research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Undeca­carbon­yl[(4-methyl­sulfanylphen­yl)di­phenyl­phosphane]triruthenium(0): crystal structure and Hirshfeld surface analysis

CROSSMARK_Color_square_no_text.svg

aChemical Sciences Programme, School of Distance Education, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Chemistry, Alzaiem Alazhari University, 1933, Khartoum, Sudan, cDepartment of Physics, Bhavan's Sheth R. A. College of Science, Ahmedabad, Gujarat 380001, India, and dResearch Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: edwardt@sunway.edu.my

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 3 May 2018; accepted 8 May 2018; online 15 May 2018)

The title cluster compound, [Ru3(C19H17PS)(CO)11], comprises a triangle of Ru0 atoms, two of which are bonded to four carbonyl ligands. The third metal atom is bound to three carbonyl ligands and the phosphane-P atom of a dissymmetric phosphane ligand, PPh2(C6H4SMe-4); no Ru⋯S inter­actions are observed. The phosphane occupies an equatorial position and its proximity to an Ru—Ru edge results in the elongation of this bond with respect to the others [2.8933 (2) Å cf. 2.8575 (2) and 2.8594 (3) Å]. In the crystal, phenyl-C—H⋯O(carbon­yl) and carbonyl-O⋯O(carbon­yl) [2.817 (2) Å] inter­actions combine to form a supra­molecular chain propagating along [111]; the chains pack without directional inter­actions between them. The carbonyl-O⋯O(carbon­yl) and other weak contacts have an influence upon the Hirshfeld surfaces with O⋯H contacts making the greatest contribution, i.e. 37.4% cf. 15.8% for O⋯O and 15.6% for H⋯H contacts.

1. Chemical context

Tertiary phosphanes (PR3) have played a major role in the formation and subsequent chemistry of metal carbonyl clusters, often relating to the promising catalytic activity of the products (Bruce et al., 2005[Bruce, M. I., Humphrey, P. A., Schmutzler, R., Skelton, B. W. & White, A. H. (2005). J. Organomet. Chem. 690, 784-791.]; Shawkataly et al., 2013[Shawkataly, O. B., Sirat, S. S., Khan, I. A. & Fun, H. K. (2013). Polyhedron, 63, 173-181.]; Park et al., 2016[Park, B. Y., Luong, T., Sato, H. & Krische, M. J. (2016). J. Org. Chem. 81, 8585-8594.]). In general, the thermal reaction of Ru3(CO)12 with PR3 leads to Ru3(CO)12 – n(PR3)n, n = 1–4, cluster compounds (Bruce et al., 1988[Bruce, M. I., Liddell, M. J., Shawkataly, O. bin, Hughes, C. A., Skelton, B. W. & White, A. H. (1988). J. Organomet. Chem. 347, 207-235.], 1989[Bruce, M. I., Liddell, M. J., Shawkataly, O. bin, Bytheway, I., Skelton, B. W. & White, A. H. (1989). J. Organomet. Chem. 369, 217-244.]). The steric and electronic effects of PR3 often results in the lengthening of Ru—Ru bonds in the Ru3 triangle as compared with the parent compound, Ru3(CO)12, thereby making the cluser more reactive (Bruce et al., 1989[Bruce, M. I., Liddell, M. J., Shawkataly, O. bin, Bytheway, I., Skelton, B. W. & White, A. H. (1989). J. Organomet. Chem. 369, 217-244.]). The PPh2C6H4SMe ligand is of inter­est because it contains two different potential donor groups, i.e. P and S, which can result in variable substitution patterns. For example, in the Cu22Se6(SePh)10[PPh2(C6H4SMe)]8 cluster, only the P atom of the PPh2C6H4SMe ligand is coordinated to the metal centre while the thio­methyl group remains uncoordinated (Fuhr et al., 2002[Fuhr, O., Meredith, A. & Fenske, D. (2002). J. Chem. Soc. Dalton Trans. pp. 4091-4094.]). However, the thio­methyl group can further react with other metal atoms to provide opportunities in surface chemistry (Fuhr et al., 2002[Fuhr, O., Meredith, A. & Fenske, D. (2002). J. Chem. Soc. Dalton Trans. pp. 4091-4094.]). The known crystal structures of triruthenium clusters with the PPh2(C6H4SMe) ligand are surprisingly few in number (Shawkataly et al., 2011a[Shawkataly, O. bin, Khan, I. A., Hafiz Malik, H. A., Yeap, C. S. & Fun, H.-K. (2011a). Acta Cryst. E67, m179-m180.],b[Shawkataly, O. bin, Khan, I. A., Hafiz Malik, H. A., Yeap, C. S. & Fun, H.-K. (2011b). Acta Cryst. E67, m218-m219.]). Herein, the crystal and mol­ecular structures of the title compound, Ru3(CO)11PPh2(C6H4SMe-4) (I)[link], are described as well as an analysis of the calculated Hirshfeld surface.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of Ru3(CO)11PPh2(C6H4SMe-4), (I)[link], is shown in Fig. 1[link]. The mol­ecule comprises an Ru3 triangle with one Ru centre being bound, equatorially, by the phosphane ligand. The Ru—Ru bond lengths in the Ru3 triangle are not equivalent with the Ru1—Ru2 bond of 2.8933 (2) Å being longer than the Ru1—Ru3 and Ru2—Ru3 bonds of 2.8575 (2) and 2.8594 (3) Å, respectively. This disparity probably reflects the steric hindrance exerted by the phosphane ligand which occupies the region in the vicinity of the Ru1—Ru2 bond. Some general trends in the geometric parameters involving the carbonyl ligands may be discerned, the relatively high errors in some of the parameters notwithstanding. Thus, the Ru—C bond distances involving carbonyl groups lying in the plane of the Ru3 ring are generally shorter than those occupying positions perpendicular to the plane, with the respective ranges in Ru—C bond lengths being 1.897 (3)–1.930 (3) Å and 1.937 (2)–1.953 (3) Å. While the Ru—C≡O angles are all close to linear, two distinctive ranges in angles are evident. The Ru—C≡O angles involving carbonyl groups lying in the plane of the Ru3 ring lie in the range 177.3 (2)–178.7 (2)° while the range for the perpendicularly orientated carbonyl groups is 172.1 (2)–174.6 (2)°. The trend for longer Ru—C distances and greater deviations from linearity of the Ru—C≡O angles for the axial carbonyl ligands, which occupy positions trans to other carbonyl ligands, is consistent with some semi-bridging character for these carbonyl ligands. Thus, the closest intra­molecular Ru⋯C(carbon­yl) contact of 3.233 (3) Å is formed by the C8-carbonyl ligand which exhibits the maximum deviation from linearity, i.e. 172.1 (2)°.

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link] showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.

3. Supra­molecular features

The mol­ecular packing of (I)[link] features phenyl-C—H⋯O(carbon­yl) inter­actions occurring about a centre of inversion and leading to centrosymmetric dimers, Table 1[link]. Connections between the dimers leading to a supra­molecular chain along [111] are of the type carbonyl-O⋯O(carbon­yl), Fig. 2[link]a. The O3⋯O3i separation is 2.817 (2) Å, a distance less than the sum of the van der Waals radii of oxygen, i.e. 3.04 Å (Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]); symmetry operation (i): 1 − x, 1 − y, 1 − z. Such inter­molecular O⋯O inter­actions are examples of homoatomic chalcogen bonding which are rarest for the smaller oxygen atoms (Gleiter et al., 2018[Gleiter, R., Haberhauer, G., Werz, D. B., Rominger, F. & Bleiholder, C. (2018). Chem. Rev. 118, 2010-2041.]). The chains pack without directional inter­actions between them according to the criteria assumed in PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). A view of the unit-cell contents is shown in Fig. 2[link]b.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C21—H21⋯O8i 0.95 2.55 3.238 (3) 129
Symmetry code: (i) -x, -y, -z.
[Figure 2]
Figure 2
Mol­ecular packing in (I)[link]: (a) The supra­molecular chain sustained by C—H⋯O and O⋯O inter­actions and (b) a view of the unit-cell contents shown in projection down the b axis. The C—H⋯O and O⋯O inter­actions are shown as orange and blue dashed lines, respectively.

4. Analysis of the Hirshfeld surface

The Hirshfeld surface calculations of (I)[link] were performed in accordance with a recent publication on a related ruthenium cluster compound (Shawkataly et al., 2017[Shawkataly, O. bin, Sirat, S. S., Jotani, M. M. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 1652-1657.]). Two views of the Hirshfeld surface mapped over dnorm are shown in Fig. 3[link]. A spot near the O8 atom in Fig. 3[link]a, results from the C21—H⋯O8 inter­action (Table 1[link]). The presence of a diminutive red spot near the carbonyl-O3 atom in Fig. 3[link]b reflects the significance of the short O3⋯O3 contact mentioned in Supra­molecular features. The intense red spots near the methyl­sulfanyl­benzene-C16 and phenyl-H28 atoms indicate the significance of this short inter­atomic C⋯H/H⋯C contact (Table 2[link]; calculated in CrystalExplorer3.1 (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer. The University of Western Australia.]). In addition, inter­actions involving several carbonyl groups results in short O⋯O and C⋯O/O⋯C contacts (Table 2[link]) and are characterized as faint red spots in Fig. 3[link]. The Hirshfeld surfaces mapped over the electrostatic potential illustrated in Fig. 4[link] also reflect the involvement of different atoms in the inter­molecular inter­actions through the appearance of blue and red regions around the participating atoms, and correspond to positive and negative electrostatic potential, respectively. As highlighted in Fig. 4[link]a, an intra­molecular carbonyl-C4≡O4⋯Cg(C19–C24) contact is evident. Carbon­yl⋯π(arene) inter­actions are known to be important in the structural chemistry of metal carbonyls (Zukerman-Schpector et al., 2011[Zukerman-Schpector, J., Haiduc, I. & Tiekink, E. R. T. (2011). Chem. Commun. 47, 12682-12684.]). Here, the O4⋯Cg(C19–C24) separation is 3.850 (3) Å and the angle subtended at the O4 atom is 90.1 (2)°, indicating a side-on (parallel) approach between the residues. The environment about a reference mol­ecule, showing short inter­atomic O⋯O and C⋯H/H⋯C contacts significant in the mol­ecule packing of (I)[link], is illustrated in Fig. 5[link].

Table 2
Summary of short inter­atomic contacts (Å) in (I)

Contact Distance Symmetry operation
O3⋯O3 2.817 (2) 1 − x, 1 − y, 1 − z
O6⋯O11 2.986 (3) 1 − x, 1 − y, − z
C3⋯O3 3.150 (3) 1 − x, 1 − y, 1 − z
C7⋯O9 3.088 (3) 1 − x, 1 − y, − z
C9⋯O8 3.137 (3) x, 1 − y, − z
C17⋯O11 3.196 (3) 1 − x, 1 − y, 1 − z
C30⋯O11 3.122 (3) 1 − x, 1 − y, 1 − z
C16⋯H28 2.59 −1 + x, y, z
O3⋯H17 2.54 1 − x, 1 − y, 1 − z
H18B⋯H20 2.44 x, −y, 1 − z
[Figure 3]
Figure 3
Two views of the Hirshfeld surface of (I)[link] mapped over dnorm in the range −0.106 to +1.524 au.
[Figure 4]
Figure 4
Two views of the Hirshfeld surface of (I)[link] mapped over the electrostatic potential in the range ±0.046 au. The red and blue regions represent negative and positive electrostatic potentials, respectively.
[Figure 5]
Figure 5
A view of the Hirshfeld surface of (I)[link] mapped over dnorm in the range −0.090 to +1.204 au highlighting O⋯O and C⋯H/H⋯C contacts by sky-blue and red dashed lines, respectively.

The overall two-dimensional fingerprint plot for (I)[link] and those delineated into H⋯H, O⋯H/H⋯O, O⋯O, C⋯H/H⋯C and C⋯O/O⋯C contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) are illustrated in Fig. 6[link]; the percentage contributions from the different inter­atomic contacts to the Hirshfeld surfaces are summarized in Table 3[link]. In the fingerprint plot delineated into H⋯H contacts, the relatively small, i.e. 15.6%, contribution from these contacts to the Hirshfeld surfaces is due to the presence of the carbonyl groups on the Ru-cluster which leads to an increase in the contribution of O⋯H/H⋯O contacts to the Hirshfeld surface, i.e. 37.4%. The single tip at de + di ∼2.4 Å in the H⋯H delineated fingerprint plot, which has a broad appearance, arises from a van der Waals contact between the methyl-H18B and phenyl-H20 atoms (Table 2[link]). The two pairs of adjacent peaks at de + di ∼2.5 and 2.6 Å in the fingerprint plot delineated into O⋯H/H⋯O contacts are the result of the inter­atomic C—H⋯O inter­action discussed above (Table 1[link]) and a short inter­atomic O⋯H/H⋯O contact (Table 2[link]), respectively. The influence of the significant inter­atomic O3⋯O3 contact (Fig. 5[link]) and other such short inter­atomic contacts (Table 3[link]) are viewed as the distribution of points with the rocket-like tip extending from de + di ∼2.8 Å in the plot delineated into O⋯O contacts. In the fingerprint plot delineated into C⋯O/O⋯C contacts, the short inter­atomic contacts between carbonyl-C7 and -O9 atoms appear as the pair of thin tips at de + di ∼3.1 Å superimposed on the parabolic distribution of points characterizing other such short inter­atomic contacts through the points around de = di = 1.6 Å. The other dominant short inter­atomic C⋯H/H⋯C contacts (Table 2[link]) result in the pair of forceps-like tips at de + di ∼2.6 Å in the respective delineated fingerprint plot. The small contribution from other remaining inter­atomic contacts summarized in Table 3[link] have negligible effect on the packing.

Table 3
Percentage contributions of inter­atomic contacts to the Hirshfeld surface for (I)

Contact Percentage contribution
H⋯H 15.6
O⋯H/H⋯O 37.4
C⋯H/H⋯C 14.7
O⋯O 15.8
C⋯O/O⋯C 9.0
S⋯H/H⋯S 2.6
S⋯O/O⋯S 2.4
C⋯C 1.6
C⋯S/S⋯C 0.9
[Figure 6]
Figure 6
The full two-dimensional fingerprint plot for (I)[link] and those delineated into H⋯H, O⋯H/H⋯O, O⋯O, C⋯H/H⋯C and C⋯O/O⋯C contacts.

5. Database survey

As mentioned in the Chemical context, there are two other Ru3 clusters in the literature having the same (4-methyl­sulfanylphen­yl)di­phenyl­phosphane ligand as in (I)[link]. These are formulated as Ru3(CO)9PPh2(C6H4SMe-4)(Ph2PCH2PPh2) (II) (Shawkataly et al., 2011b[Shawkataly, O. bin, Khan, I. A., Hafiz Malik, H. A., Yeap, C. S. & Fun, H.-K. (2011b). Acta Cryst. E67, m218-m219.]) and its arsenic analogue, Ru3(CO)9PPh2(C6H4SMe-4)(Ph2AsCH2AsPh2) (Shawkataly et al., 2011a[Shawkataly, O. bin, Khan, I. A., Hafiz Malik, H. A., Yeap, C. S. & Fun, H.-K. (2011a). Acta Cryst. E67, m179-m180.]), in each of which the bidentate ligand bridges the other two ruthenium atoms in the triangle. The structural motif found in (I)[link], i.e. with an equatorially substituted phosphane ligand, is consistent with the approximately 35 literature precedents with the general formula Ru3(CO)11PRRR′′ and several examples where the phosphane ligand is bidentate bridging, i.e. Ru3(CO)11PR(R′)–R′′–(R′)RPRu3(CO)11 (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). There are no crystallographic examples with perpendicular mono-substitution of phosphane ligands in Ru3(CO)11PRRR′′.

6. Synthesis and crystallization

All reactions were carried out under an inert atmosphere of oxygen-free nitro­gen (OFN) using standard Schlenk techniques. Ru3(CO)12 was purchased from Aldrich and PPh2C6H4SMe was synthesized as reported previously (Fuhr et al., 2002[Fuhr, O., Meredith, A. & Fenske, D. (2002). J. Chem. Soc. Dalton Trans. pp. 4091-4094.]). Ru3(CO)11P(C6H4SMe-4)Ph2 (I)[link] was synthesized by dissolving Ru3(CO)12 (100 mg, 0.0015 mmol) and PPh2(C6H4SMe) (48 mg, 0.0015 mmol) in tetra­hydro­furan (25 ml). The reaction mixture was treated dropwise with sodium di­phenyl­ketyl solution until the colour of the mixture turned from orange to dark red and then stirred for 30 min. The solvent was evaporated under vacuum and the residue was chromatographed by preparative TLC. Elution with 7:3 n-hexa­ne/di­chloro­methane mixture gave four bands and the major orange fraction was characterized as (I)[link] (117 mg, 79.6%). Orange crystals were crystallized from solvent diffusion of di­chloro­methane into a methanol solution of (I)[link]. Analysis calculated for C30H17O11PRu3S: C, 39.18; H, 1.86%. Found: C, 39.60; H, 1.90%. IR (C6H12): ν(CO) 2097(m), 2059(w), 2046(m), 2015(s), 1989(w) cm−1. 1H NMR (CDCl3): δ 7.45–7.23 (m, 14H, Ph, C6H4), 2.48 (s, Me). 13C NMR (CDCl3): δ 204.24 (Ru—CO), 135.19–125.37 (Ph), 14.79 (Me). 31P NMR (CDCl3): δ 34.28 (s).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. The carbon-bound H atoms were placed in calculated positions (C—H = 0.95–0.98 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) set to 1.2–1.5Ueq(C). Owing to poor agreement, four reflections, i.e. (1 7 14), ([\overline{10}] [\overline{2}] 6), ([\overline{3}] 12 12) and ([\overline{6}] 16 10), were omitted from the final cycles of refinement. The maximum and minimum residual electron density peaks of 1.97 and 0.98 e Å−3, respectively, were located 0.69 and 0.61 Å from the atoms Ru1 and Ru3, respectively.

Table 4
Experimental details

Crystal data
Chemical formula [Ru3(C19H17PS)(CO)11]
Mr 919.67
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 9.6922 (1), 12.7459 (2), 13.6030 (2)
α, β, γ (°) 103.301 (1), 102.938 (1), 91.771 (1)
V3) 1587.83 (4)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.58
Crystal size (mm) 0.32 × 0.30 × 0.14
 
Data collection
Diffractometer Bruker SMART APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.448, 0.526
No. of measured, independent and observed [I > 2σ(I)] reflections 56976, 15652, 11725
Rint 0.042
(sin θ/λ)max−1) 0.842
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.097, 1.03
No. of reflections 15652
No. of parameters 416
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.97, −0.98
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Undecacarbonyl[(4-methylsulfanylphenyl)diphenylphosphane]triruthenium(0) top
Crystal data top
[Ru3(C19H17PS)(CO)11]Z = 2
Mr = 919.67F(000) = 896
Triclinic, P1Dx = 1.924 Mg m3
a = 9.6922 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.7459 (2) ÅCell parameters from 9414 reflections
c = 13.6030 (2) Åθ = 2.6–36.5°
α = 103.301 (1)°µ = 1.58 mm1
β = 102.938 (1)°T = 100 K
γ = 91.771 (1)°Block, orange
V = 1587.83 (4) Å30.32 × 0.30 × 0.14 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
11725 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.042
φ and ω scansθmax = 36.8°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1616
Tmin = 0.448, Tmax = 0.526k = 2121
56976 measured reflectionsl = 2222
15652 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.048P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
15652 reflectionsΔρmax = 1.97 e Å3
416 parametersΔρmin = 0.98 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.28387 (2)0.33186 (2)0.28051 (2)0.01428 (4)
Ru20.40348 (2)0.29273 (2)0.09996 (2)0.01862 (4)
Ru30.21842 (2)0.46106 (2)0.13284 (2)0.01626 (4)
S10.11319 (7)0.13142 (5)0.73844 (5)0.02529 (12)
P10.37139 (6)0.19229 (4)0.36008 (4)0.01376 (10)
O10.00653 (19)0.21034 (14)0.16345 (15)0.0282 (4)
O20.1200 (2)0.45096 (15)0.43099 (15)0.0308 (4)
O30.55312 (18)0.47646 (14)0.40979 (13)0.0251 (4)
O40.6007 (3)0.11066 (18)0.10236 (18)0.0435 (5)
O50.1625 (2)0.11127 (15)0.00206 (15)0.0312 (4)
O60.4152 (2)0.34976 (16)0.10467 (15)0.0309 (4)
O70.6584 (2)0.45662 (17)0.22391 (15)0.0319 (4)
O80.0055 (2)0.29918 (15)0.03258 (16)0.0326 (4)
O90.2453 (2)0.57908 (15)0.03402 (14)0.0288 (4)
O100.0099 (2)0.57899 (17)0.22667 (16)0.0335 (4)
O110.4558 (2)0.62755 (14)0.27933 (14)0.0273 (4)
C10.1048 (3)0.25236 (18)0.20139 (19)0.0207 (4)
C20.1833 (3)0.40534 (19)0.37650 (19)0.0215 (4)
C30.4559 (3)0.42297 (18)0.35766 (18)0.0195 (4)
C40.5271 (3)0.1777 (2)0.1037 (2)0.0279 (5)
C50.2456 (3)0.1817 (2)0.03905 (19)0.0246 (5)
C60.4106 (3)0.3274 (2)0.0295 (2)0.0236 (5)
C70.5600 (3)0.4000 (2)0.18099 (19)0.0238 (5)
C80.0801 (3)0.35306 (19)0.03187 (19)0.0228 (5)
C90.2348 (3)0.53252 (19)0.02662 (18)0.0211 (4)
C100.0760 (3)0.53550 (19)0.19383 (19)0.0223 (4)
C110.3718 (3)0.56093 (19)0.22852 (19)0.0215 (4)
C120.2835 (2)0.16989 (17)0.45989 (17)0.0155 (4)
C130.2366 (2)0.06656 (18)0.46472 (17)0.0174 (4)
H130.24210.00560.41080.021*
C140.1818 (2)0.05201 (18)0.54780 (18)0.0189 (4)
H140.14800.01830.54910.023*
C150.1765 (2)0.14016 (18)0.62855 (17)0.0179 (4)
C160.2236 (2)0.24400 (18)0.62442 (17)0.0176 (4)
H160.22030.30480.67920.021*
C170.2748 (2)0.25804 (17)0.54035 (17)0.0166 (4)
H170.30450.32880.53760.020*
C180.1152 (3)0.0110 (2)0.7356 (2)0.0276 (5)
H18A0.04280.05250.67560.041*
H18B0.09490.02320.79970.041*
H18C0.20900.03460.72990.041*
C190.3634 (2)0.05642 (16)0.27629 (16)0.0153 (4)
C200.2408 (2)0.01554 (18)0.19821 (19)0.0216 (4)
H200.16350.05920.18860.026*
C210.2302 (3)0.08793 (19)0.1345 (2)0.0268 (5)
H210.14620.11450.08180.032*
C220.3416 (3)0.15220 (19)0.1476 (2)0.0253 (5)
H220.33480.22280.10370.030*
C230.4638 (3)0.1130 (2)0.2255 (2)0.0264 (5)
H230.54050.15720.23500.032*
C240.4747 (2)0.00928 (18)0.28960 (19)0.0214 (4)
H240.55850.01680.34270.026*
C250.5593 (2)0.21583 (17)0.43099 (17)0.0171 (4)
C260.6609 (3)0.24650 (19)0.3821 (2)0.0224 (4)
H260.63230.25350.31260.027*
C270.8033 (3)0.2669 (2)0.4343 (2)0.0282 (5)
H270.87150.28760.40030.034*
C280.8460 (3)0.2571 (2)0.5359 (2)0.0288 (5)
H280.94310.27250.57210.035*
C290.7475 (3)0.2249 (2)0.5841 (2)0.0266 (5)
H290.77720.21720.65330.032*
C300.6042 (2)0.20356 (18)0.53226 (18)0.0195 (4)
H300.53710.18060.56600.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.01599 (8)0.01239 (7)0.01479 (7)0.00070 (5)0.00376 (6)0.00392 (6)
Ru20.02282 (9)0.01803 (8)0.01699 (8)0.00456 (7)0.00739 (7)0.00527 (6)
Ru30.01832 (8)0.01340 (7)0.01637 (8)0.00103 (6)0.00223 (6)0.00411 (6)
S10.0303 (3)0.0269 (3)0.0244 (3)0.0041 (2)0.0138 (2)0.0103 (2)
P10.0135 (2)0.0127 (2)0.0147 (2)0.00001 (18)0.00275 (18)0.00325 (18)
O10.0219 (9)0.0246 (9)0.0366 (10)0.0025 (7)0.0012 (8)0.0107 (8)
O20.0334 (10)0.0308 (10)0.0317 (10)0.0124 (8)0.0161 (8)0.0052 (8)
O30.0263 (9)0.0226 (8)0.0236 (9)0.0045 (7)0.0038 (7)0.0031 (7)
O40.0515 (14)0.0407 (12)0.0419 (12)0.0280 (11)0.0132 (11)0.0125 (10)
O50.0386 (11)0.0241 (9)0.0308 (10)0.0003 (8)0.0110 (8)0.0042 (8)
O60.0403 (11)0.0320 (10)0.0250 (9)0.0068 (8)0.0130 (8)0.0103 (8)
O70.0289 (10)0.0379 (11)0.0280 (10)0.0020 (8)0.0092 (8)0.0046 (8)
O80.0327 (10)0.0215 (9)0.0355 (10)0.0014 (7)0.0062 (8)0.0053 (8)
O90.0333 (10)0.0297 (9)0.0255 (9)0.0008 (8)0.0080 (8)0.0103 (8)
O100.0272 (10)0.0376 (11)0.0334 (10)0.0080 (8)0.0092 (8)0.0014 (9)
O110.0287 (9)0.0231 (8)0.0266 (9)0.0030 (7)0.0032 (7)0.0032 (7)
C10.0237 (11)0.0159 (9)0.0239 (11)0.0033 (8)0.0049 (9)0.0080 (8)
C20.0216 (11)0.0206 (10)0.0238 (11)0.0024 (8)0.0051 (9)0.0087 (9)
C30.0240 (11)0.0162 (9)0.0196 (10)0.0013 (8)0.0064 (8)0.0059 (8)
C40.0329 (14)0.0297 (13)0.0233 (12)0.0088 (11)0.0091 (10)0.0081 (10)
C50.0319 (13)0.0226 (11)0.0215 (11)0.0054 (10)0.0099 (10)0.0060 (9)
C60.0249 (12)0.0235 (11)0.0237 (11)0.0037 (9)0.0092 (9)0.0051 (9)
C70.0284 (12)0.0250 (11)0.0203 (10)0.0060 (9)0.0094 (9)0.0061 (9)
C80.0252 (12)0.0165 (10)0.0257 (11)0.0008 (8)0.0013 (9)0.0081 (9)
C90.0211 (11)0.0197 (10)0.0212 (10)0.0018 (8)0.0038 (8)0.0033 (8)
C100.0222 (11)0.0212 (10)0.0219 (11)0.0004 (9)0.0024 (9)0.0054 (9)
C110.0227 (11)0.0185 (10)0.0227 (11)0.0024 (8)0.0035 (9)0.0057 (8)
C120.0141 (9)0.0159 (9)0.0166 (9)0.0008 (7)0.0019 (7)0.0061 (7)
C130.0177 (10)0.0168 (9)0.0175 (9)0.0010 (7)0.0031 (8)0.0054 (8)
C140.0183 (10)0.0183 (10)0.0210 (10)0.0005 (8)0.0039 (8)0.0075 (8)
C150.0154 (10)0.0205 (10)0.0197 (10)0.0025 (8)0.0050 (8)0.0079 (8)
C160.0163 (10)0.0185 (9)0.0180 (9)0.0022 (8)0.0044 (8)0.0039 (8)
C170.0151 (9)0.0167 (9)0.0183 (9)0.0012 (7)0.0038 (7)0.0050 (8)
C180.0314 (13)0.0298 (13)0.0268 (12)0.0003 (10)0.0104 (10)0.0143 (10)
C190.0157 (9)0.0127 (8)0.0167 (9)0.0003 (7)0.0041 (7)0.0023 (7)
C200.0174 (10)0.0169 (10)0.0276 (11)0.0012 (8)0.0001 (9)0.0047 (9)
C210.0240 (12)0.0170 (10)0.0305 (13)0.0020 (9)0.0058 (10)0.0002 (9)
C220.0298 (13)0.0149 (10)0.0262 (12)0.0010 (9)0.0040 (10)0.0022 (9)
C230.0249 (12)0.0192 (11)0.0315 (13)0.0068 (9)0.0044 (10)0.0005 (9)
C240.0182 (10)0.0195 (10)0.0223 (10)0.0028 (8)0.0002 (8)0.0012 (8)
C250.0146 (9)0.0146 (9)0.0200 (10)0.0002 (7)0.0018 (8)0.0024 (8)
C260.0195 (11)0.0222 (11)0.0271 (11)0.0001 (8)0.0064 (9)0.0087 (9)
C270.0156 (11)0.0257 (12)0.0424 (15)0.0003 (9)0.0072 (10)0.0063 (11)
C280.0152 (11)0.0236 (11)0.0397 (15)0.0009 (9)0.0024 (10)0.0006 (11)
C290.0243 (12)0.0238 (11)0.0244 (11)0.0048 (9)0.0031 (9)0.0003 (9)
C300.0174 (10)0.0177 (9)0.0203 (10)0.0032 (8)0.0014 (8)0.0015 (8)
Geometric parameters (Å, º) top
Ru1—C21.897 (3)C13—C141.397 (3)
Ru1—C11.937 (2)C13—H130.9500
Ru1—C31.941 (2)C14—C151.390 (3)
Ru1—P12.3714 (5)C14—H140.9500
Ru1—Ru32.8575 (2)C15—C161.404 (3)
Ru1—Ru22.8933 (2)C16—C171.389 (3)
Ru2—C41.924 (3)C16—H160.9500
Ru2—C61.927 (2)C17—H170.9500
Ru2—C51.946 (3)C18—H18A0.9800
Ru2—C71.953 (3)C18—H18B0.9800
Ru2—Ru32.8594 (3)C18—H18C0.9800
Ru3—C91.908 (2)C19—C241.392 (3)
Ru3—C101.930 (3)C19—C201.398 (3)
Ru3—C81.942 (2)C20—C211.388 (3)
Ru3—C111.944 (2)C20—H200.9500
S1—C151.763 (2)C21—C221.380 (4)
S1—C181.808 (3)C21—H210.9500
P1—C121.826 (2)C22—C231.390 (4)
P1—C191.830 (2)C22—H220.9500
P1—C251.840 (2)C23—C241.393 (3)
O1—C11.142 (3)C23—H230.9500
O2—C21.136 (3)C24—H240.9500
O3—C31.138 (3)C25—C301.395 (3)
O4—C41.130 (3)C25—C261.397 (3)
O5—C51.136 (3)C26—C271.389 (3)
O6—C61.133 (3)C26—H260.9500
O7—C71.134 (3)C27—C281.387 (4)
O8—C81.136 (3)C27—H270.9500
O9—C91.141 (3)C28—C291.375 (4)
O10—C101.132 (3)C28—H280.9500
O11—C111.139 (3)C29—C301.397 (3)
C12—C171.396 (3)C29—H290.9500
C12—C131.401 (3)C30—H300.9500
C2—Ru1—C187.40 (10)O11—C11—Ru3172.7 (2)
C2—Ru1—C390.22 (10)C17—C12—C13118.4 (2)
C1—Ru1—C3174.97 (9)C17—C12—P1118.62 (15)
C2—Ru1—P1101.13 (7)C13—C12—P1122.67 (17)
C1—Ru1—P195.84 (6)C14—C13—C12120.9 (2)
C3—Ru1—P188.97 (7)C14—C13—H13119.6
C2—Ru1—Ru397.52 (7)C12—C13—H13119.6
C1—Ru1—Ru383.06 (6)C15—C14—C13120.2 (2)
C3—Ru1—Ru392.87 (6)C15—C14—H14119.9
P1—Ru1—Ru3161.254 (16)C13—C14—H14119.9
C2—Ru1—Ru2156.94 (7)C14—C15—C16119.3 (2)
C1—Ru1—Ru292.30 (7)C14—C15—S1124.25 (17)
C3—Ru1—Ru288.15 (7)C16—C15—S1116.43 (17)
P1—Ru1—Ru2101.829 (15)C17—C16—C15120.1 (2)
Ru3—Ru1—Ru259.628 (6)C17—C16—H16119.9
C4—Ru2—C6102.37 (11)C15—C16—H16119.9
C4—Ru2—C587.57 (11)C16—C17—C12121.1 (2)
C6—Ru2—C595.01 (10)C16—C17—H17119.4
C4—Ru2—C791.05 (11)C12—C17—H17119.5
C6—Ru2—C793.55 (10)S1—C18—H18A109.5
C5—Ru2—C7171.43 (10)S1—C18—H18B109.5
C4—Ru2—Ru3169.28 (8)H18A—C18—H18B109.5
C6—Ru2—Ru388.28 (7)S1—C18—H18C109.5
C5—Ru2—Ru392.72 (7)H18A—C18—H18C109.5
C7—Ru2—Ru387.07 (7)H18B—C18—H18C109.5
C4—Ru2—Ru1109.84 (8)C24—C19—C20118.6 (2)
C6—Ru2—Ru1147.73 (7)C24—C19—P1121.93 (17)
C5—Ru2—Ru184.63 (7)C20—C19—P1119.49 (17)
C7—Ru2—Ru187.89 (7)C21—C20—C19121.0 (2)
Ru3—Ru2—Ru159.563 (6)C21—C20—H20119.5
C9—Ru3—C10103.41 (10)C19—C20—H20119.5
C9—Ru3—C889.88 (10)C22—C21—C20120.1 (2)
C10—Ru3—C893.49 (10)C22—C21—H21119.9
C9—Ru3—C1189.20 (10)C20—C21—H21119.9
C10—Ru3—C1192.35 (10)C21—C22—C23119.6 (2)
C8—Ru3—C11174.14 (10)C21—C22—H22120.2
C9—Ru3—Ru1160.67 (7)C23—C22—H22120.2
C10—Ru3—Ru195.01 (7)C22—C23—C24120.4 (2)
C8—Ru3—Ru194.86 (7)C22—C23—H23119.8
C11—Ru3—Ru184.18 (7)C24—C23—H23119.8
C9—Ru3—Ru2101.48 (7)C23—C24—C19120.3 (2)
C10—Ru3—Ru2154.74 (7)C23—C24—H24119.8
C8—Ru3—Ru282.25 (7)C19—C24—H24119.8
C11—Ru3—Ru292.26 (7)C30—C25—C26118.7 (2)
Ru1—Ru3—Ru260.808 (6)C30—C25—P1122.05 (17)
C15—S1—C18102.86 (11)C26—C25—P1119.26 (17)
C12—P1—C19103.17 (10)C27—C26—C25120.7 (2)
C12—P1—C25102.11 (10)C27—C26—H26119.7
C19—P1—C25102.31 (10)C25—C26—H26119.7
C12—P1—Ru1114.43 (7)C28—C27—C26120.1 (2)
C19—P1—Ru1117.78 (7)C28—C27—H27120.0
C25—P1—Ru1114.99 (7)C26—C27—H27120.0
O1—C1—Ru1172.8 (2)C29—C28—C27119.8 (2)
O2—C2—Ru1177.3 (2)C29—C28—H28120.1
O3—C3—Ru1174.6 (2)C27—C28—H28120.1
O4—C4—Ru2177.3 (2)C28—C29—C30120.7 (2)
O5—C5—Ru2173.0 (2)C28—C29—H29119.7
O6—C6—Ru2178.7 (2)C30—C29—H29119.7
O7—C7—Ru2174.0 (2)C25—C30—C29120.1 (2)
O8—C8—Ru3172.1 (2)C25—C30—H30120.0
O9—C9—Ru3177.3 (2)C29—C30—H30120.0
O10—C10—Ru3177.9 (2)
C19—P1—C12—C17177.86 (17)Ru1—P1—C19—C2043.3 (2)
C25—P1—C12—C1771.95 (18)C24—C19—C20—C210.6 (4)
Ru1—P1—C12—C1752.94 (18)P1—C19—C20—C21178.9 (2)
C19—P1—C12—C134.2 (2)C19—C20—C21—C220.0 (4)
C25—P1—C12—C13101.70 (19)C20—C21—C22—C230.5 (4)
Ru1—P1—C12—C13133.40 (16)C21—C22—C23—C240.4 (4)
C17—C12—C13—C140.3 (3)C22—C23—C24—C190.2 (4)
P1—C12—C13—C14173.99 (17)C20—C19—C24—C230.6 (4)
C12—C13—C14—C151.7 (3)P1—C19—C24—C23178.88 (19)
C13—C14—C15—C161.5 (3)C12—P1—C25—C306.3 (2)
C13—C14—C15—S1178.67 (17)C19—P1—C25—C30100.32 (19)
C18—S1—C15—C1416.8 (2)Ru1—P1—C25—C30130.78 (16)
C18—S1—C15—C16163.38 (18)C12—P1—C25—C26174.03 (18)
C14—C15—C16—C170.1 (3)C19—P1—C25—C2679.39 (19)
S1—C15—C16—C17179.86 (17)Ru1—P1—C25—C2649.5 (2)
C15—C16—C17—C121.3 (3)C30—C25—C26—C271.5 (3)
C13—C12—C17—C161.2 (3)P1—C25—C26—C27178.75 (19)
P1—C12—C17—C16172.74 (17)C25—C26—C27—C280.1 (4)
C12—P1—C19—C2494.4 (2)C26—C27—C28—C291.3 (4)
C25—P1—C19—C2411.3 (2)C27—C28—C29—C301.0 (4)
Ru1—P1—C19—C24138.48 (17)C26—C25—C30—C291.9 (3)
C12—P1—C19—C2083.81 (19)P1—C25—C30—C29178.38 (18)
C25—P1—C19—C20170.43 (18)C28—C29—C30—C250.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C21—H21···O8i0.952.553.238 (3)129
Symmetry code: (i) x, y, z.
Summary of short interatomic contacts (Å) in (I) top
ContactDistanceSymmetry operation
O3···O32.817 (2)1 - x, 1 - y, 1 - z
O6···O112.986 (3)1 - x, 1 - y, - z
C3···O33.150 (3)1 - x, 1 - y, 1 - z
C7···O93.088 (3)1 - x, 1 - y, - z
C9···O83.137 (3)-x, 1 - y, - z
C17···O113.196 (3)1 - x, 1 - y, 1 - z
C30···O113.122 (3)1 - x, 1 - y, 1 - z
C16···H282.59-1 + x, y, z
O3···H172.541 - x, 1 - y, 1 - z
H18B···H202.44-x, -y, 1 - z
Percentage contributions of interatomic contacts to the Hirshfeld surface for (I) top
Percentage contribution
Contact(I)
H···H15.6
O···H/H···O37.4
C···H/H···C14.7
O···O15.8
C···O/O···C9.0
S···H/H···S2.6
S···O/O···S2.4
C···C1.6
C···S/S···C0.9
 

Footnotes

Additional correspondence author, e-mail: omarsa@usm.my.

Funding information

OBS wishes to thank Universiti Sains Malaysia (USM) for Research University Grant No. 1001/PJJAUH/8011002. SSS thanks the Universiti Teknologi Mara (UiTM) for a PhD scholarship.

References

First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruce, M. I., Humphrey, P. A., Schmutzler, R., Skelton, B. W. & White, A. H. (2005). J. Organomet. Chem. 690, 784–791.  CrossRef Google Scholar
First citationBruce, M. I., Liddell, M. J., Shawkataly, O. bin, Bytheway, I., Skelton, B. W. & White, A. H. (1989). J. Organomet. Chem. 369, 217–244.  CrossRef Google Scholar
First citationBruce, M. I., Liddell, M. J., Shawkataly, O. bin, Hughes, C. A., Skelton, B. W. & White, A. H. (1988). J. Organomet. Chem. 347, 207–235.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFuhr, O., Meredith, A. & Fenske, D. (2002). J. Chem. Soc. Dalton Trans. pp. 4091–4094.  Web of Science CSD CrossRef Google Scholar
First citationGleiter, R., Haberhauer, G., Werz, D. B., Rominger, F. & Bleiholder, C. (2018). Chem. Rev. 118, 2010–2041.  CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationPark, B. Y., Luong, T., Sato, H. & Krische, M. J. (2016). J. Org. Chem. 81, 8585–8594.  CrossRef Google Scholar
First citationShawkataly, O. bin, Khan, I. A., Hafiz Malik, H. A., Yeap, C. S. & Fun, H.-K. (2011a). Acta Cryst. E67, m179–m180.  CrossRef IUCr Journals Google Scholar
First citationShawkataly, O. bin, Khan, I. A., Hafiz Malik, H. A., Yeap, C. S. & Fun, H.-K. (2011b). Acta Cryst. E67, m218–m219.  CrossRef IUCr Journals Google Scholar
First citationShawkataly, O. bin, Sirat, S. S., Jotani, M. M. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 1652–1657.  CrossRef IUCr Journals Google Scholar
First citationShawkataly, O. B., Sirat, S. S., Khan, I. A. & Fun, H. K. (2013). Polyhedron, 63, 173–181.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer. The University of Western Australia.  Google Scholar
First citationZukerman-Schpector, J., Haiduc, I. & Tiekink, E. R. T. (2011). Chem. Commun. 47, 12682–12684.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds