research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of a new polymorph of (2S,3S)-2-amino-3-methyl­penta­noic acid

CROSSMARK_Color_square_no_text.svg

aDepartment of Materials and Interfaces, Weizmann Institute of Science, Israel, and bChemical Research Support Unit, Weizmann Institute of Science, Israel
*Correspondence e-mail: yael.diskin-posner@weizmann.ac.il

Edited by A. J. Lough, University of Toronto, Canada (Received 2 April 2018; accepted 22 April 2018; online 1 May 2018)

A new polymorph of (2S,3S)-2-amino-3-methyl­penta­noic acid, L-isoleucine C6H13NO2, crystallizes in the monoclinic space group P21 with four independent mol­ecules in the asymmetric unit. The mol­ecules are zwitterions. In the crystal, N—H⋯O hydrogen bonds link two pairs of independent mol­ecules and their symmetry-related counterparts to form two types of layers stacked in an anti-parallel manner parallel to (001). The hydro­phobic aliphatic isopropyl groups protrude from these layers.

1. Chemical context

(2S,3S)-2-Amino-3-methyl­penta­noic acid, known as L-isoleucine (L-Ile), is one of the 20 amino acids common in animal proteins and required for normal functioning in humans. L-Ile is classified as a hydro­phobic amino acid and is one of the two common amino acids that has a chiral side chain. L-Ile is essential for human muscle tissue recovery after exercise, along with Valine and Leucine.

[Scheme 1]

The structure of L-Ile was first determined by Torii & Iitaka (1971[Torii, K. & Iitaka, Y. (1971). Acta Cryst. B27, 2237-2246.]). The crystal was found to belong to the monoclinic space group P21, with four mol­ecules in the unit cell, Z = 4. The asymmetric unit contains two independent mol­ecules, with the side chain of the L-Ile mol­ecules exhibiting two different conformations (Görbitz & Dalhus, 1996[Görbitz, C. H. & Dalhus, B. (1996). Acta Cryst. C52, 1464-1466.]; Torii & Iitaka, 1971[Torii, K. & Iitaka, Y. (1971). Acta Cryst. B27, 2237-2246.]). Another polymorph in the ortho­rhom­bic space group P2221 with the unit cell containing eight mol­ecules was reported by Khawas (1970[Khawas, B. (1970). Acta Cryst. B26, 1385-1387.]). The presence of an additional L-Ile polymorph is supported by X-ray powder diffraction measurements by Anuar et al. (2009[Anuar, N., Daud, W. R. W., Roberts, K. J., Kamarudin, S. K. & Tasirin, S. M. (2009). Cryst. Growth Des. 9, 2853-2862.]), who suggested that L-Ile is prone to polymorphism as a result of the structural thermal motion of the aliphatic side chain.

2. Structural commentary

In the structure of the title compound there are four L-Ile mol­ecules in the asymmetric unit (Fig. 1[link]). The mol­ecules are zwitterions and organized in pairs. The hydro­philic parts of the mol­ecules are facing each other and generate inter­molecular N—H⋯O hydrogen bonds (Table 1[link]), within the pair and with symmetry-related pairs. The aliphatic parts of the mol­ecules are exposed, pointing away from the hydrogen-bonded network, creating a hydro­phobic layer (Fig. 2[link]). A similar network pattern was described previously (Görbitz & Dalhus, 1996[Görbitz, C. H. & Dalhus, B. (1996). Acta Cryst. C52, 1464-1466.]; Torii & Iitaka, 1971[Torii, K. & Iitaka, Y. (1971). Acta Cryst. B27, 2237-2246.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.91 1.96 2.853 (5) 165
N3—H3A⋯O5ii 0.91 1.93 2.820 (5) 165
N3—H3B⋯O3iii 0.91 2.01 2.818 (5) 147
N3—H3C⋯O3iv 0.91 1.87 2.773 (4) 172
N4—H4D⋯O8i 0.91 1.97 2.843 (5) 162
N2—H2A⋯O5 0.91 2.19 3.055 (5) 159
N2—H2A⋯O6 0.91 2.20 2.953 (5) 139
N2—H2C⋯O6v 0.91 1.85 2.762 (5) 174
N2—H2B⋯O4ii 0.91 1.94 2.826 (5) 163
Symmetry codes: (i) x, y-1, z; (ii) x, y+1, z; (iii) [-x+1, y+{\script{1\over 2}}, -z+1]; (iv) x-1, y+1, z; (v) [-x+1, y-{\script{1\over 2}}, -z+1].
[Figure 1]
Figure 1
The asymmetric unit of the title compound with atomic numbering. Displacement ellipsoids are shown at the 50% probability level.
[Figure 2]
Figure 2
Part of the crystal structure viewed perpendicular to the ac plane showing adjacent anti-parallel layers formed by hydrogen-bonded pairs and symmetry-related mol­ecules. The hydro­phobic side chains protrude away and stack together. Displacement ellipsoids are shown at the 50% probability level (C atoms black, O red, N blue). H atoms are omitted for clarity. Blue dashed lines denote hydrogen bonds.

The existence of another chiral center in the side chain allows for conformational differences. Each L-Ile pair consists of two types of conformers. This is presented in the values of the following torsion angles. The two mol­ecules of conformer type I have torsion angles N1—C2—C3—C6 = 80.1 (4)°, N1—C2—C3—C4 = −155.4 (3)° and N3—C14—C15—C18 = 78.1 (4)°, N3—C14—C15—C16 = −155.8 (3)°. The other two mol­ecules are of conformer type II with the torsion angles N2—C8—C9—C12 = 178.6 (4)°, N2—C8—C9—C10 = −56.9 (5)° and N4—C20—C21—C24 = 179.1 (4)°, N4—C20—C21—C22 = −56.8 (5)°. Furthermore, there is a minor conformational variance between all the four independent mol­ecules, as illus­trated by the torsion angles of the iso-propyl side chains: C6—C3—C4—C5 = −56.6 (5)°, C12—C9—C10—C11 = −51.6 (6)°, C18—C15—C16—C17 = −58.9 (5)° and C24—C21—C22—C23 = −53.2 (6)°.

3. Supra­molecular features

In the crystal, N—H⋯O hydrogen bonds (Table 1[link]) connect the mol­ecules, forming layers parallel to (001). The polar side of L-Ile is embedded inside the layers while the side chains are oriented away, creating a hydro­phobic surface. However, this hydrogen-bonding network has directionality along the polar b axis and specifically parallel to (001) (see Figs. 2[link] and 3[link]). The adjacent layer is slightly rotated and grows in the opposite direction to the first one, an anti-parallel layer. The structure is composed of alternating layers with the hydro­philic side generating a hydrogen-bonding network growing in the opposite direction and the hydro­phobic side chains are directed outside. There is a slight offset between the layers to allow the hydro­phobic side chains to fit the gaps in the adjacent layer surface.

[Figure 3]
Figure 3
Part of the crystal structure viewed perpendicular to the bc plane showing adjacent anti-parallel layers formed by the hydrogen-bonded mol­ecule pairs and symmetry-related mol­ecules. The hydro­phobic side chains protrude away and are stacked together. Displacement ellipsoids are shown at the 50% probability level (C atoms black, O red, N blue). H atoms are omitted for clarity. Blue dashed lines denote hydrogen bonds.

4. Database survey

A comparison between the polymorph presented in this paper and the one reported by Görbitz & Dalhus (1996[Görbitz, C. H. & Dalhus, B. (1996). Acta Cryst. C52, 1464-1466.]) is presented in Fig. 4[link]. Both structures have the same monoclinic crystallographic P21 symmetry; however, one has four mol­ecules in the unit cell and the other has only two. As described above, the layers show growth directionality and a pair of L-Ile mol­ecules manage the layer organization. The new polymorph has alternating layers in opposite direction, anti-parallel, unlike the polymorph reported by Görbitz & Dalhus (1996[Görbitz, C. H. & Dalhus, B. (1996). Acta Cryst. C52, 1464-1466.]), that has only parallel layers.

[Figure 4]
Figure 4
Overlay of two structures with mol­ecules presented as capped sticks along the b axis. The previous monoclinic P21 polymorph with two mol­ecules in the asymmetric unit is the small unit cell with all mol­ecules colored in gray and ordered in a parallel layer arrangement. The new monoclinic P21 polymorph has four mol­ecules in the asymmetric unit (colored red, blue, yellow and green). The colors are according to symmetry equivalence. While the blue and red pairs form exactly the same network layer as the polymorph reported by Görbitz & Dalhus (1996[Görbitz, C. H. & Dalhus, B. (1996). Acta Cryst. C52, 1464-1466.]), it is evident that the green and yellow pairs have a different orientation, with an anti-parallel layer arrangement.

5. Synthesis and crystallization

Single crystals of L-Ile were grown from supersaturated aqueous solutions, via slow evaporation at 323 K in a clean-room environment. The L-Ile powder (Holand–Moran 99%) was dissolved in water (Ultra-pure Millipore water, 18.2 MΩ cm at 298 K, Millipore Synergy UV, Type 1 water) by heating to 353 K, with constant stirring until total dissolution. The hot solution was then filtered through cotton wool into glass crystallization dishes, which were covered with filter paper in order to allow slow evaporation, placed in a heating bath. Colorless crystal chunks, suitable for X-ray crystallographic analysis were obtained. The absolute configuration of the title compound is already known.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were placed in calculated positions with C—H = 0.98–1.00 Å, N—H = 0.91 Å and included in the refinement in a riding-model approximation with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(N, Cmeth­yl).

Table 2
Experimental details

Crystal data
Chemical formula C6H13NO2
Mr 131.17
Crystal system, space group Monoclinic, P21
Temperature (K) 100
a, b, c (Å) 9.6757 (5), 5.2885 (3), 28.0136 (15)
β (°) 98.300 (3)
V3) 1418.44 (13)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.50 × 0.20 × 0.15
 
Data collection
Diffractometer Bruker APEXII KappaCCD
Absorption correction Multi-scan (SADABS; Bruker, 2015[Bruker (2015). APEX2, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.956, 0.987
No. of measured, independent and observed [I > 2σ(I)] reflections 44938, 7935, 7188
Rint 0.060
(sin θ/λ)max−1) 0.694
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.077, 0.211, 1.15
No. of reflections 7935
No. of parameters 338
No. of restraints 7
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.58, −0.42
Absolute structure Flack x determined using 2758 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.2 (4)
Computer programs: APEX2 and SAINT (Bruker, 2015[Bruker (2015). APEX2, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), CrystalMaker (CrystalMaker, 2013[CrystalMaker (2013). CrystalMaker. CrystalMaker Software Limited, Oxfordshire, England.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2009), CrystalMaker (CrystalMaker, 2013) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b).

(2S,3S)-2-Amino-3-methylpentanoic acid top
Crystal data top
C6H13NO2F(000) = 576
Mr = 131.17Dx = 1.228 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 9.6757 (5) ÅCell parameters from 47498 reflections
b = 5.2885 (3) Åθ = 0.7–30.6°
c = 28.0136 (15) ŵ = 0.09 mm1
β = 98.300 (3)°T = 100 K
V = 1418.44 (13) Å3Prism, colorless
Z = 80.50 × 0.20 × 0.15 mm
Data collection top
Bruker APEXII KappaCCD
diffractometer
7188 reflections with I > 2σ(I)
φ and ω scansRint = 0.060
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
θmax = 29.6°, θmin = 2.8°
Tmin = 0.956, Tmax = 0.987h = 1313
44938 measured reflectionsk = 77
7935 independent reflectionsl = 3838
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0831P)2 + 2.4061P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.077(Δ/σ)max = 0.005
wR(F2) = 0.211Δρmax = 0.58 e Å3
S = 1.15Δρmin = 0.42 e Å3
7935 reflectionsExtinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
338 parametersExtinction coefficient: 0.043 (6)
7 restraintsAbsolute structure: Flack x determined using 2758 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Hydrogen site location: inferred from neighbouring sitesAbsolute structure parameter: 0.2 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.8884 (3)0.5064 (6)0.04413 (11)0.0166 (6)
O20.8218 (3)0.8831 (6)0.06814 (11)0.0162 (6)
C10.8005 (4)0.6525 (8)0.05824 (14)0.0125 (7)
C20.6598 (4)0.5418 (8)0.06684 (14)0.0126 (7)
H20.58430.66150.05310.015*
N10.6375 (3)0.2952 (7)0.04012 (12)0.0128 (6)
H1A0.70630.18470.05180.019*
H1B0.63960.32190.00810.019*
H1C0.55310.22970.04430.019*
C30.6498 (4)0.5036 (8)0.12085 (15)0.0155 (8)
H30.57340.37910.12340.019*
C40.6086 (5)0.7558 (10)0.14216 (16)0.0223 (9)
H4A0.68050.88370.13790.027*
H4B0.51920.81350.12370.027*
C50.5922 (6)0.7431 (12)0.19564 (18)0.0311 (11)
H5A0.68320.70800.21480.047*
H5B0.52650.60800.20070.047*
H5C0.55660.90510.20570.047*
C60.7850 (4)0.3964 (9)0.14852 (15)0.0194 (8)
H6A0.76850.34260.18070.029*
H6B0.85760.52690.15160.029*
H6C0.81530.25100.13100.029*
O30.8415 (3)0.0087 (6)0.45421 (11)0.0164 (6)
O40.7533 (3)0.3784 (6)0.44210 (13)0.0219 (7)
C70.7422 (4)0.1469 (8)0.44123 (14)0.0142 (7)
C80.6019 (4)0.0244 (8)0.42024 (15)0.0146 (8)
H80.52500.14920.42180.018*
N20.5777 (4)0.2014 (8)0.44997 (13)0.0172 (7)
H2A0.48520.24100.44520.026*
H2B0.62780.33450.44110.026*
H2C0.60530.16610.48170.026*
C90.6022 (4)0.0536 (9)0.36746 (15)0.0178 (8)
H90.68020.17690.36660.021*
C100.4661 (5)0.1855 (10)0.34710 (17)0.0229 (9)
H10A0.45790.34360.36540.027*
H10B0.38680.07510.35210.027*
C110.4548 (6)0.2498 (11)0.29339 (17)0.0286 (11)
H11A0.43690.09490.27430.043*
H11B0.54240.32630.28690.043*
H11C0.37790.36920.28460.043*
C120.6304 (8)0.1739 (12)0.3372 (2)0.0400 (15)
H12A0.63930.11830.30440.060*
H12B0.55270.29380.33600.060*
H12C0.71720.25620.35160.060*
O50.2587 (3)0.1881 (6)0.43174 (12)0.0184 (6)
O60.3479 (3)0.5641 (6)0.45466 (11)0.0165 (6)
C130.2467 (4)0.4193 (8)0.44065 (14)0.0144 (8)
C140.0998 (4)0.5344 (8)0.43171 (15)0.0138 (7)
H140.03400.41580.44480.017*
N30.1002 (3)0.7776 (7)0.45836 (12)0.0145 (7)
H3A0.15550.89110.44570.022*
H3B0.13380.75150.49000.022*
H3C0.01160.83900.45570.022*
C150.0477 (4)0.5754 (9)0.37737 (15)0.0162 (8)
H150.03100.69950.37490.019*
C160.0116 (5)0.3277 (10)0.35459 (17)0.0241 (10)
H16A0.08290.26290.37360.029*
H16B0.06450.20140.35670.029*
C170.0782 (6)0.3523 (12)0.30162 (19)0.0325 (12)
H17A0.00610.39610.28180.049*
H17B0.14950.48530.29870.049*
H17C0.12160.19120.29050.049*
C180.1600 (5)0.6889 (9)0.35062 (16)0.0192 (8)
H18A0.11840.73510.31780.029*
H18B0.23430.56440.34920.029*
H18C0.19930.84010.36770.029*
O70.3780 (3)0.0868 (6)0.04550 (11)0.0161 (6)
O80.3022 (3)0.4780 (6)0.05701 (12)0.0201 (7)
C190.2915 (4)0.2440 (8)0.05879 (14)0.0141 (7)
C200.1698 (4)0.1267 (8)0.08112 (14)0.0134 (7)
H200.09260.25350.07950.016*
N40.1169 (4)0.1027 (7)0.05243 (13)0.0156 (7)
H4C0.02950.14100.05850.023*
H4D0.17490.23570.06100.023*
H4E0.11430.07020.02040.023*
C210.2165 (4)0.0562 (9)0.13404 (15)0.0169 (8)
H210.29440.06880.13520.020*
C220.0973 (5)0.0696 (12)0.15609 (18)0.0301 (12)
H22A0.01530.04450.15170.036*
H22B0.07020.22750.13820.036*
C230.1336 (6)0.1325 (13)0.20962 (18)0.0325 (12)
H23A0.13030.02200.22870.049*
H23B0.22780.20480.21570.049*
H23C0.06620.25520.21880.049*
C240.2721 (7)0.2875 (13)0.1629 (2)0.0404 (14)
H24A0.19400.39710.16810.061*
H24B0.33570.38060.14500.061*
H24C0.32250.23380.19410.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0092 (12)0.0188 (16)0.0221 (15)0.0007 (11)0.0029 (10)0.0017 (12)
O20.0148 (13)0.0118 (14)0.0225 (15)0.0048 (11)0.0043 (11)0.0015 (12)
C10.0086 (16)0.0147 (18)0.0139 (16)0.0025 (13)0.0001 (12)0.0019 (14)
C20.0090 (15)0.0120 (18)0.0170 (17)0.0032 (14)0.0020 (13)0.0007 (14)
N10.0104 (14)0.0107 (15)0.0165 (15)0.0019 (11)0.0011 (12)0.0008 (12)
C30.0121 (16)0.018 (2)0.0159 (17)0.0024 (14)0.0017 (13)0.0004 (15)
C40.024 (2)0.024 (2)0.021 (2)0.0029 (18)0.0066 (16)0.0020 (17)
C50.035 (3)0.036 (3)0.025 (2)0.001 (2)0.012 (2)0.006 (2)
C60.0179 (19)0.023 (2)0.0168 (18)0.0006 (16)0.0000 (15)0.0030 (16)
O30.0109 (12)0.0159 (15)0.0218 (14)0.0014 (11)0.0001 (10)0.0033 (11)
O40.0164 (15)0.0124 (15)0.0365 (19)0.0049 (11)0.0030 (13)0.0001 (13)
C70.0112 (17)0.0148 (19)0.0160 (18)0.0024 (14)0.0001 (13)0.0005 (14)
C80.0094 (16)0.0138 (18)0.0205 (19)0.0011 (13)0.0019 (14)0.0010 (15)
N20.0128 (15)0.0223 (19)0.0172 (16)0.0095 (14)0.0045 (12)0.0038 (14)
C90.0129 (17)0.021 (2)0.0187 (19)0.0011 (15)0.0004 (14)0.0004 (16)
C100.0144 (19)0.033 (3)0.021 (2)0.0019 (18)0.0013 (15)0.0027 (18)
C110.031 (2)0.034 (3)0.019 (2)0.009 (2)0.0027 (17)0.0027 (19)
C120.060 (4)0.036 (3)0.021 (2)0.017 (3)0.003 (2)0.011 (2)
O50.0156 (14)0.0139 (15)0.0257 (15)0.0046 (11)0.0028 (11)0.0002 (12)
O60.0122 (13)0.0194 (16)0.0177 (14)0.0013 (11)0.0015 (10)0.0007 (12)
C130.0107 (16)0.018 (2)0.0139 (17)0.0063 (14)0.0017 (13)0.0034 (14)
C140.0080 (15)0.0159 (19)0.0176 (18)0.0008 (14)0.0016 (13)0.0012 (15)
N30.0118 (15)0.0158 (17)0.0166 (16)0.0020 (13)0.0043 (12)0.0028 (13)
C150.0119 (17)0.020 (2)0.0162 (18)0.0027 (15)0.0004 (14)0.0009 (15)
C160.020 (2)0.027 (2)0.023 (2)0.0042 (18)0.0031 (16)0.0015 (18)
C170.028 (2)0.040 (3)0.027 (2)0.003 (2)0.0058 (19)0.007 (2)
C180.0201 (19)0.017 (2)0.0203 (19)0.0000 (16)0.0041 (15)0.0056 (16)
O70.0101 (12)0.0177 (15)0.0214 (14)0.0005 (11)0.0048 (10)0.0034 (11)
O80.0194 (15)0.0144 (15)0.0273 (16)0.0022 (12)0.0060 (12)0.0006 (12)
C190.0097 (16)0.0160 (19)0.0161 (17)0.0004 (14)0.0007 (13)0.0008 (14)
C200.0122 (17)0.0145 (18)0.0135 (17)0.0011 (13)0.0023 (13)0.0024 (14)
N40.0114 (15)0.0192 (18)0.0155 (15)0.0044 (13)0.0001 (12)0.0018 (13)
C210.0134 (17)0.020 (2)0.0171 (18)0.0005 (15)0.0022 (14)0.0010 (15)
C220.016 (2)0.051 (3)0.024 (2)0.000 (2)0.0035 (17)0.010 (2)
C230.034 (3)0.045 (3)0.020 (2)0.005 (2)0.0069 (19)0.006 (2)
C240.051 (2)0.037 (2)0.032 (2)0.010 (2)0.0032 (19)0.0004 (18)
Geometric parameters (Å, º) top
O1—C11.255 (5)O5—C131.256 (5)
O2—C11.261 (5)O6—C131.260 (5)
C1—C21.532 (5)C13—C141.534 (5)
C2—N11.504 (5)C14—N31.487 (5)
C2—C31.543 (6)C14—C151.548 (6)
C2—H21.0000C14—H141.0000
N1—H1A0.9100N3—H3A0.9100
N1—H1B0.9100N3—H3B0.9100
N1—H1C0.9100N3—H3C0.9100
C3—C61.530 (6)C15—C181.529 (6)
C3—C41.537 (6)C15—C161.532 (6)
C3—H31.0000C15—H151.0000
C4—C51.530 (7)C16—C171.535 (7)
C4—H4A0.9900C16—H16A0.9900
C4—H4B0.9900C16—H16B0.9900
C5—H5A0.9800C17—H17A0.9800
C5—H5B0.9800C17—H17B0.9800
C5—H5C0.9800C17—H17C0.9800
C6—H6A0.9800C18—H18A0.9800
C6—H6B0.9800C18—H18B0.9800
C6—H6C0.9800C18—H18C0.9800
O3—C71.277 (5)O7—C191.273 (5)
O4—C71.229 (5)O8—C191.243 (5)
C7—C81.542 (5)C19—C201.541 (5)
C8—N21.493 (6)C20—N41.504 (5)
C8—C91.536 (6)C20—C211.532 (6)
C8—H81.0000C20—H201.0000
N2—H2A0.9100N4—H4C0.9100
N2—H2B0.9100N4—H4D0.9100
N2—H2C0.9100N4—H4E0.9100
C9—C121.519 (7)C21—C241.521 (8)
C9—C101.526 (6)C21—C221.536 (6)
C9—H91.0000C21—H211.0000
C10—C111.531 (6)C22—C231.526 (7)
C10—H10A0.9900C22—H22A0.9900
C10—H10B0.9900C22—H22B0.9900
C11—H11A0.9800C23—H23A0.9800
C11—H11B0.9800C23—H23B0.9800
C11—H11C0.9800C23—H23C0.9800
C12—H12A0.9800C24—H24A0.9800
C12—H12B0.9800C24—H24B0.9800
C12—H12C0.9800C24—H24C0.9800
O1—C1—O2124.6 (4)O5—C13—O6124.2 (4)
O1—C1—C2118.2 (4)O5—C13—C14117.7 (4)
O2—C1—C2117.1 (4)O6—C13—C14118.0 (4)
N1—C2—C1108.7 (3)N3—C14—C13109.0 (3)
N1—C2—C3110.5 (3)N3—C14—C15110.5 (3)
C1—C2—C3112.8 (3)C13—C14—C15112.2 (3)
N1—C2—H2108.3N3—C14—H14108.3
C1—C2—H2108.3C13—C14—H14108.3
C3—C2—H2108.3C15—C14—H14108.3
C2—N1—H1A109.5C14—N3—H3A109.5
C2—N1—H1B109.5C14—N3—H3B109.5
H1A—N1—H1B109.5H3A—N3—H3B109.5
C2—N1—H1C109.5C14—N3—H3C109.5
H1A—N1—H1C109.5H3A—N3—H3C109.5
H1B—N1—H1C109.5H3B—N3—H3C109.5
C6—C3—C4112.1 (4)C18—C15—C16112.4 (4)
C6—C3—C2112.0 (3)C18—C15—C14112.6 (3)
C4—C3—C2108.9 (3)C16—C15—C14109.8 (4)
C6—C3—H3107.9C18—C15—H15107.2
C4—C3—H3107.9C16—C15—H15107.2
C2—C3—H3107.9C14—C15—H15107.2
C5—C4—C3114.3 (4)C15—C16—C17114.2 (4)
C5—C4—H4A108.7C15—C16—H16A108.7
C3—C4—H4A108.7C17—C16—H16A108.7
C5—C4—H4B108.7C15—C16—H16B108.7
C3—C4—H4B108.7C17—C16—H16B108.7
H4A—C4—H4B107.6H16A—C16—H16B107.6
C4—C5—H5A109.5C16—C17—H17A109.5
C4—C5—H5B109.5C16—C17—H17B109.5
H5A—C5—H5B109.5H17A—C17—H17B109.5
C4—C5—H5C109.5C16—C17—H17C109.5
H5A—C5—H5C109.5H17A—C17—H17C109.5
H5B—C5—H5C109.5H17B—C17—H17C109.5
C3—C6—H6A109.5C15—C18—H18A109.5
C3—C6—H6B109.5C15—C18—H18B109.5
H6A—C6—H6B109.5H18A—C18—H18B109.5
C3—C6—H6C109.5C15—C18—H18C109.5
H6A—C6—H6C109.5H18A—C18—H18C109.5
H6B—C6—H6C109.5H18B—C18—H18C109.5
O4—C7—O3125.2 (4)O8—C19—O7125.2 (4)
O4—C7—C8119.7 (4)O8—C19—C20119.3 (4)
O3—C7—C8115.0 (4)O7—C19—C20115.4 (4)
N2—C8—C9110.2 (3)N4—C20—C21110.5 (3)
N2—C8—C7108.9 (3)N4—C20—C19109.2 (3)
C9—C8—C7110.9 (3)C21—C20—C19110.8 (3)
N2—C8—H8109.0N4—C20—H20108.8
C9—C8—H8109.0C21—C20—H20108.8
C7—C8—H8109.0C19—C20—H20108.8
C8—N2—H2A109.5C20—N4—H4C109.5
C8—N2—H2B109.5C20—N4—H4D109.5
H2A—N2—H2B109.5H4C—N4—H4D109.5
C8—N2—H2C109.5C20—N4—H4E109.5
H2A—N2—H2C109.5H4C—N4—H4E109.5
H2B—N2—H2C109.5H4D—N4—H4E109.5
C12—C9—C10111.6 (4)C24—C21—C20110.5 (4)
C12—C9—C8110.5 (4)C24—C21—C22111.3 (4)
C10—C9—C8111.2 (3)C20—C21—C22111.2 (3)
C12—C9—H9107.8C24—C21—H21107.9
C10—C9—H9107.8C20—C21—H21107.9
C8—C9—H9107.8C22—C21—H21107.9
C9—C10—C11113.8 (4)C23—C22—C21114.2 (4)
C9—C10—H10A108.8C23—C22—H22A108.7
C11—C10—H10A108.8C21—C22—H22A108.7
C9—C10—H10B108.8C23—C22—H22B108.7
C11—C10—H10B108.8C21—C22—H22B108.7
H10A—C10—H10B107.7H22A—C22—H22B107.6
C10—C11—H11A109.5C22—C23—H23A109.5
C10—C11—H11B109.5C22—C23—H23B109.5
H11A—C11—H11B109.5H23A—C23—H23B109.5
C10—C11—H11C109.5C22—C23—H23C109.5
H11A—C11—H11C109.5H23A—C23—H23C109.5
H11B—C11—H11C109.5H23B—C23—H23C109.5
C9—C12—H12A109.5C21—C24—H24A109.5
C9—C12—H12B109.5C21—C24—H24B109.5
H12A—C12—H12B109.5H24A—C24—H24B109.5
C9—C12—H12C109.5C21—C24—H24C109.5
H12A—C12—H12C109.5H24A—C24—H24C109.5
H12B—C12—H12C109.5H24B—C24—H24C109.5
O1—C1—C2—N119.5 (5)O5—C13—C14—N3162.0 (4)
O2—C1—C2—N1163.7 (3)O6—C13—C14—N320.6 (5)
O1—C1—C2—C3103.3 (4)O5—C13—C14—C1575.3 (5)
O2—C1—C2—C373.5 (5)O6—C13—C14—C15102.1 (4)
N1—C2—C3—C680.1 (4)N3—C14—C15—C1878.1 (4)
C1—C2—C3—C641.7 (5)C13—C14—C15—C1843.8 (5)
N1—C2—C3—C4155.4 (3)N3—C14—C15—C16155.8 (3)
C1—C2—C3—C482.8 (4)C13—C14—C15—C1682.3 (4)
C6—C3—C4—C556.6 (5)C18—C15—C16—C1758.9 (5)
C2—C3—C4—C5178.9 (4)C14—C15—C16—C17174.9 (4)
O4—C7—C8—N2141.7 (4)O8—C19—C20—N4141.5 (4)
O3—C7—C8—N241.9 (5)O7—C19—C20—N441.7 (5)
O4—C7—C8—C996.9 (5)O8—C19—C20—C2196.5 (5)
O3—C7—C8—C979.4 (5)O7—C19—C20—C2180.3 (4)
N2—C8—C9—C12178.6 (4)N4—C20—C21—C24179.1 (4)
C7—C8—C9—C1258.0 (5)C19—C20—C21—C2457.9 (5)
N2—C8—C9—C1056.9 (5)N4—C20—C21—C2256.8 (5)
C7—C8—C9—C10177.5 (4)C19—C20—C21—C22178.0 (4)
C12—C9—C10—C1151.6 (6)C24—C21—C22—C2353.2 (6)
C8—C9—C10—C11175.4 (4)C20—C21—C22—C23176.9 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.911.962.853 (5)165
N3—H3A···O5ii0.911.932.820 (5)165
N3—H3B···O3iii0.912.012.818 (5)147
N3—H3C···O3iv0.911.872.773 (4)172
N4—H4D···O8i0.911.972.843 (5)162
N2—H2A···O50.912.193.055 (5)159
N2—H2A···O60.912.202.953 (5)139
N2—H2C···O6v0.911.852.762 (5)174
N2—H2B···O4ii0.911.942.826 (5)163
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z; (iii) x+1, y+1/2, z+1; (iv) x1, y+1, z; (v) x+1, y1/2, z+1.
 

Acknowledgements

The authors thank Professor Leslie Leiserowitz, Dr Isabelle Weissbuch and Dr David Ehre (Weizmann Institute) for helpful discussions.

Funding information

This work was supported by the Israeli Science Foundation (546/17), the Minerva Foundation with funding from the Federal German Ministry for Education and Research, and a Pearlman fellowship to EM. This research is made possible in part by the historic generosity of the Harold Perlman family.

References

First citationAnuar, N., Daud, W. R. W., Roberts, K. J., Kamarudin, S. K. & Tasirin, S. M. (2009). Cryst. Growth Des. 9, 2853–2862.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2015). APEX2, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCrystalMaker (2013). CrystalMaker. CrystalMaker Software Limited, Oxfordshire, England.  Google Scholar
First citationGörbitz, C. H. & Dalhus, B. (1996). Acta Cryst. C52, 1464–1466.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationKhawas, B. (1970). Acta Cryst. B26, 1385–1387.  CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTorii, K. & Iitaka, Y. (1971). Acta Cryst. B27, 2237–2246.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds