research communications
of 3-hydroxy-2-(4-hydroxy-3-methoxyphenylmethyl)-5,5-dimethylcyclohex-2-enone
aInstitute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3/7, Riga, LV-1048, Latvia, and bLatvian Institute of Organic Synthesis, Aizkraukles Str. 21, Riga, LV-1006, Latvia
*Correspondence e-mail: mishnevs@osi.lv, Mara.Jure@rtu.lv
In the title compound, C16H20O4, a new starting compound for the synthesis of various heterocycles, the partially saturated six-membered ring adopts a sofa conformation. An intramolecular O—H⋯O hydrogen bond is observed in the guaiacol residue. In the crystal, molecules are assembled into a sheet structure parallel to the ab plane via O—H⋯O hydrogen bonds. The hydrogen-bond pattern is described by an R44(28) graph-set motif. The sheets are further linked by C—H⋯O hydrogen bonds into a three-dimensional network.
Keywords: crystal structure; arylmethyl dimedone; arylmethyl 1,3-cyclohexanedione; arylmethyl 3-hydroxycyclohex-2-enone.
CCDC reference: 1841730
1. Chemical context
Cyclic 2-arylmethyl-1,3-diketones attract interest as valuable intermediates for organic chemistry. A few of the latest examples of these cyclohexanedione derivatives have been used as starting compounds for the synthesis of various heterocycles [e.g. tetrahydrobenzofuranones (Yoshida et al., 2010) or tetrahydro-1H-xanthen-1-ones (Sudheendran et al., 2012)], as well as carbocycles, e.g. analogues of Wieland–Miesher and Hajos–Parrish (Xu et al., 2013).
2. Structural commentary
Fig. 1 shows the molecular structure of the title compound, which exhibits an intramolecular O—H⋯O hydrogen bond (Table 1). In crystalline state, the molecules assume the enol tautomeric form, 1a. In the dimedone fragment, the bond distances reflect the effect of conjugation in the flat fragment O1=C3—C4=C5—O2. The double bonds, O1=C3 and C4=C5, are elongated [1.246 (2) and 1.357 (3) Å, respectively], while the single bond C3—C4 is shortened [1.447 (3) Å] as compared with standard double and single bonds (Allen et al., 1987). The general shape of the molecule is characterized by the torsion angles C3—C4—C7—C8 = −62.8 (2)° and C4—C7—C8—C9 = 152.2 (2)°, thus exhibiting an extended conformation. The partially saturated C1–C6 ring adopts a sofa conformation. The distance of atom C1 from the mean plane formed by atoms C2–C6 is 0.612 (3) Å. The dihedral angle between the mean plane of the C1–C6 ring and the C8–C13 benzene ring is 75.69 (6)°.
3. Supramolecular features
In the crystal, the molecules are assembled into a sheet structure parallel to the ab plane via O—H⋯O hydrogen bonds (Table 1). The hydrogen-bonding pattern in the sheet is described by an R44(28) graph-set motif (Fig. 2). Furthermore, weak C—H⋯O hydrogen bonds join the sheets into a three-dimensional network (Table 1).
4. Database survey
A search of the Cambridge Structural Database (Version 5.39, last update February 2018; Groom et al., 2016) gave 76 structures of 3-hydroxy-5,5-dimethylcyclohex-2-enone derivatives. The closest structures are 2-(naphthalen-1-ylmethyl)- and 2-(3-chlorophenyl)methyl-substituted dimedones (NIHTEE and NIHTII, respectively; Ramachary & Kishor, 2007).
5. Antiradical activity against free radicals
Compound 1 demonstrates notable antiradical activity against free radicals. tests were realized according to the procedures described previously (Mierina et al., 2017). 1,1-Diphenyl-2-picrylhydrazyl test: inhibition, when molar ratio of the compound and is 1:1, was 93.3±2.5%; IC50 was 23.0±0.6 µM (starting concentration of was 100 µM). Galvinoxyl test: inhibition was 82.3±1.0% and IC50 – 20.3±2.0 µM.
6. Synthesis and crystallization
3-Hydroxy-2-(4-hydroxy-3-methoxyphenylmethyl)-5,5-dimethylcyclohex-2-enone (1a) was synthesized according to the reaction scheme in Fig. 3. Formic acid (3.6 ml) was added to a solution of dimedone 2 (500 mg, 3.6 mmol) and vanillin 3 (543 mg, 3.6 mmol) in triethylamine (5.5 ml) while cooling in an ice-bath. The reaction mixture was then heated at 413 K for 5 h, followed by cooling to room temperature, pouring into ice (700–800 ml) and filtering the formed solid. The solid material was purified by crystallization from chloroform leading to the target compound 1a (615 mg, 62%) with m.p. 466–468 K. Single crystals were obtained from a methanol solution. IR (KBr) ν, cm−1: 3470, 2935, 2645, 1580, 1515, 1375, 1250, 1230, 1200, 1040.
The enol form, 1a, was observed exclusively in a DMSO solution. 1H NMR for compound 1a (300 MHz, DMSO-d6) δ, ppm: 10.71–10.08 (1H, brs, OH), 8.68–8.37 (1H, brs, OH), 6.68 (1H, s, HAr), 6.59 (1H, d, J = 7.7 Hz, HAr), 6.50 (1H, d, J = 7.7 Hz, HAr), 3.68 (3H, s, OMe), 3.41 (2H, brs, CH2Ar, overlapping with H2O signal), 2.34–2.13 (4H, brs, 2CH2), 0.98 (6H, s, 2Me). 13C NMR for compound 1a (75 MHz, DMSO-d6) δ, ppm: 147.1, 144.1, 132.7, 120.2, 115.0, 113.3, 112.5, 55.5, 31.7, 28.0, 26.5. Mixture of keto–enol tautomers (1a and 1b) was observed in a chloroform solution. The ratio of enol 1a and ketone 1b was 1.35:1 (at room temperature). 1H NMR for compound 1a (300 MHz, CDCl3) δ, ppm: 6.84–6.63 (3H, m, HAr), (2H, brs, 2OH), 3.82 (3H, s, OMe), 3.61 (2H, s, CH2Ar), 2.33–2.29 (4H, brs, 2CH2), 1.07 (6H, s, 2Me). 1H NMR for compound 1b (300 MHz, CDCl3) δ, ppm: 6.84–6.63 (3H, m, HAr), 5.62–5.68 (1H, brs, OH), 3.86 (3H, s, OMe), 3.56 (1H, t, J = 5.4 Hz, CHCH2), 3.11 (2H, d, J = 5.4 Hz, CHCH2), 2.65 (2H, d, J = 13.4 Hz, Ha from CH2), 2.44 (2H, d, J = 13.4 Hz, Hb from CH2), 1.16 (3H, s, Me), 0.82 (3H, s, Me).
7. Refinement
Crystal data, data collection and structure . Hydrogen atoms bonded to O atoms were refined freely. Other H atoms were included in the at geometrically calculated positions with C—H = 0.93–0.97 Å and treated as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-methyl).
details are summarized in Table 2Supporting information
CCDC reference: 1841730
https://doi.org/10.1107/S2056989018006941/is5495sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018006941/is5495Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989018006941/is5495Isup3.cml
Data collection: COLLECT (Bruker, 2001); cell
SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).C16H20O4 | Dx = 1.259 Mg m−3 |
Mr = 276.32 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbca | Cell parameters from 32401 reflections |
a = 9.3504 (3) Å | θ = 1.0–27.5° |
b = 13.6265 (4) Å | µ = 0.09 mm−1 |
c = 22.8790 (9) Å | T = 190 K |
V = 2915.09 (17) Å3 | Block, colourless |
Z = 8 | 0.32 × 0.17 × 0.12 mm |
F(000) = 1184 |
Bruker KappaCCD diffractometer | Rint = 0.057 |
CCD scans | θmax = 27.5°, θmin = 2.8° |
6082 measured reflections | h = −12→12 |
3295 independent reflections | k = −17→17 |
2149 reflections with I > 2σ(I) | l = −29→29 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.059 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.131 | w = 1/[σ2(Fo2) + (0.0489P)2 + 1.0327P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.006 |
3295 reflections | Δρmax = 0.21 e Å−3 |
192 parameters | Δρmin = −0.19 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.75371 (16) | 0.50507 (9) | 0.63597 (7) | 0.0331 (4) | |
O2 | 0.62541 (15) | 0.83466 (10) | 0.63025 (7) | 0.0287 (4) | |
O3 | 0.16966 (16) | 0.39470 (10) | 0.68561 (7) | 0.0367 (4) | |
O4 | 0.13650 (15) | 0.39579 (10) | 0.57111 (7) | 0.0319 (4) | |
C1 | 0.9683 (2) | 0.71070 (12) | 0.58699 (9) | 0.0224 (4) | |
C2 | 0.8992 (2) | 0.60988 (13) | 0.57748 (9) | 0.0256 (5) | |
H2A | 0.864618 | 0.605845 | 0.537577 | 0.031* | |
H2B | 0.971321 | 0.559458 | 0.582589 | 0.031* | |
C3 | 0.7777 (2) | 0.58996 (13) | 0.61829 (9) | 0.0230 (5) | |
C4 | 0.6838 (2) | 0.66925 (13) | 0.63552 (9) | 0.0213 (4) | |
C5 | 0.7173 (2) | 0.76168 (13) | 0.61827 (9) | 0.0216 (4) | |
C6 | 0.8495 (2) | 0.78837 (13) | 0.58489 (9) | 0.0243 (5) | |
H6A | 0.886941 | 0.849470 | 0.600375 | 0.029* | |
H6B | 0.823687 | 0.799694 | 0.544389 | 0.029* | |
C7 | 0.5558 (2) | 0.64569 (13) | 0.67303 (10) | 0.0277 (5) | |
H7A | 0.508367 | 0.706600 | 0.683286 | 0.033* | |
H7B | 0.589063 | 0.615710 | 0.709003 | 0.033* | |
C8 | 0.4470 (2) | 0.57763 (13) | 0.64472 (9) | 0.0232 (5) | |
C9 | 0.3616 (2) | 0.51732 (13) | 0.68030 (9) | 0.0258 (5) | |
H9 | 0.374309 | 0.517992 | 0.720617 | 0.031* | |
C10 | 0.2589 (2) | 0.45705 (13) | 0.65589 (9) | 0.0252 (5) | |
C11 | 0.2391 (2) | 0.45584 (13) | 0.59560 (9) | 0.0244 (5) | |
C12 | 0.3230 (2) | 0.51344 (15) | 0.56037 (10) | 0.0300 (5) | |
H12 | 0.310764 | 0.512153 | 0.520037 | 0.036* | |
C13 | 0.4265 (2) | 0.57391 (14) | 0.58529 (10) | 0.0287 (5) | |
H13 | 0.483160 | 0.612663 | 0.561127 | 0.034* | |
C14 | 0.1966 (3) | 0.37943 (17) | 0.74571 (11) | 0.0469 (7) | |
H14A | 0.293311 | 0.357396 | 0.750859 | 0.070* | |
H14B | 0.131964 | 0.330679 | 0.760536 | 0.070* | |
H14C | 0.182851 | 0.439830 | 0.766563 | 0.070* | |
C15 | 1.0448 (2) | 0.71292 (14) | 0.64588 (10) | 0.0317 (5) | |
H15A | 0.977325 | 0.700158 | 0.676564 | 0.048* | |
H15B | 1.087200 | 0.776352 | 0.651680 | 0.048* | |
H15C | 1.118201 | 0.663631 | 0.646450 | 0.048* | |
C16 | 1.0760 (2) | 0.73067 (15) | 0.53816 (10) | 0.0345 (5) | |
H16A | 1.115861 | 0.795077 | 0.543051 | 0.052* | |
H16B | 1.028672 | 0.726735 | 0.500998 | 0.052* | |
H16C | 1.151155 | 0.682745 | 0.539763 | 0.052* | |
H2 | 0.664 (3) | 0.892 (2) | 0.6238 (13) | 0.079 (10)* | |
H4 | 0.085 (4) | 0.368 (3) | 0.6024 (16) | 0.114 (14)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0372 (8) | 0.0110 (6) | 0.0510 (10) | −0.0009 (6) | 0.0078 (8) | 0.0033 (6) |
O2 | 0.0240 (8) | 0.0128 (7) | 0.0493 (10) | 0.0022 (6) | −0.0014 (7) | 0.0001 (6) |
O3 | 0.0393 (9) | 0.0406 (9) | 0.0304 (9) | −0.0196 (7) | 0.0011 (7) | 0.0042 (7) |
O4 | 0.0283 (8) | 0.0362 (8) | 0.0312 (9) | −0.0096 (7) | −0.0035 (7) | −0.0033 (7) |
C1 | 0.0241 (10) | 0.0168 (9) | 0.0262 (11) | −0.0004 (8) | 0.0006 (9) | 0.0004 (8) |
C2 | 0.0287 (11) | 0.0172 (9) | 0.0308 (12) | 0.0006 (8) | 0.0033 (9) | −0.0035 (8) |
C3 | 0.0253 (11) | 0.0149 (9) | 0.0288 (12) | −0.0019 (8) | −0.0012 (9) | −0.0016 (8) |
C4 | 0.0199 (10) | 0.0145 (9) | 0.0297 (12) | −0.0023 (8) | −0.0019 (9) | −0.0035 (8) |
C5 | 0.0207 (11) | 0.0163 (9) | 0.0278 (12) | 0.0010 (8) | −0.0047 (8) | −0.0014 (8) |
C6 | 0.0241 (10) | 0.0151 (9) | 0.0336 (12) | −0.0028 (8) | −0.0038 (9) | 0.0029 (8) |
C7 | 0.0306 (12) | 0.0160 (9) | 0.0366 (14) | −0.0026 (9) | 0.0042 (10) | −0.0034 (8) |
C8 | 0.0222 (10) | 0.0164 (9) | 0.0310 (12) | 0.0031 (8) | 0.0031 (9) | 0.0003 (8) |
C9 | 0.0283 (11) | 0.0233 (10) | 0.0260 (12) | 0.0005 (9) | 0.0014 (9) | 0.0000 (8) |
C10 | 0.0236 (10) | 0.0198 (9) | 0.0322 (12) | −0.0023 (9) | 0.0060 (9) | 0.0024 (8) |
C11 | 0.0207 (10) | 0.0197 (9) | 0.0328 (12) | 0.0011 (8) | −0.0013 (9) | −0.0003 (9) |
C12 | 0.0330 (12) | 0.0300 (11) | 0.0271 (13) | −0.0028 (10) | −0.0005 (10) | 0.0037 (9) |
C13 | 0.0279 (11) | 0.0222 (10) | 0.0359 (13) | −0.0035 (9) | 0.0038 (10) | 0.0061 (9) |
C14 | 0.0604 (17) | 0.0503 (14) | 0.0300 (14) | −0.0262 (13) | 0.0077 (12) | 0.0032 (11) |
C15 | 0.0263 (11) | 0.0273 (11) | 0.0414 (14) | 0.0024 (9) | −0.0045 (10) | −0.0003 (10) |
C16 | 0.0333 (12) | 0.0270 (11) | 0.0432 (15) | −0.0024 (10) | 0.0077 (10) | 0.0000 (10) |
O1—C3 | 1.246 (2) | C7—H7A | 0.9700 |
O2—C5 | 1.342 (2) | C7—H7B | 0.9700 |
O2—H2 | 0.88 (3) | C8—C13 | 1.374 (3) |
O3—C10 | 1.371 (2) | C8—C9 | 1.406 (3) |
O3—C14 | 1.413 (3) | C9—C10 | 1.381 (3) |
O4—C11 | 1.380 (2) | C9—H9 | 0.9300 |
O4—H4 | 0.94 (4) | C10—C11 | 1.392 (3) |
C1—C15 | 1.526 (3) | C11—C12 | 1.371 (3) |
C1—C16 | 1.529 (3) | C12—C13 | 1.394 (3) |
C1—C2 | 1.534 (3) | C12—H12 | 0.9300 |
C1—C6 | 1.534 (3) | C13—H13 | 0.9300 |
C2—C3 | 1.495 (3) | C14—H14A | 0.9600 |
C2—H2A | 0.9700 | C14—H14B | 0.9600 |
C2—H2B | 0.9700 | C14—H14C | 0.9600 |
C3—C4 | 1.447 (3) | C15—H15A | 0.9600 |
C4—C5 | 1.357 (3) | C15—H15B | 0.9600 |
C4—C7 | 1.507 (3) | C15—H15C | 0.9600 |
C5—C6 | 1.498 (3) | C16—H16A | 0.9600 |
C6—H6A | 0.9700 | C16—H16B | 0.9600 |
C6—H6B | 0.9700 | C16—H16C | 0.9600 |
C7—C8 | 1.521 (3) | ||
C5—O2—H2 | 111 (2) | C13—C8—C9 | 118.18 (18) |
C10—O3—C14 | 117.73 (17) | C13—C8—C7 | 122.47 (18) |
C11—O4—H4 | 107 (2) | C9—C8—C7 | 119.33 (19) |
C15—C1—C16 | 109.41 (17) | C10—C9—C8 | 120.5 (2) |
C15—C1—C2 | 109.91 (16) | C10—C9—H9 | 119.7 |
C16—C1—C2 | 109.48 (16) | C8—C9—H9 | 119.7 |
C15—C1—C6 | 110.69 (16) | O3—C10—C9 | 126.20 (19) |
C16—C1—C6 | 109.34 (16) | O3—C10—C11 | 113.78 (17) |
C2—C1—C6 | 107.99 (16) | C9—C10—C11 | 120.02 (18) |
C3—C2—C1 | 113.20 (15) | C12—C11—O4 | 119.9 (2) |
C3—C2—H2A | 108.9 | C12—C11—C10 | 119.98 (19) |
C1—C2—H2A | 108.9 | O4—C11—C10 | 120.14 (18) |
C3—C2—H2B | 108.9 | C11—C12—C13 | 119.7 (2) |
C1—C2—H2B | 108.9 | C11—C12—H12 | 120.2 |
H2A—C2—H2B | 107.8 | C13—C12—H12 | 120.2 |
O1—C3—C4 | 119.70 (18) | C8—C13—C12 | 121.57 (19) |
O1—C3—C2 | 120.54 (17) | C8—C13—H13 | 119.2 |
C4—C3—C2 | 119.71 (16) | C12—C13—H13 | 119.2 |
C5—C4—C3 | 118.27 (18) | O3—C14—H14A | 109.5 |
C5—C4—C7 | 123.16 (17) | O3—C14—H14B | 109.5 |
C3—C4—C7 | 118.55 (16) | H14A—C14—H14B | 109.5 |
O2—C5—C4 | 118.71 (17) | O3—C14—H14C | 109.5 |
O2—C5—C6 | 116.90 (15) | H14A—C14—H14C | 109.5 |
C4—C5—C6 | 124.37 (17) | H14B—C14—H14C | 109.5 |
C5—C6—C1 | 114.44 (15) | C1—C15—H15A | 109.5 |
C5—C6—H6A | 108.7 | C1—C15—H15B | 109.5 |
C1—C6—H6A | 108.7 | H15A—C15—H15B | 109.5 |
C5—C6—H6B | 108.7 | C1—C15—H15C | 109.5 |
C1—C6—H6B | 108.7 | H15A—C15—H15C | 109.5 |
H6A—C6—H6B | 107.6 | H15B—C15—H15C | 109.5 |
C4—C7—C8 | 114.73 (17) | C1—C16—H16A | 109.5 |
C4—C7—H7A | 108.6 | C1—C16—H16B | 109.5 |
C8—C7—H7A | 108.6 | H16A—C16—H16B | 109.5 |
C4—C7—H7B | 108.6 | C1—C16—H16C | 109.5 |
C8—C7—H7B | 108.6 | H16A—C16—H16C | 109.5 |
H7A—C7—H7B | 107.6 | H16B—C16—H16C | 109.5 |
C15—C1—C2—C3 | 67.9 (2) | C3—C4—C7—C8 | −62.8 (2) |
C16—C1—C2—C3 | −171.93 (17) | C4—C7—C8—C13 | −29.1 (3) |
C6—C1—C2—C3 | −53.0 (2) | C4—C7—C8—C9 | 152.22 (17) |
C1—C2—C3—O1 | −146.67 (19) | C13—C8—C9—C10 | −0.8 (3) |
C1—C2—C3—C4 | 35.9 (3) | C7—C8—C9—C10 | 177.99 (17) |
O1—C3—C4—C5 | 176.34 (19) | C14—O3—C10—C9 | −9.4 (3) |
C2—C3—C4—C5 | −6.2 (3) | C14—O3—C10—C11 | 170.34 (19) |
O1—C3—C4—C7 | −2.0 (3) | C8—C9—C10—O3 | 179.63 (18) |
C2—C3—C4—C7 | 175.47 (18) | C8—C9—C10—C11 | −0.1 (3) |
C3—C4—C5—O2 | 175.08 (17) | O3—C10—C11—C12 | −178.86 (17) |
C7—C4—C5—O2 | −6.6 (3) | C9—C10—C11—C12 | 0.9 (3) |
C3—C4—C5—C6 | −3.2 (3) | O3—C10—C11—O4 | 0.3 (3) |
C7—C4—C5—C6 | 175.11 (19) | C9—C10—C11—O4 | −179.93 (16) |
O2—C5—C6—C1 | 163.97 (17) | O4—C11—C12—C13 | −179.95 (17) |
C4—C5—C6—C1 | −17.7 (3) | C10—C11—C12—C13 | −0.8 (3) |
C15—C1—C6—C5 | −76.1 (2) | C9—C8—C13—C12 | 0.9 (3) |
C16—C1—C6—C5 | 163.26 (17) | C7—C8—C13—C12 | −177.81 (18) |
C2—C1—C6—C5 | 44.2 (2) | C11—C12—C13—C8 | −0.1 (3) |
C5—C4—C7—C8 | 118.9 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2A···O4i | 0.97 | 2.49 | 3.417 (3) | 161 |
C14—H14C···O1ii | 0.96 | 2.49 | 3.247 (3) | 136 |
O2—H2···O1iii | 0.88 (3) | 1.74 (3) | 2.586 (2) | 161 (3) |
O4—H4···O3 | 0.94 (4) | 2.10 (4) | 2.638 (2) | 115 (3) |
O4—H4···O2iv | 0.94 (4) | 2.11 (4) | 2.919 (2) | 142 (3) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x−1/2, y, −z+3/2; (iii) −x+3/2, y+1/2, z; (iv) −x+1/2, y−1/2, z. |
Funding information
Funding for this research was provided by: European Regional Development Fund, Operational Programme `Growth and Employment' within the Activity `Post-doctoral Research Aid' (grant No. 1.1.1.2/VIAA/1/16/039).
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CSD CrossRef Web of Science Google Scholar
Bruker (2001). COLLECT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mierina, I., Jure, M., Zeberga, S., Makareviciene, V., Zicane, D., Tetere, Z. & Ravina, I. (2017). Eur. J. Lipid Sci. Technol. 119, 1700172. CrossRef Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Ramachary, D. B. & Kishor, M. (2007). J. Org. Chem. 72, 5056–5068. CrossRef Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sudheendran, K., Malakar, C. C., Conrad, J. & Beifuss, U. (2012). J. Org. Chem. 77, 10194–10210. CrossRef Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xu, C., Zhang, L., Zhou, P., Luo, S. & Cheng, J.-P. (2013). Synthesis, 45, 1939–1945. Google Scholar
Yoshida, M., Higuchi, M. & Shishido, K. (2010). Tetrahedron, 66, 2675–2682. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.