di ∼2.8 Å in the plot delineated into O⋯O contacts. In the fingerprint plot delineated into C⋯O/O⋯C contacts, the short interatomic contacts between carbonyl-C7 and -O9 atoms appear as the pair of thin tips at de + di ∼3.1 Å superimposed on the parabolic distribution of points characterizing other such short interatomic contacts through the points around de = di = 1.6 Å. The other dominant short interatomic C⋯H/H⋯C contacts (Table 2) result in the pair of forceps-like tips at de + di ∼2.6 Å in the respective delineated fingerprint plot. The small contribution from other remaining interatomic contacts summarized in Table 3 have negligible effect on the packing.
|
5. Database survey
As mentioned in the Chemical context, there are two other Ru3 clusters in the literature having the same (4-methylsulfanylphenyl)diphenylphosphane ligand as in (I). These are formulated as Ru3(CO)9PPh2(C6H4SMe-4)(Ph2PCH2PPh2) (II) (Shawkataly et al., 2011b) and its arsenic analogue, Ru3(CO)9PPh2(C6H4SMe-4)(Ph2AsCH2AsPh2) (Shawkataly et al., 2011a), in each of which the bidentate ligand bridges the other two ruthenium atoms in the triangle. The structural motif found in (I), i.e. with an equatorially substituted phosphane ligand, is consistent with the approximately 35 literature precedents with the general formula Ru3(CO)11PRR′R′′ and several examples where the phosphane ligand is bidentate bridging, i.e. Ru3(CO)11PR(R′)–R′′–(R′)RPRu3(CO)11 (Groom et al., 2016). There are no crystallographic examples with perpendicular mono-substitution of phosphane ligands in Ru3(CO)11PRR′R′′.
6. Synthesis and crystallization
All reactions were carried out under an inert atmosphere of oxygen-free nitrogen (OFN) using standard Schlenk techniques. Ru3(CO)12 was purchased from Aldrich and PPh2C6H4SMe was synthesized as reported previously (Fuhr et al., 2002). Ru3(CO)11P(C6H4SMe-4)Ph2 (I) was synthesized by dissolving Ru3(CO)12 (100 mg, 0.0015 mmol) and PPh2(C6H4SMe) (48 mg, 0.0015 mmol) in tetrahydrofuran (25 ml). The reaction mixture was treated dropwise with sodium diphenylketyl solution until the colour of the mixture turned from orange to dark red and then stirred for 30 min. The solvent was evaporated under vacuum and the residue was chromatographed by preparative TLC. Elution with 7:3 n-hexane/dichloromethane mixture gave four bands and the major orange fraction was characterized as (I) (117 mg, 79.6%). Orange crystals were crystallized from solvent diffusion of dichloromethane into a methanol solution of (I). Analysis calculated for C30H17O11PRu3S: C, 39.18; H, 1.86%. Found: C, 39.60; H, 1.90%. IR (C6H12): ν(CO) 2097(m), 2059(w), 2046(m), 2015(s), 1989(w) cm−1. 1H NMR (CDCl3): δ 7.45–7.23 (m, 14H, Ph, C6H4), 2.48 (s, Me). 13C NMR (CDCl3): δ 204.24 (Ru—CO), 135.19–125.37 (Ph), 14.79 (Me). 31P NMR (CDCl3): δ 34.28 (s).
7. Refinement
Crystal data, data collection and structure . The carbon-bound H atoms were placed in calculated positions (C—H = 0.95–0.98 Å) and were included in the in the riding-model approximation, with Uiso(H) set to 1.2–1.5Ueq(C). Owing to poor agreement, four reflections, i.e. (1 7 14), ( 6), ( 12 12) and ( 16 10), were omitted from the final cycles of The maximum and minimum residual electron density peaks of 1.97 and 0.98 e Å−3, respectively, were located 0.69 and 0.61 Å from the atoms Ru1 and Ru3, respectively.
details are summarized in Table 4Supporting information
CCDC reference: 1842044
https://doi.org/10.1107/S2056989018006989/hb7749sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018006989/hb7749Isup2.hkl
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).[Ru3(C19H17PS)(CO)11] | Z = 2 |
Mr = 919.67 | F(000) = 896 |
Triclinic, P1 | Dx = 1.924 Mg m−3 |
a = 9.6922 (1) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 12.7459 (2) Å | Cell parameters from 9414 reflections |
c = 13.6030 (2) Å | θ = 2.6–36.5° |
α = 103.301 (1)° | µ = 1.58 mm−1 |
β = 102.938 (1)° | T = 100 K |
γ = 91.771 (1)° | Block, orange |
V = 1587.83 (4) Å3 | 0.32 × 0.30 × 0.14 mm |
Bruker SMART APEXII CCD diffractometer | 11725 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.042 |
φ and ω scans | θmax = 36.8°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −16→16 |
Tmin = 0.448, Tmax = 0.526 | k = −21→21 |
56976 measured reflections | l = −22→22 |
15652 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.041 | H-atom parameters constrained |
wR(F2) = 0.097 | w = 1/[σ2(Fo2) + (0.048P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.001 |
15652 reflections | Δρmax = 1.97 e Å−3 |
416 parameters | Δρmin = −0.98 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ru1 | 0.28387 (2) | 0.33186 (2) | 0.28051 (2) | 0.01428 (4) | |
Ru2 | 0.40348 (2) | 0.29273 (2) | 0.09996 (2) | 0.01862 (4) | |
Ru3 | 0.21842 (2) | 0.46106 (2) | 0.13284 (2) | 0.01626 (4) | |
S1 | 0.11319 (7) | 0.13142 (5) | 0.73844 (5) | 0.02529 (12) | |
P1 | 0.37139 (6) | 0.19229 (4) | 0.36008 (4) | 0.01376 (10) | |
O1 | −0.00653 (19) | 0.21034 (14) | 0.16345 (15) | 0.0282 (4) | |
O2 | 0.1200 (2) | 0.45096 (15) | 0.43099 (15) | 0.0308 (4) | |
O3 | 0.55312 (18) | 0.47646 (14) | 0.40979 (13) | 0.0251 (4) | |
O4 | 0.6007 (3) | 0.11066 (18) | 0.10236 (18) | 0.0435 (5) | |
O5 | 0.1625 (2) | 0.11127 (15) | −0.00206 (15) | 0.0312 (4) | |
O6 | 0.4152 (2) | 0.34976 (16) | −0.10467 (15) | 0.0309 (4) | |
O7 | 0.6584 (2) | 0.45662 (17) | 0.22391 (15) | 0.0319 (4) | |
O8 | −0.0055 (2) | 0.29918 (15) | −0.03258 (16) | 0.0326 (4) | |
O9 | 0.2453 (2) | 0.57908 (15) | −0.03402 (14) | 0.0288 (4) | |
O10 | −0.0099 (2) | 0.57899 (17) | 0.22667 (16) | 0.0335 (4) | |
O11 | 0.4558 (2) | 0.62755 (14) | 0.27933 (14) | 0.0273 (4) | |
C1 | 0.1048 (3) | 0.25236 (18) | 0.20139 (19) | 0.0207 (4) | |
C2 | 0.1833 (3) | 0.40534 (19) | 0.37650 (19) | 0.0215 (4) | |
C3 | 0.4559 (3) | 0.42297 (18) | 0.35766 (18) | 0.0195 (4) | |
C4 | 0.5271 (3) | 0.1777 (2) | 0.1037 (2) | 0.0279 (5) | |
C5 | 0.2456 (3) | 0.1817 (2) | 0.03905 (19) | 0.0246 (5) | |
C6 | 0.4106 (3) | 0.3274 (2) | −0.0295 (2) | 0.0236 (5) | |
C7 | 0.5600 (3) | 0.4000 (2) | 0.18099 (19) | 0.0238 (5) | |
C8 | 0.0801 (3) | 0.35306 (19) | 0.03187 (19) | 0.0228 (5) | |
C9 | 0.2348 (3) | 0.53252 (19) | 0.02662 (18) | 0.0211 (4) | |
C10 | 0.0760 (3) | 0.53550 (19) | 0.19383 (19) | 0.0223 (4) | |
C11 | 0.3718 (3) | 0.56093 (19) | 0.22852 (19) | 0.0215 (4) | |
C12 | 0.2835 (2) | 0.16989 (17) | 0.45989 (17) | 0.0155 (4) | |
C13 | 0.2366 (2) | 0.06656 (18) | 0.46472 (17) | 0.0174 (4) | |
H13 | 0.2421 | 0.0056 | 0.4108 | 0.021* | |
C14 | 0.1818 (2) | 0.05201 (18) | 0.54780 (18) | 0.0189 (4) | |
H14 | 0.1480 | −0.0183 | 0.5491 | 0.023* | |
C15 | 0.1765 (2) | 0.14016 (18) | 0.62855 (17) | 0.0179 (4) | |
C16 | 0.2236 (2) | 0.24400 (18) | 0.62442 (17) | 0.0176 (4) | |
H16 | 0.2203 | 0.3048 | 0.6792 | 0.021* | |
C17 | 0.2748 (2) | 0.25804 (17) | 0.54035 (17) | 0.0166 (4) | |
H17 | 0.3045 | 0.3288 | 0.5376 | 0.020* | |
C18 | 0.1152 (3) | −0.0110 (2) | 0.7356 (2) | 0.0276 (5) | |
H18A | 0.0428 | −0.0525 | 0.6756 | 0.041* | |
H18B | 0.0949 | −0.0232 | 0.7997 | 0.041* | |
H18C | 0.2090 | −0.0346 | 0.7299 | 0.041* | |
C19 | 0.3634 (2) | 0.05642 (16) | 0.27629 (16) | 0.0153 (4) | |
C20 | 0.2408 (2) | 0.01554 (18) | 0.19821 (19) | 0.0216 (4) | |
H20 | 0.1635 | 0.0592 | 0.1886 | 0.026* | |
C21 | 0.2302 (3) | −0.08793 (19) | 0.1345 (2) | 0.0268 (5) | |
H21 | 0.1462 | −0.1145 | 0.0818 | 0.032* | |
C22 | 0.3416 (3) | −0.15220 (19) | 0.1476 (2) | 0.0253 (5) | |
H22 | 0.3348 | −0.2228 | 0.1037 | 0.030* | |
C23 | 0.4638 (3) | −0.1130 (2) | 0.2255 (2) | 0.0264 (5) | |
H23 | 0.5405 | −0.1572 | 0.2350 | 0.032* | |
C24 | 0.4747 (2) | −0.00928 (18) | 0.28960 (19) | 0.0214 (4) | |
H24 | 0.5585 | 0.0168 | 0.3427 | 0.026* | |
C25 | 0.5593 (2) | 0.21583 (17) | 0.43099 (17) | 0.0171 (4) | |
C26 | 0.6609 (3) | 0.24650 (19) | 0.3821 (2) | 0.0224 (4) | |
H26 | 0.6323 | 0.2535 | 0.3126 | 0.027* | |
C27 | 0.8033 (3) | 0.2669 (2) | 0.4343 (2) | 0.0282 (5) | |
H27 | 0.8715 | 0.2876 | 0.4003 | 0.034* | |
C28 | 0.8460 (3) | 0.2571 (2) | 0.5359 (2) | 0.0288 (5) | |
H28 | 0.9431 | 0.2725 | 0.5721 | 0.035* | |
C29 | 0.7475 (3) | 0.2249 (2) | 0.5841 (2) | 0.0266 (5) | |
H29 | 0.7772 | 0.2172 | 0.6533 | 0.032* | |
C30 | 0.6042 (2) | 0.20356 (18) | 0.53226 (18) | 0.0195 (4) | |
H30 | 0.5371 | 0.1806 | 0.5660 | 0.023* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ru1 | 0.01599 (8) | 0.01239 (7) | 0.01479 (7) | 0.00070 (5) | 0.00376 (6) | 0.00392 (6) |
Ru2 | 0.02282 (9) | 0.01803 (8) | 0.01699 (8) | 0.00456 (7) | 0.00739 (7) | 0.00527 (6) |
Ru3 | 0.01832 (8) | 0.01340 (7) | 0.01637 (8) | 0.00103 (6) | 0.00223 (6) | 0.00411 (6) |
S1 | 0.0303 (3) | 0.0269 (3) | 0.0244 (3) | 0.0041 (2) | 0.0138 (2) | 0.0103 (2) |
P1 | 0.0135 (2) | 0.0127 (2) | 0.0147 (2) | 0.00001 (18) | 0.00275 (18) | 0.00325 (18) |
O1 | 0.0219 (9) | 0.0246 (9) | 0.0366 (10) | −0.0025 (7) | 0.0012 (8) | 0.0107 (8) |
O2 | 0.0334 (10) | 0.0308 (10) | 0.0317 (10) | 0.0124 (8) | 0.0161 (8) | 0.0052 (8) |
O3 | 0.0263 (9) | 0.0226 (8) | 0.0236 (9) | −0.0045 (7) | 0.0038 (7) | 0.0031 (7) |
O4 | 0.0515 (14) | 0.0407 (12) | 0.0419 (12) | 0.0280 (11) | 0.0132 (11) | 0.0125 (10) |
O5 | 0.0386 (11) | 0.0241 (9) | 0.0308 (10) | −0.0003 (8) | 0.0110 (8) | 0.0042 (8) |
O6 | 0.0403 (11) | 0.0320 (10) | 0.0250 (9) | 0.0068 (8) | 0.0130 (8) | 0.0103 (8) |
O7 | 0.0289 (10) | 0.0379 (11) | 0.0280 (10) | −0.0020 (8) | 0.0092 (8) | 0.0046 (8) |
O8 | 0.0327 (10) | 0.0215 (9) | 0.0355 (10) | −0.0014 (7) | −0.0062 (8) | 0.0053 (8) |
O9 | 0.0333 (10) | 0.0297 (9) | 0.0255 (9) | 0.0008 (8) | 0.0080 (8) | 0.0103 (8) |
O10 | 0.0272 (10) | 0.0376 (11) | 0.0334 (10) | 0.0080 (8) | 0.0092 (8) | 0.0014 (9) |
O11 | 0.0287 (9) | 0.0231 (8) | 0.0266 (9) | −0.0030 (7) | 0.0032 (7) | 0.0032 (7) |
C1 | 0.0237 (11) | 0.0159 (9) | 0.0239 (11) | 0.0033 (8) | 0.0049 (9) | 0.0080 (8) |
C2 | 0.0216 (11) | 0.0206 (10) | 0.0238 (11) | 0.0024 (8) | 0.0051 (9) | 0.0087 (9) |
C3 | 0.0240 (11) | 0.0162 (9) | 0.0196 (10) | 0.0013 (8) | 0.0064 (8) | 0.0059 (8) |
C4 | 0.0329 (14) | 0.0297 (13) | 0.0233 (12) | 0.0088 (11) | 0.0091 (10) | 0.0081 (10) |
C5 | 0.0319 (13) | 0.0226 (11) | 0.0215 (11) | 0.0054 (10) | 0.0099 (10) | 0.0060 (9) |
C6 | 0.0249 (12) | 0.0235 (11) | 0.0237 (11) | 0.0037 (9) | 0.0092 (9) | 0.0051 (9) |
C7 | 0.0284 (12) | 0.0250 (11) | 0.0203 (10) | 0.0060 (9) | 0.0094 (9) | 0.0061 (9) |
C8 | 0.0252 (12) | 0.0165 (10) | 0.0257 (11) | 0.0008 (8) | 0.0013 (9) | 0.0081 (9) |
C9 | 0.0211 (11) | 0.0197 (10) | 0.0212 (10) | 0.0018 (8) | 0.0038 (8) | 0.0033 (8) |
C10 | 0.0222 (11) | 0.0212 (10) | 0.0219 (11) | −0.0004 (9) | 0.0024 (9) | 0.0054 (9) |
C11 | 0.0227 (11) | 0.0185 (10) | 0.0227 (11) | 0.0024 (8) | 0.0035 (9) | 0.0057 (8) |
C12 | 0.0141 (9) | 0.0159 (9) | 0.0166 (9) | 0.0008 (7) | 0.0019 (7) | 0.0061 (7) |
C13 | 0.0177 (10) | 0.0168 (9) | 0.0175 (9) | −0.0010 (7) | 0.0031 (8) | 0.0054 (8) |
C14 | 0.0183 (10) | 0.0183 (10) | 0.0210 (10) | −0.0005 (8) | 0.0039 (8) | 0.0075 (8) |
C15 | 0.0154 (10) | 0.0205 (10) | 0.0197 (10) | 0.0025 (8) | 0.0050 (8) | 0.0079 (8) |
C16 | 0.0163 (10) | 0.0185 (9) | 0.0180 (9) | 0.0022 (8) | 0.0044 (8) | 0.0039 (8) |
C17 | 0.0151 (9) | 0.0167 (9) | 0.0183 (9) | 0.0012 (7) | 0.0038 (7) | 0.0050 (8) |
C18 | 0.0314 (13) | 0.0298 (13) | 0.0268 (12) | 0.0003 (10) | 0.0104 (10) | 0.0143 (10) |
C19 | 0.0157 (9) | 0.0127 (8) | 0.0167 (9) | −0.0003 (7) | 0.0041 (7) | 0.0023 (7) |
C20 | 0.0174 (10) | 0.0169 (10) | 0.0276 (11) | 0.0012 (8) | −0.0001 (9) | 0.0047 (9) |
C21 | 0.0240 (12) | 0.0170 (10) | 0.0305 (13) | −0.0020 (9) | −0.0058 (10) | 0.0002 (9) |
C22 | 0.0298 (13) | 0.0149 (10) | 0.0262 (12) | 0.0010 (9) | 0.0040 (10) | −0.0022 (9) |
C23 | 0.0249 (12) | 0.0192 (11) | 0.0315 (13) | 0.0068 (9) | 0.0044 (10) | 0.0005 (9) |
C24 | 0.0182 (10) | 0.0195 (10) | 0.0223 (10) | 0.0028 (8) | −0.0002 (8) | 0.0012 (8) |
C25 | 0.0146 (9) | 0.0146 (9) | 0.0200 (10) | 0.0002 (7) | 0.0018 (8) | 0.0024 (8) |
C26 | 0.0195 (11) | 0.0222 (11) | 0.0271 (11) | 0.0001 (8) | 0.0064 (9) | 0.0087 (9) |
C27 | 0.0156 (11) | 0.0257 (12) | 0.0424 (15) | −0.0003 (9) | 0.0072 (10) | 0.0063 (11) |
C28 | 0.0152 (11) | 0.0236 (11) | 0.0397 (15) | 0.0009 (9) | −0.0024 (10) | 0.0006 (11) |
C29 | 0.0243 (12) | 0.0238 (11) | 0.0244 (11) | 0.0048 (9) | −0.0031 (9) | −0.0003 (9) |
C30 | 0.0174 (10) | 0.0177 (9) | 0.0203 (10) | 0.0032 (8) | 0.0014 (8) | 0.0015 (8) |
Ru1—C2 | 1.897 (3) | C13—C14 | 1.397 (3) |
Ru1—C1 | 1.937 (2) | C13—H13 | 0.9500 |
Ru1—C3 | 1.941 (2) | C14—C15 | 1.390 (3) |
Ru1—P1 | 2.3714 (5) | C14—H14 | 0.9500 |
Ru1—Ru3 | 2.8575 (2) | C15—C16 | 1.404 (3) |
Ru1—Ru2 | 2.8933 (2) | C16—C17 | 1.389 (3) |
Ru2—C4 | 1.924 (3) | C16—H16 | 0.9500 |
Ru2—C6 | 1.927 (2) | C17—H17 | 0.9500 |
Ru2—C5 | 1.946 (3) | C18—H18A | 0.9800 |
Ru2—C7 | 1.953 (3) | C18—H18B | 0.9800 |
Ru2—Ru3 | 2.8594 (3) | C18—H18C | 0.9800 |
Ru3—C9 | 1.908 (2) | C19—C24 | 1.392 (3) |
Ru3—C10 | 1.930 (3) | C19—C20 | 1.398 (3) |
Ru3—C8 | 1.942 (2) | C20—C21 | 1.388 (3) |
Ru3—C11 | 1.944 (2) | C20—H20 | 0.9500 |
S1—C15 | 1.763 (2) | C21—C22 | 1.380 (4) |
S1—C18 | 1.808 (3) | C21—H21 | 0.9500 |
P1—C12 | 1.826 (2) | C22—C23 | 1.390 (4) |
P1—C19 | 1.830 (2) | C22—H22 | 0.9500 |
P1—C25 | 1.840 (2) | C23—C24 | 1.393 (3) |
O1—C1 | 1.142 (3) | C23—H23 | 0.9500 |
O2—C2 | 1.136 (3) | C24—H24 | 0.9500 |
O3—C3 | 1.138 (3) | C25—C30 | 1.395 (3) |
O4—C4 | 1.130 (3) | C25—C26 | 1.397 (3) |
O5—C5 | 1.136 (3) | C26—C27 | 1.389 (3) |
O6—C6 | 1.133 (3) | C26—H26 | 0.9500 |
O7—C7 | 1.134 (3) | C27—C28 | 1.387 (4) |
O8—C8 | 1.136 (3) | C27—H27 | 0.9500 |
O9—C9 | 1.141 (3) | C28—C29 | 1.375 (4) |
O10—C10 | 1.132 (3) | C28—H28 | 0.9500 |
O11—C11 | 1.139 (3) | C29—C30 | 1.397 (3) |
C12—C17 | 1.396 (3) | C29—H29 | 0.9500 |
C12—C13 | 1.401 (3) | C30—H30 | 0.9500 |
C2—Ru1—C1 | 87.40 (10) | O11—C11—Ru3 | 172.7 (2) |
C2—Ru1—C3 | 90.22 (10) | C17—C12—C13 | 118.4 (2) |
C1—Ru1—C3 | 174.97 (9) | C17—C12—P1 | 118.62 (15) |
C2—Ru1—P1 | 101.13 (7) | C13—C12—P1 | 122.67 (17) |
C1—Ru1—P1 | 95.84 (6) | C14—C13—C12 | 120.9 (2) |
C3—Ru1—P1 | 88.97 (7) | C14—C13—H13 | 119.6 |
C2—Ru1—Ru3 | 97.52 (7) | C12—C13—H13 | 119.6 |
C1—Ru1—Ru3 | 83.06 (6) | C15—C14—C13 | 120.2 (2) |
C3—Ru1—Ru3 | 92.87 (6) | C15—C14—H14 | 119.9 |
P1—Ru1—Ru3 | 161.254 (16) | C13—C14—H14 | 119.9 |
C2—Ru1—Ru2 | 156.94 (7) | C14—C15—C16 | 119.3 (2) |
C1—Ru1—Ru2 | 92.30 (7) | C14—C15—S1 | 124.25 (17) |
C3—Ru1—Ru2 | 88.15 (7) | C16—C15—S1 | 116.43 (17) |
P1—Ru1—Ru2 | 101.829 (15) | C17—C16—C15 | 120.1 (2) |
Ru3—Ru1—Ru2 | 59.628 (6) | C17—C16—H16 | 119.9 |
C4—Ru2—C6 | 102.37 (11) | C15—C16—H16 | 119.9 |
C4—Ru2—C5 | 87.57 (11) | C16—C17—C12 | 121.1 (2) |
C6—Ru2—C5 | 95.01 (10) | C16—C17—H17 | 119.4 |
C4—Ru2—C7 | 91.05 (11) | C12—C17—H17 | 119.5 |
C6—Ru2—C7 | 93.55 (10) | S1—C18—H18A | 109.5 |
C5—Ru2—C7 | 171.43 (10) | S1—C18—H18B | 109.5 |
C4—Ru2—Ru3 | 169.28 (8) | H18A—C18—H18B | 109.5 |
C6—Ru2—Ru3 | 88.28 (7) | S1—C18—H18C | 109.5 |
C5—Ru2—Ru3 | 92.72 (7) | H18A—C18—H18C | 109.5 |
C7—Ru2—Ru3 | 87.07 (7) | H18B—C18—H18C | 109.5 |
C4—Ru2—Ru1 | 109.84 (8) | C24—C19—C20 | 118.6 (2) |
C6—Ru2—Ru1 | 147.73 (7) | C24—C19—P1 | 121.93 (17) |
C5—Ru2—Ru1 | 84.63 (7) | C20—C19—P1 | 119.49 (17) |
C7—Ru2—Ru1 | 87.89 (7) | C21—C20—C19 | 121.0 (2) |
Ru3—Ru2—Ru1 | 59.563 (6) | C21—C20—H20 | 119.5 |
C9—Ru3—C10 | 103.41 (10) | C19—C20—H20 | 119.5 |
C9—Ru3—C8 | 89.88 (10) | C22—C21—C20 | 120.1 (2) |
C10—Ru3—C8 | 93.49 (10) | C22—C21—H21 | 119.9 |
C9—Ru3—C11 | 89.20 (10) | C20—C21—H21 | 119.9 |
C10—Ru3—C11 | 92.35 (10) | C21—C22—C23 | 119.6 (2) |
C8—Ru3—C11 | 174.14 (10) | C21—C22—H22 | 120.2 |
C9—Ru3—Ru1 | 160.67 (7) | C23—C22—H22 | 120.2 |
C10—Ru3—Ru1 | 95.01 (7) | C22—C23—C24 | 120.4 (2) |
C8—Ru3—Ru1 | 94.86 (7) | C22—C23—H23 | 119.8 |
C11—Ru3—Ru1 | 84.18 (7) | C24—C23—H23 | 119.8 |
C9—Ru3—Ru2 | 101.48 (7) | C23—C24—C19 | 120.3 (2) |
C10—Ru3—Ru2 | 154.74 (7) | C23—C24—H24 | 119.8 |
C8—Ru3—Ru2 | 82.25 (7) | C19—C24—H24 | 119.8 |
C11—Ru3—Ru2 | 92.26 (7) | C30—C25—C26 | 118.7 (2) |
Ru1—Ru3—Ru2 | 60.808 (6) | C30—C25—P1 | 122.05 (17) |
C15—S1—C18 | 102.86 (11) | C26—C25—P1 | 119.26 (17) |
C12—P1—C19 | 103.17 (10) | C27—C26—C25 | 120.7 (2) |
C12—P1—C25 | 102.11 (10) | C27—C26—H26 | 119.7 |
C19—P1—C25 | 102.31 (10) | C25—C26—H26 | 119.7 |
C12—P1—Ru1 | 114.43 (7) | C28—C27—C26 | 120.1 (2) |
C19—P1—Ru1 | 117.78 (7) | C28—C27—H27 | 120.0 |
C25—P1—Ru1 | 114.99 (7) | C26—C27—H27 | 120.0 |
O1—C1—Ru1 | 172.8 (2) | C29—C28—C27 | 119.8 (2) |
O2—C2—Ru1 | 177.3 (2) | C29—C28—H28 | 120.1 |
O3—C3—Ru1 | 174.6 (2) | C27—C28—H28 | 120.1 |
O4—C4—Ru2 | 177.3 (2) | C28—C29—C30 | 120.7 (2) |
O5—C5—Ru2 | 173.0 (2) | C28—C29—H29 | 119.7 |
O6—C6—Ru2 | 178.7 (2) | C30—C29—H29 | 119.7 |
O7—C7—Ru2 | 174.0 (2) | C25—C30—C29 | 120.1 (2) |
O8—C8—Ru3 | 172.1 (2) | C25—C30—H30 | 120.0 |
O9—C9—Ru3 | 177.3 (2) | C29—C30—H30 | 120.0 |
O10—C10—Ru3 | 177.9 (2) | ||
C19—P1—C12—C17 | 177.86 (17) | Ru1—P1—C19—C20 | −43.3 (2) |
C25—P1—C12—C17 | 71.95 (18) | C24—C19—C20—C21 | −0.6 (4) |
Ru1—P1—C12—C17 | −52.94 (18) | P1—C19—C20—C21 | −178.9 (2) |
C19—P1—C12—C13 | 4.2 (2) | C19—C20—C21—C22 | 0.0 (4) |
C25—P1—C12—C13 | −101.70 (19) | C20—C21—C22—C23 | 0.5 (4) |
Ru1—P1—C12—C13 | 133.40 (16) | C21—C22—C23—C24 | −0.4 (4) |
C17—C12—C13—C14 | 0.3 (3) | C22—C23—C24—C19 | −0.2 (4) |
P1—C12—C13—C14 | 173.99 (17) | C20—C19—C24—C23 | 0.6 (4) |
C12—C13—C14—C15 | −1.7 (3) | P1—C19—C24—C23 | 178.88 (19) |
C13—C14—C15—C16 | 1.5 (3) | C12—P1—C25—C30 | 6.3 (2) |
C13—C14—C15—S1 | −178.67 (17) | C19—P1—C25—C30 | −100.32 (19) |
C18—S1—C15—C14 | 16.8 (2) | Ru1—P1—C25—C30 | 130.78 (16) |
C18—S1—C15—C16 | −163.38 (18) | C12—P1—C25—C26 | −174.03 (18) |
C14—C15—C16—C17 | −0.1 (3) | C19—P1—C25—C26 | 79.39 (19) |
S1—C15—C16—C17 | −179.86 (17) | Ru1—P1—C25—C26 | −49.5 (2) |
C15—C16—C17—C12 | −1.3 (3) | C30—C25—C26—C27 | −1.5 (3) |
C13—C12—C17—C16 | 1.2 (3) | P1—C25—C26—C27 | 178.75 (19) |
P1—C12—C17—C16 | −172.74 (17) | C25—C26—C27—C28 | −0.1 (4) |
C12—P1—C19—C24 | −94.4 (2) | C26—C27—C28—C29 | 1.3 (4) |
C25—P1—C19—C24 | 11.3 (2) | C27—C28—C29—C30 | −1.0 (4) |
Ru1—P1—C19—C24 | 138.48 (17) | C26—C25—C30—C29 | 1.9 (3) |
C12—P1—C19—C20 | 83.81 (19) | P1—C25—C30—C29 | −178.38 (18) |
C25—P1—C19—C20 | −170.43 (18) | C28—C29—C30—C25 | −0.7 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C21—H21···O8i | 0.95 | 2.55 | 3.238 (3) | 129 |
Symmetry code: (i) −x, −y, −z. |
Contact | Distance | Symmetry operation |
O3···O3 | 2.817 (2) | 1 - x, 1 - y, 1 - z |
O6···O11 | 2.986 (3) | 1 - x, 1 - y, - z |
C3···O3 | 3.150 (3) | 1 - x, 1 - y, 1 - z |
C7···O9 | 3.088 (3) | 1 - x, 1 - y, - z |
C9···O8 | 3.137 (3) | -x, 1 - y, - z |
C17···O11 | 3.196 (3) | 1 - x, 1 - y, 1 - z |
C30···O11 | 3.122 (3) | 1 - x, 1 - y, 1 - z |
C16···H28 | 2.59 | -1 + x, y, z |
O3···H17 | 2.54 | 1 - x, 1 - y, 1 - z |
H18B···H20 | 2.44 | -x, -y, 1 - z |
Percentage contribution | |
Contact | (I) |
H···H | 15.6 |
O···H/H···O | 37.4 |
C···H/H···C | 14.7 |
O···O | 15.8 |
C···O/O···C | 9.0 |
S···H/H···S | 2.6 |
S···O/O···S | 2.4 |
C···C | 1.6 |
C···S/S···C | 0.9 |
Footnotes
‡Additional correspondence author, e-mail: omarsa@usm.my.
Funding information
OBS wishes to thank Universiti Sains Malaysia (USM) for Research University Grant No. 1001/PJJAUH/8011002. SSS thanks the Universiti Teknologi Mara (UiTM) for a PhD scholarship.
References
Bondi, A. (1964). J. Phys. Chem. 68, 441–451. CrossRef CAS Web of Science Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruce, M. I., Humphrey, P. A., Schmutzler, R., Skelton, B. W. & White, A. H. (2005). J. Organomet. Chem. 690, 784–791. CrossRef Google Scholar
Bruce, M. I., Liddell, M. J., Shawkataly, O. bin, Bytheway, I., Skelton, B. W. & White, A. H. (1989). J. Organomet. Chem. 369, 217–244. CrossRef Google Scholar
Bruce, M. I., Liddell, M. J., Shawkataly, O. bin, Hughes, C. A., Skelton, B. W. & White, A. H. (1988). J. Organomet. Chem. 347, 207–235. CrossRef CAS Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fuhr, O., Meredith, A. & Fenske, D. (2002). J. Chem. Soc. Dalton Trans. pp. 4091–4094. Web of Science CSD CrossRef Google Scholar
Gleiter, R., Haberhauer, G., Werz, D. B., Rominger, F. & Bleiholder, C. (2018). Chem. Rev. 118, 2010–2041. CrossRef Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Park, B. Y., Luong, T., Sato, H. & Krische, M. J. (2016). J. Org. Chem. 81, 8585–8594. CrossRef Google Scholar
Shawkataly, O. bin, Khan, I. A., Hafiz Malik, H. A., Yeap, C. S. & Fun, H.-K. (2011a). Acta Cryst. E67, m179–m180. CrossRef IUCr Journals Google Scholar
Shawkataly, O. bin, Khan, I. A., Hafiz Malik, H. A., Yeap, C. S. & Fun, H.-K. (2011b). Acta Cryst. E67, m218–m219. CrossRef IUCr Journals Google Scholar
Shawkataly, O. bin, Sirat, S. S., Jotani, M. M. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 1652–1657. CrossRef IUCr Journals Google Scholar
Shawkataly, O. B., Sirat, S. S., Khan, I. A. & Fun, H. K. (2013). Polyhedron, 63, 173–181. CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer. The University of Western Australia. Google Scholar
Zukerman-Schpector, J., Haiduc, I. & Tiekink, E. R. T. (2011). Chem. Commun. 47, 12682–12684. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.