research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 3-hy­dr­oxy-2-(4-hy­dr­oxy-3-meth­­oxy­phenyl­methyl)-5,5-di­methyl­cyclo­hex-2-enone

CROSSMARK_Color_square_no_text.svg

aInstitute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3/7, Riga, LV-1048, Latvia, and bLatvian Institute of Organic Synthesis, Aizkraukles Str. 21, Riga, LV-1006, Latvia
*Correspondence e-mail: mishnevs@osi.lv, Mara.Jure@rtu.lv

Edited by H. Ishida, Okayama University, Japan (Received 13 April 2018; accepted 7 May 2018; online 15 May 2018)

In the title compound, C16H20O4, a new starting compound for the synthesis of various heterocycles, the partially saturated six-membered ring adopts a sofa conformation. An intra­molecular O—H⋯O hydrogen bond is observed in the guaiacol residue. In the crystal, mol­ecules are assembled into a sheet structure parallel to the ab plane via O—H⋯O hydrogen bonds. The hydrogen-bond pattern is described by an R44(28) graph-set motif. The sheets are further linked by C—H⋯O hydrogen bonds into a three-dimensional network.

1. Chemical context

Cyclic 2-aryl­methyl-1,3-diketones attract inter­est as valuable inter­mediates for organic chemistry. A few of the latest examples of these cyclo­hexa­nedione derivatives have been used as starting compounds for the synthesis of various heterocycles [e.g. tetra­hydro­benzo­furan­ones (Yoshida et al., 2010[Yoshida, M., Higuchi, M. & Shishido, K. (2010). Tetrahedron, 66, 2675-2682.]) or tetra­hydro-1H-xanthen-1-ones (Sudheendran et al., 2012[Sudheendran, K., Malakar, C. C., Conrad, J. & Beifuss, U. (2012). J. Org. Chem. 77, 10194-10210.])], as well as carbocycles, e.g. analogues of Wieland–Miesher and Hajos–Parrish ketones (Xu et al., 2013[Xu, C., Zhang, L., Zhou, P., Luo, S. & Cheng, J.-P. (2013). Synthesis, 45, 1939-1945.]).

[Scheme 1]

2. Structural commentary

Fig. 1[link] shows the mol­ecular structure of the title compound, which exhibits an intra­molecular O—H⋯O hydrogen bond (Table 1[link]). In crystalline state, the mol­ecules assume the enol tautomeric form, 1a. In the dimedone fragment, the bond distances reflect the effect of conjugation in the flat fragment O1=C3—C4=C5—O2. The double bonds, O1=C3 and C4=C5, are elongated [1.246 (2) and 1.357 (3) Å, respectively], while the single bond C3—C4 is shortened [1.447 (3) Å] as compared with standard double and single bonds (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). The general shape of the mol­ecule is characterized by the torsion angles C3—C4—C7—C8 = −62.8 (2)° and C4—C7—C8—C9 = 152.2 (2)°, thus exhibiting an extended conformation. The partially saturated C1–C6 ring adopts a sofa conformation. The distance of atom C1 from the mean plane formed by atoms C2–C6 is 0.612 (3) Å. The dihedral angle between the mean plane of the C1–C6 ring and the C8–C13 benzene ring is 75.69 (6)°.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O4i 0.97 2.49 3.417 (3) 161
C14—H14C⋯O1ii 0.96 2.49 3.247 (3) 136
O2—H2⋯O1iii 0.88 (3) 1.74 (3) 2.586 (2) 161 (3)
O4—H4⋯O3 0.94 (4) 2.10 (4) 2.638 (2) 115 (3)
O4—H4⋯O2iv 0.94 (4) 2.11 (4) 2.919 (2) 142 (3)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x-{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z]; (iv) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with the atom-numbering scheme and 50% probability displacement ellipsoids. The intra­molecular hydrogen bond is shown as a double-dashed line.

3. Supra­molecular features

In the crystal, the mol­ecules are assembled into a sheet structure parallel to the ab plane via O—H⋯O hydrogen bonds (Table 1[link]). The hydrogen-bonding pattern in the sheet is described by an R44(28) graph-set motif (Fig. 2[link]). Furthermore, weak C—H⋯O hydrogen bonds join the sheets into a three-dimensional network (Table 1[link]).

[Figure 2]
Figure 2
A packing diagram of the title compound, viewed along the c axis. O—H⋯O hydrogen bonds are shown as dashed lines. For clarity weak C—H⋯O bonds are not depicted.

4. Database survey

A search of the Cambridge Structural Database (Version 5.39, last update February 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave 76 structures of 3-hy­droxy-5,5-di­methyl­cyclo­hex-2-enone derivatives. The closest structures are 2-(naphthalen-1-ylmeth­yl)- and 2-(3-chloro­phen­yl)methyl-substituted dimedones (NIHTEE and NIHTII, respectively; Ramachary & Kishor, 2007[Ramachary, D. B. & Kishor, M. (2007). J. Org. Chem. 72, 5056-5068.]).

5. Antiradical activity against free radicals

Compound 1 demonstrates notable anti­radical activity against free radicals. Free radical tests were realized according to the procedures described previously (Mierina et al., 2017[Mierina, I., Jure, M., Zeberga, S., Makareviciene, V., Zicane, D., Tetere, Z. & Ravina, I. (2017). Eur. J. Lipid Sci. Technol. 119, 1700172.]). 1,1-Diphenyl-2-picrylhydrazyl test: inhibition, when molar ratio of the compound and free radical is 1:1, was 93.3±2.5%; IC50 was 23.0±0.6 µM (starting concentration of free radical was 100 µM). Galvinoxyl test: inhibition was 82.3±1.0% and IC50 – 20.3±2.0 µM.

6. Synthesis and crystallization

3-Hy­droxy-2-(4-hy­droxy-3-meth­oxy­phenyl­meth­yl)-5,5-di­methyl­cyclo­hex-2-enone (1a) was synthesized according to the reaction scheme in Fig. 3[link]. Formic acid (3.6 ml) was added to a solution of dimedone 2 (500 mg, 3.6 mmol) and vanillin 3 (543 mg, 3.6 mmol) in tri­ethyl­amine (5.5 ml) while cooling in an ice-bath. The reaction mixture was then heated at 413 K for 5 h, followed by cooling to room temperature, pouring into ice (700–800 ml) and filtering the formed solid. The solid material was purified by crystallization from chloro­form leading to the target compound 1a (615 mg, 62%) with m.p. 466–468 K. Single crystals were obtained from a methanol solution. IR (KBr) ν, cm−1: 3470, 2935, 2645, 1580, 1515, 1375, 1250, 1230, 1200, 1040.

[Figure 3]
Figure 3
Reaction scheme for the title compound (1a) and its tautomer (1 b).

The enol form, 1a, was observed exclusively in a DMSO solution. 1H NMR for compound 1a (300 MHz, DMSO-d6) δ, ppm: 10.71–10.08 (1H, brs, OH), 8.68–8.37 (1H, brs, OH), 6.68 (1H, s, HAr), 6.59 (1H, d, J = 7.7 Hz, HAr), 6.50 (1H, d, J = 7.7 Hz, HAr), 3.68 (3H, s, OMe), 3.41 (2H, brs, CH2Ar, overlapping with H2O signal), 2.34–2.13 (4H, brs, 2CH2), 0.98 (6H, s, 2Me). 13C NMR for compound 1a (75 MHz, DMSO-d6) δ, ppm: 147.1, 144.1, 132.7, 120.2, 115.0, 113.3, 112.5, 55.5, 31.7, 28.0, 26.5. Mixture of keto–enol tautomers (1a and 1b) was observed in a chloro­form solution. The ratio of enol 1a and ketone 1b was 1.35:1 (at room temperature). 1H NMR for compound 1a (300 MHz, CDCl3) δ, ppm: 6.84–6.63 (3H, m, HAr), (2H, brs, 2OH), 3.82 (3H, s, OMe), 3.61 (2H, s, CH2Ar), 2.33–2.29 (4H, brs, 2CH2), 1.07 (6H, s, 2Me). 1H NMR for compound 1b (300 MHz, CDCl3) δ, ppm: 6.84–6.63 (3H, m, HAr), 5.62–5.68 (1H, brs, OH), 3.86 (3H, s, OMe), 3.56 (1H, t, J = 5.4 Hz, CHCH2), 3.11 (2H, d, J = 5.4 Hz, CHCH2), 2.65 (2H, d, J = 13.4 Hz, Ha from CH2), 2.44 (2H, d, J = 13.4 Hz, Hb from CH2), 1.16 (3H, s, Me), 0.82 (3H, s, Me).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen atoms bonded to O atoms were refined freely. Other H atoms were included in the refinement at geometrically calculated positions with C—H = 0.93–0.97 Å and treated as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-meth­yl).

Table 2
Experimental details

Crystal data
Chemical formula C16H20O4
Mr 276.32
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 190
a, b, c (Å) 9.3504 (3), 13.6265 (4), 22.8790 (9)
V3) 2915.09 (17)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.32 × 0.17 × 0.12
 
Data collection
Diffractometer Bruker KappaCCD
No. of measured, independent and observed [I > 2σ(I)] reflections 6082, 3295, 2149
Rint 0.057
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.131, 1.04
No. of reflections 3295
No. of parameters 192
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.21, −0.19
Computer programs: COLLECT (Bruker, 2001[Bruker (2001). COLLECT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]), SHELXL2017 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: COLLECT (Bruker, 2001); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

3-Hydroxy-2-(4-hydroxy-3-methoxyphenylmethyl)-5,5-dimethylcyclohex-2-enone top
Crystal data top
C16H20O4Dx = 1.259 Mg m3
Mr = 276.32Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 32401 reflections
a = 9.3504 (3) Åθ = 1.0–27.5°
b = 13.6265 (4) ŵ = 0.09 mm1
c = 22.8790 (9) ÅT = 190 K
V = 2915.09 (17) Å3Block, colourless
Z = 80.32 × 0.17 × 0.12 mm
F(000) = 1184
Data collection top
Bruker KappaCCD
diffractometer
Rint = 0.057
CCD scansθmax = 27.5°, θmin = 2.8°
6082 measured reflectionsh = 1212
3295 independent reflectionsk = 1717
2149 reflections with I > 2σ(I)l = 2929
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.059H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.131 w = 1/[σ2(Fo2) + (0.0489P)2 + 1.0327P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.006
3295 reflectionsΔρmax = 0.21 e Å3
192 parametersΔρmin = 0.19 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.75371 (16)0.50507 (9)0.63597 (7)0.0331 (4)
O20.62541 (15)0.83466 (10)0.63025 (7)0.0287 (4)
O30.16966 (16)0.39470 (10)0.68561 (7)0.0367 (4)
O40.13650 (15)0.39579 (10)0.57111 (7)0.0319 (4)
C10.9683 (2)0.71070 (12)0.58699 (9)0.0224 (4)
C20.8992 (2)0.60988 (13)0.57748 (9)0.0256 (5)
H2A0.8646180.6058450.5375770.031*
H2B0.9713210.5594580.5825890.031*
C30.7777 (2)0.58996 (13)0.61829 (9)0.0230 (5)
C40.6838 (2)0.66925 (13)0.63552 (9)0.0213 (4)
C50.7173 (2)0.76168 (13)0.61827 (9)0.0216 (4)
C60.8495 (2)0.78837 (13)0.58489 (9)0.0243 (5)
H6A0.8869410.8494700.6003750.029*
H6B0.8236870.7996940.5443890.029*
C70.5558 (2)0.64569 (13)0.67303 (10)0.0277 (5)
H7A0.5083670.7066000.6832860.033*
H7B0.5890630.6157100.7090030.033*
C80.4470 (2)0.57763 (13)0.64472 (9)0.0232 (5)
C90.3616 (2)0.51732 (13)0.68030 (9)0.0258 (5)
H90.3743090.5179920.7206170.031*
C100.2589 (2)0.45705 (13)0.65589 (9)0.0252 (5)
C110.2391 (2)0.45584 (13)0.59560 (9)0.0244 (5)
C120.3230 (2)0.51344 (15)0.56037 (10)0.0300 (5)
H120.3107640.5121530.5200370.036*
C130.4265 (2)0.57391 (14)0.58529 (10)0.0287 (5)
H130.4831600.6126630.5611270.034*
C140.1966 (3)0.37943 (17)0.74571 (11)0.0469 (7)
H14A0.2933110.3573960.7508590.070*
H14B0.1319640.3306790.7605360.070*
H14C0.1828510.4398300.7665630.070*
C151.0448 (2)0.71292 (14)0.64588 (10)0.0317 (5)
H15A0.9773250.7001580.6765640.048*
H15B1.0872000.7763520.6516800.048*
H15C1.1182010.6636310.6464500.048*
C161.0760 (2)0.73067 (15)0.53816 (10)0.0345 (5)
H16A1.1158610.7950770.5430510.052*
H16B1.0286720.7267350.5009980.052*
H16C1.1511550.6827450.5397630.052*
H20.664 (3)0.892 (2)0.6238 (13)0.079 (10)*
H40.085 (4)0.368 (3)0.6024 (16)0.114 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0372 (8)0.0110 (6)0.0510 (10)0.0009 (6)0.0078 (8)0.0033 (6)
O20.0240 (8)0.0128 (7)0.0493 (10)0.0022 (6)0.0014 (7)0.0001 (6)
O30.0393 (9)0.0406 (9)0.0304 (9)0.0196 (7)0.0011 (7)0.0042 (7)
O40.0283 (8)0.0362 (8)0.0312 (9)0.0096 (7)0.0035 (7)0.0033 (7)
C10.0241 (10)0.0168 (9)0.0262 (11)0.0004 (8)0.0006 (9)0.0004 (8)
C20.0287 (11)0.0172 (9)0.0308 (12)0.0006 (8)0.0033 (9)0.0035 (8)
C30.0253 (11)0.0149 (9)0.0288 (12)0.0019 (8)0.0012 (9)0.0016 (8)
C40.0199 (10)0.0145 (9)0.0297 (12)0.0023 (8)0.0019 (9)0.0035 (8)
C50.0207 (11)0.0163 (9)0.0278 (12)0.0010 (8)0.0047 (8)0.0014 (8)
C60.0241 (10)0.0151 (9)0.0336 (12)0.0028 (8)0.0038 (9)0.0029 (8)
C70.0306 (12)0.0160 (9)0.0366 (14)0.0026 (9)0.0042 (10)0.0034 (8)
C80.0222 (10)0.0164 (9)0.0310 (12)0.0031 (8)0.0031 (9)0.0003 (8)
C90.0283 (11)0.0233 (10)0.0260 (12)0.0005 (9)0.0014 (9)0.0000 (8)
C100.0236 (10)0.0198 (9)0.0322 (12)0.0023 (9)0.0060 (9)0.0024 (8)
C110.0207 (10)0.0197 (9)0.0328 (12)0.0011 (8)0.0013 (9)0.0003 (9)
C120.0330 (12)0.0300 (11)0.0271 (13)0.0028 (10)0.0005 (10)0.0037 (9)
C130.0279 (11)0.0222 (10)0.0359 (13)0.0035 (9)0.0038 (10)0.0061 (9)
C140.0604 (17)0.0503 (14)0.0300 (14)0.0262 (13)0.0077 (12)0.0032 (11)
C150.0263 (11)0.0273 (11)0.0414 (14)0.0024 (9)0.0045 (10)0.0003 (10)
C160.0333 (12)0.0270 (11)0.0432 (15)0.0024 (10)0.0077 (10)0.0000 (10)
Geometric parameters (Å, º) top
O1—C31.246 (2)C7—H7A0.9700
O2—C51.342 (2)C7—H7B0.9700
O2—H20.88 (3)C8—C131.374 (3)
O3—C101.371 (2)C8—C91.406 (3)
O3—C141.413 (3)C9—C101.381 (3)
O4—C111.380 (2)C9—H90.9300
O4—H40.94 (4)C10—C111.392 (3)
C1—C151.526 (3)C11—C121.371 (3)
C1—C161.529 (3)C12—C131.394 (3)
C1—C21.534 (3)C12—H120.9300
C1—C61.534 (3)C13—H130.9300
C2—C31.495 (3)C14—H14A0.9600
C2—H2A0.9700C14—H14B0.9600
C2—H2B0.9700C14—H14C0.9600
C3—C41.447 (3)C15—H15A0.9600
C4—C51.357 (3)C15—H15B0.9600
C4—C71.507 (3)C15—H15C0.9600
C5—C61.498 (3)C16—H16A0.9600
C6—H6A0.9700C16—H16B0.9600
C6—H6B0.9700C16—H16C0.9600
C7—C81.521 (3)
C5—O2—H2111 (2)C13—C8—C9118.18 (18)
C10—O3—C14117.73 (17)C13—C8—C7122.47 (18)
C11—O4—H4107 (2)C9—C8—C7119.33 (19)
C15—C1—C16109.41 (17)C10—C9—C8120.5 (2)
C15—C1—C2109.91 (16)C10—C9—H9119.7
C16—C1—C2109.48 (16)C8—C9—H9119.7
C15—C1—C6110.69 (16)O3—C10—C9126.20 (19)
C16—C1—C6109.34 (16)O3—C10—C11113.78 (17)
C2—C1—C6107.99 (16)C9—C10—C11120.02 (18)
C3—C2—C1113.20 (15)C12—C11—O4119.9 (2)
C3—C2—H2A108.9C12—C11—C10119.98 (19)
C1—C2—H2A108.9O4—C11—C10120.14 (18)
C3—C2—H2B108.9C11—C12—C13119.7 (2)
C1—C2—H2B108.9C11—C12—H12120.2
H2A—C2—H2B107.8C13—C12—H12120.2
O1—C3—C4119.70 (18)C8—C13—C12121.57 (19)
O1—C3—C2120.54 (17)C8—C13—H13119.2
C4—C3—C2119.71 (16)C12—C13—H13119.2
C5—C4—C3118.27 (18)O3—C14—H14A109.5
C5—C4—C7123.16 (17)O3—C14—H14B109.5
C3—C4—C7118.55 (16)H14A—C14—H14B109.5
O2—C5—C4118.71 (17)O3—C14—H14C109.5
O2—C5—C6116.90 (15)H14A—C14—H14C109.5
C4—C5—C6124.37 (17)H14B—C14—H14C109.5
C5—C6—C1114.44 (15)C1—C15—H15A109.5
C5—C6—H6A108.7C1—C15—H15B109.5
C1—C6—H6A108.7H15A—C15—H15B109.5
C5—C6—H6B108.7C1—C15—H15C109.5
C1—C6—H6B108.7H15A—C15—H15C109.5
H6A—C6—H6B107.6H15B—C15—H15C109.5
C4—C7—C8114.73 (17)C1—C16—H16A109.5
C4—C7—H7A108.6C1—C16—H16B109.5
C8—C7—H7A108.6H16A—C16—H16B109.5
C4—C7—H7B108.6C1—C16—H16C109.5
C8—C7—H7B108.6H16A—C16—H16C109.5
H7A—C7—H7B107.6H16B—C16—H16C109.5
C15—C1—C2—C367.9 (2)C3—C4—C7—C862.8 (2)
C16—C1—C2—C3171.93 (17)C4—C7—C8—C1329.1 (3)
C6—C1—C2—C353.0 (2)C4—C7—C8—C9152.22 (17)
C1—C2—C3—O1146.67 (19)C13—C8—C9—C100.8 (3)
C1—C2—C3—C435.9 (3)C7—C8—C9—C10177.99 (17)
O1—C3—C4—C5176.34 (19)C14—O3—C10—C99.4 (3)
C2—C3—C4—C56.2 (3)C14—O3—C10—C11170.34 (19)
O1—C3—C4—C72.0 (3)C8—C9—C10—O3179.63 (18)
C2—C3—C4—C7175.47 (18)C8—C9—C10—C110.1 (3)
C3—C4—C5—O2175.08 (17)O3—C10—C11—C12178.86 (17)
C7—C4—C5—O26.6 (3)C9—C10—C11—C120.9 (3)
C3—C4—C5—C63.2 (3)O3—C10—C11—O40.3 (3)
C7—C4—C5—C6175.11 (19)C9—C10—C11—O4179.93 (16)
O2—C5—C6—C1163.97 (17)O4—C11—C12—C13179.95 (17)
C4—C5—C6—C117.7 (3)C10—C11—C12—C130.8 (3)
C15—C1—C6—C576.1 (2)C9—C8—C13—C120.9 (3)
C16—C1—C6—C5163.26 (17)C7—C8—C13—C12177.81 (18)
C2—C1—C6—C544.2 (2)C11—C12—C13—C80.1 (3)
C5—C4—C7—C8118.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O4i0.972.493.417 (3)161
C14—H14C···O1ii0.962.493.247 (3)136
O2—H2···O1iii0.88 (3)1.74 (3)2.586 (2)161 (3)
O4—H4···O30.94 (4)2.10 (4)2.638 (2)115 (3)
O4—H4···O2iv0.94 (4)2.11 (4)2.919 (2)142 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1/2, y, z+3/2; (iii) x+3/2, y+1/2, z; (iv) x+1/2, y1/2, z.
 

Funding information

Funding for this research was provided by: European Regional Development Fund, Operational Programme `Growth and Employment' within the Activity `Post-doctoral Research Aid' (grant No. 1.1.1.2/VIAA/1/16/039).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2001). COLLECT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMierina, I., Jure, M., Zeberga, S., Makareviciene, V., Zicane, D., Tetere, Z. & Ravina, I. (2017). Eur. J. Lipid Sci. Technol. 119, 1700172.  CrossRef Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRamachary, D. B. & Kishor, M. (2007). J. Org. Chem. 72, 5056–5068.  CrossRef Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSudheendran, K., Malakar, C. C., Conrad, J. & Beifuss, U. (2012). J. Org. Chem. 77, 10194–10210.  CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, C., Zhang, L., Zhou, P., Luo, S. & Cheng, J.-P. (2013). Synthesis, 45, 1939–1945.  Google Scholar
First citationYoshida, M., Higuchi, M. & Shishido, K. (2010). Tetrahedron, 66, 2675–2682.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds