research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Mol­ecular structure, DFT studies and Hirshfeld analysis of anthracenyl chalcone derivatives

CROSSMARK_Color_square_no_text.svg

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: suhanaarshad@usm.my

Edited by A. J. Lough, University of Toronto, Canada (Received 6 April 2018; accepted 27 April 2018; online 4 May 2018)

The mol­ecular and crystal structure of two new chalcone derivatives, (E)-1-(anthracen-9-yl)-3-[4-(piperidin-1-yl)phen­yl]prop-2-en-1-one, C28H25NO, (I), and (E)-1-(anthracen-9-yl)-3-[4-(di­phenyl­amino)­phen­yl]prop-2-en-1-one, C35H25NO, (II), with the fused-ring system at the same position are described. In the crystals of (I) and (II), the mol­ecules are linked via C—H⋯O hydrogen bonds into inversion dimers, forming R22(22) and R22(14) ring motifs, respectively. Weak inter­molecular C—H⋯π inter­actions further help to stabilize the crystal structure, forming a two-dimensional architecture. The mol­ecular structures are optimized using density functional theory (DFT) at B3LYP/6–311 G++(d,p) level and compared with the experimental results. The smallest HOMO–LUMO energy gaps of (I) (exp . 2.76 eV and DFT 3.40 eV) and (II) (exp . 2.70 eV and DFT 3.28 eV) indicates the suitability of these crystals in optoelectronic applications. All inter­molecular contacts and weaker contributions involved in the supra­molecular stabilization are investigated using Hirshfeld surface analysis. The mol­ecular electrostatic potential (MEP) further identifies the positive, negative and neutral electrostatic potential regions of the mol­ecules.

1. Chemical context

Chalcone derivatives have attracted significant attention in the past few decades mainly because of their availability of high optical non-linearities resulting from the significant delocalization of the electron clouds throughout the chalcone system (D'silva et al., 2011[D'silva, E. D., Podagatlapalli, G. K., Rao, S. V., Rao, D. N. & Dharmaprakash, S. M. (2011). Cryst. Growth Des. 11, 5326-5369.]). A chalcone mol­ecule with a π-conjugated system provides a large charge-transfer axis with appropriate substituent groups on the two aromatic terminal rings. Furthermore, π-conjugated mol­ecular materials with fused rings are the focus of considerable inter­est in the emerging area of organic electronics, since the combination of excellent charge-carrier mobility and a high stability structure leads to potential optoelectronic applications (Wu et al., 2010[Wu, W., Liu, Y. & Zhu, D. (2010). Chem. Soc. Rev. 39, 1489-1502.]). As part of our studies in this area, the chalcone compounds (E)-1-(anthracen-9-yl)-3-[4-(piperidin-1-yl)phen­yl]prop-2-en-1-one, (I)[link], and (E)-1-(anthracen-9-yl)-3-[4-(di­phenyl­amino)­phen­yl]prop-2-en-1-one, (II)[link], were successfully synthesized and their crystal structures are reported herein.

2. Structural commentary

The title compounds (I)[link] and (II)[link] (Fig. 1[link]) crystallize in he triclinic and monoclinic space groups P[\overline{1}] and C2/c, respectively. The bond lengths and angles are in normal ranges. The calculated values of compounds (I)[link] and (II)[link] determined from B3LYP/6-311G(d,p) calculations (given in the Supporting information) may provide information about the geometry of the mol­ecules. From the results, it can be concluded that this basis set is comparable in its approach to the experimental data. The slight deviations from the experimental values are due to the fact that the optimization is performed in an isolated condition, whereas the crystal environment and hydrogen-bonding inter­actions affect the results of the X-ray structure (Zainuri et al., 2017[Zainuri, D. A., Arshad, S., Khalib, N. C., Razak, A. I., Pillai, R. R., Sulaiman, F., Hashim, N. S., Ooi, K. L., Armaković, S., Armaković, S. J., Panicker, Y. & Van Alsenoy, C. (2017). J. Mol. Struct. 1128, 520-533.]).

[Scheme 1]
[Figure 1]
Figure 1
(a) The molecular structure of compounds (I)[link] and (II)[link] with 50% probability displacement ellipsoids. (b) The optimized structures of compounds (I)[link] and (II)[link] at the DFT/B3LYP 6–311++G(d,p) level.

Compounds (I)[link] and (II)[link] contain an anthracene fused ring system and a 1-phenyl­piperidine or tri­phenyl­amine substituent, representing a DπD inter­molecular charge-transfer system. The piperidine ring (N1/C24–C28) in (I)[link] adopts a chair conformation with puckering parameters Q = 0.521 (4), Θ = 3.1 (3)° and φ = 221 (6)°. The enone moiety (O1/C15–C17) in compounds (I)[link] and (II)[link] adopts an s-trans configuration with respect to the C15=O1 and C16=C17 bonds. Both compounds (I)[link] and (II)[link] are twisted at the C14—C15 bonds with C1—C14—C15—C16 torsion angles of 101.5 (3) and 93.66 (18)°, respectively. The corresponding torsion angles from the DFT study are 88.68 and 90.29°. In addition, the C17—C18 bond is also twisted slightly in (I)[link] and (II)[link] with the C16—C17—C18—C19 torsion angles being 171.5 (3)° (Exp) and 179.22° (DFT) in (I)[link] and −164.77 (16)° (Exp) and 175.94° (DFT) in (II)[link]. The torsion angle difference between the experimental and DFT studies are due to the formation of inter­molecular inter­actions involving the anthracene fused-ring system and the terminal substituent of the 1-phenyl­piperidine and tri­phenyl­amine units. The observed inter­molecular inter­actions in the crystal packing are the main cause of the angle deviation between the experimental and the theoretical results.

The enone moiety for (I)[link] [O1/C15–C17, maximum deviation of 0.052 (3) Å at C16] forms dihedral angles of 82.9 (3), 12.0 (3) and 8.1 (3)° with the anthracene ring system (C1–C14), the benzene ring (C18-C23) and the piperidine ring (N1/C24–C28), respectively. The anthracene ring system forms dihedral angles of 86.74 (10) and 85.55 (12)° with the 1-phenyl­piperidine rings C18–C23 and N1/C24–C28, respectively. Meanwhile, in compound (II)[link], the enone moiety [O1/ C15–C17, maximum deviation of 0.0287 (15) Å at C16] forms dihedral angles of 87.30 (16), 17.13 (16), 72.55 (17) and 79.16 (16)° with the anthracene ring system (C1–C14) and the benzene rings C18–C23, C24–C29 and C30–C35, respectively. The dihedral angle between the anthracene ring system and the tri­phenyl­amine benzene rings C18–C23, C24–C29 and C30–C35 are 75.86 (6), 79.81 (8) and 12.84 (8)°, respectively. The large dihedral-angle deviation indicates that the possibility for electronic effects between the anthracene units through the enone moiety has decreased (Jung et al., 2008[Jung, Y., Son, K., Oh, Y. E. & Noh, D. (2008). Polyhedron, 27, 861-867.]). Furthermore, the bulkiness of the anthracene ring system gives rise to a highly twisted structure for both compounds (Zainuri et al., 2018a[Zainuri, D. A., Razak, I. A. & Arshad, S. (2018a). Acta Cryst. E74, 492-496.],b[Zainuri, D. A., Razak, I. A. & Arshad, S. (2018b). Acta Cryst. E74, 650-655.]).

3. Supra­molecular features

In the crystal packing of compound (I)[link], the mol­ecules are connected via inter­molecular C28—H28B⋯O1i inter­actions (Table 1[link]), forming inversion dimers with R22(22) ring motifs. These ring motifs further link into one-dimensional columns along the b-axis direction (Fig. 2[link]). The crystal packing is stabilized by weak C28—H28ACg1ii inter­actions (Table 1[link]). Together, these inter­actions connect the mol­ecules into sheets parallel to the ac plane.

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg1 is the centroid of the C18–C23 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C28—H28B⋯O1i 0.97 2.36 3.262 (4) 154
C28—H28ACg1ii 0.97 2.95 3.861 (4) 157
Symmetry codes: (i) -x, -y+1, -z+2; (ii) -x+1, -y+1, -z+2.
[Figure 2]
Figure 2
The crystal packing of (I)[link] showing weak C—H⋯O and C—H⋯π inter­actions.

Similary, in compound (II)[link], C23—H23A⋯ O1i (Table 1[link] and Fig. 3[link]) hydrogen bonds connect the mol­ecules into centrosymmetric dimers, forming R22(14) ring motifs. These dimers are further linked into infinite columns along the c-axis direction. C29—H29ACg1ii inter­actions (Table 2[link]) are also observed. As in (I)[link], the crystal structure comprises sheets parallel to the ac plane.

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

Cg1 is the centroid of the C18–C23 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C23—H23A⋯O1i 0.93 2.40 3.221 (2) 147
C29—H29ACg1ii 0.93 2.96 3.739 (19) 142
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [x+{\script{3\over 2}}, y+{\script{5\over 2}}, z+1].
[Figure 3]
Figure 3
The weak C—H⋯ O and C—H⋯π inter­actions in compound (II)[link].

4. UV–Vis absorption analysis

The strongest absorption and smaller energy gap, particularly in the visible region, is important feature in the suitability for optoelectronic application. The electronic absorption and excitation properties of (I)[link] and (II)[link] were estimated theoretically by applying the time-dependent DFT approach at the B3LYP level of theory with the 6-311++G(d,p) basis set. The experimental absorptions (Fig. 4[link]) of (I)[link] and (II)[link] are reported at 396 and 406 nm, while simulated values are observed at 397 and 415 nm, respectively. The theoretical wavelengths are shifted to higher wavelengths because the calculations are confined to the gaseous equivalent whereas the observations are from the solution state.

[Figure 4]
Figure 4
UV–Vis absorption spectra for compounds (I)[link] and (II)[link].

The experimental energy band gaps for (I)[link] and (II)[link] are 2.76 and 2.70 eV, respectively, through an extrapolation of the linear trend. The calculations of the mol­ecular orbital geometry show that the absorption maxima of the mol­ecules correspond to the electron transition between the frontier orbitals highest occupied mol­ecular orbital (HOMO) to the lowest unoccupied mol­ecular orbital (LUMO) (Fig. 5[link]). The predicted energy gaps for compounds (I)[link] and (II)[link] are 3.40 and 3.28 eV, respectively. The small HOMO–LUMO energy gap in these compounds shows the chemical reactivity is stronger and the kinetic stability is weaker, which in turn increase the polarizability and NLO activity (Maidur et al., 2018[Maidur, S. R., Jahagirdar, J. R., Patil, P. S., Chia, T. S. & Quah, C. K. (2018). Opt. Mater. 75, 580-594.]).

[Figure 5]
Figure 5
The electron distribution of the HOMO and LUMO energy levels of (I)[link] and (II)[link].

5. Hirshfeld surface analysis

Hirshfeld surface analysis assigns inter­molecular inter­actions inside the unit-cell packing. The dnorm, shape-index and de (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer. University of Western Australia, Perth.]) surfaces are presented in Fig. 6[link]a, b and c, respectively. All C—H⋯ O and C—H⋯π contacts are recognized in the dnorm mapped surface as deep-red depression areas in Fig. 6[link]a. The C—H⋯ O contacts are observed in both compounds (I)[link] and (II)[link]. The presence of C—H⋯π inter­actions is indicated through the combination of pale-orange and bright-red spots, which are present on the shape-index surface, identified with black arrows (Fig. 6[link]b).

[Figure 6]
Figure 6
View of the Hirshfeld Surfaces, showing (a) dnorm with the red spot showing the involvement of the C—H⋯O inter­actions, (b) mapped over shape-index and (c) mapped over de with the pale-orange spot inside the black arrows indicating the C—H⋯π inter­actions.

Two-dimensional fingerprint plots as shown in Fig. 7[link]. These illustrate the difference between the inter­molecular inter­action patterns and the major inter­molecular contacts associated in both compounds. The H⋯H contacts appear to be the major contributor to the Hirshfeld surface; these are shown in Fig. 7[link]b as one distinct spike with a minimum value de + di that is approximately less than the sum of van der Waals radii (2.4 Å). Furthermore, the inter­molecular C—H⋯π inter­actions for compounds (I)[link] and (II)[link] are characterized by the short inter­atomic C⋯H/H⋯C contacts with percentage contributions of 21.7% (I)[link] and 30.6% (II)[link], showing two distinct spikes with de + di ∼2.8 Å (I)[link] and 2.7 Å (II)[link]. Additionally, the O⋯H/H⋯O contacts indicate the presence of inter­molecular C—H⋯ O inter­actions with percentage contributions of 8.0% (I)[link] and 6.5% (II)[link] and are indicated by a pair of wings at de + di ∼2.3 Å (Fig. 7[link]c).

[Figure 7]
Figure 7
Fingerprint plots of inter­actions, listing the percentage of contacts (a) full two-dimensional fingerprint plots; (b) H⋯H (c) O⋯H/H⋯O and (d) C⋯H/H⋯C contributions to the total Hirshfeld surface. The outline of the full fingerprint plots is shown in grey.

6. Mol­ecular Electrostatic Potential

The mol­ecular electrostatic potential (MEP) has become firmly established as an effective guide to mol­ecular inter­actions. The importance of MEPs lies in the fact that it simultaneously displays mol­ecular size and shape, as well as positive, negative and neutral electrostatic potential regions, in terms of colour grading and is useful in suties of the mol­ecular structure and its physicochemical property relationship (Murray & Sen, 1996[Murray, J. S. & Sen, K. (1996). Molecular Electrostatic Potentials, Concepts and Applications. Amsterdam: Elsevier.]; Scrocco & Tomasi, 1978[Scrocco, E. & Tomasi, J. (1978). Advances in Quantum Chemistry. New York: Academic Press.]). The MEP maps of (I)[link] and (II)[link] mol­ecules were calculated theoretically at the B3LYP/6-311G++(d,p) level of theory and the obtained plots are shown in Fig. 8[link]. The red-coloured region is nucleophile and electron rich, whereas the blue colour indicates the electrophile region with poor electrons in the vicinity, and the remaining white region shows the neutrality of atoms. These sites given information about the region from where the mol­ecule can have inter­molecular inter­actions (Gunasekaran & Srinivasan, 2008[Gunasekaran, S., Kumaresan, S., Arunbalaji, R., Anand, G. & Srinivasan, S. (2008). J. Chem. Sci. 120, 315-324.]).

[Figure 8]
Figure 8
The total electron density three-dimensional surface mapped for (a) compound (I)[link] and (b) compound (II)[link] with the electrostatic potential calculated at the B3LYP/6–311 G++ (d,p) level.

In (I)[link] and (II)[link], the reactive sites are near the C=O group; this is the region having the most negative potential spots (red colour), all over the oxygen atom due to the C—H⋯ O inter­actions in the crystal structure. The negative potential values of compounds (I)[link] and (II)[link] of −0.06268 and −0.06453 a.u. indicate the strongest repulsion (electrophilic attack). Meanwhile, the most positive regions for (I)[link] and (II)[link] are localized on the hydrogen atoms and show the strongest attraction (nucleophilic attack) sites involving the anthrancene group and its subtsituent groups of the 1-phenyl­piperidine (I)[link] and tri­phenyl­amine (II)[link] moieties.

7. Database survey

A survey of Cambridge Structural Database (CSD, Version 5.38, last update Nov 2016; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed fused-ring substituted chalcones similar to (I)[link] and (II)[link]. There are four compounds that have ananthracene–ketone substituent on the chalcone: 9-anthryl styryl ketone and 9,10-anthryl bis­(styryl ketone) (Harlow et al., 1975[Harlow, R. L., Loghry, R. A., Williams, H. J. & Simonsen, S. H. (1975). Acta Cryst. B31, 1344-1350.]), (2E)-1-(anthracen-9-yl)-3-[4-(propan-2-yl)phen­yl]prop-2-en-1-one (Girisha et al., 2016[Girisha, M., Yathirajan, H. S., Jasinski, J. P. & Glidewell, C. (2016). Acta Cryst. E72, 1153-1158.]) and (E)-1-(anthracen-9-yl)-3-(2-chloro-6-fluoro­phen­yl)prop-2-en- 1-one (Abdullah et al., 2016[Abdullah, A. A., Hassan, N. H. H., Arshad, S., Khalib, N. C. & Razak, I. A. (2016). Acta Cryst. E72, 648-651.]). Zainuri et al., 20182018a[Zainuri, D. A., Razak, I. A. & Arshad, S. (2018a). Acta Cryst. E74, 492-496.],b[Zainuri, D. A., Razak, I. A. & Arshad, S. (2018b). Acta Cryst. E74, 650-655.]) reported two anthracene substituents on the chalcone (E)-1,3-bis­(anthracen-9-yl)prop-2-en-1-one. Other related compounds include 1-(anthracen-9-yl)-2-methyl­prop-2-en-1-one (Agrahari et al., 2015[Agrahari, A., Wagers, P. O., Schildcrout, S. M., Masnovi, J. & Youngs, W. J. (2015). Acta Cryst. E71, 357-359.]) and 9-anthroylacetone (Cicogna et al., 2004[Cicogna, F., Ingrosso, G., Lodato, F., Marchetti, F. & Zandomeneghi, M. (2004). Tetrahedron, 60, 11959-11968.]).

8. Synthesis and crystallization

A mixture of 9-acetyl­anthrancene (0.5 mmol) and 4-(piperidin-1-yl)benzaldehyde (0.5 mmol) and 4-(di­phenyl­amino)­benzaldehyde (0.5 mmol) for compound (I)[link] and (II)[link], respectively, was dissolved in methanol (20 ml). A catalytic amount of NaOH (5 ml, 20%) was added to the solution dropwise with vigorous stirring. The reaction mixture was stirred for about 5–6 h at room temperature. After stirring, the contents of the flask were poured into ice-cold water (50 ml). The resultant crude products were filtered, washed successively with distilled water and recrystallized to get the corresponding chalcones. Crystals suitable for X-ray diffraction were obtained by the slow evaporation technique from acetone.

9. Refinement

Crystal data collection and structure refinement details are summarized in Table 3[link]. All H atoms were positioned geometrically [C—H = 0.93 and 0.97 Å (in (I)) and 0.93 Å (in (II))] and refined using riding model with Uiso(H) = 1.2Ueq(C).

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C28H25NO C35H25NO
Mr 391.49 475.56
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, C2/c
Temperature (K) 296 296
a, b, c (Å) 8.0535 (15), 9.0457 (17), 15.352 (3) 31.2875 (16), 9.0470 (4), 18.3643 (8)
α, β, γ (°) 106.553 (4), 101.572 (4), 94.385 (4) 90, 99.388 (3), 90
V3) 1039.6 (3) 5128.5 (4)
Z 2 8
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.08 0.07
Crystal size (mm) 0.64 × 0.23 × 0.10 0.96 × 0.23 × 0.17
 
Data collection
Diffractometer Bruker SMART APEXII DUO CCD area-detector Bruker SMART APEXII DUO CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.724, 0.972 0.645, 0.957
No. of measured, independent and observed [I > 2σ(I)] reflections 27976, 4812, 2122 98729, 7726, 4183
Rint 0.079 0.076
(sin θ/λ)max−1) 0.652 0.712
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.246, 1.01 0.057, 0.144, 1.02
No. of reflections 4812 7726
No. of parameters 271 334
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.26, −0.19 0.13, −0.14
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXL2014 and SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008). Program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015) for (I); SHELXL2013 (Sheldrick, 2015) for (II). For both structures, molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

(E)-1-(Anthracen-9-yl)-3-[4-(piperidin-1-yl)phenyl]prop-2-en-1-one (I) top
Crystal data top
C28H25NOZ = 2
Mr = 391.49F(000) = 416
Triclinic, P1Dx = 1.251 Mg m3
a = 8.0535 (15) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.0457 (17) ÅCell parameters from 1764 reflections
c = 15.352 (3) Åθ = 2.4–19.6°
α = 106.553 (4)°µ = 0.08 mm1
β = 101.572 (4)°T = 296 K
γ = 94.385 (4)°Plate, yellow
V = 1039.6 (3) Å30.64 × 0.23 × 0.10 mm
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
2122 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.079
φ and ω scansθmax = 27.6°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1010
Tmin = 0.724, Tmax = 0.972k = 1111
27976 measured reflectionsl = 1919
4812 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.068H-atom parameters constrained
wR(F2) = 0.246 w = 1/[σ2(Fo2) + (0.115P)2 + 0.0669P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
4812 reflectionsΔρmax = 0.26 e Å3
271 parametersΔρmin = 0.19 e Å3
Special details top

Experimental. The following wavelength and cell were deduced by SADABS from the direction cosines etc. They are given here for emergency use only: CELL 0.71134 9.070 15.379 16.135 101.576 94.356 106.571

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3955 (3)0.4115 (3)0.73584 (14)0.0949 (8)
N10.6347 (3)0.8072 (2)1.09764 (14)0.0575 (6)
C10.2379 (3)0.4582 (3)0.57411 (17)0.0542 (6)
C20.1842 (3)0.3116 (3)0.5702 (2)0.0694 (8)
H10.17470.27710.62240.083*
C30.1466 (4)0.2206 (4)0.4920 (2)0.0848 (9)
H20.10980.12530.49120.102*
C40.1627 (4)0.2695 (4)0.4119 (2)0.0884 (10)
H30.13750.20590.35830.106*
C50.2139 (4)0.4060 (4)0.4123 (2)0.0788 (9)
H40.22490.43600.35850.095*
C60.2517 (3)0.5066 (3)0.49269 (16)0.0575 (7)
C70.3004 (3)0.6497 (3)0.49477 (18)0.0632 (7)
H50.31090.67990.44110.076*
C80.3343 (3)0.7503 (3)0.57345 (18)0.0579 (7)
C90.3802 (3)0.8996 (4)0.5773 (2)0.0726 (8)
H60.38510.93390.52530.087*
C100.4167 (4)0.9924 (4)0.6537 (3)0.0812 (9)
H100.44811.08950.65420.097*
C110.4080 (4)0.9442 (4)0.7330 (2)0.0791 (9)
H110.43491.00890.78570.095*
C120.3612 (3)0.8049 (3)0.73383 (19)0.0657 (7)
H120.35460.77580.78770.079*
C130.3216 (3)0.7014 (3)0.65471 (16)0.0533 (6)
C140.2753 (3)0.5560 (3)0.65304 (16)0.0529 (6)
C150.2738 (3)0.5015 (3)0.73695 (17)0.0604 (7)
C160.1294 (3)0.5534 (3)0.81633 (17)0.0610 (7)
H160.14010.53080.87050.073*
C170.0172 (3)0.6311 (3)0.81710 (17)0.0550 (6)
H170.02110.65840.76350.066*
C180.1718 (3)0.6790 (3)0.89032 (16)0.0519 (6)
C190.3209 (3)0.7416 (3)0.87506 (18)0.0667 (8)
H190.31900.75600.81730.080*
C200.4712 (3)0.7833 (3)0.94162 (18)0.0680 (8)
H200.56790.82590.92790.082*
C210.4836 (3)0.7640 (3)1.02901 (16)0.0516 (6)
C220.3322 (3)0.7030 (3)1.04536 (17)0.0610 (7)
H220.33340.68921.10320.073*
C230.1831 (3)0.6632 (3)0.97861 (17)0.0611 (7)
H230.08500.62400.99270.073*
C240.7882 (3)0.8619 (4)1.0742 (2)0.0757 (9)
H24A0.76130.93391.03890.091*
H24B0.82750.77401.03460.091*
C250.9284 (4)0.9408 (4)1.1579 (2)0.0930 (11)
H25A0.89761.03921.19130.112*
H25B1.03170.96341.13780.112*
C260.9649 (4)0.8453 (4)1.2232 (2)0.0958 (11)
H26A1.01410.75471.19410.115*
H26B1.04680.90661.28000.115*
C270.8026 (4)0.7947 (4)1.2463 (2)0.0897 (10)
H27A0.82480.72491.28360.108*
H27B0.76290.88501.28320.108*
C280.6666 (4)0.7140 (4)1.1604 (2)0.0755 (9)
H28A0.70040.61671.12770.091*
H28B0.56140.68951.17820.091*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0856 (14)0.1238 (18)0.0697 (13)0.0401 (13)0.0025 (11)0.0461 (13)
N10.0538 (12)0.0678 (14)0.0501 (12)0.0009 (10)0.0081 (10)0.0215 (10)
C10.0478 (14)0.0621 (17)0.0490 (15)0.0043 (12)0.0073 (11)0.0170 (13)
C20.0658 (18)0.0722 (19)0.0683 (19)0.0012 (15)0.0129 (15)0.0236 (15)
C30.085 (2)0.069 (2)0.090 (2)0.0049 (16)0.0221 (19)0.0092 (19)
C40.091 (2)0.093 (3)0.066 (2)0.003 (2)0.0264 (18)0.0005 (19)
C50.080 (2)0.094 (2)0.0528 (17)0.0077 (19)0.0148 (15)0.0124 (17)
C60.0506 (14)0.0739 (18)0.0416 (14)0.0052 (13)0.0062 (11)0.0145 (13)
C70.0575 (16)0.088 (2)0.0448 (15)0.0011 (15)0.0026 (12)0.0307 (15)
C80.0485 (14)0.0717 (18)0.0531 (16)0.0001 (13)0.0063 (12)0.0249 (14)
C90.0624 (17)0.084 (2)0.078 (2)0.0066 (16)0.0074 (15)0.0418 (18)
C100.0686 (19)0.077 (2)0.096 (3)0.0075 (16)0.0124 (18)0.027 (2)
C110.0720 (19)0.079 (2)0.075 (2)0.0070 (17)0.0159 (16)0.0079 (17)
C120.0608 (17)0.0736 (19)0.0567 (17)0.0009 (14)0.0121 (13)0.0146 (15)
C130.0425 (13)0.0679 (17)0.0446 (14)0.0048 (12)0.0042 (11)0.0169 (13)
C140.0476 (14)0.0642 (16)0.0433 (14)0.0082 (12)0.0044 (11)0.0196 (12)
C150.0612 (16)0.0677 (17)0.0519 (15)0.0027 (14)0.0111 (13)0.0223 (13)
C160.0687 (17)0.0704 (17)0.0447 (14)0.0022 (14)0.0075 (13)0.0257 (13)
C170.0633 (16)0.0592 (15)0.0445 (14)0.0049 (13)0.0091 (12)0.0221 (12)
C180.0569 (15)0.0563 (15)0.0434 (14)0.0056 (12)0.0109 (12)0.0178 (11)
C190.0674 (17)0.088 (2)0.0476 (15)0.0017 (15)0.0129 (14)0.0283 (14)
C200.0586 (16)0.092 (2)0.0555 (17)0.0045 (15)0.0151 (14)0.0292 (15)
C210.0545 (15)0.0567 (15)0.0450 (14)0.0055 (12)0.0129 (12)0.0178 (11)
C220.0630 (17)0.0770 (18)0.0419 (14)0.0010 (14)0.0112 (13)0.0205 (13)
C230.0563 (15)0.0764 (18)0.0519 (15)0.0021 (13)0.0145 (13)0.0232 (13)
C240.0600 (17)0.095 (2)0.073 (2)0.0034 (16)0.0141 (15)0.0316 (17)
C250.0672 (19)0.103 (2)0.105 (3)0.0109 (18)0.0082 (19)0.052 (2)
C260.065 (2)0.109 (3)0.108 (3)0.0009 (18)0.0116 (18)0.049 (2)
C270.074 (2)0.122 (3)0.076 (2)0.0079 (19)0.0034 (17)0.051 (2)
C280.0664 (18)0.087 (2)0.078 (2)0.0026 (15)0.0066 (15)0.0422 (17)
Geometric parameters (Å, º) top
O1—C151.219 (3)C15—C161.442 (3)
N1—C211.386 (3)C16—C171.323 (3)
N1—C241.445 (3)C16—H160.9300
N1—C281.449 (3)C17—C181.442 (3)
C1—C141.385 (3)C17—H170.9300
C1—C21.415 (4)C18—C191.379 (3)
C1—C61.425 (3)C18—C231.389 (3)
C2—C31.354 (4)C19—C201.366 (3)
C2—H10.9300C19—H190.9300
C3—C41.406 (4)C20—C211.387 (3)
C3—H20.9300C20—H200.9300
C4—C51.331 (4)C21—C221.398 (3)
C4—H30.9300C22—C231.361 (3)
C5—C61.413 (4)C22—H220.9300
C5—H40.9300C23—H230.9300
C6—C71.375 (4)C24—C251.486 (4)
C7—C81.380 (4)C24—H24A0.9700
C7—H50.9300C24—H24B0.9700
C8—C91.415 (4)C25—C261.500 (4)
C8—C131.426 (3)C25—H25A0.9700
C9—C101.336 (4)C25—H25B0.9700
C9—H60.9300C26—C271.493 (4)
C10—C111.396 (4)C26—H26A0.9700
C10—H100.9300C26—H26B0.9700
C11—C121.345 (4)C27—C281.491 (4)
C11—H110.9300C27—H27A0.9700
C12—C131.417 (3)C27—H27B0.9700
C12—H120.9300C28—H28A0.9700
C13—C141.389 (3)C28—H28B0.9700
C14—C151.503 (3)
C21—N1—C24118.4 (2)C16—C17—C18128.4 (2)
C21—N1—C28117.4 (2)C16—C17—H17115.8
C24—N1—C28113.0 (2)C18—C17—H17115.8
C14—C1—C2123.1 (2)C19—C18—C23115.7 (2)
C14—C1—C6119.1 (2)C19—C18—C17120.8 (2)
C2—C1—C6117.7 (2)C23—C18—C17123.5 (2)
C3—C2—C1121.2 (3)C20—C19—C18122.5 (2)
C3—C2—H1119.4C20—C19—H19118.8
C1—C2—H1119.4C18—C19—H19118.8
C2—C3—C4120.3 (3)C19—C20—C21121.9 (2)
C2—C3—H2119.9C19—C20—H20119.1
C4—C3—H2119.9C21—C20—H20119.1
C5—C4—C3120.5 (3)N1—C21—C20122.6 (2)
C5—C4—H3119.7N1—C21—C22121.5 (2)
C3—C4—H3119.7C20—C21—C22115.9 (2)
C4—C5—C6121.4 (3)C23—C22—C21121.6 (2)
C4—C5—H4119.3C23—C22—H22119.2
C6—C5—H4119.3C21—C22—H22119.2
C7—C6—C5122.0 (3)C22—C23—C18122.5 (2)
C7—C6—C1119.2 (2)C22—C23—H23118.8
C5—C6—C1118.8 (3)C18—C23—H23118.8
C6—C7—C8122.5 (2)N1—C24—C25112.8 (2)
C6—C7—H5118.7N1—C24—H24A109.0
C8—C7—H5118.7C25—C24—H24A109.0
C7—C8—C9123.1 (3)N1—C24—H24B109.0
C7—C8—C13118.3 (3)C25—C24—H24B109.0
C9—C8—C13118.6 (3)H24A—C24—H24B107.8
C10—C9—C8121.6 (3)C24—C25—C26113.0 (3)
C10—C9—H6119.2C24—C25—H25A109.0
C8—C9—H6119.2C26—C25—H25A109.0
C9—C10—C11120.1 (3)C24—C25—H25B109.0
C9—C10—H10119.9C26—C25—H25B109.0
C11—C10—H10119.9H25A—C25—H25B107.8
C12—C11—C10120.7 (3)C27—C26—C25109.6 (2)
C12—C11—H11119.7C27—C26—H26A109.8
C10—C11—H11119.7C25—C26—H26A109.8
C11—C12—C13121.7 (3)C27—C26—H26B109.8
C11—C12—H12119.2C25—C26—H26B109.8
C13—C12—H12119.2H26A—C26—H26B108.2
C14—C13—C12123.0 (2)C28—C27—C26111.7 (3)
C14—C13—C8119.8 (2)C28—C27—H27A109.3
C12—C13—C8117.3 (3)C26—C27—H27A109.3
C1—C14—C13121.1 (2)C28—C27—H27B109.3
C1—C14—C15119.6 (2)C26—C27—H27B109.3
C13—C14—C15119.2 (2)H27A—C27—H27B107.9
O1—C15—C16121.0 (2)N1—C28—C27112.6 (2)
O1—C15—C14118.7 (2)N1—C28—H28A109.1
C16—C15—C14120.2 (2)C27—C28—H28A109.1
C17—C16—C15124.3 (2)N1—C28—H28B109.1
C17—C16—H16117.9C27—C28—H28B109.1
C15—C16—H16117.9H28A—C28—H28B107.8
C14—C1—C2—C3179.0 (2)C8—C13—C14—C15175.9 (2)
C6—C1—C2—C30.3 (4)C1—C14—C15—O177.6 (3)
C1—C2—C3—C41.0 (5)C13—C14—C15—O199.6 (3)
C2—C3—C4—C50.5 (5)C1—C14—C15—C16101.5 (3)
C3—C4—C5—C60.6 (5)C13—C14—C15—C1681.3 (3)
C4—C5—C6—C7178.3 (3)O1—C15—C16—C17169.2 (3)
C4—C5—C6—C11.3 (4)C14—C15—C16—C179.8 (4)
C14—C1—C6—C70.6 (4)C15—C16—C17—C18175.6 (2)
C2—C1—C6—C7178.8 (2)C16—C17—C18—C19171.5 (3)
C14—C1—C6—C5179.8 (2)C16—C17—C18—C237.2 (4)
C2—C1—C6—C50.8 (3)C23—C18—C19—C201.1 (4)
C5—C6—C7—C8178.6 (2)C17—C18—C19—C20177.7 (3)
C1—C6—C7—C81.0 (4)C18—C19—C20—C210.5 (5)
C6—C7—C8—C9178.3 (2)C24—N1—C21—C205.5 (4)
C6—C7—C8—C131.4 (4)C28—N1—C21—C20146.8 (3)
C7—C8—C9—C10178.1 (3)C24—N1—C21—C22176.8 (2)
C13—C8—C9—C102.1 (4)C28—N1—C21—C2235.5 (3)
C8—C9—C10—C110.9 (4)C19—C20—C21—N1179.3 (2)
C9—C10—C11—C120.7 (5)C19—C20—C21—C221.5 (4)
C10—C11—C12—C130.9 (4)N1—C21—C22—C23178.8 (2)
C11—C12—C13—C14179.0 (2)C20—C21—C22—C230.9 (4)
C11—C12—C13—C80.4 (4)C21—C22—C23—C180.7 (4)
C7—C8—C13—C140.3 (3)C19—C18—C23—C221.7 (4)
C9—C8—C13—C14179.4 (2)C17—C18—C23—C22177.1 (2)
C7—C8—C13—C12178.4 (2)C21—N1—C24—C25165.5 (2)
C9—C8—C13—C121.8 (3)C28—N1—C24—C2551.5 (3)
C2—C1—C14—C13177.7 (2)N1—C24—C25—C2651.8 (4)
C6—C1—C14—C131.7 (3)C24—C25—C26—C2752.4 (4)
C2—C1—C14—C155.2 (4)C25—C26—C27—C2853.5 (4)
C6—C1—C14—C15175.5 (2)C21—N1—C28—C27163.3 (2)
C12—C13—C14—C1179.9 (2)C24—N1—C28—C2753.3 (3)
C8—C13—C14—C11.2 (4)C26—C27—C28—N154.9 (4)
C12—C13—C14—C152.7 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C18–C23 ring.
D—H···AD—HH···AD···AD—H···A
C28—H28B···O1i0.972.363.262 (4)154
C28—H28A···Cg1ii0.972.953.861 (4)157
Symmetry codes: (i) x, y+1, z+2; (ii) x+1, y+1, z+2.
(E)-1-(Anthracen-9-yl)-3-[4-(diphenylamino)phenyl]prop-2-en-1-one (II) top
Crystal data top
C35H25NOF(000) = 2000
Mr = 475.56Dx = 1.232 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 31.2875 (16) ÅCell parameters from 9835 reflections
b = 9.0470 (4) Åθ = 2.3–21.9°
c = 18.3643 (8) ŵ = 0.07 mm1
β = 99.388 (3)°T = 296 K
V = 5128.5 (4) Å3Block, yellow
Z = 80.96 × 0.23 × 0.17 mm
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
4183 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.076
φ and ω scansθmax = 30.4°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 4444
Tmin = 0.645, Tmax = 0.957k = 1212
98729 measured reflectionsl = 2626
7726 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.144 w = 1/[σ2(Fo2) + (0.0415P)2 + 2.2393P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
7726 reflectionsΔρmax = 0.13 e Å3
334 parametersΔρmin = 0.14 e Å3
Special details top

Experimental. The following wavelength and cell were deduced by SADABS from the direction cosines etc. They are given here for emergency use only: CELL 0.71163 9.142 16.459 18.559 99.001 89.988 106.089

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.54087 (4)0.92358 (14)0.60195 (7)0.0596 (3)
O10.76241 (4)0.60494 (16)0.40875 (8)0.0900 (4)
C10.69686 (5)0.56889 (18)0.25826 (8)0.0548 (4)
C20.70542 (5)0.7199 (2)0.24498 (10)0.0667 (4)
H2A0.71630.78080.28450.080*
C30.69796 (6)0.7766 (3)0.17592 (12)0.0841 (6)
H3A0.70360.87590.16840.101*
C40.68185 (8)0.6870 (3)0.11597 (12)0.0993 (7)
H4A0.67660.72730.06880.119*
C50.67379 (8)0.5439 (3)0.12545 (11)0.0930 (7)
H5A0.66340.48600.08450.112*
C60.68065 (6)0.4783 (2)0.19662 (9)0.0677 (5)
C70.67269 (6)0.3305 (2)0.20807 (11)0.0783 (5)
H7A0.66210.27180.16750.094*
C80.67976 (6)0.26679 (19)0.27691 (10)0.0662 (5)
C90.67272 (7)0.1140 (2)0.28858 (15)0.0909 (7)
H9A0.66190.05440.24850.109*
C100.68128 (8)0.0541 (2)0.35592 (16)0.0987 (7)
H10A0.67650.04620.36220.118*
C110.69737 (7)0.1414 (2)0.41678 (13)0.0858 (6)
H11A0.70360.09830.46330.103*
C120.70399 (6)0.2875 (2)0.40906 (10)0.0681 (5)
H12A0.71410.34420.45050.082*
C130.69584 (5)0.35568 (17)0.33898 (9)0.0545 (4)
C140.70393 (4)0.50520 (17)0.32830 (8)0.0504 (3)
C150.72316 (5)0.59679 (18)0.39314 (8)0.0554 (4)
C160.69564 (5)0.67286 (17)0.43679 (8)0.0553 (4)
H16A0.70880.73520.47410.066*
C170.65301 (5)0.66021 (16)0.42750 (8)0.0506 (3)
H17A0.64020.59910.38940.061*
C180.62422 (5)0.73214 (16)0.47080 (7)0.0484 (3)
C190.58198 (5)0.68422 (18)0.46718 (8)0.0568 (4)
H19A0.57190.60820.43480.068*
C200.55459 (5)0.74561 (18)0.50998 (9)0.0585 (4)
H20A0.52640.71000.50650.070*
C210.56838 (5)0.86064 (16)0.55852 (8)0.0498 (3)
C220.61055 (5)0.91102 (16)0.56133 (8)0.0511 (3)
H22A0.62050.98870.59270.061*
C230.63763 (5)0.84824 (16)0.51872 (8)0.0508 (3)
H23A0.66570.88410.52190.061*
C240.50401 (5)0.84596 (19)0.61751 (8)0.0561 (4)
C250.50740 (6)0.7044 (2)0.64455 (10)0.0742 (5)
H25A0.53430.65820.65330.089*
C260.47145 (8)0.6306 (3)0.65871 (12)0.0934 (7)
H26A0.47400.53410.67640.112*
C270.43226 (8)0.6972 (3)0.64707 (13)0.1015 (8)
H27A0.40790.64700.65680.122*
C280.42867 (7)0.8379 (3)0.62104 (12)0.0937 (7)
H28A0.40170.88370.61320.112*
C290.46430 (6)0.9135 (2)0.60614 (9)0.0714 (5)
H29A0.46151.00990.58850.086*
C300.55076 (5)1.06241 (18)0.63734 (9)0.0572 (4)
C310.55374 (7)1.0733 (2)0.71230 (10)0.0883 (6)
H31A0.54910.99050.74000.106*
C320.56357 (9)1.2064 (3)0.74657 (13)0.1146 (9)
H32A0.56541.21340.79750.137*
C330.57072 (8)1.3275 (3)0.70722 (16)0.1042 (8)
H33A0.57791.41680.73110.125*
C340.56734 (7)1.3186 (2)0.63278 (13)0.0865 (6)
H34A0.57181.40230.60560.104*
C350.55728 (6)1.18625 (19)0.59741 (10)0.0695 (5)
H35A0.55491.18060.54630.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0647 (8)0.0574 (8)0.0621 (8)0.0005 (6)0.0262 (6)0.0097 (6)
O10.0500 (7)0.1216 (11)0.0971 (10)0.0044 (7)0.0079 (6)0.0522 (9)
C10.0488 (8)0.0628 (9)0.0562 (9)0.0018 (7)0.0182 (7)0.0101 (8)
C20.0596 (10)0.0703 (11)0.0742 (11)0.0030 (8)0.0227 (8)0.0012 (9)
C30.0780 (13)0.0912 (15)0.0907 (15)0.0032 (11)0.0360 (11)0.0192 (12)
C40.1056 (17)0.131 (2)0.0662 (13)0.0071 (16)0.0295 (12)0.0171 (14)
C50.1064 (17)0.1208 (19)0.0534 (11)0.0031 (15)0.0174 (10)0.0125 (12)
C60.0677 (11)0.0839 (13)0.0533 (10)0.0038 (9)0.0155 (8)0.0155 (9)
C70.0864 (13)0.0825 (13)0.0673 (12)0.0145 (10)0.0162 (10)0.0346 (10)
C80.0661 (10)0.0614 (10)0.0748 (12)0.0072 (8)0.0226 (9)0.0239 (9)
C90.1045 (16)0.0618 (12)0.1124 (18)0.0143 (11)0.0356 (14)0.0324 (12)
C100.1129 (18)0.0577 (12)0.136 (2)0.0023 (12)0.0523 (16)0.0029 (14)
C110.0895 (14)0.0722 (13)0.1014 (16)0.0072 (11)0.0322 (12)0.0109 (12)
C120.0664 (11)0.0692 (11)0.0717 (11)0.0008 (9)0.0200 (9)0.0027 (9)
C130.0498 (8)0.0561 (9)0.0607 (9)0.0017 (7)0.0187 (7)0.0112 (8)
C140.0435 (7)0.0578 (9)0.0522 (8)0.0015 (6)0.0145 (6)0.0144 (7)
C150.0483 (8)0.0612 (9)0.0571 (9)0.0016 (7)0.0097 (7)0.0127 (7)
C160.0543 (9)0.0608 (9)0.0505 (8)0.0010 (7)0.0077 (7)0.0166 (7)
C170.0549 (9)0.0534 (8)0.0434 (8)0.0002 (7)0.0080 (6)0.0074 (6)
C180.0504 (8)0.0520 (8)0.0429 (7)0.0036 (6)0.0077 (6)0.0048 (6)
C190.0553 (9)0.0608 (9)0.0545 (9)0.0031 (7)0.0090 (7)0.0154 (7)
C200.0509 (8)0.0650 (10)0.0611 (9)0.0042 (7)0.0133 (7)0.0117 (8)
C210.0547 (8)0.0525 (8)0.0438 (8)0.0059 (7)0.0128 (6)0.0022 (6)
C220.0566 (9)0.0511 (8)0.0448 (8)0.0026 (7)0.0058 (6)0.0077 (6)
C230.0495 (8)0.0543 (8)0.0486 (8)0.0001 (7)0.0080 (6)0.0050 (7)
C240.0606 (9)0.0653 (10)0.0448 (8)0.0003 (8)0.0161 (7)0.0058 (7)
C250.0765 (12)0.0699 (12)0.0784 (12)0.0023 (9)0.0189 (9)0.0062 (10)
C260.1081 (18)0.0881 (15)0.0889 (15)0.0294 (14)0.0308 (13)0.0025 (12)
C270.0915 (17)0.130 (2)0.0908 (16)0.0422 (16)0.0377 (13)0.0292 (15)
C280.0591 (12)0.134 (2)0.0910 (15)0.0019 (13)0.0198 (10)0.0251 (15)
C290.0676 (11)0.0879 (13)0.0604 (10)0.0107 (10)0.0152 (8)0.0034 (9)
C300.0609 (9)0.0586 (9)0.0549 (9)0.0057 (7)0.0179 (7)0.0100 (8)
C310.1208 (17)0.0893 (14)0.0589 (11)0.0092 (13)0.0272 (11)0.0114 (10)
C320.155 (2)0.119 (2)0.0749 (15)0.0213 (18)0.0321 (15)0.0418 (15)
C330.1124 (18)0.0869 (16)0.118 (2)0.0103 (14)0.0336 (15)0.0477 (15)
C340.0954 (15)0.0605 (11)0.1077 (17)0.0056 (10)0.0284 (12)0.0109 (11)
C350.0818 (12)0.0621 (11)0.0662 (11)0.0100 (9)0.0166 (9)0.0025 (9)
Geometric parameters (Å, º) top
N1—C211.3876 (18)C17—H17A0.9300
N1—C241.419 (2)C18—C191.382 (2)
N1—C301.425 (2)C18—C231.390 (2)
O1—C151.2170 (18)C19—C201.371 (2)
C1—C141.394 (2)C19—H19A0.9300
C1—C21.421 (2)C20—C211.392 (2)
C1—C61.422 (2)C20—H20A0.9300
C2—C31.353 (3)C21—C221.389 (2)
C2—H2A0.9300C22—C231.3672 (19)
C3—C41.394 (3)C22—H22A0.9300
C3—H3A0.9300C23—H23A0.9300
C4—C51.336 (3)C24—C291.370 (2)
C4—H4A0.9300C24—C251.372 (2)
C5—C61.420 (3)C25—C261.369 (3)
C5—H5A0.9300C25—H25A0.9300
C6—C71.382 (3)C26—C271.352 (3)
C7—C81.374 (3)C26—H26A0.9300
C7—H7A0.9300C27—C281.358 (3)
C8—C131.419 (2)C27—H27A0.9300
C8—C91.422 (3)C28—C291.373 (3)
C9—C101.337 (3)C28—H28A0.9300
C9—H9A0.9300C29—H29A0.9300
C10—C111.394 (3)C30—C311.368 (2)
C10—H10A0.9300C30—C351.372 (2)
C11—C121.349 (3)C31—C321.370 (3)
C11—H11A0.9300C31—H31A0.9300
C12—C131.412 (2)C32—C331.351 (3)
C12—H12A0.9300C32—H32A0.9300
C13—C141.396 (2)C33—C341.356 (3)
C14—C151.494 (2)C33—H33A0.9300
C15—C161.443 (2)C34—C351.374 (3)
C16—C171.322 (2)C34—H34A0.9300
C16—H16A0.9300C35—H35A0.9300
C17—C181.4494 (19)
C21—N1—C24120.91 (13)C19—C18—C23117.05 (13)
C21—N1—C30121.00 (13)C19—C18—C17120.52 (13)
C24—N1—C30117.88 (12)C23—C18—C17122.41 (13)
C14—C1—C2123.36 (15)C20—C19—C18121.84 (14)
C14—C1—C6118.58 (15)C20—C19—H19A119.1
C2—C1—C6118.06 (16)C18—C19—H19A119.1
C3—C2—C1121.13 (18)C19—C20—C21120.81 (14)
C3—C2—H2A119.4C19—C20—H20A119.6
C1—C2—H2A119.4C21—C20—H20A119.6
C2—C3—C4120.3 (2)N1—C21—C22121.24 (13)
C2—C3—H3A119.8N1—C21—C20121.20 (14)
C4—C3—H3A119.8C22—C21—C20117.55 (13)
C5—C4—C3120.8 (2)C23—C22—C21121.07 (14)
C5—C4—H4A119.6C23—C22—H22A119.5
C3—C4—H4A119.6C21—C22—H22A119.5
C4—C5—C6121.5 (2)C22—C23—C18121.66 (14)
C4—C5—H5A119.3C22—C23—H23A119.2
C6—C5—H5A119.3C18—C23—H23A119.2
C7—C6—C5122.72 (18)C29—C24—C25119.11 (17)
C7—C6—C1119.09 (17)C29—C24—N1119.71 (16)
C5—C6—C1118.19 (18)C25—C24—N1121.19 (15)
C8—C7—C6122.66 (16)C26—C25—C24120.5 (2)
C8—C7—H7A118.7C26—C25—H25A119.8
C6—C7—H7A118.7C24—C25—H25A119.8
C7—C8—C13118.97 (16)C27—C26—C25120.3 (2)
C7—C8—C9122.75 (18)C27—C26—H26A119.9
C13—C8—C9118.26 (19)C25—C26—H26A119.9
C10—C9—C8121.4 (2)C26—C27—C28119.7 (2)
C10—C9—H9A119.3C26—C27—H27A120.2
C8—C9—H9A119.3C28—C27—H27A120.2
C9—C10—C11120.3 (2)C27—C28—C29120.9 (2)
C9—C10—H10A119.9C27—C28—H28A119.5
C11—C10—H10A119.9C29—C28—H28A119.5
C12—C11—C10120.8 (2)C24—C29—C28119.6 (2)
C12—C11—H11A119.6C24—C29—H29A120.2
C10—C11—H11A119.6C28—C29—H29A120.2
C11—C12—C13121.06 (18)C31—C30—C35119.13 (17)
C11—C12—H12A119.5C31—C30—N1119.80 (16)
C13—C12—H12A119.5C35—C30—N1121.07 (14)
C14—C13—C12122.79 (15)C30—C31—C32120.0 (2)
C14—C13—C8119.02 (15)C30—C31—H31A120.0
C12—C13—C8118.17 (15)C32—C31—H31A120.0
C1—C14—C13121.68 (14)C33—C32—C31120.7 (2)
C1—C14—C15119.26 (14)C33—C32—H32A119.6
C13—C14—C15118.95 (14)C31—C32—H32A119.6
O1—C15—C16120.72 (14)C32—C33—C34119.9 (2)
O1—C15—C14118.75 (13)C32—C33—H33A120.1
C16—C15—C14120.53 (13)C34—C33—H33A120.1
C17—C16—C15124.60 (14)C33—C34—C35120.2 (2)
C17—C16—H16A117.7C33—C34—H34A119.9
C15—C16—H16A117.7C35—C34—H34A119.9
C16—C17—C18126.49 (14)C30—C35—C34120.09 (18)
C16—C17—H17A116.8C30—C35—H35A120.0
C18—C17—H17A116.8C34—C35—H35A120.0
C14—C1—C2—C3179.93 (15)C16—C17—C18—C19164.77 (16)
C6—C1—C2—C30.7 (2)C16—C17—C18—C2313.6 (2)
C1—C2—C3—C40.4 (3)C23—C18—C19—C201.4 (2)
C2—C3—C4—C50.5 (3)C17—C18—C19—C20176.98 (15)
C3—C4—C5—C60.9 (4)C18—C19—C20—C210.7 (3)
C4—C5—C6—C7179.8 (2)C24—N1—C21—C22159.50 (14)
C4—C5—C6—C10.6 (3)C30—N1—C21—C2215.1 (2)
C14—C1—C6—C70.3 (2)C24—N1—C21—C2021.1 (2)
C2—C1—C6—C7179.07 (16)C30—N1—C21—C20164.28 (15)
C14—C1—C6—C5179.64 (16)C19—C20—C21—N1179.90 (15)
C2—C1—C6—C50.2 (2)C19—C20—C21—C220.5 (2)
C5—C6—C7—C8179.33 (18)N1—C21—C22—C23179.68 (14)
C1—C6—C7—C80.1 (3)C20—C21—C22—C230.9 (2)
C6—C7—C8—C130.1 (3)C21—C22—C23—C180.2 (2)
C6—C7—C8—C9178.22 (18)C19—C18—C23—C221.0 (2)
C7—C8—C9—C10177.7 (2)C17—C18—C23—C22177.38 (14)
C13—C8—C9—C100.6 (3)C21—N1—C24—C29129.43 (16)
C8—C9—C10—C110.2 (3)C30—N1—C24—C2955.8 (2)
C9—C10—C11—C120.9 (3)C21—N1—C24—C2551.2 (2)
C10—C11—C12—C131.6 (3)C30—N1—C24—C25123.52 (17)
C11—C12—C13—C14177.34 (16)C29—C24—C25—C261.2 (3)
C11—C12—C13—C81.1 (2)N1—C24—C25—C26179.45 (16)
C7—C8—C13—C140.1 (2)C24—C25—C26—C270.9 (3)
C9—C8—C13—C14178.47 (16)C25—C26—C27—C280.2 (3)
C7—C8—C13—C12178.37 (16)C26—C27—C28—C290.2 (3)
C9—C8—C13—C120.0 (2)C25—C24—C29—C280.8 (3)
C2—C1—C14—C13178.85 (14)N1—C24—C29—C28179.80 (16)
C6—C1—C14—C130.5 (2)C27—C28—C29—C240.2 (3)
C2—C1—C14—C152.6 (2)C21—N1—C30—C31123.00 (18)
C6—C1—C14—C15176.76 (14)C24—N1—C30—C3151.7 (2)
C12—C13—C14—C1178.00 (14)C21—N1—C30—C3557.2 (2)
C8—C13—C14—C10.4 (2)C24—N1—C30—C35128.10 (17)
C12—C13—C14—C151.7 (2)C35—C30—C31—C320.7 (3)
C8—C13—C14—C15176.67 (13)N1—C30—C31—C32179.5 (2)
C1—C14—C15—O187.0 (2)C30—C31—C32—C330.5 (4)
C13—C14—C15—O189.39 (19)C31—C32—C33—C341.3 (4)
C1—C14—C15—C1693.66 (18)C32—C33—C34—C350.9 (4)
C13—C14—C15—C1689.99 (18)C31—C30—C35—C341.0 (3)
O1—C15—C16—C17174.13 (17)N1—C30—C35—C34179.15 (16)
C14—C15—C16—C175.2 (3)C33—C34—C35—C300.2 (3)
C15—C16—C17—C18178.77 (15)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C18–C23 ring.
D—H···AD—HH···AD···AD—H···A
C23—H23A···O1i0.932.403.221 (2)147
C29—H29A···Cg1ii0.932.963.739 (19)142
Symmetry codes: (i) x+3/2, y+3/2, z+1; (ii) x+3/2, y+5/2, z+1.
 

Funding information

The authors thank the Malaysian Government and Universiti Sains Malaysia (USM) for the research facilities and the Fundamental Research Grant Scheme (FRGS) No. 203/PFIZIK/6711572 and for Short Term Grant Scheme (304/PFIZIK/6313336), respectively to conduct this work. DAZ thanks the Malaysian Government for a My Brain15 scholarship.

References

First citationAbdullah, A. A., Hassan, N. H. H., Arshad, S., Khalib, N. C. & Razak, I. A. (2016). Acta Cryst. E72, 648–651.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAgrahari, A., Wagers, P. O., Schildcrout, S. M., Masnovi, J. & Youngs, W. J. (2015). Acta Cryst. E71, 357–359.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCicogna, F., Ingrosso, G., Lodato, F., Marchetti, F. & Zandomeneghi, M. (2004). Tetrahedron, 60, 11959–11968.  Web of Science CSD CrossRef CAS Google Scholar
First citationD'silva, E. D., Podagatlapalli, G. K., Rao, S. V., Rao, D. N. & Dharmaprakash, S. M. (2011). Cryst. Growth Des. 11, 5326–5369.  Google Scholar
First citationGirisha, M., Yathirajan, H. S., Jasinski, J. P. & Glidewell, C. (2016). Acta Cryst. E72, 1153–1158.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGunasekaran, S., Kumaresan, S., Arunbalaji, R., Anand, G. & Srinivasan, S. (2008). J. Chem. Sci. 120, 315–324.  CrossRef CAS Google Scholar
First citationHarlow, R. L., Loghry, R. A., Williams, H. J. & Simonsen, S. H. (1975). Acta Cryst. B31, 1344–1350.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationJung, Y., Son, K., Oh, Y. E. & Noh, D. (2008). Polyhedron, 27, 861–867.  Web of Science CSD CrossRef CAS Google Scholar
First citationMaidur, S. R., Jahagirdar, J. R., Patil, P. S., Chia, T. S. & Quah, C. K. (2018). Opt. Mater. 75, 580–594.  CrossRef CAS Google Scholar
First citationMurray, J. S. & Sen, K. (1996). Molecular Electrostatic Potentials, Concepts and Applications. Amsterdam: Elsevier.  Google Scholar
First citationScrocco, E. & Tomasi, J. (1978). Advances in Quantum Chemistry. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer. University of Western Australia, Perth.  Google Scholar
First citationWu, W., Liu, Y. & Zhu, D. (2010). Chem. Soc. Rev. 39, 1489–1502.  Web of Science CrossRef CAS Google Scholar
First citationZainuri, D. A., Arshad, S., Khalib, N. C., Razak, A. I., Pillai, R. R., Sulaiman, F., Hashim, N. S., Ooi, K. L., Armaković, S., Armaković, S. J., Panicker, Y. & Van Alsenoy, C. (2017). J. Mol. Struct. 1128, 520–533.  Web of Science CSD CrossRef CAS Google Scholar
First citationZainuri, D. A., Razak, I. A. & Arshad, S. (2018a). Acta Cryst. E74, 492–496.  CrossRef IUCr Journals Google Scholar
First citationZainuri, D. A., Razak, I. A. & Arshad, S. (2018b). Acta Cryst. E74, 650–655.  CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds