research communications
R,E)-3-(1,3-benzodioxol-5-yl)-5-[(4S,5R)-5-hydroxymethyl-2,2-dimethyl-1,3-dioxolan-4-yl]-N,N-dimethylpent-4-enamide
of (–)-(aSchool of Medicine, Keio University, Hiyoshi 4-1-1, Kohoku-ku, Yokohama 223-8521, Japan, and bDepartment of Applied Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223-8522, Japan
*Correspondence e-mail: oec@keio.jp
In the title compound, C20H27NO6, the amide moiety is essentially planar, with a maximum deviation of 0.073 (3) Å, and one of the N-methyl groups shows rotational disorder. The five-membered 1,3-dioxolane ring adopts an envelope form, with the C atom bonded to the olefin side chain as the flap, which deviates from the mean plane through the other four atoms by 0.564 (7) Å. The 1,3-dioxole ring fused to the benzene ring adopts a flattened envelope form, with the C atom between the two O atoms as the flap, which deviates from the mean plane through the other four atoms by 0.215 (7) Å. The C—C=C—C olefin moiety is essentially planar and makes a dihedral angle of 87.1 (3)° with the benzene ring. An intramolecular O—H⋯O hydrogen bond supports the molecular conformation, enclosing an S(11) graph-set motif. In the crystal, intermolecular C—H⋯O hydrogen bonding links the molecules into a tape running along the b axis. Furthermore, other weak C—H⋯O hydrogen bonds and a C—H⋯π interaction connect the tapes into a sheet structure parallel to (100).
Keywords: crystal structure; 1,3-dioxolane; 1,3-benzodioxole; amide; hydroxy group; hydrogen bond.
CCDC reference: 1842600
1. Chemical context
Five-membered cyclic acetal is a pervasive building block in organic synthesis since it is easily prepared from an aliphatic or an aromatic 1,2-diol. These conversions are often carried out with protection of the contiguous diol (Wuts, 2014) to prevent unexpected side reactions or to reduce the polarity of the substrate, especially for Although masking of the hydroxy groups is a disadvantage in terms of crystallization, due to loss of hydrogen-bond donors, it is expected to stabilize the crystal packing in order to contribute conformational rigidity by forming the cyclic acetal (Vijayasaradhi et al., 2003).
The title compound is an intermediate in the total synthesis of a natural alkaloid (Ishii et al., 2018) possessing both 1,3-dioxolane and 1,3-benzodioxole components. The relative configurations were confirmed by the X-ray analysis as C7R, C10S and C14R.
2. Structural commentary
The molecular structure of the title compound is shown in Fig. 1. The amide moiety (C1/O2/N3/C4–C6) is essentially planar, with a maximum deviation of 0.073 (8) Å at atom C4. One of the N-methyl groups (C4) shows rotational disorder over two orientations, with refined occupancies of 0.54 (8) and 0.46 (8). The 1,3-dioxolane ring (C10/O11/C12/O13/C14) adopts an envelope form, with puckering parameters of Q(2) = 0.362 (5) Å and φ(2) = 40.6 (7)°. The flap atom C10 deviates from the mean plane through the other four atoms by 0.564 (7) Å. The 1,3-dioxole ring (C23/C24/O25/C26/O27) in benzodioxole adopts a flattened envelope form, with puckering parameter of Q(2) = 0.135 (5) Å and φ(2) = 326 (2)°. The flap atom C26 deviates from the mean plane through the other four atoms by 0.215 (7) Å. The olefin moiety (C7—C8=C9—C10) is essentially planar and makes a dihedral angle of 87.1 (3)° with the benzene ring (C19–C24). An intramolecular O—H⋯O hydrogen bond (O16—H16⋯O2; Table 1) supports the molecular conformation, generating an S(11) graph-set motif.
3. Supramolecular features
The crystal packing is stabilized by a C—H⋯O interaction (C14—H14⋯O13i; symmetry code as in Table 1), which links the molecules into a tape running along the b axis, with a C(3) graph-set motif. Furthermore, other weak C—H⋯O hydrogen bonds and a C—H⋯π interaction (C5—H5A⋯O16ii, C22—H22⋯O2iii and C21—H21⋯Cgiv; Cg is the centroid of the C19–C24 benzene ring; Table 1) connect the tapes into a sheet parallel to (100) (Figs. 2 and 3).
4. Database survey
In the Cambridge Structural Database (CSD, Version 5.39, last update February 2018; Groom et al., 2016), 32 structures are registered which contain a skeleton with a combination of benzodioxole and N,N-dimethylamide components, (a), similar to the title compound (Fig. 4). These include 12 structures with no other substituent on the 1,3-benzodioxole; the 1,3-dioxole rings in eight structures adopt envelope forms similar to the title compound, while those in three structures show planar (one structure has no geometrical details in the CIF).
On the other hand, searching the CSD for a structure with a combination of benzodioxole and oxymethyldioxolane components, (b), gives two entries with refcodes YERGUX (Doyle et al., 1994) and ZEMKOR (Doyle et al., 1995). The forms of the 1,3-dioxoles in these two structures resemble the title compound, with the C—O—C—C torsion angles (absolute value) being 7.2 (6) and 6.6 (7)° in YERGUX, 9.3 (7) and 10.1 (7)° in ZEMKOR, and 8.4 (5) and 9.5 (5)° in the title compound. The 1,3-dioxolane rings also show a similar conformation, with the torsion angles being 24.1 (5) and 31.3 (5)° in YERGUX, 23.1 (7) and 36.8 (7)° in ZEMKOR, and 24.8 (5) and 36.0 (5)° in the title compound. No structure with a combination of oxymethyldioxolane and N,N-dimethylamide components, (c), has yet been reported.
5. Synthesis and crystallization
The title compound was synthesized in two steps from 3,4-O-isopropylidene-3-D-arabinopyranose (Gelas & Horton, 1975), by coupling with a known benzodioxole analogue (Rotherham & Semple, 1998) and further manipulations (Ishii et al., 2018). Purification was carried out by silica-gel and colourless crystals were afforded from a dichloromethane solution under a toluene-saturated atmosphere by slow evaporation at ambient temperature (m.p. 409–410 K). [α]D23 −46.0° (c 1.01, CHCl3). HRMS (ESI) m/z calculated for C20H27NO6Na+ [M + Na]+: 400.1736; found: 400.1731.
6. Refinement
Crystal data, data collection and structure . The of the title compound was determined according to the known stereochemistries of atoms C10 and C14 derived from D-arabinose. The H atoms on one of the N-methyl groups (C4) are disordered; they were split into two sets of positions H4A–C and H4D–F, the refined occupancies being 0.54 (8) and 0.46 (8), respectively. C-bound H atoms were positioned geometrically, with C—H = 0.95–1.00 Å, and constrained to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl groups or 1.2Ueq(C) otherwise. The hydroxy H atom was placed in a difference map and treated as riding, with O—H = 0.84 Å and Uiso(H) = 1.5Ueq(O). One problematic reflection (,0,16) was omitted in the final refinement.
details are summarized in Table 2
|
Supporting information
CCDC reference: 1842600
https://doi.org/10.1107/S2056989018007132/is5496sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018007132/is5496Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989018007132/is5496Isup3.cml
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010) and PLATON (Spek, 2009).C20H27NO6 | Dx = 1.303 Mg m−3 |
Mr = 377.42 | Melting point = 409–410 K |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
a = 9.2538 (6) Å | Cell parameters from 3257 reflections |
b = 6.0642 (4) Å | θ = 2.5–24.9° |
c = 17.1441 (10) Å | µ = 0.10 mm−1 |
β = 91.475 (2)° | T = 90 K |
V = 961.75 (11) Å3 | Prism, colorless |
Z = 2 | 0.27 × 0.16 × 0.10 mm |
F(000) = 404 |
Bruker D8 Venture diffractometer | 2900 independent reflections |
Radiation source: fine-focus sealed tube | 2454 reflections with I > 2σ(I) |
Multilayered confocal mirror monochromator | Rint = 0.046 |
Detector resolution: 7.4074 pixels mm-1 | θmax = 25.1°, θmin = 2.4° |
φ and ω scans | h = −11→11 |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | k = −6→7 |
Tmin = 0.97, Tmax = 0.99 | l = −20→20 |
8906 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.046 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.099 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + 1.1579P] where P = (Fo2 + 2Fc2)/3 |
2900 reflections | (Δ/σ)max < 0.001 |
250 parameters | Δρmax = 0.25 e Å−3 |
1 restraint | Δρmin = −0.25 e Å−3 |
Experimental. IR (film): 3423, 2985, 2934, 1631, 1488, 1245, 1039 cm-1; 1H NMR (500 MHz, CDCl3): δ (p.p.m.) 6.74 (d, J = 8.0 Hz, 1H), 6.70 (d, J = 1.7 Hz, 1H), 6.67 (dd, J = 8.0, 1.7 Hz, 1H), 5.92 (s, 2H), 5.91 (ddd, J = 15.5, 7.7, 0.9 Hz, 1H), 5.59 (ddd, J = 15.5, 8.0, 0.9 Hz, 1H), 4.65 (ddd, J = 8.0, 6.6, 0.9 Hz, 1H), 4.21 (ddd, J = 7.8, 6.6, 4.9 Hz, 1H), 3.87 (dddd, J = 8.3, 7.7, 6.3, 0.9 Hz, 1H), 3.65 (dd, J = 11.5, 7.8 Hz, 1H), 3.53 (dd, J = 11.5, 4.9 Hz, 1H), 3.05 (bs, 1H), 2.97 (s, 3H), 2.92 (s, 3H), 2.69 (dd, J = 15.8, 8.3 Hz, 1H), 2.65 (dd, J = 15.8, 6.3 Hz, 1H), 1.44 (s, 3H), 1.34 (s, 3H) 13C NMR (125 MHz, CDCl3): δ (p.p.m.) 171.5 (C), 147.9 (C), 146.3 (C), 137.2 (CH), 137.0 (C), 125.7 (CH), 120.4 (CH), 108.5 (CH), 108.5 (C), 108.0 (CH), 101.1 (CH2), 78.5 (CH), 78.0 (CH), 61.2 (CH2), 44.3 (CH), 39.5 (CH2), 37.4 (CH3), 35.7 (CH3), 27.9 (CH3), 25.2 (CH3) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 0.7840 (5) | 0.4010 (8) | 0.3009 (2) | 0.0229 (11) | |
O2 | 0.7683 (3) | 0.1982 (5) | 0.30040 (17) | 0.0241 (8) | |
N3 | 0.9032 (4) | 0.4967 (7) | 0.2740 (2) | 0.0264 (10) | |
C4 | 1.0102 (5) | 0.3627 (10) | 0.2343 (3) | 0.0399 (14) | |
H4A | 1.1059 | 0.3872 | 0.2585 | 0.06* | 0.54 (8) |
H4B | 1.0119 | 0.4047 | 0.1791 | 0.06* | 0.54 (8) |
H4C | 0.9845 | 0.2065 | 0.2386 | 0.06* | 0.54 (8) |
H4D | 1.0776 | 0.4595 | 0.2074 | 0.06* | 0.46 (8) |
H4E | 0.961 | 0.2664 | 0.1961 | 0.06* | 0.46 (8) |
H4F | 1.0637 | 0.2726 | 0.2726 | 0.06* | 0.46 (8) |
C5 | 0.9320 (5) | 0.7318 (9) | 0.2772 (3) | 0.0392 (14) | |
H5A | 0.9038 | 0.7994 | 0.2272 | 0.059* | |
H5B | 1.0353 | 0.7564 | 0.2877 | 0.059* | |
H5C | 0.8762 | 0.7985 | 0.3189 | 0.059* | |
C6 | 0.6671 (5) | 0.5503 (8) | 0.3324 (3) | 0.0231 (11) | |
H6A | 0.6536 | 0.678 | 0.297 | 0.028* | |
H6B | 0.6991 | 0.6073 | 0.3841 | 0.028* | |
C7 | 0.5221 (5) | 0.4312 (8) | 0.3404 (2) | 0.0203 (11) | |
H7 | 0.5401 | 0.2945 | 0.3718 | 0.024* | |
C8 | 0.4522 (4) | 0.3634 (8) | 0.2637 (2) | 0.0196 (10) | |
H8 | 0.3636 | 0.285 | 0.2667 | 0.024* | |
C9 | 0.4993 (5) | 0.3999 (8) | 0.1930 (2) | 0.0196 (10) | |
H9 | 0.5862 | 0.4819 | 0.1887 | 0.024* | |
C10 | 0.4268 (5) | 0.3224 (8) | 0.1190 (2) | 0.0226 (11) | |
H10 | 0.411 | 0.4503 | 0.0829 | 0.027* | |
O11 | 0.2905 (3) | 0.2221 (6) | 0.13541 (17) | 0.0267 (8) | |
C12 | 0.2523 (5) | 0.0853 (9) | 0.0707 (3) | 0.0293 (12) | |
O13 | 0.3853 (3) | 0.0390 (6) | 0.03211 (17) | 0.0307 (8) | |
C14 | 0.5029 (5) | 0.1354 (8) | 0.0758 (3) | 0.0226 (11) | |
H14 | 0.5745 | 0.1988 | 0.0393 | 0.027* | |
C15 | 0.5753 (5) | −0.0380 (8) | 0.1267 (3) | 0.0285 (12) | |
H15A | 0.5174 | −0.0624 | 0.1737 | 0.034* | |
H15B | 0.5794 | −0.1789 | 0.0977 | 0.034* | |
O16 | 0.7180 (4) | 0.0271 (7) | 0.14982 (19) | 0.0412 (10) | |
H16 | 0.7171 | 0.0809 | 0.195 | 0.062* | |
C17 | 0.1518 (5) | 0.2026 (10) | 0.0138 (3) | 0.0397 (14) | |
H17A | 0.0589 | 0.2292 | 0.0383 | 0.06* | |
H17B | 0.1365 | 0.1109 | −0.0327 | 0.06* | |
H17C | 0.1946 | 0.3437 | −0.0011 | 0.06* | |
C18 | 0.1877 (6) | −0.1273 (10) | 0.1010 (3) | 0.0411 (14) | |
H18A | 0.2555 | −0.1955 | 0.1387 | 0.062* | |
H18B | 0.1695 | −0.2286 | 0.0573 | 0.062* | |
H18C | 0.0966 | −0.0949 | 0.1265 | 0.062* | |
C19 | 0.3611 (5) | 0.7677 (8) | 0.3512 (3) | 0.0244 (11) | |
H19 | 0.3863 | 0.8103 | 0.3 | 0.029* | |
C20 | 0.4189 (4) | 0.5773 (8) | 0.3858 (2) | 0.0193 (10) | |
C21 | 0.3817 (4) | 0.5197 (8) | 0.4614 (2) | 0.0217 (11) | |
H21 | 0.4223 | 0.3907 | 0.4845 | 0.026* | |
C22 | 0.2856 (5) | 0.6487 (8) | 0.5039 (3) | 0.0262 (12) | |
H22 | 0.2598 | 0.6091 | 0.5554 | 0.031* | |
C23 | 0.2304 (4) | 0.8334 (9) | 0.4685 (2) | 0.0223 (11) | |
C24 | 0.2668 (5) | 0.8908 (8) | 0.3937 (3) | 0.0248 (11) | |
O25 | 0.1991 (3) | 1.0850 (6) | 0.37196 (19) | 0.0325 (9) | |
C26 | 0.0979 (5) | 1.1294 (9) | 0.4323 (3) | 0.0329 (13) | |
H26A | −0.0019 | 1.0976 | 0.4134 | 0.039* | |
H26B | 0.1034 | 1.2863 | 0.4481 | 0.039* | |
O27 | 0.1358 (4) | 0.9890 (6) | 0.49743 (18) | 0.0340 (9) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.024 (3) | 0.029 (3) | 0.016 (2) | 0.004 (2) | −0.0004 (19) | −0.002 (2) |
O2 | 0.0264 (18) | 0.019 (2) | 0.0266 (18) | 0.0065 (16) | 0.0026 (14) | 0.0004 (15) |
N3 | 0.020 (2) | 0.021 (2) | 0.039 (2) | 0.0047 (19) | 0.0074 (18) | 0.002 (2) |
C4 | 0.026 (3) | 0.040 (4) | 0.054 (3) | 0.010 (3) | 0.013 (3) | 0.004 (3) |
C5 | 0.023 (3) | 0.032 (3) | 0.063 (4) | −0.003 (3) | 0.006 (3) | 0.000 (3) |
C6 | 0.026 (2) | 0.021 (3) | 0.022 (2) | 0.002 (2) | 0.0007 (19) | −0.003 (2) |
C7 | 0.020 (2) | 0.019 (3) | 0.022 (2) | 0.003 (2) | 0.0036 (19) | −0.002 (2) |
C8 | 0.016 (2) | 0.017 (3) | 0.026 (2) | 0.002 (2) | −0.0001 (19) | −0.004 (2) |
C9 | 0.020 (2) | 0.016 (3) | 0.023 (2) | 0.001 (2) | 0.0035 (19) | −0.004 (2) |
C10 | 0.025 (3) | 0.022 (3) | 0.021 (2) | 0.001 (2) | 0.0038 (19) | 0.003 (2) |
O11 | 0.0209 (17) | 0.033 (2) | 0.0267 (18) | −0.0023 (16) | 0.0037 (13) | −0.0100 (16) |
C12 | 0.029 (3) | 0.034 (3) | 0.025 (3) | 0.000 (3) | 0.002 (2) | −0.009 (2) |
O13 | 0.0283 (18) | 0.035 (2) | 0.0285 (18) | −0.0009 (17) | −0.0008 (14) | −0.0128 (17) |
C14 | 0.025 (3) | 0.023 (3) | 0.020 (2) | 0.000 (2) | 0.0027 (19) | −0.004 (2) |
C15 | 0.034 (3) | 0.024 (3) | 0.028 (3) | 0.005 (2) | −0.002 (2) | −0.006 (2) |
O16 | 0.034 (2) | 0.052 (3) | 0.037 (2) | 0.014 (2) | −0.0049 (15) | −0.015 (2) |
C17 | 0.035 (3) | 0.050 (4) | 0.034 (3) | 0.007 (3) | −0.008 (2) | −0.009 (3) |
C18 | 0.038 (3) | 0.041 (4) | 0.044 (3) | −0.007 (3) | −0.001 (3) | −0.001 (3) |
C19 | 0.025 (2) | 0.028 (3) | 0.021 (2) | −0.001 (2) | 0.0068 (19) | 0.001 (2) |
C20 | 0.018 (2) | 0.025 (3) | 0.015 (2) | 0.000 (2) | 0.0010 (18) | −0.004 (2) |
C21 | 0.019 (2) | 0.021 (3) | 0.025 (2) | −0.001 (2) | −0.0010 (19) | −0.002 (2) |
C22 | 0.026 (3) | 0.033 (3) | 0.020 (2) | −0.002 (2) | 0.006 (2) | −0.003 (2) |
C23 | 0.016 (2) | 0.031 (3) | 0.021 (2) | −0.007 (2) | 0.0101 (19) | −0.012 (2) |
C24 | 0.020 (2) | 0.025 (3) | 0.029 (3) | 0.001 (2) | 0.001 (2) | −0.002 (2) |
O25 | 0.0294 (19) | 0.026 (2) | 0.043 (2) | 0.0087 (17) | 0.0114 (15) | 0.0002 (17) |
C26 | 0.027 (3) | 0.031 (3) | 0.040 (3) | 0.000 (2) | 0.010 (2) | −0.014 (3) |
O27 | 0.0312 (19) | 0.038 (2) | 0.033 (2) | 0.0068 (18) | 0.0115 (15) | −0.0093 (18) |
C1—O2 | 1.239 (6) | C12—C18 | 1.518 (7) |
C1—N3 | 1.339 (6) | O13—C14 | 1.429 (5) |
C1—C6 | 1.521 (6) | C14—C15 | 1.512 (6) |
N3—C5 | 1.452 (7) | C14—H14 | 1.0 |
N3—C4 | 1.462 (6) | C15—O16 | 1.425 (6) |
C4—H4A | 0.98 | C15—H15A | 0.99 |
C4—H4B | 0.98 | C15—H15B | 0.99 |
C4—H4C | 0.98 | O16—H16 | 0.84 |
C4—H4D | 0.98 | C17—H17A | 0.98 |
C4—H4E | 0.98 | C17—H17B | 0.98 |
C4—H4F | 0.98 | C17—H17C | 0.98 |
C5—H5A | 0.98 | C18—H18A | 0.98 |
C5—H5B | 0.98 | C18—H18B | 0.98 |
C5—H5C | 0.98 | C18—H18C | 0.98 |
C6—C7 | 1.533 (6) | C19—C24 | 1.373 (6) |
C6—H6A | 0.99 | C19—C20 | 1.398 (7) |
C6—H6B | 0.99 | C19—H19 | 0.95 |
C7—C8 | 1.508 (6) | C20—C21 | 1.394 (6) |
C7—C20 | 1.530 (6) | C21—C22 | 1.403 (6) |
C7—H7 | 1.0 | C21—H21 | 0.95 |
C8—C9 | 1.317 (6) | C22—C23 | 1.366 (7) |
C8—H8 | 0.95 | C22—H22 | 0.95 |
C9—C10 | 1.496 (6) | C23—C24 | 1.379 (6) |
C9—H9 | 0.95 | C23—O27 | 1.387 (6) |
C10—O11 | 1.435 (5) | C24—O25 | 1.381 (6) |
C10—C14 | 1.535 (6) | O25—C26 | 1.439 (5) |
C10—H10 | 1.0 | C26—O27 | 1.440 (6) |
O11—C12 | 1.422 (5) | C26—H26A | 0.99 |
C12—O13 | 1.440 (5) | C26—H26B | 0.99 |
C12—C17 | 1.509 (7) | ||
O2—C1—N3 | 121.7 (4) | C17—C12—C18 | 112.3 (4) |
O2—C1—C6 | 120.6 (4) | C14—O13—C12 | 109.1 (3) |
N3—C1—C6 | 117.7 (4) | O13—C14—C15 | 109.8 (4) |
C1—N3—C5 | 124.4 (4) | O13—C14—C10 | 101.7 (3) |
C1—N3—C4 | 119.6 (4) | C15—C14—C10 | 115.9 (4) |
C5—N3—C4 | 116.0 (4) | O13—C14—H14 | 109.7 |
N3—C4—H4A | 109.5 | C15—C14—H14 | 109.7 |
N3—C4—H4B | 109.5 | C10—C14—H14 | 109.7 |
H4A—C4—H4B | 109.5 | O16—C15—C14 | 111.2 (4) |
N3—C4—H4C | 109.5 | O16—C15—H15A | 109.4 |
H4A—C4—H4C | 109.5 | C14—C15—H15A | 109.4 |
H4B—C4—H4C | 109.5 | O16—C15—H15B | 109.4 |
N3—C4—H4D | 109.5 | C14—C15—H15B | 109.4 |
N3—C4—H4E | 109.5 | H15A—C15—H15B | 108.0 |
H4D—C4—H4E | 109.5 | C15—O16—H16 | 109.5 |
N3—C4—H4F | 109.5 | C12—C17—H17A | 109.5 |
H4D—C4—H4F | 109.5 | C12—C17—H17B | 109.5 |
H4E—C4—H4F | 109.5 | H17A—C17—H17B | 109.5 |
N3—C5—H5A | 109.5 | C12—C17—H17C | 109.5 |
N3—C5—H5B | 109.5 | H17A—C17—H17C | 109.5 |
H5A—C5—H5B | 109.5 | H17B—C17—H17C | 109.5 |
N3—C5—H5C | 109.5 | C12—C18—H18A | 109.5 |
H5A—C5—H5C | 109.5 | C12—C18—H18B | 109.5 |
H5B—C5—H5C | 109.5 | H18A—C18—H18B | 109.5 |
C1—C6—C7 | 112.6 (4) | C12—C18—H18C | 109.5 |
C1—C6—H6A | 109.1 | H18A—C18—H18C | 109.5 |
C7—C6—H6A | 109.1 | H18B—C18—H18C | 109.5 |
C1—C6—H6B | 109.1 | C24—C19—C20 | 117.7 (4) |
C7—C6—H6B | 109.1 | C24—C19—H19 | 121.1 |
H6A—C6—H6B | 107.8 | C20—C19—H19 | 121.1 |
C8—C7—C20 | 110.0 (3) | C21—C20—C19 | 120.1 (4) |
C8—C7—C6 | 114.0 (4) | C21—C20—C7 | 120.0 (4) |
C20—C7—C6 | 109.4 (4) | C19—C20—C7 | 120.0 (4) |
C8—C7—H7 | 107.7 | C20—C21—C22 | 121.2 (4) |
C20—C7—H7 | 107.7 | C20—C21—H21 | 119.4 |
C6—C7—H7 | 107.7 | C22—C21—H21 | 119.4 |
C9—C8—C7 | 127.7 (4) | C23—C22—C21 | 117.4 (4) |
C9—C8—H8 | 116.1 | C23—C22—H22 | 121.3 |
C7—C8—H8 | 116.1 | C21—C22—H22 | 121.3 |
C8—C9—C10 | 125.1 (4) | C22—C23—C24 | 121.5 (4) |
C8—C9—H9 | 117.4 | C22—C23—O27 | 129.1 (4) |
C10—C9—H9 | 117.4 | C24—C23—O27 | 109.4 (4) |
O11—C10—C9 | 110.1 (4) | C19—C24—C23 | 122.1 (5) |
O11—C10—C14 | 101.4 (4) | C19—C24—O25 | 127.6 (4) |
C9—C10—C14 | 116.1 (4) | C23—C24—O25 | 110.3 (4) |
O11—C10—H10 | 109.6 | C24—O25—C26 | 105.3 (4) |
C9—C10—H10 | 109.6 | O25—C26—O27 | 107.3 (4) |
C14—C10—H10 | 109.6 | O25—C26—H26A | 110.3 |
C12—O11—C10 | 107.2 (3) | O27—C26—H26A | 110.3 |
O11—C12—O13 | 105.9 (3) | O25—C26—H26B | 110.3 |
O11—C12—C17 | 111.5 (4) | O27—C26—H26B | 110.3 |
O13—C12—C17 | 108.3 (4) | H26A—C26—H26B | 108.5 |
O11—C12—C18 | 108.7 (4) | C23—O27—C26 | 105.6 (3) |
O13—C12—C18 | 109.9 (4) | ||
O2—C1—N3—C5 | −176.1 (5) | C9—C10—C14—C15 | 36.9 (6) |
C6—C1—N3—C5 | 3.8 (7) | O13—C14—C15—O16 | 159.9 (3) |
O2—C1—N3—C4 | 7.7 (7) | C10—C14—C15—O16 | −85.6 (5) |
C6—C1—N3—C4 | −172.4 (4) | C24—C19—C20—C21 | −0.8 (6) |
O2—C1—C6—C7 | −15.6 (6) | C24—C19—C20—C7 | 178.7 (4) |
N3—C1—C6—C7 | 164.4 (4) | C8—C7—C20—C21 | 124.5 (4) |
C1—C6—C7—C8 | −66.5 (5) | C6—C7—C20—C21 | −109.5 (5) |
C1—C6—C7—C20 | 169.8 (4) | C8—C7—C20—C19 | −55.0 (6) |
C20—C7—C8—C9 | 121.4 (5) | C6—C7—C20—C19 | 71.0 (5) |
C6—C7—C8—C9 | −1.9 (7) | C19—C20—C21—C22 | 0.6 (6) |
C7—C8—C9—C10 | 178.2 (4) | C7—C20—C21—C22 | −179.0 (4) |
C8—C9—C10—O11 | 6.0 (7) | C20—C21—C22—C23 | −0.3 (7) |
C8—C9—C10—C14 | −108.5 (5) | C21—C22—C23—C24 | 0.4 (7) |
C9—C10—O11—C12 | −159.5 (4) | C21—C22—C23—O27 | −179.2 (4) |
C14—C10—O11—C12 | −36.0 (4) | C20—C19—C24—C23 | 0.9 (7) |
C10—O11—C12—O13 | 21.5 (5) | C20—C19—C24—O25 | 178.9 (4) |
C10—O11—C12—C17 | −96.1 (5) | C22—C23—C24—C19 | −0.7 (7) |
C10—O11—C12—C18 | 139.5 (4) | O27—C23—C24—C19 | 178.9 (4) |
O11—C12—O13—C14 | 3.5 (5) | C22—C23—C24—O25 | −179.0 (4) |
C17—C12—O13—C14 | 123.2 (4) | O27—C23—C24—O25 | 0.6 (5) |
C18—C12—O13—C14 | −113.8 (4) | C19—C24—O25—C26 | 172.4 (5) |
C12—O13—C14—C15 | 98.5 (4) | C23—C24—O25—C26 | −9.4 (5) |
C12—O13—C14—C10 | −24.8 (5) | C24—O25—C26—O27 | 14.4 (5) |
O11—C10—C14—O13 | 36.5 (4) | C22—C23—O27—C26 | −172.0 (5) |
C9—C10—C14—O13 | 155.8 (4) | C24—C23—O27—C26 | 8.4 (5) |
O11—C10—C14—C15 | −82.5 (4) | O25—C26—O27—C23 | −14.1 (5) |
Cg is the centroid of the C19–C24 benzene ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O16—H16···O2 | 0.84 | 1.99 | 2.810 (5) | 166 |
C14—H14···O13i | 1.00 | 2.43 | 3.253 (6) | 139 |
C5—H5A···O16ii | 0.98 | 2.55 | 3.417 (7) | 147 |
C22—H22···O2iii | 0.95 | 2.55 | 3.417 (5) | 152 |
C21—H21···Cgiv | 0.95 | 2.98 | 3.794 (4) | 145 |
Symmetry codes: (i) −x+1, y+1/2, −z; (ii) x, y+1, z; (iii) −x+1, y+1/2, −z+1; (iv) −x+1, y−1/2, −z+1. |
Acknowledgements
We also thank Professor S. Ohba (Keio University, Japan) for his advice.
Funding information
Funding for this research was provided by: Keio Gijuku Fukuzawa Memorial Fund for the Advancement of Education and Research.
References
Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Doyle, T. J., Hendrix, M. & Haseltine, J. (1995). Tetrahedron Lett. 35, 8295–8298. CrossRef Google Scholar
Doyle, T. J., VanDerveer, D. & Haseltine, J. (1994). Tetrahedron Lett. 36, 6197–6200. CrossRef Google Scholar
Gelas, J. & Horton, D. (1975). Carbohydr. Res. 45, 181–195. CrossRef Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ishii, K., Seki, Y., Ishibashi, M., Sato, T. & Chida, N. (2018). preparation. Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Rotherham, L. W. & Semple, J. E. (1998). J. Org. Chem. 63, 6667–6672. CrossRef Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Vijayasaradhi, S., Aidhen, I. S. & Varghese, B. (2003). Carbohydr. Res. 338, 2899–2903. CrossRef Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wuts, P. G. M. (2014). Green's Protective Groups in Organic Synthesis, 5th ed., pp. 385–456, 465–468 and 545–552. New York: John Wiley & Sons Inc. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.