research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

RbFe(HAsO4)2 and TlFe(HAsO4)2, two new hydrogenarsenates adopting two closely related structure types

crossmark logo

aInstitute for Chemical Technology and Analytics, Division of Structural Chemistry, TU Wien, Getreidemarkt 9/164-SC, 1060 Vienna, Austria, and bNaturhistorisches Museum, Burgring 7, 1010 Wien, and Institut für Mineralogie und Kristallographie, Universität Wien, Althanstrasse 14, 1090 Wien, Austria
*Correspondence e-mail: karolina.schwendtner@tuwien.ac.at

Edited by T. J. Prior, University of Hull, England (Received 11 April 2018; accepted 26 April 2018; online 1 May 2018)

Rubidium iron bis­[hydrogen arsenate(V)], RbFe(HAsO4)2, and thallium iron bis­[hydrogen arsenate(V)], TlFe(HAsO4)2, were grown under mild hydro­thermal conditions (T = 493 K, 7 d). RbFe(HAsO4)2 adopts the RbFe(HPO4)2 structure type (space group R-3c), while TlFe(HAsO4)2 crystallizes in the (NH4)Fe(HPO4)2 structure type (space group P-1. Both compounds have tetra­hedral–octa­hedral framework topologies. The M+ cations are located in channels of the respective framework and are disordered in TlFe(HAsO4)2, which may suggest that the M+ cations can move in the channels.

1. Chemical context

Compounds with mixed tetra­hedral–octa­hedral (T–O) framework structures exhibit a broad range of different topologies, resulting in structures with various inter­esting properties. Arsenates, similar to phosphates or silicates, tend to form T–O framework structures, with properties such as ion conductivity (Chouchene et al., 2017[Chouchene, S., Jaouadi, K., Mhiri, T. & Zouari, N. (2017). Solid State Ionics, 301, 78-85.]; d'Yvoire et al., 1983[d'Yvoire, F., Pintard-Scrépel, M., Bretey, E. & de la Rochère, M. (1983). Solid State Ionics, 9-10, 851-857.], 1986[d'Yvoire, F., Pintard-Scrépel, M. & Bretey, E. (1986). Solid State Ionics, 18-19, 502-506.], 1988[d'Yvoire, F., Bretey, E. & Collin, G. (1988). Solid State Ionics, 28-30, 1259-1264.]; Masquelier et al., 1990[Masquelier, C., d'Yvoire, F. & Rodier, N. (1990). Acta Cryst. C46, 1584-1587.], 1994[Masquelier, C., d'Yvoire, F. & Collin, G. (1994). Solid State Ionic Materials, Proceedings of the 4th Asian Conference on Solid State Ionics, Kuala Lumpur, Malaysia, 2-6 August 1994, edited by B. V. R. Chowdari, M. Yahaya, I. A. Talib & M. M. Salleh, pp. 167-172. Singapore: World Scientific.], 1995[Masquelier, C., d'Yvoire, F. & Collin, G. (1995). J. Solid State Chem. 118, 33-42.], 1996[Masquelier, C., Padhi, A. K., Nanjundaswamy, K. S., Okada, S. & Goodenough, J. B. (1996). Proceedings of the 37th Power Sources Conference, June 17-20, 1996, pp. 188-191. Cherry Hill, New Jersey. Fort Monmouth, NJ: US Army Research Laboratory.],1998[Masquelier, C., Padhi, A. K., Nanjundaswamy, K. S. & Goodenough, J. B. (1998). J. Solid State Chem. 135, 228-234.]; Ouerfelli et al., 2007a[Ouerfelli, N., Guesmi, A., Mazza, D., Madani, A., Zid, M. F. & Driss, A. (2007a). J. Solid State Chem. 180, 1224-1229.], 2008[Ouerfelli, N., Guesmi, A., Mazza, D., Zid, M. F. & Driss, A. (2008). Acta Cryst. C64, i41-i44.]; Pintard-Scrépel et al., 1983[Pintard-Scrépel, M., d'Yvoire, F. & Bretey, E. (1983). Stud. Inorg. Chem. 3, 215-218.]) and ion exchange (Masquelier et al., 1996[Masquelier, C., Padhi, A. K., Nanjundaswamy, K. S., Okada, S. & Goodenough, J. B. (1996). Proceedings of the 37th Power Sources Conference, June 17-20, 1996, pp. 188-191. Cherry Hill, New Jersey. Fort Monmouth, NJ: US Army Research Laboratory.]), as well as unusual piezoelectric (Cambon et al., 2003[Cambon, O., Yot, P., Rul, S., Haines, J. & Philippot, E. (2003). Solid State Sci. 5, 469-472.], 2005[Cambon, O., Haines, J., Fraysse, G., Detaint, J., Capelle, B. & Van der Lee, A. (2005). J. Appl. Phys. 97, 074110074111-074110/074117.]; Krempl, 2005[Krempl, P. W. (2005). J. Phys. IV Fr. 126, 95-100.]; Ren et al., 2015[Ren, J., Ma, Z., He, C., Sa, R., Li, Q. & Wu, K. (2015). Comput. Mater. Sci. 106, 1-4.]), magnetic (Ouerfelli et al., 2007b[Ouerfelli, N., Guesmi, A., Molinié, P., Mazza, D., Zid, M. F. & Driss, A. (2007b). J. Solid State Chem. 180, 2942-2949.]) or non-linear optical features (frequency doubling) (Carvajal et al., 2005[Carvajal, J. J., Parreu, I., Solé, R., Solans, X., Díaz, F. & Aguiló, M. (2005). Chem. Mater. 17, 6746-6754.]; Kato, 1975[Kato, K. (1975). Opt. Commun. 13, 93-95.]; Sun et al., 2017[Sun, Y., Yang, Z., Hou, D. & Pan, S. (2017). RSC Adv. 7, 2804-2809.]). To further increase the know­ledge about the possible compounds and structure types of arsenates, a comprehensive study of the system M+M3+–O–(H)–As5+ (M+ = Li, Na, K, Rb, Cs, Ag, Tl, NH4; M3+ = Al, Ga, In, Sc, Fe, Cr, Tl) was undertaken, which led to a large number of new compounds, most of which have been published (Schwendtner & Kolitsch, 2004[Schwendtner, K. & Kolitsch, U. (2004). Acta Cryst. C60, i84-i88.], 2017[Schwendtner, K. & Kolitsch, U. (2017). Acta Cryst. E73, 1580-1586.], 2018[Schwendtner, K. & Kolitsch, U. (2018). Acta Cryst. C. Submitted.] and references therein).

Among the many different structure types found during our study, one atomic arrangement, the RbFe(HPO4)2 type (Lii & Wu, 1994[Lii, K.-H. & Wu, L.-S. (1994). J. Chem. Soc. A, 10, 1577-1580.]; rhombohedral, R[\overline{3}]c), was found to be extremely versatile, allowing the incorporation of a wide variety of cations. Representatives of this structure type are presently known among arsenates and phosphates containing Rb or Cs as the M+ cation and Al, Ga, Fe, In as M3+; see Table 1[link] for a complete compilation of these compounds. RbFe(HAsO4)2 (Fig. 1[link]a) is the fifth arsenate adopting this structure type. There is only one other Rb–Fe–arsenate known to date, Rb2Fe2O(AsO4)2 (Chang et al., 1997[Chang, R.-S., Wang, S.-L. & Lii, K.-H. (1997). Inorg. Chem. 36, 3410-3413.]; Garlea et al., 2014[Garlea, O. V., Sanjeewa, L. D., McGuire, M. A., Kumar, P., Sulejmanovic, D., He, J. & Hwu, S.-J. (2014). Phys. Rev. B: Condens. Matter Mater. Phys. 89, 014426014421-014426/014429.]). The literature reports one arsenate containing Tl and Fe, the diarsenate TlFe0.22Al0.78As2O7 (Ouerfelli et al., 2007a[Ouerfelli, N., Guesmi, A., Mazza, D., Madani, A., Zid, M. F. & Driss, A. (2007a). J. Solid State Chem. 180, 1224-1229.]); however, the second title compound, TlFe(HAsO4)2 (Fig. 1[link]b), is the sole arsenate containing only Tl and Fe to date. It adopts the triclinic (P[\overline{1}]) (NH4)Fe(HPO4)2 structure type (Yakubovich, 1993[Yakubovich, O. V. (1993). Kristallografiya, 38, 43-48.]), along with CsSc(HAsO4)2 (Schwendtner & Kolitsch, 2004[Schwendtner, K. & Kolitsch, U. (2004). Acta Cryst. C60, i84-i88.]) and (NH4)Fe(HAsO4)2 (Ouerfelli et al., 2014[Ouerfelli, N., Souilem, A., Zid, M. F. & Driss, A. (2014). Acta Cryst. E70, i21-i22.]) as arsenate members and a wide variety of phosphate members (see compilation in Table 1[link]). These two structure types are closely related, the (NH4)Fe(HPO4)2 structure type (Yakubovich, 1993[Yakubovich, O. V. (1993). Kristallografiya, 38, 43-48.]) representing a distorted version of the RbFe(HPO4)2-type atomic arrangement (Lii & Wu, 1994[Lii, K.-H. & Wu, L.-S. (1994). J. Chem. Soc. A, 10, 1577-1580.]).

Table 1
Compilation of all published compounds adopting the (NH4)Fe(HPO4)2 structure type (Yakubovich, 1993[Yakubovich, O. V. (1993). Kristallografiya, 38, 43-48.]) and the RbFe(HPO4)2 structure type (Lii & Wu, 1994[Lii, K.-H. & Wu, L.-S. (1994). J. Chem. Soc. A, 10, 1577-1580.])

(NH4)Fe(HPO4)2 type (P[\overline{1}], Z = 3)              
  a (Å) b (Å) c (Å) α (°) β (°) γ (°) V3)
CsSc(HAsO4)2a 7.520 (2) 9.390 (2) 10.050 (2) 65.48 (3) 70.66 (3) 70.10 (3) 592.0 (2)
TlFe(HAsO4)2 7.346 (2) 9.148 (2) 9.662 (2) 64.89 (3) 70.51 (3) 69.94 (3) 538.6 (2)
(NH4)Fe(HAsO4)2b 7.3473 (7) 9.1917 (8) 9.7504 (9) 64.545 (5) 70.710 (7) 69.638 (6) 544.54 (2)
(NH4)Fe(HPO4)2c 7.185 (3) 8.857 (3) 9.478 (3) 64.79 (3) 70.20 (3) 69.38 (3) 498.0 (3)
(NH4)Fe(HPO4)2d 7.121 8.839 9.465 64.598 70.321 69.574 491.88
(NH4)V(HPO4)2e 7.173 (2) 8.841 (2) 9.458 (2) 65.08 (2) 70.68 (2) 69.59 (2) 497.59 (2)
(NH4)(Al0.64Ga0.36)f(HPO4)2 7.109 (4) 8.695 (4) 9.252 (6) 65.01 (4) 70.25 (5) 69.01 (4) 472.1 (4)
(ND4)Fe(DPO4)2d,g 7.11830 (3) 8.83828 (4) 9.46407 (4) 64.5802 (4) 70.3127 (4) 69.5733 (5) 491.495 (4)
KFe(HPO4)2h 7.20 8.76 9.49 64.58 69.82 70.13  
(H3O)Al(HPO4)2i 7.1177 (2) 8.6729 (2) 9.2200 (3) 65.108 (2) 70.521 (1) 68.504 (2) 469.4 (2)
CsIn(HPO4)2j 7.4146 (3) 9.0915 (3) 9.7849 (3) 65.525 (3) 70.201 (3) 69.556 (3) 547.77 (4)
RbFe(HPO4)2j 7.2025 (4) 8.8329 (8) 9.4540 (8) 65.149 (8) 70.045 (6) 69.591 (6) 497.44 (8)
RbV(HPO4)2k 7.188 (2) 8.831 (1) 9.450(2 65.34 70.449 69.739 498.5 (2)
RbFe(HPO4)2 type (R[\overline{3}]c, Z = 18)              
RbIn(HAsO4)2l 8.512 (1) 8.512 (1) 56.43 (1) 90 90 120 3541.1 (9)
CsIn(HAsO4)2l 8.629 (1) 8.629 (1) 56.99 (1) 90 90 120 3674.7 (9)
RbAl(HAsO4)2m 8.318 (1) 8.318 (1) 52.87 (1) 90 90 120 3167.9 (9)
RbFe(HAsO4)2 8.425 (1) 8.425 (1) 54.75 (1) 90 90 120 3365.5 (9)
CsFe(HAsO4)2m 8.525 (1) 8.525 (1) 55.00 (1) 90 90 120 3461.5 (9)
RbFe(HPO4)2n 8.160 (1) 8.160 (1) 52.75 (1) 90 90 120 3041.82
RbAl(HPO4)2j 8.0581 (18) 8.0581 (18) 51.081 (12) 90 90 120 2872 (11)
RbGa(HPO4)2j 8.1188 (15) 8.1188 (15) 51.943 (4) 90 90 120 2965.1 (8)
Notes: (a) Schwendtner & Kolitsch (2004[Schwendtner, K. & Kolitsch, U. (2004). Acta Cryst. C60, i84-i88.]); (b) Ouerfelli et al. (2014[Ouerfelli, N., Souilem, A., Zid, M. F. & Driss, A. (2014). Acta Cryst. E70, i21-i22.]); (c) Yakubovich (1993[Yakubovich, O. V. (1993). Kristallografiya, 38, 43-48.]), transformed from I[\overline{1}]; (d) Alfonso et al. (2011[Alfonso, B. F., Piqué, C., Trobajo, C., García, J. R., Fernández, J. R., Fernández-Díaz, M. T. & Blanco, J. A. (2011). J. Phys. Conf. Ser. 325, 012014.]), converted to reduced cell; (e) Bircsak & Harrison (1998[Bircsak, Z. & Harrison, W. T. A. (1998). Acta Cryst. C54, 1195-1197.]); (f) Stalder & Wilkinson (1998[Stalder, S. M. & Wilkinson, A. P. (1998). J. Mater. Chem. 8, 261-263.]); (g) Alfonso et al. (2010[Alfonso, B. F., Blanco, J. A., Fernández-Díaz, M. T., Trobajo, C., Khainakov, S. A. & García, J. R. (2010). Dalton Trans. 39, 1891-1796.]); (h) Smith & Brown (1959[Smith, J. P. & Brown, W. E. (1959). Am. Mineral. 44, 138-142.]); (i) Yan et al. (2000[Yan, W., Yu, J., Shi, Z. & Xu, R. (2000). Chem. Commun. pp. 1431-1432.]); (j) Lesage et al. (2007[Lesage, J., Adam, L., Guesdon, A. & Raveau, B. (2007). J. Solid State Chem. 180, 1799-1808.]); (k) Haushalter et al. (1995[Haushalter, R. C., Wang, Z., Thompson, M. E. & Zubieta, J. (1995). Inorg. Chim. Acta, 232, 83-89.]), converted to reduced cell; (l) Schwendtner & Kolitsch (2017[Schwendtner, K. & Kolitsch, U. (2017). Acta Cryst. E73, 1580-1586.]); (m) Schwendtner & Kolitsch (2018[Schwendtner, K. & Kolitsch, U. (2018). Acta Cryst. C. Submitted.]); (n) Lii & Wu (1994[Lii, K.-H. & Wu, L.-S. (1994). J. Chem. Soc. A, 10, 1577-1580.]).
[Figure 1]
Figure 1
SEM micrographs of crystals of (a) RbFe(HAsO4)2 and (b) TlFe(HAsO4)2.

2. Structural commentary

The two structure types are very closely related to each other and are modifications of a basic tetra­hedral–octa­hedral framework structure (Figs. 2[link]–4[link][link]) containing inter­penetrating channels, which host the M+ cations. The general building unit in these structure types contains M3+O6 octa­hedra, which are connected via their six corners to six protonated AsO4 tetra­hedra (M3+As6O24 group). These are in turn connected via three corners to other M3+O6 octa­hedra, the free, protonated corner of each AsO4 tetra­hedron forming a hydrogen bond to the neighbouring M3+As6O24 group. In both types, the M3+As6O24 groups are arranged in layers perpendicular to the c axis (Fig. 2[link]a) and parallel to the ab plane (Fig. 3a). The groups within these layers are held together by medium-strong hydrogen bonds (Tables 2[link] and 3[link]). The different modifications are caused by strong distortion of the whole structure (see detailed comparison in Lesage et al., 2007[Lesage, J., Adam, L., Guesdon, A. & Raveau, B. (2007). J. Solid State Chem. 180, 1799-1808.]).

Table 2
Hydrogen-bond geometry (Å, °) for RbFe(HAsO4)2

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H⋯O4xxi 0.81 (3) 1.82 (3) 2.615 (3) 166 (4)
Symmetry code: (xxi) [y, x-1, -z+{\script{3\over 2}}].

Table 3
Hydrogen-bond geometry (Å, °) for TlFe(HAsO4)2

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O9iii 0.85 (3) 1.86 (3) 2.707 (3) 176 (5)
O8—H8⋯O10v 0.982 (2) 1.598 (2) 2.569 (3) 169.44 (15)
O12—H12⋯O3 0.88 (3) 1.86 (3) 2.729 (3) 172 (5)
Symmetry codes: (iii) x+1, y, z; (v) x, y+1, z.
[Figure 2]
Figure 2
Structure drawing of RbFe(HAsO4)2 along (a) [100] and (b) [001]. The Rb atoms, located in channels of the framework structure, are shown with displacement ellipsoids at the 70% probability level. Hydrogen bonds are shown as dashed lines.
[Figure 3]
Figure 3
Structure drawing of TlFe(HAsO4)2 along (a) [100] and (b) [101]. The disordered Tl atoms are shown with displacement ellipsoids at the 70% probability level. Hydrogen bonds are shown as dashed lines.
[Figure 4]
Figure 4
The principal building units of (a) RbFe(HAsO4)2 and (b) TlFe(HAsO4)2 shown as displacement ellipsoids at the 70% probability level. Symmetry codes: RbFe(HAsO4)2: (i) x − y, −y, −z + [{3\over 2}]; (ii) −x, −x + y, −z + [{3\over 2}]; (iii) −x + y, −x, z; (iv) y, x, −z + [{3\over 2}]; (v) −y, x − y, z; (vi) −x + [{2\over 3}], −y − [{2\over 3}], −z + [{4\over 3}]; (vii) y + [{2\over 3}], −x + y+[{4\over 3}], −z + [{4\over 3}]; (viii) x − y − [{4\over 3}], x − [{2\over 3}], −z + [{4\over 3}]; (ix) x − [{1\over 3}], x − y − [{2\over 3}], z − [{1\over 6}]; (x) −y − [{1\over 3}], −x + [{1\over 3}], z − [{1\over 6}]; (xi) −x + y + [{2\over 3}], y + [{1\over 3}], z − [{1\over 6}]; (xii) −x − [{1\over 3}], −y − [{2\over 3}], −z + [{4\over 3}]; (xiii) y + [{2\over 3}], −x + y + [{1\over 3}], −z + [{4\over 3}]; (xiv) x − y − [{1\over 3}], x + [{1\over 3}], −z + [{4\over 3}]; (xv) −y, x − y + 1, z; (xvi) x + 1, y + 1, z; (xvii) x, y + 1, z; (xviii) −x + y + 1, −x + 1, z; (xix) −x + [{2\over 3}], −y + [{1\over 3}], −z + [{4\over 3}]; (xx) x − 1, y, z; TlFe(HAsO4)2: −z; (ii) −x, −y + 2, −z; (iv) −x + 1, −y + 1, −z; (viii) −x, −y + 1, −z + 1; (ix) −x, −y + 1, −z.

In both compounds the Tl/Rb atoms are 12-coordinated (Tables 4[link] and 5[link]). The average Tl—O (3.279 and 3.312 Å) and Rb—O (3.257 and 3.390 Å) bond lengths are longer than the grand mean bond lengths in Tl/RbO12 polyhedra of 3.195 (Gagné & Hawthorne, 2018[Gagné, O. C. & Hawthorne, F. C. (2018). Acta Cryst. B74, 63-78.]) and 3.228 Å (Gagné & Hawthorne, 2016[Gagné, O. C. & Hawthorne, F. C. (2016). Acta Cryst. B72, 602-625.]), thus leading to rather low bond-valence sums (BVSs) (Gagné & Hawthorne, 2015[Gagné, O. C. & Hawthorne, F. C. (2015). Acta Cryst. B71, 562-578.]) for the involved M+ cations (0.76/0.88 and 0.82/0.85 valence units, v.u., for the RbFe and TlFe representative, respectively). The average Tl2—O bond length in TlFe(HAsO4)2 (3.312 Å) is the longest average bond length found so far for TlO12 polyhedra (max. Tl—O = 3.304 Å; Gagné & Hawthorne, 2018[Gagné, O. C. & Hawthorne, F. C. (2018). Acta Cryst. B74, 63-78.]) and the corresponding average Rb2—O bond length in RbFe(HAsO4)2 is also close to the longest observed such bond lengths in RbO12 polyhedra of 3.410 Å (Gagné & Hawthorne, 2016[Gagné, O. C. & Hawthorne, F. C. (2016). Acta Cryst. B72, 602-625.]). These loose bonds reflect the observation that the alkali cations `rattle' somewhat in their hosting voids, with considerable positional disorder of the Tl atoms in these voids (Fig. 4[link]b). The Tl atoms were therefore modelled with two Tl1 positions (Tl1A, Tl1B) and three Tl2 positions (Tl2A, Tl2B, Tl2C), between 0.28 (2) and 0.48 (2) Å apart. The refined occupancies of the dominant positions (Tl1A and Tl2A) are 63 and 45%, respectively. The influence of a stereochemically active lone pair of electrons on the Tl+ cations may also play a role in the positional disorder.

Table 4
Selected bond lengths (Å) for RbFe(HAsO4)2

Rb1—O3 3.146 (2) Rb2—O4xi 3.562 (2)
Rb1—O3i 3.147 (2) Rb2—O3xii 3.640 (2)
Rb1—O3ii 3.147 (2) Rb2—O3xiii 3.640 (2)
Rb1—O3iii 3.147 (2) Rb2—O3xiv 3.640 (2)
Rb1—O3iv 3.147 (2) Fe1—O2xv 1.9957 (18)
Rb1—O3v 3.147 (2) Fe1—O2iii 1.9957 (18)
Rb1—O2ii 3.3671 (19) Fe1—O2xvi 1.9957 (18)
Rb1—O2iv 3.3671 (19) Fe1—O4xvii 2.0055 (19)
Rb1—O2iii 3.3671 (19) Fe1—O4v 2.0055 (18)
Rb1—O2i 3.3671 (19) Fe1—O4xviii 2.0055 (18)
Rb1—O2v 3.3671 (19) Fe2—O1vii 1.998 (2)
Rb1—O2 3.3671 (19) Fe2—O1xiv 1.998 (2)
Rb2—O3v 2.965 (2) Fe2—O1xix 1.998 (2)
Rb2—O3iii 2.965 (2) Fe2—O1v 1.998 (2)
Rb2—O3 2.965 (2) Fe2—O1xviii 1.998 (2)
Rb2—O1vi 3.394 (2) Fe2—O1xvii 1.998 (2)
Rb2—O1vii 3.394 (2) As—O1xx 1.6555 (19)
Rb2—O1viii 3.394 (2) As—O2 1.6720 (18)
Rb2—O4ix 3.562 (2) As—O4ii 1.6801 (18)
Rb2—O4x 3.562 (2) As—O3 1.742 (2)
Symmetry codes: (i) [x-y, -y, -z+{\script{3\over 2}}]; (ii) [-x, -x+y, -z+{\script{3\over 2}}]; (iii) [-x+y, -x, z]; (iv) [y, x, -z+{\script{3\over 2}}]; (v) [-y, x-y, z]; (vi) [-x+{\script{2\over 3}}, -y-{\script{2\over 3}}, -z+{\script{4\over 3}}]; (vii) [y+{\script{2\over 3}}, -x+y+{\script{4\over 3}}, -z+{\script{4\over 3}}]; (viii) [x-y-{\script{4\over 3}}, x-{\script{2\over 3}}, -z+{\script{4\over 3}}]; (ix) [x-{\script{1\over 3}}, x-y-{\script{2\over 3}}, z-{\script{1\over 6}}]; (x) [-y-{\script{1\over 3}}, -x+{\script{1\over 3}}, z-{\script{1\over 6}}]; (xi) [-x+y+{\script{2\over 3}}, y+{\script{1\over 3}}, z-{\script{1\over 6}}]; (xii) [-x-{\script{1\over 3}}, -y-{\script{2\over 3}}, -z+{\script{4\over 3}}]; (xiii) [y+{\script{2\over 3}}, -x+y+{\script{1\over 3}}, -z+{\script{4\over 3}}]; (xiv) [x-y-{\script{1\over 3}}, x+{\script{1\over 3}}, -z+{\script{4\over 3}}]; (xv) [-y, x-y+1, z]; (xvi) x+1, y+1, z; (xvii) x, y+1, z; (xviii) [-x+y+1, -x+1, z]; (xix) [-x+{\script{2\over 3}}, -y+{\script{1\over 3}}, -z+{\script{4\over 3}}]; (xx) [x-1, y, z].

Table 5
Selected bond lengths (Å) for TlFe(HAsO4)2

Tl1A—O1 2.853 (2) Fe1—O4viii 1.942 (2)
Tl1A—O1i 2.853 (2) Fe1—O4 1.942 (2)
Tl1A—O8i 3.094 (3) Fe1—O6viii 2.015 (2)
Tl1A—O8 3.094 (3) Fe1—O6 2.015 (2)
Tl1A—O2 3.227 (3) Fe1—O9 2.060 (2)
Tl1A—O2i 3.227 (3) Fe1—O9viii 2.060 (2)
Tl1A—O7ii 3.344 (2) Fe2—O5 1.946 (2)
Tl1A—O7iii 3.344 (2) Fe2—O11 1.970 (2)
Tl1A—O5ii 3.543 (2) Fe2—O1 1.978 (2)
Tl1A—O5iii 3.543 (2) Fe2—O10ix 2.014 (2)
Tl1A—O12iv 3.615 (3) Fe2—O7ii 2.044 (2)
Tl1A—O12v 3.615 (3) Fe2—O3iv 2.065 (2)
Tl2A—O3vi 2.804 (4) As1—O4 1.652 (2)
Tl2A—O2 2.852 (4) As1—O1 1.668 (2)
Tl2A—O6iii 2.936 (5) As1—O3 1.683 (2)
Tl2A—O12v 3.020 (4) As1—O2 1.720 (2)
Tl2A—O8 3.091 (5) As2—O6 1.670 (2)
Tl2A—O7iii 3.362 (5) As2—O5 1.671 (2)
Tl2A—O7vii 3.450 (4) As2—O7 1.684 (2)
Tl2A—O9viii 3.523 (5) As2—O8 1.738 (2)
Tl2A—O10viii 3.572 (5) As3—O11 1.655 (2)
Tl2A—O12vi 3.638 (5) As3—O10 1.6730 (19)
Tl2A—O4vi 3.691 (4) As3—O9 1.679 (2)
Tl2A—O4 3.811 (5) As3—O12 1.721 (2)
Symmetry codes: (i) [-x+1, -y+2, -z]; (ii) [-x, -y+2, -z]; (iii) x+1, y, z; (iv) [-x+1, -y+1, -z]; (v) x, y+1, z; (vi) [-x+1, -y+1, -z+1]; (vii) [-x, -y+2, -z+1]; (viii) [-x, -y+1, -z+1]; (ix) [-x, -y+1, -z].

The average Fe—O bond lengths, which show a fairly narrow range between 1.998 and 2.006 Å for the four FeO6 octa­hedra in the two title compounds, are slightly lower than the corresponding grand mean average of 2.011 Å reported by Baur (1981[Baur, W. H. (1981). Structure and Bonding in Crystals, edited by M. O'Keeffe & A. Navrotsky, pp. 31-52. New York: Academic Press.]), thus leading to slightly higher BVSs of between 3.11 and 3.15 v.u. (Gagné & Hawthorne, 2015[Gagné, O. C. & Hawthorne, F. C. (2015). Acta Cryst. B71, 562-578.]).

The AsO4 tetra­hedra are distorted with three short bond lengths of those bonds connecting to neighbouring FeO6 octa­hedra and one considerably elongated bond length to the protonated corner. The average As—O bond lengths are close to the calculated average of 1.686 (10) Å (calculated on 704 AsO4 polyhedra; Schwendtner, 2008[Schwendtner, K. (2008). PhD thesis, Universität Wien, Austria.]), and the two As—OH bond lengths (Tables 3[link] and 4[link]) are also close to the average of such lengths in HAsO4 polyhedra of 1.72 (3) Å (Schwendtner, 2008[Schwendtner, K. (2008). PhD thesis, Universität Wien, Austria.]), but the two bond lengths to O atoms with rather strong hydrogen bonds [DA = 2.569 (3) and 2.615 (3) Å] are considerably elongated to 1.738 (2) and 1.742 (2) Å, respectively (Tables 2[link] and 3[link]).

3. Synthesis and crystallization

The compounds were grown by hydro­thermal synthesis at 493 K (7 d, autogeneous pressure, slow furnace cooling) using Teflon-lined stainless steel autoclaves with an approximate filling volume of 2 cm3. Reagent-grade Rb2CO3/Tl2CO3, Fe2O3 and H3AsO4·0.5H2O were used as starting reagents in approximate volume ratios of M+:M3+:As of 1:1:2. The vessels were filled with distilled water to about 70% of their inner volumes which led to initial and final pH values of 1.5 and 1, respectively, for both synthesis batches. The reaction products were washed thoroughly with distilled water, filtered and dried at room temperature. They are stable in air.

RbFe(HAsO4)2 formed colorless pseudohexa­gonal platelets (Fig. 1[link]a). TlFe(HAsO4)2 formed pseudo-`disphenoidic-monoclinic', short prismatic, colourless glassy crystals (Fig. 1[link]b), some of which showed fine-grained red inclusions, probably either unreacted Fe2O3 or some Fe–O–(OH) compound, mainly in the core of the crystals.

Measured X-ray powder diffraction diagrams of RbFe(HAsO4)2 and TlFe(HAsO4)2 were deposited at the Inter­national Centre for Diffraction Data under PDF numbers 00-057-0160 (Prem et al., 2005a[Prem, M., Lengauer, C. & Tillmanns, E. (2005a). University of Vienna, Austria. ICDD Grant-in-Aid.]) and 00-057-0159 (Prem et al., 2005b[Prem, M., Lengauer, C. & Tillmanns, E. (2005b). University of Vienna, Austria. ICDD Grant-in-Aid.]), respectively.

The chemical compositions of the title compounds were checked by standard SEM–EDS analysis of several carbon-coated crystals of each compound; no impurities could be detected.

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 6[link].

Table 6
Experimental details

  RbFe(HAsO4)2 TlFe(HAsO4)2
Crystal data
Mr 421.18 540.08
Crystal system, space group Trigonal, R[\overline{3}]c:H Triclinic, P[\overline{1}]
Temperature (K) 293 293
a, b, c (Å) 8.425 (1), 8.425 (1), 54.749 (11) 7.346 (2), 9.148 (2), 9.662 (2)
α, β, γ (°) 90, 90, 120 64.89 (3), 70.51 (3), 69.94 (3)
V3) 3365.5 (10) 538.6 (3)
Z 18 3
Radiation type Mo Kα Mo Kα
μ (mm−1) 17.27 33.58
Crystal size (mm) 0.09 × 0.08 × 0.03 0.10 × 0.05 × 0.04
 
Data collection
Diffractometer Nonius KappaCCD single-crystal four-circle Nonius KappaCCD single-crystal four-circle
Absorption correction Multi-scan (HKL SCALEPACK; Otwinowski et al., 2003[Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228-234.]) Multi-scan (HKL SCALEPACK; Otwinowski et al., 2003[Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228-234.])
Tmin, Tmax 0.306, 0.625 0.134, 0.347
No. of measured, independent and observed [I > 2σ(I)] reflections 3994, 1105, 1014 7723, 3906, 3391
Rint 0.023 0.021
(sin θ/λ)max−1) 0.704 0.758
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.052, 1.12 0.022, 0.051, 1.06
No. of reflections 1105 3906
No. of parameters 62 208
No. of restraints 1 4
H-atom treatment All H-atom parameters refined Only H-atom displacement parameters refined
Δρmax, Δρmin (e Å−3) 0.87, −0.72 0.96, −1.13
Computer programs: COLLECT (Nonius, 2003[Nonius (2003). COLLECT. Nonius, B. V., Delft, The Netherlands.]), HKL DENZO and SCALEPACK (Otwinowski et al., 2003[Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228-234.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2005[Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

For the final refinement the atomic positions of RbFe(HPO4)2 (Lii & Wu, 1994[Lii, K.-H. & Wu, L.-S. (1994). J. Chem. Soc. A, 10, 1577-1580.]) and CsSc(HAsO4)2 (Schwendtner & Kolitsch, 2004[Schwendtner, K. & Kolitsch, U. (2004). Acta Cryst. C60, i84-i88.]) were used for RbFe(HAsO4)2 and TlFe(HAsO4)2, respectively. The H atoms were then located from the difference-Fourier map and O—H distances were restrained to 0.90 (4) Å. The position of H8 was fixed to the coordinates where it was located in the difference-Fourier map, since a refinement of the position led to an unreasonably close distance to the neighbouring As atom. At this point, electron densities of up to 2.79 and 4.71 e Å−3, respectively, were found close to the Tl1 and Tl2 atoms, along with anomalous displacement ellipsoids of these atoms. This suggested the presence of positional disorder (and, possibly, some mobility) of the Tl atoms in the cavities. The disorder was then modeled by additional, partially occupied Tl positions. The bulk occupancy for each of the two disordered Tl positions (Tl1A and Tl1B for Tl1 and Tl2A, Tl2B and Tl2C for Tl2) was constrained to 1.00. As a result, the R value dropped from 0.0335 to 0.0224, and the weight parameters also improved. Final equivalent isotropic displacement parameters of all the partially occupied Tl sites are reasonable, with values between ca 0.03 and 0.04 Å2, very similar to those in the Rb compound. The final residual electron densities are < 1 e Å−3 for both compounds.

Supporting information


Computing details top

For both structures, data collection: COLLECT (Nonius, 2003); cell refinement: HKL SCALEPACK (Otwinowski et al., 2003); data reduction: HKL DENZO and SCALEPACK (Otwinowski et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2005). Software used to prepare material for publication: publCIF (Westrip, 2010) for RbFeHAsO42; WinGX (Farrugia, 2012) for TlFeHAsO42.

Rubidium iron bis[hydrogen arsenate(V)] (RbFeHAsO42) top
Crystal data top
RbFe(HAsO4)2Dx = 3.741 Mg m3
Mr = 421.18Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3c:HCell parameters from 2.794 reflections
a = 8.425 (1) Åθ = 2.9–30.0°
c = 54.749 (11) ŵ = 17.27 mm1
V = 3365.5 (10) Å3T = 293 K
Z = 18Hexagonal platelet, colourless
F(000) = 35100.09 × 0.08 × 0.03 mm
Data collection top
Nonius KappaCCD single-crystal four-circle
diffractometer
1014 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.023
φ and ω scansθmax = 30.0°, θmin = 2.9°
Absorption correction: multi-scan
(HKL SCALEPACK; Otwinowski et al., 2003)
h = 1111
Tmin = 0.306, Tmax = 0.625k = 99
3994 measured reflectionsl = 7676
1105 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021All H-atom parameters refined
wR(F2) = 0.052 w = 1/[σ2(Fo2) + (0.0241P)2 + 19.8694P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max = 0.001
1105 reflectionsΔρmax = 0.87 e Å3
62 parametersΔρmin = 0.72 e Å3
1 restraintExtinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.000112 (19)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rb10.0000000.0000000.7500000.03271 (19)
Rb20.0000000.0000000.66752 (2)0.03704 (16)
Fe10.3333330.6666670.75352 (2)0.00828 (13)
Fe20.3333330.6666670.6666670.00999 (17)
As0.42107 (3)0.38770 (3)0.71298 (2)0.00949 (9)
O10.4739 (3)0.4215 (3)0.68632 (3)0.0215 (4)
O20.4425 (2)0.2504 (2)0.73312 (3)0.0123 (3)
O30.1873 (3)0.2762 (3)0.70652 (4)0.0200 (4)
O40.4749 (2)0.1197 (2)0.77593 (3)0.0117 (3)
H0.149 (5)0.342 (4)0.7113 (6)0.022 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rb10.0391 (3)0.0391 (3)0.0199 (4)0.01955 (14)0.0000.000
Rb20.0453 (2)0.0453 (2)0.0205 (3)0.02266 (12)0.0000.000
Fe10.00900 (18)0.00900 (18)0.0068 (3)0.00450 (9)0.0000.000
Fe20.0122 (3)0.0122 (3)0.0055 (4)0.00610 (13)0.0000.000
As0.01225 (14)0.01058 (13)0.00780 (13)0.00733 (10)0.00099 (9)0.00115 (9)
O10.0324 (12)0.0306 (11)0.0101 (8)0.0222 (10)0.0067 (8)0.0012 (8)
O20.0127 (8)0.0115 (8)0.0126 (8)0.0060 (7)0.0039 (7)0.0015 (7)
O30.0153 (9)0.0184 (10)0.0295 (11)0.0110 (8)0.0104 (8)0.0129 (8)
O40.0128 (8)0.0108 (8)0.0138 (8)0.0076 (7)0.0019 (7)0.0048 (7)
Geometric parameters (Å, º) top
Rb1—O33.146 (2)Rb2—O3xii3.640 (2)
Rb1—O3i3.147 (2)Rb2—O3xiii3.640 (2)
Rb1—O3ii3.147 (2)Rb2—O3xiv3.640 (2)
Rb1—O3iii3.147 (2)Rb2—Asxii3.8044 (6)
Rb1—O3iv3.147 (2)Rb2—Asxiii3.8044 (6)
Rb1—O3v3.147 (2)Rb2—Asxiv3.8044 (6)
Rb1—O2ii3.3671 (19)Fe1—O2xv1.9957 (18)
Rb1—O2iv3.3671 (19)Fe1—O2iii1.9957 (18)
Rb1—O2iii3.3671 (19)Fe1—O2xvi1.9957 (18)
Rb1—O2i3.3671 (19)Fe1—O4xvii2.0055 (19)
Rb1—O2v3.3671 (19)Fe1—O4v2.0055 (18)
Rb1—O23.3671 (19)Fe1—O4xviii2.0055 (18)
Rb1—H3.28 (3)Fe2—O1vii1.998 (2)
Rb1—Hv3.28 (4)Fe2—O1xiv1.998 (2)
Rb1—Hiii3.28 (3)Fe2—O1xix1.998 (2)
Rb2—O3v2.965 (2)Fe2—O1v1.998 (2)
Rb2—O3iii2.965 (2)Fe2—O1xviii1.998 (2)
Rb2—O32.965 (2)Fe2—O1xvii1.998 (2)
Rb2—O1vi3.394 (2)As—O1xx1.6555 (19)
Rb2—O1vii3.394 (2)As—O21.6720 (18)
Rb2—O1viii3.394 (2)As—O4ii1.6801 (18)
Rb2—O4ix3.562 (2)As—O31.742 (2)
Rb2—O4x3.562 (2)O3—H0.81 (3)
Rb2—O4xi3.562 (2)
O3—Rb1—O3i164.86 (8)O4xi—Rb2—Asxii70.60 (3)
O3—Rb1—O3ii121.47 (8)O3xii—Rb2—Asxii26.95 (3)
O3i—Rb1—O3ii68.99 (6)O3xiii—Rb2—Asxii62.25 (4)
O3—Rb1—O3iii68.99 (6)O3xiv—Rb2—Asxii96.36 (4)
O3i—Rb1—O3iii103.28 (7)O3v—Rb2—Asxiii101.27 (5)
O3ii—Rb1—O3iii164.86 (8)O3iii—Rb2—Asxiii105.92 (5)
O3—Rb1—O3iv103.28 (8)O3—Rb2—Asxiii175.05 (4)
O3i—Rb1—O3iv68.99 (6)O1vi—Rb2—Asxiii88.88 (4)
O3ii—Rb1—O3iv68.99 (6)O1vii—Rb2—Asxiii25.79 (3)
O3iii—Rb1—O3iv121.47 (8)O1viii—Rb2—Asxiii104.27 (4)
O3—Rb1—O3v68.99 (6)O4ix—Rb2—Asxiii53.64 (3)
O3i—Rb1—O3v121.47 (8)O4x—Rb2—Asxiii70.60 (3)
O3ii—Rb1—O3v103.28 (7)O4xi—Rb2—Asxiii26.10 (3)
O3iii—Rb1—O3v68.99 (6)O3xii—Rb2—Asxiii96.36 (4)
O3iv—Rb1—O3v164.86 (8)O3xiii—Rb2—Asxiii26.95 (3)
O3—Rb1—O2ii126.04 (5)O3xiv—Rb2—Asxiii62.24 (4)
O3i—Rb1—O2ii68.90 (5)Asxii—Rb2—Asxiii78.998 (15)
O3ii—Rb1—O2ii48.72 (5)O3v—Rb2—Asxiv175.05 (4)
O3iii—Rb1—O2ii116.78 (5)O3iii—Rb2—Asxiv101.27 (5)
O3iv—Rb1—O2ii113.39 (5)O3—Rb2—Asxiv105.92 (5)
O3v—Rb1—O2ii65.41 (5)O1vi—Rb2—Asxiv104.27 (4)
O3—Rb1—O2iv65.40 (5)O1vii—Rb2—Asxiv88.88 (4)
O3i—Rb1—O2iv113.39 (5)O1viii—Rb2—Asxiv25.79 (3)
O3ii—Rb1—O2iv68.90 (5)O4ix—Rb2—Asxiv70.60 (3)
O3iii—Rb1—O2iv126.04 (5)O4x—Rb2—Asxiv26.10 (3)
O3iv—Rb1—O2iv48.72 (5)O4xi—Rb2—Asxiv53.64 (3)
O3v—Rb1—O2iv116.78 (5)O3xii—Rb2—Asxiv62.24 (4)
O2ii—Rb1—O2iv112.77 (3)O3xiii—Rb2—Asxiv96.36 (4)
O3—Rb1—O2iii113.39 (5)O3xiv—Rb2—Asxiv26.95 (3)
O3i—Rb1—O2iii65.41 (5)Asxii—Rb2—Asxiv78.998 (15)
O3ii—Rb1—O2iii116.78 (5)Asxiii—Rb2—Asxiv78.997 (15)
O3iii—Rb1—O2iii48.72 (5)O2xv—Fe1—O2iii91.74 (8)
O3iv—Rb1—O2iii126.04 (5)O2xv—Fe1—O2xvi91.74 (8)
O3v—Rb1—O2iii68.90 (5)O2iii—Fe1—O2xvi91.74 (8)
O2ii—Rb1—O2iii74.90 (6)O2xv—Fe1—O4xvii92.04 (8)
O2iv—Rb1—O2iii171.63 (6)O2iii—Fe1—O4xvii175.92 (8)
O3—Rb1—O2i116.78 (5)O2xvi—Fe1—O4xvii89.66 (7)
O3i—Rb1—O2i48.72 (5)O2xv—Fe1—O4v89.66 (7)
O3ii—Rb1—O2i113.39 (5)O2iii—Fe1—O4v92.04 (8)
O3iii—Rb1—O2i65.41 (5)O2xvi—Fe1—O4v175.92 (8)
O3iv—Rb1—O2i68.90 (5)O4xvii—Fe1—O4v86.47 (8)
O3v—Rb1—O2i126.04 (5)O2xv—Fe1—O4xviii175.92 (8)
O2ii—Rb1—O2i112.77 (3)O2iii—Fe1—O4xviii89.66 (7)
O2iv—Rb1—O2i112.77 (3)O2xvi—Fe1—O4xviii92.04 (7)
O2iii—Rb1—O2i59.80 (6)O4xvii—Fe1—O4xviii86.47 (8)
O3—Rb1—O2v68.90 (5)O4v—Fe1—O4xviii86.47 (8)
O3i—Rb1—O2v126.04 (5)O2xv—Fe1—Rb2xxi124.02 (5)
O3ii—Rb1—O2v65.41 (5)O2iii—Fe1—Rb2xxi124.02 (6)
O3iii—Rb1—O2v113.39 (5)O2xvi—Fe1—Rb2xxi124.02 (5)
O3iv—Rb1—O2v116.78 (5)O4xvii—Fe1—Rb2xxi52.27 (6)
O3v—Rb1—O2v48.72 (5)O4v—Fe1—Rb2xxi52.27 (5)
O2ii—Rb1—O2v59.80 (6)O4xviii—Fe1—Rb2xxi52.27 (5)
O2iv—Rb1—O2v74.90 (6)O1vii—Fe2—O1xiv93.72 (8)
O2iii—Rb1—O2v112.77 (3)O1vii—Fe2—O1xix93.72 (8)
O2i—Rb1—O2v171.63 (7)O1xiv—Fe2—O1xix93.72 (8)
O3—Rb1—O248.71 (5)O1vii—Fe2—O1v180.0
O3i—Rb1—O2116.78 (5)O1xiv—Fe2—O1v86.29 (8)
O3ii—Rb1—O2126.04 (5)O1xix—Fe2—O1v86.29 (8)
O3iii—Rb1—O268.90 (5)O1vii—Fe2—O1xviii86.29 (8)
O3iv—Rb1—O265.41 (5)O1xiv—Fe2—O1xviii180.0
O3v—Rb1—O2113.39 (5)O1xix—Fe2—O1xviii86.29 (8)
O2ii—Rb1—O2171.63 (6)O1v—Fe2—O1xviii93.71 (8)
O2iv—Rb1—O259.80 (6)O1vii—Fe2—O1xvii86.29 (8)
O2iii—Rb1—O2112.77 (3)O1xiv—Fe2—O1xvii86.29 (8)
O2i—Rb1—O274.90 (6)O1xix—Fe2—O1xvii180.0
O2v—Rb1—O2112.77 (3)O1v—Fe2—O1xvii93.71 (8)
O3—Rb1—H14.3 (5)O1xviii—Fe2—O1xvii93.71 (8)
O3i—Rb1—H169.7 (7)O1vii—Fe2—Rb2xix58.77 (7)
O3ii—Rb1—H107.3 (5)O1xiv—Fe2—Rb2xix70.91 (7)
O3iii—Rb1—H82.4 (5)O1xix—Fe2—Rb2xix146.11 (6)
O3iv—Rb1—H100.7 (7)O1v—Fe2—Rb2xix121.23 (7)
O3v—Rb1—H68.4 (6)O1xviii—Fe2—Rb2xix109.09 (7)
O2ii—Rb1—H116.4 (6)O1xvii—Fe2—Rb2xix33.90 (6)
O2iv—Rb1—H56.8 (6)O1vii—Fe2—Rb2xvii121.23 (7)
O2iii—Rb1—H123.8 (6)O1xiv—Fe2—Rb2xvii109.09 (7)
O2i—Rb1—H129.4 (6)O1xix—Fe2—Rb2xvii33.90 (6)
O2v—Rb1—H57.1 (6)O1v—Fe2—Rb2xvii58.77 (7)
O2—Rb1—H56.9 (6)O1xviii—Fe2—Rb2xvii70.91 (7)
O3—Rb1—Hv82.4 (5)O1xvii—Fe2—Rb2xvii146.10 (6)
O3i—Rb1—Hv107.3 (6)Rb2xix—Fe2—Rb2xvii180.0
O3ii—Rb1—Hv100.7 (6)O1vii—Fe2—Rb2xvi109.09 (7)
O3iii—Rb1—Hv68.4 (7)O1xiv—Fe2—Rb2xvi33.90 (6)
O3iv—Rb1—Hv169.7 (6)O1xix—Fe2—Rb2xvi121.23 (7)
O3v—Rb1—Hv14.3 (5)O1v—Fe2—Rb2xvi70.91 (7)
O2ii—Rb1—Hv56.8 (6)O1xviii—Fe2—Rb2xvi146.10 (6)
O2iv—Rb1—Hv129.4 (6)O1xvii—Fe2—Rb2xvi58.77 (7)
O2iii—Rb1—Hv57.1 (6)Rb2xix—Fe2—Rb2xvi60.0
O2i—Rb1—Hv116.4 (6)Rb2xvii—Fe2—Rb2xvi120.0
O2v—Rb1—Hv56.9 (6)O1vii—Fe2—Rb233.90 (6)
O2—Rb1—Hv123.8 (6)O1xiv—Fe2—Rb2121.23 (7)
H—Rb1—Hv82.7 (9)O1xix—Fe2—Rb2109.09 (7)
O3—Rb1—Hiii68.5 (6)O1v—Fe2—Rb2146.10 (6)
O3i—Rb1—Hiii100.7 (6)O1xviii—Fe2—Rb258.77 (7)
O3ii—Rb1—Hiii169.7 (6)O1xvii—Fe2—Rb270.91 (7)
O3iii—Rb1—Hiii14.3 (5)Rb2xix—Fe2—Rb260.0
O3iv—Rb1—Hiii107.3 (5)Rb2xvii—Fe2—Rb2120.0
O3v—Rb1—Hiii82.4 (5)Rb2xvi—Fe2—Rb2120.0
O2ii—Rb1—Hiii129.4 (6)O1vii—Fe2—Rb2xxii70.91 (7)
O2iv—Rb1—Hiii116.4 (7)O1xiv—Fe2—Rb2xxii146.11 (6)
O2iii—Rb1—Hiii56.9 (6)O1xix—Fe2—Rb2xxii58.77 (7)
O2i—Rb1—Hiii56.8 (6)O1v—Fe2—Rb2xxii109.09 (7)
O2v—Rb1—Hiii123.8 (6)O1xviii—Fe2—Rb2xxii33.90 (6)
O2—Rb1—Hiii57.1 (6)O1xvii—Fe2—Rb2xxii121.23 (7)
H—Rb1—Hiii82.7 (9)Rb2xix—Fe2—Rb2xxii120.0
Hv—Rb1—Hiii82.7 (9)Rb2xvii—Fe2—Rb2xxii60.0
O3v—Rb2—O3iii73.88 (7)Rb2xvi—Fe2—Rb2xxii180.0
O3v—Rb2—O373.87 (8)Rb2—Fe2—Rb2xxii60.0
O3iii—Rb2—O373.87 (7)O1vii—Fe2—Rb2xxiii146.11 (6)
O3v—Rb2—O1vi80.68 (5)O1xiv—Fe2—Rb2xxiii58.77 (7)
O3iii—Rb2—O1vi152.52 (6)O1xix—Fe2—Rb2xxiii70.91 (7)
O3—Rb2—O1vi89.39 (6)O1v—Fe2—Rb2xxiii33.90 (6)
O3v—Rb2—O1vii89.39 (6)O1xviii—Fe2—Rb2xxiii121.23 (7)
O3iii—Rb2—O1vii80.68 (6)O1xvii—Fe2—Rb2xxiii109.09 (7)
O3—Rb2—O1vii152.52 (6)Rb2xix—Fe2—Rb2xxiii120.0
O1vi—Rb2—O1vii109.62 (3)Rb2xvii—Fe2—Rb2xxiii60.0
O3v—Rb2—O1viii152.52 (6)Rb2xvi—Fe2—Rb2xxiii60.0
O3iii—Rb2—O1viii89.39 (6)Rb2—Fe2—Rb2xxiii180.0
O3—Rb2—O1viii80.68 (6)Rb2xxii—Fe2—Rb2xxiii120.0
O1vi—Rb2—O1viii109.62 (3)O1xx—As—O2117.84 (10)
O1vii—Rb2—O1viii109.62 (3)O1xx—As—O4ii107.24 (10)
O3v—Rb2—O4ix113.60 (6)O2—As—O4ii114.38 (9)
O3iii—Rb2—O4ix158.54 (6)O1xx—As—O3106.07 (11)
O3—Rb2—O4ix127.10 (5)O2—As—O3104.17 (10)
O1vi—Rb2—O4ix45.34 (4)O4ii—As—O3106.18 (9)
O1vii—Rb2—O4ix79.36 (4)O1xx—As—Rb2xii63.12 (7)
O1viii—Rb2—O4ix89.94 (5)O2—As—Rb2xii175.24 (7)
O3v—Rb2—O4x158.54 (5)O4ii—As—Rb2xii68.86 (6)
O3iii—Rb2—O4x127.10 (5)O3—As—Rb2xii71.28 (8)
O3—Rb2—O4x113.60 (6)O1xx—As—Rb1140.53 (9)
O1vi—Rb2—O4x79.36 (4)O2—As—Rb157.00 (6)
O1vii—Rb2—O4x89.94 (5)O4ii—As—Rb1109.61 (6)
O1viii—Rb2—O4x45.34 (4)O3—As—Rb149.92 (8)
O4ix—Rb2—O4x45.37 (5)Rb2xii—As—Rb1119.004 (8)
O3v—Rb2—O4xi127.10 (6)O1xx—As—Rb277.51 (9)
O3iii—Rb2—O4xi113.60 (6)O2—As—Rb2101.13 (6)
O3—Rb2—O4xi158.54 (6)O4ii—As—Rb2134.56 (6)
O1vi—Rb2—O4xi89.94 (5)O3—As—Rb234.74 (7)
O1vii—Rb2—O4xi45.34 (5)Rb2xii—As—Rb274.367 (9)
O1viii—Rb2—O4xi79.36 (4)Rb1—As—Rb266.765 (14)
O4ix—Rb2—O4xi45.37 (5)O1xx—As—Rb2xxiv46.08 (8)
O4x—Rb2—O4xi45.37 (5)O2—As—Rb2xxiv125.75 (7)
O3v—Rb2—O3xii122.48 (7)O4ii—As—Rb2xxiv63.02 (6)
O3iii—Rb2—O3xii149.37 (7)O3—As—Rb2xxiv129.40 (8)
O3—Rb2—O3xii85.69 (6)Rb2xii—As—Rb2xxiv58.581 (6)
O1vi—Rb2—O3xii45.24 (5)Rb1—As—Rb2xxiv172.574 (7)
O1vii—Rb2—O3xii121.79 (5)Rb2—As—Rb2xxiv117.235 (17)
O1viii—Rb2—O3xii64.52 (5)Asxxv—O1—Fe2xxvi140.90 (12)
O4ix—Rb2—O3xii44.65 (4)Asxxv—O1—Rb2vi91.09 (8)
O4x—Rb2—O3xii42.56 (5)Fe2xxvi—O1—Rb2vi126.94 (8)
O4xi—Rb2—O3xii78.68 (5)Asxxv—O1—Rb2xxv79.81 (8)
O3v—Rb2—O3xiii85.69 (6)Fe2xxvi—O1—Rb2xxv97.18 (8)
O3iii—Rb2—O3xiii122.48 (8)Rb2vi—O1—Rb2xxv79.01 (4)
O3—Rb2—O3xiii149.38 (7)Asxxv—O1—Rb2xxvi118.94 (9)
O1vi—Rb2—O3xiii64.52 (5)Fe2xxvi—O1—Rb2xxvi84.94 (7)
O1vii—Rb2—O3xiii45.24 (5)Rb2vi—O1—Rb2xxvi73.02 (4)
O1viii—Rb2—O3xiii121.79 (5)Rb2xxv—O1—Rb2xxvi146.08 (5)
O4ix—Rb2—O3xiii42.56 (5)As—O2—Fe1xxiv122.52 (10)
O4x—Rb2—O3xiii78.68 (5)As—O2—Rb198.39 (7)
O4xi—Rb2—O3xiii44.65 (4)Fe1xxiv—O2—Rb1128.56 (7)
O3xii—Rb2—O3xiii86.44 (5)As—O2—Rb259.04 (5)
O3v—Rb2—O3xiv149.37 (7)Fe1xxiv—O2—Rb2163.04 (7)
O3iii—Rb2—O3xiv85.69 (6)Rb1—O2—Rb263.89 (3)
O3—Rb2—O3xiv122.48 (8)As—O3—Rb2125.70 (10)
O1vi—Rb2—O3xiv121.79 (5)As—O3—Rb1105.01 (9)
O1vii—Rb2—O3xiv64.52 (5)Rb2—O3—Rb195.22 (6)
O1viii—Rb2—O3xiv45.24 (5)As—O3—Rb2xii81.77 (8)
O4ix—Rb2—O3xiv78.68 (5)Rb2—O3—Rb2xii94.31 (6)
O4x—Rb2—O3xiv44.65 (4)Rb1—O3—Rb2xii161.69 (7)
O4xi—Rb2—O3xiv42.56 (4)As—O3—H107 (3)
O3xii—Rb2—O3xiv86.44 (5)Rb2—O3—H122 (3)
O3xiii—Rb2—O3xiv86.44 (5)Rb1—O3—H92 (3)
O3v—Rb2—Asxii105.92 (5)Rb2xii—O3—H69 (3)
O3iii—Rb2—Asxii175.05 (5)Asii—O4—Fe1xxvi129.96 (10)
O3—Rb2—Asxii101.27 (5)Asii—O4—Rb2xxvii85.04 (7)
O1vi—Rb2—Asxii25.79 (3)Fe1xxvi—O4—Rb2xxvii101.28 (7)
O1vii—Rb2—Asxii104.27 (4)Asii—O4—Rb2xxviii99.80 (7)
O1viii—Rb2—Asxii88.88 (4)Fe1xxvi—O4—Rb2xxviii128.35 (7)
O4ix—Rb2—Asxii26.10 (3)Rb2xxvii—O4—Rb2xxviii65.94 (3)
O4x—Rb2—Asxii53.64 (3)
Symmetry codes: (i) xy, y, z+3/2; (ii) x, x+y, z+3/2; (iii) x+y, x, z; (iv) y, x, z+3/2; (v) y, xy, z; (vi) x+2/3, y2/3, z+4/3; (vii) y+2/3, x+y+4/3, z+4/3; (viii) xy4/3, x2/3, z+4/3; (ix) x1/3, xy2/3, z1/6; (x) y1/3, x+1/3, z1/6; (xi) x+y+2/3, y+1/3, z1/6; (xii) x1/3, y2/3, z+4/3; (xiii) y+2/3, x+y+1/3, z+4/3; (xiv) xy1/3, x+1/3, z+4/3; (xv) y, xy+1, z; (xvi) x+1, y+1, z; (xvii) x, y+1, z; (xviii) x+y+1, x+1, z; (xix) x+2/3, y+1/3, z+4/3; (xx) x1, y, z; (xxi) y+1/3, x+2/3, z+1/6; (xxii) x1/3, y+1/3, z+4/3; (xxiii) x+2/3, y+4/3, z+4/3; (xxiv) x1, y1, z; (xxv) x+1, y, z; (xxvi) x, y1, z; (xxvii) y+1/3, x1/3, z+1/6; (xxviii) y+1, x, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H···O4xxix0.81 (3)1.82 (3)2.615 (3)166 (4)
Symmetry code: (xxix) y, x1, z+3/2.
Thallium iron bis[hydrogen arsenate(V)] (TlFeHAsO42) top
Crystal data top
TlFe(HAsO4)2Z = 3
Mr = 540.08F(000) = 717
Triclinic, P1Dx = 4.995 Mg m3
a = 7.346 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.148 (2) ÅCell parameters from 3867 reflections
c = 9.662 (2) Åθ = 2.5–32.6°
α = 64.89 (3)°µ = 33.58 mm1
β = 70.51 (3)°T = 293 K
γ = 69.94 (3)°Short prismatic, colourless with red inclusions
V = 538.6 (3) Å30.10 × 0.05 × 0.04 mm
Data collection top
Nonius KappaCCD single-crystal four-circle
diffractometer
3391 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.021
φ and ω scansθmax = 32.6°, θmin = 2.5°
Absorption correction: multi-scan
(HKL SCALEPACK; Otwinowski et al., 2003)
h = 1111
Tmin = 0.134, Tmax = 0.347k = 1313
7723 measured reflectionsl = 1414
3906 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Only H-atom displacement parameters refined
wR(F2) = 0.051 w = 1/[σ2(Fo2) + (0.0193P)2 + 0.8062P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.005
3906 reflectionsΔρmax = 0.96 e Å3
208 parametersΔρmin = 1.13 e Å3
4 restraintsExtinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0068 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Tl1A0.5000001.0000000.0000000.0401 (16)0.631 (3)
Tl1B0.4695 (15)0.9990 (11)0.0176 (13)0.0299 (8)0.1843 (14)
Tl2A0.4052 (7)0.8325 (4)0.4667 (4)0.0319 (6)0.449 (3)
Tl2B0.3531 (3)0.8270 (4)0.4840 (4)0.0376 (3)0.437 (3)
Tl2C0.402 (3)0.8510 (16)0.4841 (15)0.0286 (13)0.114 (3)
Fe10.0000000.5000000.5000000.00759 (10)
Fe20.20590 (6)0.72309 (5)0.05912 (5)0.00754 (8)
As10.45203 (4)0.56033 (3)0.21662 (3)0.00716 (6)
As20.07841 (4)0.87435 (3)0.23460 (3)0.00748 (6)
As30.09158 (4)0.35105 (3)0.21621 (3)0.00721 (6)
O10.4101 (3)0.7015 (2)0.0441 (2)0.0106 (4)
O20.5906 (4)0.6397 (3)0.2680 (3)0.0194 (5)
O30.5713 (3)0.3653 (2)0.2221 (2)0.0107 (4)
O40.2440 (3)0.5521 (3)0.3531 (3)0.0190 (5)
O50.0194 (3)0.8151 (3)0.0805 (2)0.0130 (4)
O60.1590 (3)0.7306 (2)0.4022 (2)0.0118 (4)
O70.2594 (3)1.0506 (2)0.2095 (2)0.0108 (4)
O80.1223 (3)0.9190 (3)0.2530 (3)0.0173 (4)
O90.0703 (3)0.4281 (3)0.3527 (2)0.0132 (4)
O100.0155 (3)0.2336 (2)0.1890 (2)0.0114 (4)
O110.1828 (3)0.4911 (3)0.0534 (2)0.0135 (4)
O120.2880 (3)0.2007 (3)0.2888 (3)0.0159 (4)
H20.694 (6)0.570 (5)0.295 (5)0.033 (13)*
H80.0731001.0373000.2396940.08 (2)*
H120.376 (7)0.259 (6)0.258 (6)0.042 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Tl1A0.060 (2)0.0347 (7)0.0312 (14)0.0317 (10)0.0034 (15)0.0060 (7)
Tl1B0.0417 (9)0.0227 (11)0.0314 (14)0.0187 (13)0.0130 (8)0.0028 (9)
Tl2A0.0396 (9)0.0272 (9)0.0211 (6)0.0020 (7)0.0087 (6)0.0076 (4)
Tl2B0.0433 (6)0.0345 (5)0.0234 (5)0.0040 (6)0.0136 (6)0.0012 (3)
Tl2C0.041 (4)0.0191 (16)0.019 (2)0.0010 (14)0.010 (2)0.0056 (12)
Fe10.0087 (2)0.0058 (2)0.0072 (2)0.00065 (19)0.00228 (18)0.00170 (19)
Fe20.00853 (17)0.00551 (16)0.00764 (17)0.00077 (13)0.00218 (13)0.00183 (13)
As10.00724 (12)0.00543 (12)0.00788 (13)0.00077 (9)0.00187 (9)0.00189 (9)
As20.00859 (12)0.00441 (12)0.00832 (13)0.00028 (9)0.00242 (9)0.00177 (9)
As30.00828 (12)0.00481 (12)0.00847 (13)0.00135 (9)0.00238 (9)0.00200 (9)
O10.0117 (9)0.0089 (9)0.0088 (9)0.0023 (7)0.0047 (7)0.0008 (7)
O20.0203 (11)0.0144 (10)0.0324 (13)0.0006 (9)0.0162 (10)0.0123 (10)
O30.0101 (9)0.0061 (8)0.0130 (10)0.0016 (7)0.0023 (7)0.0035 (7)
O40.0163 (10)0.0165 (11)0.0156 (11)0.0045 (9)0.0068 (8)0.0051 (9)
O50.0140 (9)0.0130 (10)0.0124 (10)0.0009 (8)0.0019 (7)0.0074 (8)
O60.0138 (9)0.0056 (8)0.0092 (9)0.0004 (7)0.0024 (7)0.0019 (7)
O70.0096 (9)0.0060 (8)0.0147 (10)0.0008 (7)0.0038 (7)0.0028 (7)
O80.0149 (10)0.0108 (10)0.0307 (13)0.0015 (8)0.0125 (9)0.0070 (9)
O90.0114 (9)0.0159 (10)0.0132 (10)0.0013 (8)0.0028 (7)0.0093 (8)
O100.0146 (9)0.0081 (9)0.0161 (10)0.0041 (7)0.0080 (8)0.0039 (8)
O110.0149 (10)0.0080 (9)0.0127 (10)0.0039 (8)0.0004 (7)0.0003 (8)
O120.0121 (10)0.0119 (10)0.0212 (11)0.0006 (8)0.0083 (8)0.0017 (9)
Geometric parameters (Å, º) top
Tl1A—Tl1Bi0.327 (15)Tl2B—O6iii3.283 (3)
Tl1A—O12.853 (2)Tl2B—O7vii3.380 (6)
Tl1A—O1i2.853 (2)Tl2B—O43.650 (6)
Tl1A—O8i3.094 (3)Tl2B—As1vi3.682 (3)
Tl1A—O83.094 (3)Tl2B—O7iii3.698 (3)
Tl1A—O23.227 (3)Tl2B—O4vi3.833 (4)
Tl1A—O2i3.227 (3)Tl2B—O12vi3.843 (4)
Tl1A—O7ii3.344 (2)Tl2B—O2vi3.861 (4)
Tl1A—O7iii3.344 (2)Tl2B—As3viii3.879 (2)
Tl1A—O5ii3.543 (2)Tl2C—O3vi2.711 (13)
Tl1A—O5iii3.543 (2)Tl2C—O12v2.931 (13)
Tl1A—O12iv3.615 (3)Tl2C—O6iii2.970 (18)
Tl1A—O12v3.615 (3)Tl2C—O23.111 (12)
Tl1A—As1i3.7440 (14)Tl2C—O7vii3.197 (12)
Tl1A—As13.7440 (14)Tl2C—O83.258 (14)
Tl1B—Tl1Bi0.65 (3)Tl2C—O7iii3.339 (17)
Tl1B—O12.687 (12)Tl2C—O12vi3.454 (14)
Tl1B—O83.014 (10)Tl2C—O10viii3.478 (17)
Tl1B—O7ii3.022 (15)Tl2C—O9viii3.640 (16)
Tl1B—O1i3.045 (14)Tl2C—Tl2Cix3.64 (3)
Tl1B—O2i3.146 (8)Tl2C—As1vi3.706 (13)
Tl1B—O8i3.205 (11)Tl2C—O4vi3.749 (14)
Tl1B—O5ii3.286 (10)Tl2C—As2iii3.794 (18)
Tl1B—O23.338 (8)Fe1—O4viii1.942 (2)
Tl1B—O12iv3.477 (12)Fe1—O41.942 (2)
Tl1B—O7iii3.666 (15)Fe1—O6viii2.015 (2)
Tl1B—As2ii3.697 (13)Fe1—O62.015 (2)
Tl1B—As13.701 (9)Fe1—O92.060 (2)
Tl1B—O12v3.775 (13)Fe1—O9viii2.060 (2)
Tl1B—O5iii3.810 (11)Fe2—O51.946 (2)
Tl2A—O3vi2.804 (4)Fe2—O111.970 (2)
Tl2A—O22.852 (4)Fe2—O11.978 (2)
Tl2A—O6iii2.936 (5)Fe2—O10x2.014 (2)
Tl2A—O12v3.020 (4)Fe2—O7ii2.044 (2)
Tl2A—O83.091 (5)Fe2—O3iv2.065 (2)
Tl2A—O7iii3.362 (5)As1—O41.652 (2)
Tl2A—O7vii3.450 (4)As1—O11.668 (2)
Tl2A—O9viii3.523 (5)As1—O31.683 (2)
Tl2A—O10viii3.572 (5)As1—O21.720 (2)
Tl2A—O12vi3.638 (5)As2—O61.670 (2)
Tl2A—As1vi3.688 (4)As2—O51.671 (2)
Tl2A—O4vi3.691 (4)As2—O71.684 (2)
Tl2A—As2iii3.763 (5)As2—O81.738 (2)
Tl2A—O43.811 (5)As3—O111.655 (2)
Tl2B—O3vi2.758 (4)As3—O101.6730 (19)
Tl2B—O82.919 (4)As3—O91.679 (2)
Tl2B—O22.982 (6)As3—O121.721 (2)
Tl2B—O12v3.079 (4)O2—H20.85 (3)
Tl2B—O9viii3.204 (4)O8—H80.982 (2)
Tl2B—O10viii3.266 (4)O12—H120.88 (3)
Tl1Bi—Tl1A—O1123.3 (15)O5—As2—Tl1B76.3 (2)
Tl1Bi—Tl1A—O1i56.7 (15)O7—As2—Tl1B108.47 (12)
O1—Tl1A—O1i180.0O8—As2—Tl1B37.3 (2)
Tl1Bi—Tl1A—O8i72.9 (17)Tl1Bii—As2—Tl1B118.22 (18)
O1—Tl1A—O8i115.26 (7)Tl2Axi—As2—Tl1B170.49 (16)
O1i—Tl1A—O8i64.74 (7)Tl2Cxi—As2—Tl1B166.8 (2)
Tl1Bi—Tl1A—O8107.1 (17)Tl1Axi—As2—Tl1B118.58 (16)
O1—Tl1A—O864.74 (7)Tl2Cvii—As2—Tl1B112.2 (3)
O1i—Tl1A—O8115.26 (7)Tl2Bxi—As2—Tl1B170.96 (15)
O8i—Tl1A—O8180.0O6—As2—Tl2Bvii81.06 (8)
Tl1Bi—Tl1A—O272.8 (15)O5—As2—Tl2Bvii158.98 (8)
O1—Tl1A—O251.62 (6)O7—As2—Tl2Bvii49.63 (8)
O1i—Tl1A—O2128.38 (6)O8—As2—Tl2Bvii77.26 (9)
O8i—Tl1A—O2112.41 (7)Tl1Bii—As2—Tl2Bvii99.31 (18)
O8—Tl1A—O267.59 (7)Tl2Axi—As2—Tl2Bvii65.34 (6)
Tl1Bi—Tl1A—O2i107.2 (15)Tl2Cxi—As2—Tl2Bvii61.21 (17)
O1—Tl1A—O2i128.39 (6)Tl1Axi—As2—Tl2Bvii100.41 (4)
O1i—Tl1A—O2i51.61 (6)Tl2Cvii—As2—Tl2Bvii6.4 (2)
O8i—Tl1A—O2i67.59 (7)Tl2Bxi—As2—Tl2Bvii66.09 (10)
O8—Tl1A—O2i112.41 (7)Tl1B—As2—Tl2Bvii105.92 (19)
O2—Tl1A—O2i180.0O11—As3—O10114.60 (11)
Tl1Bi—Tl1A—O7ii169.8 (17)O11—As3—O9114.77 (11)
O1—Tl1A—O7ii52.66 (6)O10—As3—O9107.46 (11)
O1i—Tl1A—O7ii127.34 (6)O11—As3—O12108.03 (11)
O8i—Tl1A—O7ii99.91 (6)O10—As3—O1299.57 (10)
O8—Tl1A—O7ii80.09 (6)O9—As3—O12111.41 (11)
O2—Tl1A—O7ii104.24 (6)O11—As3—Tl2Bviii151.04 (8)
O2i—Tl1A—O7ii75.76 (6)O10—As3—Tl2Bviii56.44 (11)
Tl1Bi—Tl1A—O7iii10.2 (17)O9—As3—Tl2Bviii54.30 (11)
O1—Tl1A—O7iii127.34 (6)O12—As3—Tl2Bviii100.81 (9)
O1i—Tl1A—O7iii52.66 (6)O11—As3—Tl2Aviii149.26 (9)
O8i—Tl1A—O7iii80.09 (6)O10—As3—Tl2Aviii55.87 (9)
O8—Tl1A—O7iii99.91 (6)O9—As3—Tl2Aviii54.20 (9)
O2—Tl1A—O7iii75.76 (6)O12—As3—Tl2Aviii102.56 (9)
O2i—Tl1A—O7iii104.24 (6)Tl2Bviii—As3—Tl2Aviii1.80 (6)
O7ii—Tl1A—O7iii180.0O11—As3—Tl2Cviii148.9 (2)
Tl1Bi—Tl1A—O5ii143.2 (16)O10—As3—Tl2Cviii52.14 (17)
O1—Tl1A—O5ii83.29 (6)O9—As3—Tl2Cviii57.83 (17)
O1i—Tl1A—O5ii96.71 (6)O12—As3—Tl2Cviii102.3 (2)
O8i—Tl1A—O5ii121.76 (6)Tl2Bviii—As3—Tl2Cviii4.5 (2)
O8—Tl1A—O5ii58.24 (6)Tl2Aviii—As3—Tl2Cviii3.75 (14)
O2—Tl1A—O5ii120.71 (6)O11—As3—Tl1Biv84.07 (15)
O2i—Tl1A—O5ii59.29 (6)O10—As3—Tl1Biv69.2 (2)
O7ii—Tl1A—O5ii46.78 (5)O9—As3—Tl1Biv159.27 (14)
O7iii—Tl1A—O5ii133.22 (5)O12—As3—Tl1Biv51.33 (18)
Tl1Bi—Tl1A—O5iii36.8 (16)Tl2Bviii—As3—Tl1Biv113.00 (17)
O1—Tl1A—O5iii96.71 (6)Tl2Aviii—As3—Tl1Biv113.69 (16)
O1i—Tl1A—O5iii83.29 (6)Tl2Cviii—As3—Tl1Biv110.6 (2)
O8i—Tl1A—O5iii58.24 (6)O11—As3—Tl1Axiii84.12 (8)
O8—Tl1A—O5iii121.76 (6)O10—As3—Tl1Axiii65.45 (7)
O2—Tl1A—O5iii59.29 (6)O9—As3—Tl1Axiii160.59 (8)
O2i—Tl1A—O5iii120.71 (6)O12—As3—Tl1Axiii55.16 (8)
O7ii—Tl1A—O5iii133.22 (5)Tl2Bviii—As3—Tl1Axiii111.13 (8)
O7iii—Tl1A—O5iii46.78 (5)Tl2Aviii—As3—Tl1Axiii111.69 (6)
O5ii—Tl1A—O5iii180.00 (3)Tl2Cviii—As3—Tl1Axiii108.43 (16)
Tl1Bi—Tl1A—O12iv117.2 (17)Tl1Biv—As3—Tl1Axiii4.35 (19)
O1—Tl1A—O12iv57.83 (6)O11—As3—Tl1Bxiii84.20 (14)
O1i—Tl1A—O12iv122.17 (6)O10—As3—Tl1Bxiii61.76 (19)
O8i—Tl1A—O12iv59.93 (6)O9—As3—Tl1Bxiii161.02 (14)
O8—Tl1A—O12iv120.07 (6)O12—As3—Tl1Bxiii58.96 (17)
O2—Tl1A—O12iv88.55 (6)Tl2Bviii—As3—Tl1Bxiii109.19 (17)
O2i—Tl1A—O12iv91.45 (6)Tl2Aviii—As3—Tl1Bxiii109.63 (16)
O7ii—Tl1A—O12iv52.68 (5)Tl2Cviii—As3—Tl1Bxiii106.3 (2)
O7iii—Tl1A—O12iv127.32 (5)Tl1Biv—As3—Tl1Bxiii8.6 (4)
O5ii—Tl1A—O12iv98.17 (5)Tl1Axiii—As3—Tl1Bxiii4.27 (18)
O5iii—Tl1A—O12iv81.83 (5)O11—As3—Tl2Cxiii129.0 (2)
Tl1Bi—Tl1A—O12v62.8 (17)O10—As3—Tl2Cxiii80.0 (2)
O1—Tl1A—O12v122.17 (6)O9—As3—Tl2Cxiii104.96 (19)
O1i—Tl1A—O12v57.83 (6)O12—As3—Tl2Cxiii23.7 (2)
O8i—Tl1A—O12v120.07 (6)Tl2Bviii—As3—Tl2Cxiii78.9 (2)
O8—Tl1A—O12v59.93 (6)Tl2Aviii—As3—Tl2Cxiii80.5 (2)
O2—Tl1A—O12v91.45 (6)Tl2Cviii—As3—Tl2Cxiii79.8 (4)
O2i—Tl1A—O12v88.55 (6)Tl1Biv—As3—Tl2Cxiii54.5 (2)
O7ii—Tl1A—O12v127.32 (5)Tl1Axiii—As3—Tl2Cxiii56.81 (16)
O7iii—Tl1A—O12v52.68 (5)Tl1Bxiii—As3—Tl2Cxiii59.2 (2)
O5ii—Tl1A—O12v81.83 (5)O11—As3—Tl2Bxiii132.75 (8)
O5iii—Tl1A—O12v98.17 (5)O10—As3—Tl2Bxiii74.02 (9)
O12iv—Tl1A—O12v180.00 (6)O9—As3—Tl2Bxiii104.89 (10)
Tl1Bi—Tl1A—As1i79.9 (15)O12—As3—Tl2Bxiii29.66 (8)
O1—Tl1A—As1i155.08 (4)Tl2Bviii—As3—Tl2Bxiii74.28 (6)
O1i—Tl1A—As1i24.92 (4)Tl2Aviii—As3—Tl2Bxiii75.87 (6)
O8i—Tl1A—As1i59.16 (5)Tl2Cviii—As3—Tl2Bxiii74.87 (19)
O8—Tl1A—As1i120.84 (5)Tl1Biv—As3—Tl2Bxiii54.38 (13)
O2—Tl1A—As1i152.70 (4)Tl1Axiii—As3—Tl2Bxiii56.21 (6)
O2i—Tl1A—As1i27.30 (4)Tl1Bxiii—As3—Tl2Bxiii58.18 (13)
O7ii—Tl1A—As1i102.87 (4)Tl2Cxiii—As3—Tl2Bxiii6.2 (2)
O7iii—Tl1A—As1i77.13 (4)As1—O1—Fe2126.13 (11)
O5ii—Tl1A—As1i81.04 (5)As1—O1—Tl1B114.3 (3)
O5iii—Tl1A—As1i98.96 (5)Fe2—O1—Tl1B111.4 (3)
O12iv—Tl1A—As1i105.49 (5)As1—O1—Tl1A108.97 (9)
O12v—Tl1A—As1i74.51 (5)Fe2—O1—Tl1A117.26 (9)
Tl1Bi—Tl1A—As1100.1 (15)Tl1B—O1—Tl1A5.8 (2)
O1—Tl1A—As124.92 (4)As1—O1—Tl1Bi104.2 (2)
O1i—Tl1A—As1155.08 (4)Fe2—O1—Tl1Bi122.4 (2)
O8i—Tl1A—As1120.84 (5)Tl1B—O1—Tl1Bi11.0 (4)
O8—Tl1A—As159.16 (5)Tl1A—O1—Tl1Bi5.16 (19)
O2—Tl1A—As127.30 (4)As1—O1—Tl2A55.90 (7)
O2i—Tl1A—As1152.70 (4)Fe2—O1—Tl2A135.14 (10)
O7ii—Tl1A—As177.13 (4)Tl1B—O1—Tl2A61.8 (3)
O7iii—Tl1A—As1102.87 (4)Tl1A—O1—Tl2A57.72 (6)
O5ii—Tl1A—As198.96 (5)Tl1Bi—O1—Tl2A54.3 (2)
O5iii—Tl1A—As181.04 (5)As1—O1—Tl2B55.35 (7)
O12iv—Tl1A—As174.51 (5)Fe2—O1—Tl2B131.07 (8)
O12v—Tl1A—As1105.49 (5)Tl1B—O1—Tl2B64.2 (3)
As1i—Tl1A—As1180.0Tl1A—O1—Tl2B60.43 (5)
Tl1Bi—Tl1B—O1117.4 (14)Tl1Bi—O1—Tl2B57.3 (2)
Tl1Bi—Tl1B—O8101.1 (18)Tl2A—O1—Tl2B4.56 (6)
O1—Tl1B—O867.8 (3)As1—O1—Tl2C56.97 (16)
Tl1Bi—Tl1B—O7ii168.7 (18)Fe2—O1—Tl2C134.8 (2)
O1—Tl1B—O7ii58.0 (3)Tl1B—O1—Tl2C60.8 (3)
O8—Tl1B—O7ii86.8 (3)Tl1A—O1—Tl2C56.75 (17)
Tl1Bi—Tl1B—O1i51.6 (15)Tl1Bi—O1—Tl2C53.4 (3)
O1—Tl1B—O1i169.0 (4)Tl2A—O1—Tl2C1.07 (18)
O8—Tl1B—O1i112.0 (4)Tl2B—O1—Tl2C4.9 (2)
O7ii—Tl1B—O1i132.7 (3)As1—O1—Tl2Cxii150.86 (17)
Tl1Bi—Tl1B—O2i101.5 (16)Fe2—O1—Tl2Cxii47.1 (2)
O1—Tl1B—O2i139.6 (5)Tl1B—O1—Tl2Cxii91.3 (3)
O8—Tl1B—O2i117.0 (2)Tl1A—O1—Tl2Cxii95.80 (16)
O7ii—Tl1B—O2i81.7 (3)Tl1Bi—O1—Tl2Cxii99.8 (3)
O1i—Tl1B—O2i51.03 (17)Tl2A—O1—Tl2Cxii152.55 (13)
Tl1Bi—Tl1B—O8i67.3 (17)Tl2B—O1—Tl2Cxii153.67 (13)
O1—Tl1B—O8i116.7 (3)Tl2C—O1—Tl2Cxii151.5 (3)
O8—Tl1B—O8i168.4 (5)As1—O1—Tl2Ai151.74 (10)
O7ii—Tl1B—O8i104.7 (4)Fe2—O1—Tl2Ai81.86 (8)
O1i—Tl1B—O8i61.3 (2)Tl1B—O1—Tl2Ai47.4 (3)
O2i—Tl1B—O8i67.3 (2)Tl1A—O1—Tl2Ai51.24 (6)
Tl1Bi—Tl1B—O5ii139.8 (18)Tl1Bi—O1—Tl2Ai54.8 (2)
O1—Tl1B—O5ii91.0 (4)Tl2A—O1—Tl2Ai108.96 (6)
O8—Tl1B—O5ii62.0 (2)Tl2B—O1—Tl2Ai111.56 (8)
O7ii—Tl1B—O5ii51.3 (2)Tl2C—O1—Tl2Ai107.99 (18)
O1i—Tl1B—O5ii98.6 (2)Tl2Cxii—O1—Tl2Ai45.12 (17)
O2i—Tl1B—O5ii62.93 (16)As1—O1—Tl2Ci153.1 (2)
O8i—Tl1B—O5ii126.7 (3)Fe2—O1—Tl2Ci80.01 (19)
Tl1Bi—Tl1B—O267.4 (14)Tl1B—O1—Tl2Ci50.5 (3)
O1—Tl1B—O251.18 (14)Tl1A—O1—Tl2Ci54.32 (13)
O8—Tl1B—O267.03 (19)Tl1Bi—O1—Tl2Ci57.9 (3)
O7ii—Tl1B—O2109.2 (4)Tl2A—O1—Tl2Ci112.04 (15)
O1i—Tl1B—O2118.1 (4)Tl2B—O1—Tl2Ci114.66 (15)
O2i—Tl1B—O2168.9 (5)Tl2C—O1—Tl2Ci111.07 (16)
O8i—Tl1B—O2106.8 (2)Tl2Cxii—O1—Tl2Ci42.2 (3)
O5ii—Tl1B—O2125.3 (3)Tl2Ai—O1—Tl2Ci3.11 (12)
Tl1Bi—Tl1B—O12iv112.4 (17)As1—O2—Tl2A120.80 (15)
O1—Tl1B—O12iv60.9 (3)As1—O2—Tl2B114.06 (13)
O8—Tl1B—O12iv127.2 (4)Tl2A—O2—Tl2B6.91 (12)
O7ii—Tl1B—O12iv56.4 (2)As1—O2—Tl2C122.7 (3)
O1i—Tl1B—O12iv120.7 (3)Tl2A—O2—Tl2C1.9 (4)
O2i—Tl1B—O12iv95.5 (3)Tl2B—O2—Tl2C8.8 (3)
O8i—Tl1B—O12iv60.63 (19)As1—O2—Tl1Bi99.0 (3)
O5ii—Tl1B—O12iv106.2 (4)Tl2A—O2—Tl1Bi79.2 (2)
O2—Tl1B—O12iv89.1 (2)Tl2B—O2—Tl1Bi81.3 (2)
Tl1Bi—Tl1B—O7iii9.3 (16)Tl2C—O2—Tl1Bi79.2 (3)
O1—Tl1B—O7iii121.3 (3)As1—O2—Tl1A93.34 (9)
O8—Tl1B—O7iii94.6 (3)Tl2A—O2—Tl1A81.85 (9)
O7ii—Tl1B—O7iii178.0 (3)Tl2B—O2—Tl1A83.31 (8)
O1i—Tl1B—O7iii47.9 (2)Tl2C—O2—Tl1A81.9 (2)
O2i—Tl1B—O7iii98.9 (4)Tl1Bi—O2—Tl1A5.7 (3)
O8i—Tl1B—O7iii73.9 (3)As1—O2—Tl1B88.0 (3)
O5ii—Tl1B—O7iii130.7 (3)Tl2A—O2—Tl1B84.3 (2)
O2—Tl1B—O7iii70.2 (2)Tl2B—O2—Tl1B85.2 (2)
O12iv—Tl1B—O7iii121.6 (3)Tl2C—O2—Tl1B84.6 (3)
Tl1Bi—Tl1B—As2ii162.4 (16)Tl1Bi—O2—Tl1B11.1 (5)
O1—Tl1B—As2ii79.5 (4)Tl1A—O2—Tl1B5.4 (3)
O8—Tl1B—As2ii80.1 (3)As1—O2—Tl2Bvi71.06 (10)
O7ii—Tl1B—As2ii26.69 (11)Tl2A—O2—Tl2Bvi109.95 (13)
O1i—Tl1B—As2ii111.5 (2)Tl2B—O2—Tl2Bvi107.08 (11)
O2i—Tl1B—As2ii63.25 (18)Tl2C—O2—Tl2Bvi110.3 (3)
O8i—Tl1B—As2ii110.9 (3)Tl1Bi—O2—Tl2Bvi168.9 (3)
O5ii—Tl1B—As2ii26.86 (11)Tl1A—O2—Tl2Bvi163.67 (10)
O2—Tl1B—As2ii127.7 (4)Tl1B—O2—Tl2Bvi158.5 (3)
O12iv—Tl1B—As2ii79.4 (3)As1—O2—Tl2Avi67.86 (10)
O7iii—Tl1B—As2ii155.0 (3)Tl2A—O2—Tl2Avi107.71 (11)
Tl1Bi—Tl1B—As195.1 (14)Tl2B—O2—Tl2Avi104.32 (10)
O1—Tl1B—As124.26 (9)Tl2C—O2—Tl2Avi108.2 (3)
O8—Tl1B—As160.26 (18)Tl1Bi—O2—Tl2Avi166.9 (3)
O7ii—Tl1B—As181.8 (3)Tl1A—O2—Tl2Avi161.19 (9)
O1i—Tl1B—As1145.5 (4)Tl1B—O2—Tl2Avi155.8 (3)
O2i—Tl1B—As1163.4 (5)Tl2Bvi—O2—Tl2Avi5.22 (6)
O8i—Tl1B—As1119.0 (2)As1—O2—Tl2Cvi65.1 (2)
O5ii—Tl1B—As1104.8 (3)Tl2A—O2—Tl2Cvi111.0 (2)
O2—Tl1B—As127.68 (8)Tl2B—O2—Tl2Cvi107.5 (2)
O12iv—Tl1B—As176.7 (2)Tl2C—O2—Tl2Cvi111.5 (2)
O7iii—Tl1B—As197.7 (2)Tl1Bi—O2—Tl2Cvi163.8 (3)
As2ii—Tl1B—As1100.6 (3)Tl1A—O2—Tl2Cvi158.2 (2)
Tl1Bi—Tl1B—O12v58.4 (17)Tl1B—O2—Tl2Cvi152.9 (3)
O1—Tl1B—O12v121.9 (3)Tl2Bvi—O2—Tl2Cvi6.2 (2)
O8—Tl1B—O12v58.5 (2)Tl2Avi—O2—Tl2Cvi3.62 (15)
O7ii—Tl1B—O12v132.8 (3)As1—O2—H2113 (3)
O1i—Tl1B—O12v54.7 (2)Tl2A—O2—H2111 (3)
O2i—Tl1B—O12v87.0 (3)Tl2B—O2—H2114 (3)
O8i—Tl1B—O12v112.6 (4)Tl2C—O2—H2109 (3)
O5ii—Tl1B—O12v82.9 (2)Tl1Bi—O2—H2131 (3)
O2—Tl1B—O12v87.0 (3)Tl1A—O2—H2135 (3)
O12iv—Tl1B—O12v170.8 (4)Tl1B—O2—H2139 (3)
O7iii—Tl1B—O12v49.2 (2)Tl2Bvi—O2—H252 (3)
As2ii—Tl1B—O12v109.6 (2)Tl2Avi—O2—H258 (3)
As1—Tl1B—O12v103.2 (3)Tl2Cvi—O2—H258 (3)
Tl1Bi—Tl1B—O5iii33.9 (14)As1—O3—Fe2iv131.25 (12)
O1—Tl1B—O5iii93.69 (19)As1—O3—Tl2Cvi112.9 (3)
O8—Tl1B—O5iii116.0 (3)Fe2iv—O3—Tl2Cvi110.1 (3)
O7ii—Tl1B—O5iii135.1 (3)As1—O3—Tl2Bvi109.61 (14)
O1i—Tl1B—O5iii76.4 (3)Fe2iv—O3—Tl2Bvi108.65 (11)
O2i—Tl1B—O5iii115.3 (3)Tl2Cvi—O3—Tl2Bvi10.1 (4)
O8i—Tl1B—O5iii54.44 (17)As1—O3—Tl2Avi107.96 (12)
O5ii—Tl1B—O5iii173.6 (5)Fe2iv—O3—Tl2Avi113.66 (11)
O2—Tl1B—O5iii55.60 (15)Tl2Cvi—O3—Tl2Avi5.4 (2)
O12iv—Tl1B—O5iii79.93 (17)Tl2Bvi—O3—Tl2Avi7.66 (10)
O7iii—Tl1B—O5iii42.95 (15)As1—O3—Tl1Biv135.47 (14)
As2ii—Tl1B—O5iii159.0 (4)Fe2iv—O3—Tl1Biv55.10 (13)
As1—Tl1B—O5iii78.19 (14)Tl2Cvi—O3—Tl1Biv98.4 (3)
O12v—Tl1B—O5iii91.0 (3)Tl2Bvi—O3—Tl1Biv106.05 (16)
O3vi—Tl2A—O2110.62 (13)Tl2Avi—O3—Tl1Biv103.81 (15)
O3vi—Tl2A—O6iii84.49 (12)As1—O3—Tl2Cxiii134.1 (2)
O2—Tl2A—O6iii63.62 (10)Fe2iv—O3—Tl2Cxiii91.18 (19)
O3vi—Tl2A—O12v135.34 (15)Tl2Cvi—O3—Tl2Cxiii51.0 (4)
O2—Tl2A—O12v113.29 (14)Tl2Bvi—O3—Tl2Cxiii60.46 (16)
O6iii—Tl2A—O12v107.85 (16)Tl2Avi—O3—Tl2Cxiii55.88 (18)
O3vi—Tl2A—O8136.34 (18)Tl1Biv—O3—Tl2Cxiii50.50 (18)
O2—Tl2A—O872.45 (11)As1—O3—Tl2Axiii135.71 (10)
O6iii—Tl2A—O8129.21 (14)Fe2iv—O3—Tl2Axiii88.82 (8)
O12v—Tl2A—O867.16 (10)Tl2Cvi—O3—Tl2Axiii53.5 (3)
O3vi—Tl2A—O7iii124.09 (17)Tl2Bvi—O3—Tl2Axiii62.88 (9)
O2—Tl2A—O7iii80.54 (12)Tl2Avi—O3—Tl2Axiii58.48 (13)
O6iii—Tl2A—O7iii50.58 (9)Tl1Biv—O3—Tl2Axiii47.62 (12)
O12v—Tl2A—O7iii57.75 (9)Tl2Cxiii—O3—Tl2Axiii2.89 (14)
O8—Tl2A—O7iii99.55 (11)As1—O3—Tl1Axiii132.86 (9)
O3vi—Tl2A—O7vii51.02 (8)Fe2iv—O3—Tl1Axiii56.68 (5)
O2—Tl2A—O7vii161.15 (13)Tl2Cvi—O3—Tl1Axiii100.0 (3)
O6iii—Tl2A—O7vii106.12 (14)Tl2Bvi—O3—Tl1Axiii107.82 (12)
O12v—Tl2A—O7vii84.49 (11)Tl2Avi—O3—Tl1Axiii105.31 (10)
O8—Tl2A—O7vii122.69 (13)Tl1Biv—O3—Tl1Axiii2.65 (11)
O7iii—Tl2A—O7vii105.65 (13)Tl2Cxiii—O3—Tl1Axiii51.31 (14)
O3vi—Tl2A—O9viii67.53 (10)Tl2Axiii—O3—Tl1Axiii48.45 (5)
O2—Tl2A—O9viii84.95 (13)As1—O3—Tl2Bxiii132.28 (9)
O6iii—Tl2A—O9viii127.21 (12)Fe2iv—O3—Tl2Bxiii91.64 (8)
O12v—Tl2A—O9viii123.73 (15)Tl2Cvi—O3—Tl2Bxiii54.3 (3)
O8—Tl2A—O9viii69.50 (12)Tl2Bvi—O3—Tl2Bxiii63.88 (13)
O7iii—Tl2A—O9viii164.03 (13)Tl2Avi—O3—Tl2Bxiii59.06 (9)
O7vii—Tl2A—O9viii90.22 (11)Tl1Biv—O3—Tl2Bxiii48.44 (13)
O3vi—Tl2A—O10viii50.72 (8)Tl2Cxiii—O3—Tl2Bxiii3.8 (2)
O2—Tl2A—O10viii129.09 (16)Tl2Axiii—O3—Tl2Bxiii3.54 (5)
O6iii—Tl2A—O10viii135.10 (13)Tl1Axiii—O3—Tl2Bxiii49.07 (6)
O12v—Tl2A—O10viii103.61 (12)As1—O3—Tl1B26.48 (12)
O8—Tl2A—O10viii92.25 (13)Fe2iv—O3—Tl1B105.07 (14)
O7iii—Tl2A—O10viii150.35 (13)Tl2Cvi—O3—Tl1B131.6 (3)
O7vii—Tl2A—O10viii46.17 (7)Tl2Bvi—O3—Tl1B124.7 (2)
O9viii—Tl2A—O10viii44.78 (7)Tl2Avi—O3—Tl1B126.15 (18)
O3vi—Tl2A—O12vi48.01 (9)Tl1Biv—O3—Tl1B129.18 (12)
O2—Tl2A—O12vi114.65 (14)Tl2Cxiii—O3—Tl1B158.3 (2)
O6iii—Tl2A—O12vi54.68 (9)Tl2Axiii—O3—Tl1B158.75 (14)
O12v—Tl2A—O12vi104.24 (13)Tl1Axiii—O3—Tl1B127.28 (17)
O8—Tl2A—O12vi171.01 (13)Tl2Bxiii—O3—Tl1B155.26 (13)
O7iii—Tl2A—O12vi76.97 (12)As1—O3—Tl1Bxiii130.50 (12)
O7vii—Tl2A—O12vi51.73 (8)Fe2iv—O3—Tl1Bxiii58.15 (12)
O9viii—Tl2A—O12vi115.55 (11)Tl2Cvi—O3—Tl1Bxiii101.3 (3)
O10viii—Tl2A—O12vi87.20 (9)Tl2Bvi—O3—Tl1Bxiii109.41 (15)
O3vi—Tl2A—As1vi25.72 (5)Tl2Avi—O3—Tl1Bxiii106.65 (14)
O2—Tl2A—As1vi84.90 (10)Tl1Biv—O3—Tl1Bxiii5.04 (19)
O6iii—Tl2A—As1vi72.19 (9)Tl2Cxiii—O3—Tl1Bxiii52.12 (17)
O12v—Tl2A—As1vi160.16 (14)Tl2Axiii—O3—Tl1Bxiii49.29 (11)
O8—Tl2A—As1vi128.92 (15)Tl1Axiii—O3—Tl1Bxiii2.40 (9)
O7iii—Tl2A—As1vi121.50 (13)Tl2Bxiii—O3—Tl1Bxiii49.72 (12)
O7vii—Tl2A—As1vi76.68 (8)Tl1B—O3—Tl1Bxiii125.5 (2)
O9viii—Tl2A—As1vi63.26 (8)As1—O4—Fe1166.48 (15)
O10viii—Tl2A—As1vi67.47 (8)As1—O4—Tl2B89.90 (10)
O12vi—Tl2A—As1vi58.90 (7)Fe1—O4—Tl2B103.33 (9)
O3vi—Tl2A—O4vi46.68 (8)As1—O4—Tl2Avi76.96 (11)
O2—Tl2A—O4vi68.41 (9)Fe1—O4—Tl2Avi98.20 (11)
O6iii—Tl2A—O4vi47.49 (8)Tl2B—O4—Tl2Avi97.68 (9)
O12v—Tl2A—O4vi153.38 (18)As1—O4—Tl2Cvi75.8 (3)
O8—Tl2A—O4vi133.41 (14)Fe1—O4—Tl2Cvi98.5 (3)
O7iii—Tl2A—O4vi97.99 (12)Tl2B—O4—Tl2Cvi101.6 (2)
O7vii—Tl2A—O4vi92.92 (10)Tl2Avi—O4—Tl2Cvi4.18 (17)
O9viii—Tl2A—O4vi82.69 (9)As1—O4—Tl2A84.81 (11)
O10viii—Tl2A—O4vi93.26 (10)Fe1—O4—Tl2A108.35 (11)
O12vi—Tl2A—O4vi55.57 (8)Tl2B—O4—Tl2A5.20 (7)
As1vi—Tl2A—O4vi25.87 (4)Tl2Avi—O4—Tl2A95.45 (10)
O3vi—Tl2A—As2iii107.80 (14)Tl2Cvi—O4—Tl2A99.3 (2)
O2—Tl2A—As2iii64.63 (10)As1—O4—Tl2Bvi72.21 (9)
O6iii—Tl2A—As2iii25.22 (6)Fe1—O4—Tl2Bvi103.35 (9)
O12v—Tl2A—As2iii84.29 (12)Tl2B—O4—Tl2Bvi95.21 (11)
O8—Tl2A—As2iii111.92 (11)Tl2Avi—O4—Tl2Bvi5.28 (8)
O7iii—Tl2A—As2iii26.59 (5)Tl2Cvi—O4—Tl2Bvi7.2 (3)
O7vii—Tl2A—As2iii113.46 (13)Tl2A—O4—Tl2Bvi92.62 (11)
O9viii—Tl2A—As2iii145.94 (11)As1—O4—Tl2C86.4 (3)
O10viii—Tl2A—As2iii155.68 (13)Fe1—O4—Tl2C106.8 (2)
O12vi—Tl2A—As2iii68.51 (9)Tl2B—O4—Tl2C3.7 (3)
As1vi—Tl2A—As2iii97.41 (10)Tl2Avi—O4—Tl2C95.8 (2)
O4vi—Tl2A—As2iii72.43 (9)Tl2Cvi—O4—Tl2C99.6 (2)
O3vi—Tl2A—O4100.56 (13)Tl2A—O4—Tl2C1.6 (3)
O2—Tl2A—O444.83 (9)Tl2Bvi—O4—Tl2C93.1 (2)
O6iii—Tl2A—O4105.38 (11)As1—O4—Tl1B50.23 (13)
O12v—Tl2A—O4116.01 (13)Fe1—O4—Tl1B139.29 (14)
O8—Tl2A—O449.45 (9)Tl2B—O4—Tl1B62.09 (19)
O7iii—Tl2A—O4120.12 (11)Tl2Avi—O4—Tl1B120.48 (15)
O7vii—Tl2A—O4134.10 (14)Tl2Cvi—O4—Tl1B121.0 (3)
O9viii—Tl2A—O443.94 (7)Tl2A—O4—Tl1B59.2 (2)
O10viii—Tl2A—O488.11 (12)Tl2Bvi—O4—Tl1B115.20 (13)
O12vi—Tl2A—O4139.43 (11)Tl2C—O4—Tl1B60.4 (3)
As1vi—Tl2A—O482.21 (9)As1—O4—Tl1A49.70 (7)
O4vi—Tl2A—O484.55 (10)Fe1—O4—Tl1A140.71 (10)
As2iii—Tl2A—O4109.33 (10)Tl2B—O4—Tl1A58.81 (5)
O3vi—Tl2A—Tl1Bi161.45 (17)Tl2Avi—O4—Tl1A117.68 (9)
O2—Tl2A—Tl1Bi53.76 (17)Tl2Cvi—O4—Tl1A118.5 (3)
O6iii—Tl2A—Tl1Bi79.28 (18)Tl2A—O4—Tl1A55.77 (6)
O12v—Tl2A—Tl1Bi59.60 (16)Tl2Bvi—O4—Tl1A112.41 (7)
O8—Tl2A—Tl1Bi53.9 (2)Tl2C—O4—Tl1A56.96 (19)
O7iii—Tl2A—Tl1Bi49.1 (2)Tl1B—O4—Tl1A4.04 (18)
O7vii—Tl2A—Tl1Bi143.0 (2)As1—O4—Tl1Bi49.42 (13)
O9viii—Tl2A—Tl1Bi116.1 (2)Fe1—O4—Tl1Bi141.78 (14)
O10viii—Tl2A—Tl1Bi145.3 (2)Tl2B—O4—Tl1Bi55.70 (18)
O12vi—Tl2A—Tl1Bi124.9 (2)Tl2Avi—O4—Tl1Bi114.90 (14)
As1vi—Tl2A—Tl1Bi137.33 (16)Tl2Cvi—O4—Tl1Bi115.9 (3)
O4vi—Tl2A—Tl1Bi114.80 (15)Tl2A—O4—Tl1Bi52.46 (19)
As2iii—Tl2A—Tl1Bi58.25 (19)Tl2Bvi—O4—Tl1Bi109.66 (13)
O4—Tl2A—Tl1Bi75.5 (2)Tl2C—O4—Tl1Bi53.7 (3)
O3vi—Tl2B—O8149.22 (12)Tl1B—O4—Tl1Bi7.9 (3)
O3vi—Tl2B—O2108.16 (12)Tl1A—O4—Tl1Bi3.91 (17)
O8—Tl2B—O273.17 (13)As2—O5—Fe2142.35 (13)
O3vi—Tl2B—O12v134.7 (2)As2—O5—Tl1Bii90.4 (3)
O8—Tl2B—O12v68.56 (8)Fe2—O5—Tl1Bii126.1 (2)
O2—Tl2B—O12v108.07 (11)As2—O5—Tl1Axi93.59 (9)
O3vi—Tl2B—O9viii73.06 (8)Fe2—O5—Tl1Axi123.14 (9)
O8—Tl2B—O9viii76.24 (10)Tl1Bii—O5—Tl1Axi3.4 (2)
O2—Tl2B—O9viii88.85 (14)As2—O5—Tl1Bxi96.3 (2)
O12v—Tl2B—O9viii133.58 (9)Fe2—O5—Tl1Bxi120.6 (2)
O3vi—Tl2B—O10viii54.99 (8)Tl1Bii—O5—Tl1Bxi6.4 (5)
O8—Tl2B—O10viii102.08 (8)Tl1Axi—O5—Tl1Bxi3.0 (2)
O2—Tl2B—O10viii136.68 (14)As2—O5—Tl1B80.61 (19)
O12v—Tl2B—O10viii109.78 (14)Fe2—O5—Tl1B68.44 (17)
O9viii—Tl2B—O10viii49.37 (6)Tl1Bii—O5—Tl1B131.69 (18)
O3vi—Tl2B—O6iii78.90 (8)Tl1Axi—O5—Tl1B133.51 (11)
O8—Tl2B—O6iii122.70 (14)Tl1Bxi—O5—Tl1B135.0 (2)
O2—Tl2B—O6iii58.07 (8)As2—O5—Tl1A78.54 (8)
O12v—Tl2B—O6iii98.30 (9)Fe2—O5—Tl1A69.75 (6)
O9viii—Tl2B—O6iii126.44 (12)Tl1Bii—O5—Tl1A133.1 (2)
O10viii—Tl2B—O6iii133.58 (11)Tl1Axi—O5—Tl1A135.05 (6)
O3vi—Tl2B—O7vii52.16 (10)Tl1Bxi—O5—Tl1A136.64 (17)
O8—Tl2B—O7vii131.34 (12)Tl1B—O5—Tl1A2.70 (16)
O2—Tl2B—O7vii155.48 (9)As2—O5—Tl2Axi49.78 (8)
O12v—Tl2B—O7vii84.81 (13)Fe2—O5—Tl2Axi157.69 (10)
O9viii—Tl2B—O7vii97.20 (9)Tl1Bii—O5—Tl2Axi54.9 (2)
O10viii—Tl2B—O7vii48.95 (8)Tl1Axi—O5—Tl2Axi56.74 (6)
O6iii—Tl2B—O7vii100.23 (12)Tl1Bxi—O5—Tl2Axi58.40 (17)
O3vi—Tl2B—O4105.48 (12)Tl1B—O5—Tl2Axi129.96 (19)
O8—Tl2B—O452.13 (10)Tl1A—O5—Tl2Axi128.08 (7)
O2—Tl2B—O446.54 (9)As2—O5—Tl1Bi76.70 (17)
O12v—Tl2B—O4119.12 (12)Fe2—O5—Tl1Bi70.94 (16)
O9viii—Tl2B—O446.87 (8)Tl1Bii—O5—Tl1Bi134.2 (3)
O10viii—Tl2B—O495.76 (9)Tl1Axi—O5—Tl1Bi136.33 (10)
O6iii—Tl2B—O4101.98 (13)Tl1Bxi—O5—Tl1Bi138.05 (15)
O7vii—Tl2B—O4144.05 (8)Tl1B—O5—Tl1Bi5.1 (3)
O3vi—Tl2B—As1vi25.50 (5)Tl1A—O5—Tl1Bi2.40 (13)
O8—Tl2B—As1vi135.81 (15)Tl2Axi—O5—Tl1Bi126.37 (17)
O2—Tl2B—As1vi83.25 (10)As2—O5—Tl2Cxi46.81 (17)
O12v—Tl2B—As1vi155.60 (15)Fe2—O5—Tl2Cxi160.19 (18)
O9viii—Tl2B—As1vi66.26 (6)Tl1Bii—O5—Tl2Cxi56.2 (3)
O10viii—Tl2B—As1vi70.68 (6)Tl1Axi—O5—Tl2Cxi58.14 (17)
O6iii—Tl2B—As1vi68.82 (6)Tl1Bxi—O5—Tl2Cxi59.9 (2)
O7vii—Tl2B—As1vi77.62 (8)Tl1B—O5—Tl2Cxi126.9 (2)
O4—Tl2B—As1vi84.53 (9)Tl1A—O5—Tl2Cxi125.04 (17)
O3vi—Tl2B—O7iii114.48 (10)Tl2Axi—O5—Tl2Cxi3.08 (18)
O8—Tl2B—O7iii95.62 (9)Tl1Bi—O5—Tl2Cxi123.3 (2)
O2—Tl2B—O7iii73.45 (8)As2—O5—Tl2Bxi51.91 (8)
O12v—Tl2B—O7iii53.44 (7)Fe2—O5—Tl2Bxi156.29 (10)
O9viii—Tl2B—O7iii162.11 (18)Tl1Bii—O5—Tl2Bxi53.55 (19)
O10viii—Tl2B—O7iii148.46 (17)Tl1Axi—O5—Tl2Bxi55.28 (5)
O6iii—Tl2B—O7iii45.34 (6)Tl1Bxi—O5—Tl2Bxi56.85 (17)
O7vii—Tl2B—O7iii100.05 (12)Tl1B—O5—Tl2Bxi132.05 (19)
O4—Tl2B—O7iii115.66 (12)Tl1A—O5—Tl2Bxi130.19 (7)
As1vi—Tl2B—O7iii113.00 (6)Tl2Axi—O5—Tl2Bxi2.14 (10)
O3vi—Tl2B—O4vi44.76 (7)Tl1Bi—O5—Tl2Bxi128.49 (17)
O8—Tl2B—O4vi134.38 (18)Tl2Cxi—O5—Tl2Bxi5.15 (19)
O2—Tl2B—O4vi65.24 (9)As2—O6—Fe1126.05 (12)
O12v—Tl2B—O4vi141.63 (9)As2—O6—Tl2Axi106.26 (12)
O9viii—Tl2B—O4vi84.79 (8)Fe1—O6—Tl2Axi124.82 (12)
O10viii—Tl2B—O4vi95.78 (8)As2—O6—Tl2Cxi106.3 (3)
O6iii—Tl2B—O4vi44.76 (6)Fe1—O6—Tl2Cxi126.3 (3)
O7vii—Tl2B—O4vi91.56 (9)Tl2Axi—O6—Tl2Cxi5.3 (2)
O4—Tl2B—O4vi84.79 (11)As2—O6—Tl2Bxi108.64 (10)
As1vi—Tl2B—O4vi25.29 (4)Fe1—O6—Tl2Bxi122.23 (10)
O7iii—Tl2B—O4vi90.02 (7)Tl2Axi—O6—Tl2Bxi2.60 (10)
O3vi—Tl2B—O12vi45.24 (8)Tl2Cxi—O6—Tl2Bxi6.8 (3)
O8—Tl2B—O12vi165.47 (10)As2—O6—Tl2Cvii78.7 (2)
O2—Tl2B—O12vi106.12 (8)Fe1—O6—Tl2Cvii135.73 (19)
O12v—Tl2B—O12vi98.54 (12)Tl2Axi—O6—Tl2Cvii64.8 (2)
O9viii—Tl2B—O12vi118.27 (9)Tl2Cxi—O6—Tl2Cvii59.8 (4)
O10viii—Tl2B—O12vi88.37 (11)Tl2Bxi—O6—Tl2Cvii66.6 (3)
O6iii—Tl2B—O12vi50.52 (7)As2—O6—Tl2Bvii76.31 (8)
O7vii—Tl2B—O12vi50.28 (8)Fe1—O6—Tl2Bvii133.00 (9)
O4—Tl2B—O12vi137.64 (10)Tl2Axi—O6—Tl2Bvii70.73 (9)
As1vi—Tl2B—O12vi57.16 (6)Tl2Cxi—O6—Tl2Bvii65.8 (2)
O7iii—Tl2B—O12vi70.64 (7)Tl2Bxi—O6—Tl2Bvii72.57 (11)
O4vi—Tl2B—O12vi52.86 (6)Tl2Cvii—O6—Tl2Bvii6.0 (3)
O3vi—Tl2B—O2vi46.10 (7)As2—O6—Tl2Avii79.49 (9)
O8—Tl2B—O2vi109.73 (14)Fe1—O6—Tl2Avii133.98 (9)
O2—Tl2B—O2vi72.92 (11)Tl2Axi—O6—Tl2Avii65.97 (14)
O12v—Tl2B—O2vi177.42 (8)Tl2Cxi—O6—Tl2Avii61.0 (2)
O9viii—Tl2B—O2vi43.85 (7)Tl2Bxi—O6—Tl2Avii67.76 (10)
O10viii—Tl2B—O2vi68.46 (7)Tl2Cvii—O6—Tl2Avii1.8 (2)
O6iii—Tl2B—O2vi84.25 (9)Tl2Bvii—O6—Tl2Avii4.97 (7)
O7vii—Tl2B—O2vi95.15 (8)As2—O6—Tl1Bii55.67 (16)
O4—Tl2B—O2vi59.71 (8)Fe1—O6—Tl1Bii138.50 (18)
As1vi—Tl2B—O2vi26.23 (4)Tl2Axi—O6—Tl1Bii59.44 (15)
O7iii—Tl2B—O2vi129.04 (9)Tl2Cxi—O6—Tl1Bii62.4 (3)
O4vi—Tl2B—O2vi40.95 (6)Tl2Bxi—O6—Tl1Bii60.96 (14)
O12vi—Tl2B—O2vi83.38 (7)Tl2Cvii—O6—Tl1Bii85.3 (2)
O3vi—Tl2B—As3viii66.57 (6)Tl2Bvii—O6—Tl1Bii88.46 (17)
O8—Tl2B—As3viii84.53 (8)Tl2Avii—O6—Tl1Bii87.14 (17)
O2—Tl2B—As3viii114.04 (13)As2—O6—Tl2B75.09 (8)
O12v—Tl2B—As3viii119.79 (9)Fe1—O6—Tl2B76.97 (8)
O9viii—Tl2B—As3viii25.19 (4)Tl2Axi—O6—Tl2B139.02 (8)
O10viii—Tl2B—As3viii25.27 (4)Tl2Cxi—O6—Tl2B133.7 (2)
O6iii—Tl2B—As3viii140.22 (8)Tl2Bxi—O6—Tl2B140.17 (16)
O7vii—Tl2B—As3viii74.20 (7)Tl2Cvii—O6—Tl2B75.8 (3)
O4—Tl2B—As3viii70.61 (7)Tl2Bvii—O6—Tl2B69.97 (6)
As1vi—Tl2B—As3viii71.55 (5)Tl2Avii—O6—Tl2B74.36 (11)
O7iii—Tl2B—As3viii172.07 (14)Tl1Bii—O6—Tl2B129.88 (17)
O4vi—Tl2B—As3viii95.54 (7)As2—O6—Tl1Axi57.71 (7)
O12vi—Tl2B—As3viii108.40 (9)Fe1—O6—Tl1Axi136.87 (8)
O2vi—Tl2B—As3viii57.80 (6)Tl2Axi—O6—Tl1Axi58.46 (8)
O3vi—Tl2C—O12v145.5 (4)Tl2Cxi—O6—Tl1Axi61.6 (2)
O3vi—Tl2C—O6iii85.5 (4)Tl2Bxi—O6—Tl1Axi59.90 (7)
O12v—Tl2C—O6iii109.3 (5)Tl2Cvii—O6—Tl1Axi86.74 (19)
O3vi—Tl2C—O2105.8 (4)Tl2Bvii—O6—Tl1Axi90.01 (6)
O12v—Tl2C—O2108.6 (4)Tl2Avii—O6—Tl1Axi88.54 (7)
O6iii—Tl2C—O260.2 (3)Tl1Bii—O6—Tl1Axi2.28 (17)
O3vi—Tl2C—O7vii54.9 (2)Tl2B—O6—Tl1Axi132.08 (6)
O12v—Tl2C—O7vii90.7 (3)As2—O6—Tl2A73.27 (9)
O6iii—Tl2C—O7vii112.0 (4)Fe1—O6—Tl2A76.91 (8)
O2—Tl2C—O7vii160.6 (5)Tl2Axi—O6—Tl2A141.05 (13)
O3vi—Tl2C—O8132.8 (6)Tl2Cxi—O6—Tl2A135.7 (3)
O12v—Tl2C—O866.0 (3)Tl2Bxi—O6—Tl2A142.30 (9)
O6iii—Tl2C—O8121.8 (4)Tl2Cvii—O6—Tl2A77.4 (2)
O2—Tl2C—O867.0 (2)Tl2Bvii—O6—Tl2A71.48 (7)
O7vii—Tl2C—O8125.7 (5)Tl2Avii—O6—Tl2A75.96 (9)
O3vi—Tl2C—O7iii128.4 (6)Tl1Bii—O6—Tl2A128.38 (17)
O12v—Tl2C—O7iii58.8 (3)Tl2B—O6—Tl2A2.59 (8)
O6iii—Tl2C—O7iii50.6 (3)Tl1Axi—O6—Tl2A130.56 (6)
O2—Tl2C—O7iii77.4 (3)As2—O7—Fe2ii122.44 (11)
O7vii—Tl2C—O7iii112.3 (4)As2—O7—Tl1Bii99.60 (17)
O8—Tl2C—O7iii96.7 (3)Fe2ii—O7—Tl1Bii97.94 (18)
O3vi—Tl2C—O12vi50.8 (2)As2—O7—Tl2Cvii110.0 (3)
O12v—Tl2C—O12vi111.0 (4)Fe2ii—O7—Tl2Cvii94.7 (3)
O6iii—Tl2C—O12vi56.8 (3)Tl1Bii—O7—Tl2Cvii134.3 (4)
O2—Tl2C—O12vi113.1 (5)As2—O7—Tl2Cxi92.1 (3)
O7vii—Tl2C—O12vi55.3 (2)Fe2ii—O7—Tl2Cxi145.3 (3)
O8—Tl2C—O12vi176.4 (5)Tl1Bii—O7—Tl2Cxi77.4 (3)
O7iii—Tl2C—O12vi79.9 (4)Tl2Cvii—O7—Tl2Cxi67.7 (4)
O3vi—Tl2C—O10viii52.4 (3)As2—O7—Tl1Axi100.56 (9)
O12v—Tl2C—O10viii107.9 (5)Fe2ii—O7—Tl1Axi97.82 (8)
O6iii—Tl2C—O10viii137.8 (4)Tl1Bii—O7—Tl1Axi1.10 (17)
O2—Tl2C—O10viii123.5 (5)Tl2Cvii—O7—Tl1Axi133.2 (3)
O7vii—Tl2C—O10viii48.5 (2)Tl2Cxi—O7—Tl1Axi76.9 (2)
O8—Tl2C—O10viii91.2 (4)As2—O7—Tl2Axi90.08 (10)
O7iii—Tl2C—O10viii159.0 (4)Fe2ii—O7—Tl2Axi147.47 (11)
O12vi—Tl2C—O10viii91.7 (3)Tl1Bii—O7—Tl2Axi73.5 (2)
O3vi—Tl2C—O9viii66.5 (3)Tl2Cvii—O7—Tl2Axi72.4 (3)
O12v—Tl2C—O9viii122.7 (5)Tl2Cxi—O7—Tl2Axi4.73 (18)
O6iii—Tl2C—O9viii122.0 (4)Tl1Axi—O7—Tl2Axi73.06 (8)
O2—Tl2C—O9viii79.4 (3)As2—O7—Tl2Bvii108.05 (10)
O7vii—Tl2C—O9viii92.3 (4)Fe2ii—O7—Tl2Bvii89.65 (8)
O8—Tl2C—O9viii66.3 (3)Tl1Bii—O7—Tl2Bvii141.32 (19)
O7iii—Tl2C—O9viii155.4 (4)Tl2Cvii—O7—Tl2Bvii7.8 (3)
O12vi—Tl2C—O9viii117.3 (4)Tl2Cxi—O7—Tl2Bvii75.10 (18)
O10viii—Tl2C—O9viii44.6 (2)Tl1Axi—O7—Tl2Bvii140.26 (7)
O3vi—Tl2C—Tl2Cix93.7 (5)Tl2Axi—O7—Tl2Bvii79.80 (8)
O12v—Tl2C—Tl2Cix62.3 (4)As2—O7—Tl2Avii110.54 (11)
O6iii—Tl2C—Tl2Cix75.3 (6)Fe2ii—O7—Tl2Avii92.84 (10)
O2—Tl2C—Tl2Cix128.9 (8)Tl1Bii—O7—Tl2Avii135.4 (2)
O7vii—Tl2C—Tl2Cix58.0 (3)Tl2Cvii—O7—Tl2Avii2.0 (3)
O8—Tl2C—Tl2Cix128.2 (6)Tl2Cxi—O7—Tl2Avii69.6 (2)
O7iii—Tl2C—Tl2Cix54.3 (4)Tl1Axi—O7—Tl2Avii134.39 (10)
O12vi—Tl2C—Tl2Cix48.7 (3)Tl2Axi—O7—Tl2Avii74.35 (13)
O10viii—Tl2C—Tl2Cix105.9 (5)Tl2Bvii—O7—Tl2Avii6.18 (9)
O9viii—Tl2C—Tl2Cix150.3 (6)As2—O7—Tl1Bxi101.35 (15)
O3vi—Tl2C—As1vi24.72 (13)Fe2ii—O7—Tl1Bxi97.73 (15)
O12v—Tl2C—As1vi169.5 (4)Tl1Bii—O7—Tl1Bxi2.0 (3)
O6iii—Tl2C—As1vi71.6 (3)Tl2Cvii—O7—Tl1Bxi132.4 (4)
O2—Tl2C—As1vi81.2 (3)Tl2Cxi—O7—Tl1Bxi76.5 (3)
O7vii—Tl2C—As1vi79.5 (3)Tl1Axi—O7—Tl1Bxi0.90 (14)
O8—Tl2C—As1vi122.9 (4)Tl2Axi—O7—Tl1Bxi72.67 (17)
O7iii—Tl2C—As1vi121.7 (5)Tl2Bvii—O7—Tl1Bxi139.38 (16)
O12vi—Tl2C—As1vi60.3 (2)Tl2Avii—O7—Tl1Bxi133.53 (18)
O10viii—Tl2C—As1vi68.2 (3)As2—O7—Tl2Bxi92.59 (10)
O9viii—Tl2C—As1vi62.0 (2)Fe2ii—O7—Tl2Bxi144.92 (10)
Tl2Cix—Tl2C—As1vi108.7 (5)Tl1Bii—O7—Tl2Bxi72.2 (2)
O3vi—Tl2C—O4vi46.0 (2)Tl2Cvii—O7—Tl2Bxi72.5 (3)
O12v—Tl2C—O4vi155.8 (6)Tl2Cxi—O7—Tl2Bxi5.3 (2)
O6iii—Tl2C—O4vi46.7 (2)Tl1Axi—O7—Tl2Bxi71.63 (8)
O2—Tl2C—O4vi65.4 (3)Tl2Axi—O7—Tl2Bxi2.70 (7)
O7vii—Tl2C—O4vi96.1 (3)Tl2Bvii—O7—Tl2Bxi79.95 (12)
O8—Tl2C—O4vi125.5 (3)Tl2Avii—O7—Tl2Bxi74.37 (10)
O7iii—Tl2C—O4vi97.3 (4)Tl1Bxi—O7—Tl2Bxi71.21 (17)
O12vi—Tl2C—O4vi56.5 (2)As2—O7—Tl1B52.90 (12)
O10viii—Tl2C—O4vi93.8 (3)Fe2ii—O7—Tl1B69.77 (11)
O9viii—Tl2C—O4vi80.4 (3)Tl1Bii—O7—Tl1B113.2 (2)
Tl2Cix—Tl2C—O4vi102.1 (6)Tl2Cvii—O7—Tl1B112.4 (4)
As1vi—Tl2C—O4vi25.60 (10)Tl2Cxi—O7—Tl1B143.9 (3)
O3vi—Tl2C—As2iii109.1 (5)Tl1Axi—O7—Tl1B114.21 (18)
O12v—Tl2C—As2iii84.9 (4)Tl2Axi—O7—Tl1B142.66 (12)
O6iii—Tl2C—As2iii25.01 (15)Tl2Bvii—O7—Tl1B105.03 (18)
O2—Tl2C—As2iii62.3 (3)Tl2Avii—O7—Tl1B111.1 (2)
O7vii—Tl2C—As2iii119.1 (4)Tl1Bxi—O7—Tl1B115.0 (3)
O8—Tl2C—As2iii107.4 (3)Tl2Bxi—O7—Tl1B145.27 (11)
O7iii—Tl2C—As2iii26.34 (14)As2—O8—Tl2B140.00 (13)
O12vi—Tl2C—As2iii70.0 (3)As2—O8—Tl1B122.2 (3)
O10viii—Tl2C—As2iii160.7 (4)Tl2B—O8—Tl1B92.5 (3)
O9viii—Tl2C—As2iii139.2 (4)As2—O8—Tl2A145.64 (14)
Tl2Cix—Tl2C—As2iii66.7 (5)Tl2B—O8—Tl2A6.34 (9)
As1vi—Tl2C—As2iii96.6 (4)Tl1B—O8—Tl2A86.2 (3)
O4vi—Tl2C—As2iii71.5 (3)As2—O8—Tl1A128.10 (11)
O3vi—Tl2C—Tl2Aix92.3 (3)Tl2B—O8—Tl1A86.74 (7)
O12v—Tl2C—Tl2Aix62.8 (2)Tl1B—O8—Tl1A6.0 (3)
O6iii—Tl2C—Tl2Aix77.0 (3)Tl2A—O8—Tl1A80.39 (10)
O2—Tl2C—Tl2Aix131.1 (5)As2—O8—Tl1Bi133.6 (3)
O7vii—Tl2C—Tl2Aix55.8 (2)Tl2B—O8—Tl1Bi81.3 (2)
O8—Tl2C—Tl2Aix128.8 (3)Tl1B—O8—Tl1Bi11.6 (5)
O7iii—Tl2C—Tl2Aix56.5 (2)Tl2A—O8—Tl1Bi74.9 (3)
O12vi—Tl2C—Tl2Aix48.24 (18)Tl1A—O8—Tl1Bi5.6 (3)
O10viii—Tl2C—Tl2Aix103.7 (3)As2—O8—Tl2C146.3 (3)
O9viii—Tl2C—Tl2Aix148.1 (4)Tl2B—O8—Tl2C6.4 (3)
Tl2Cix—Tl2C—Tl2Aix2.3 (3)Tl1B—O8—Tl2C87.6 (4)
As1vi—Tl2C—Tl2Aix108.0 (3)Tl2A—O8—Tl2C4.0 (2)
O4vi—Tl2C—Tl2Aix102.4 (3)Tl1A—O8—Tl2C81.7 (3)
As2iii—Tl2C—Tl2Aix68.9 (2)Tl1Bi—O8—Tl2C76.2 (4)
O4viii—Fe1—O4180.0As2—O8—Tl2Bvii78.89 (10)
O4viii—Fe1—O6viii91.70 (10)Tl2B—O8—Tl2Bvii88.66 (8)
O4—Fe1—O6viii88.30 (10)Tl1B—O8—Tl2Bvii137.2 (2)
O4viii—Fe1—O688.30 (10)Tl2A—O8—Tl2Bvii93.12 (12)
O4—Fe1—O691.70 (10)Tl1A—O8—Tl2Bvii135.59 (8)
O6viii—Fe1—O6180.0Tl1Bi—O8—Tl2Bvii133.6 (2)
O4viii—Fe1—O987.04 (9)Tl2C—O8—Tl2Bvii89.6 (3)
O4—Fe1—O992.96 (9)As2—O8—Tl2Cvii72.5 (2)
O6viii—Fe1—O992.17 (9)Tl2B—O8—Tl2Cvii93.0 (2)
O6—Fe1—O987.83 (9)Tl1B—O8—Tl2Cvii141.7 (3)
O4viii—Fe1—O9viii92.96 (9)Tl2A—O8—Tl2Cvii97.78 (17)
O4—Fe1—O9viii87.04 (9)Tl1A—O8—Tl2Cvii140.7 (2)
O6viii—Fe1—O9viii87.83 (9)Tl1Bi—O8—Tl2Cvii139.2 (3)
O6—Fe1—O9viii92.17 (9)Tl2C—O8—Tl2Cvii94.4 (4)
O9—Fe1—O9viii180.00 (12)Tl2Bvii—O8—Tl2Cvii6.5 (2)
O4viii—Fe1—Tl2Avi124.04 (9)As2—O8—Tl2Avii75.34 (10)
O4—Fe1—Tl2Avi55.96 (9)Tl2B—O8—Tl2Avii90.71 (13)
O6viii—Fe1—Tl2Avi33.14 (8)Tl1B—O8—Tl2Avii140.2 (2)
O6—Fe1—Tl2Avi146.86 (8)Tl2A—O8—Tl2Avii95.41 (11)
O9—Fe1—Tl2Avi99.80 (8)Tl1A—O8—Tl2Avii138.90 (9)
O9viii—Fe1—Tl2Avi80.20 (8)Tl1Bi—O8—Tl2Avii137.1 (2)
O4viii—Fe1—Tl2Axi55.96 (9)Tl2C—O8—Tl2Avii92.0 (2)
O4—Fe1—Tl2Axi124.04 (9)Tl2Bvii—O8—Tl2Avii3.75 (10)
O6viii—Fe1—Tl2Axi146.86 (8)Tl2Cvii—O8—Tl2Avii2.8 (2)
O6—Fe1—Tl2Axi33.14 (8)As2—O8—Tl2Cxi32.11 (14)
O9—Fe1—Tl2Axi80.20 (8)Tl2B—O8—Tl2Cxi115.00 (14)
O9viii—Fe1—Tl2Axi99.80 (8)Tl1B—O8—Tl2Cxi152.4 (3)
Tl2Avi—Fe1—Tl2Axi180.0Tl2A—O8—Tl2Cxi121.35 (16)
O4viii—Fe1—Tl2Cvi123.9 (2)Tl1A—O8—Tl2Cxi158.25 (14)
O4—Fe1—Tl2Cvi56.1 (2)Tl1Bi—O8—Tl2Cxi163.7 (3)
O6viii—Fe1—Tl2Cvi32.4 (2)Tl2C—O8—Tl2Cxi120.0 (4)
O6—Fe1—Tl2Cvi147.6 (2)Tl2Bvii—O8—Tl2Cxi50.72 (11)
O9—Fe1—Tl2Cvi96.31 (16)Tl2Cvii—O8—Tl2Cxi44.3 (3)
O9viii—Fe1—Tl2Cvi83.69 (16)Tl2Avii—O8—Tl2Cxi46.97 (15)
Tl2Avi—Fe1—Tl2Cvi3.50 (15)As3—O9—Fe1126.14 (11)
Tl2Axi—Fe1—Tl2Cvi176.50 (15)As3—O9—Tl2Bviii100.51 (12)
O4viii—Fe1—Tl2Cxi56.1 (2)Fe1—O9—Tl2Bviii116.35 (12)
O4—Fe1—Tl2Cxi123.9 (2)As3—O9—Tl2Aviii103.06 (11)
O6viii—Fe1—Tl2Cxi147.6 (2)Fe1—O9—Tl2Aviii115.76 (10)
O6—Fe1—Tl2Cxi32.4 (2)Tl2Bviii—O9—Tl2Aviii3.35 (9)
O9—Fe1—Tl2Cxi83.69 (16)As3—O9—Tl2Cviii99.2 (2)
O9viii—Fe1—Tl2Cxi96.31 (16)Fe1—O9—Tl2Cviii119.46 (19)
Tl2Avi—Fe1—Tl2Cxi176.50 (15)Tl2Bviii—O9—Tl2Cviii3.5 (2)
Tl2Axi—Fe1—Tl2Cxi3.50 (15)Tl2Aviii—O9—Tl2Cviii4.02 (19)
Tl2Cvi—Fe1—Tl2Cxi180.0As3—O9—Tl2Axi148.12 (11)
O4viii—Fe1—Tl2Bviii51.92 (9)Fe1—O9—Tl2Axi73.23 (8)
O4—Fe1—Tl2Bviii128.08 (9)Tl2Bviii—O9—Tl2Axi89.41 (8)
O6viii—Fe1—Tl2Bviii77.24 (7)Tl2Aviii—O9—Tl2Axi86.11 (9)
O6—Fe1—Tl2Bviii102.76 (7)Tl2Cviii—O9—Tl2Axi88.9 (3)
O9—Fe1—Tl2Bviii39.51 (8)As3—O9—Tl2Cxi149.74 (18)
O9viii—Fe1—Tl2Bviii140.49 (8)Fe1—O9—Tl2Cxi70.55 (18)
Tl2Avi—Fe1—Tl2Bviii103.44 (5)Tl2Bviii—O9—Tl2Cxi90.8 (2)
Tl2Axi—Fe1—Tl2Bviii76.56 (5)Tl2Aviii—O9—Tl2Cxi87.6 (2)
Tl2Cvi—Fe1—Tl2Bviii100.63 (18)Tl2Cviii—O9—Tl2Cxi90.4 (2)
Tl2Cxi—Fe1—Tl2Bviii79.37 (18)Tl2Axi—O9—Tl2Cxi2.7 (2)
O4viii—Fe1—Tl2B128.08 (9)As3—O9—Tl2Bxi148.77 (10)
O4—Fe1—Tl2B51.92 (9)Fe1—O9—Tl2Bxi75.38 (8)
O6viii—Fe1—Tl2B102.76 (7)Tl2Bviii—O9—Tl2Bxi85.66 (11)
O6—Fe1—Tl2B77.24 (7)Tl2Aviii—O9—Tl2Bxi82.35 (7)
O9—Fe1—Tl2B140.49 (8)Tl2Cviii—O9—Tl2Bxi85.1 (2)
O9viii—Fe1—Tl2B39.51 (8)Tl2Axi—O9—Tl2Bxi3.77 (8)
Tl2Avi—Fe1—Tl2B76.56 (5)Tl2Cxi—O9—Tl2Bxi5.8 (2)
Tl2Axi—Fe1—Tl2B103.44 (5)As3—O9—Tl2Cxiii56.57 (16)
Tl2Cvi—Fe1—Tl2B79.37 (18)Fe1—O9—Tl2Cxiii95.39 (15)
Tl2Cxi—Fe1—Tl2B100.63 (18)Tl2Bviii—O9—Tl2Cxiii75.0 (2)
Tl2Bviii—Fe1—Tl2B180.0Tl2Aviii—O9—Tl2Cxiii78.28 (18)
O5—Fe2—O1195.79 (10)Tl2Cviii—O9—Tl2Cxiii76.7 (4)
O5—Fe2—O195.83 (9)Tl2Axi—O9—Tl2Cxiii154.43 (14)
O11—Fe2—O194.90 (9)Tl2Cxi—O9—Tl2Cxiii153.4 (3)
O5—Fe2—O10x87.53 (9)Tl2Bxi—O9—Tl2Cxiii152.26 (17)
O11—Fe2—O10x91.37 (9)As3—O9—Tl2Cvi71.33 (15)
O1—Fe2—O10x172.54 (9)Fe1—O9—Tl2Cvi60.13 (14)
O5—Fe2—O7ii94.10 (9)Tl2Bviii—O9—Tl2Cvi110.09 (17)
O11—Fe2—O7ii169.50 (9)Tl2Aviii—O9—Tl2Cvi112.86 (18)
O1—Fe2—O7ii87.58 (9)Tl2Cviii—O9—Tl2Cvi112.9 (3)
O10x—Fe2—O7ii85.53 (9)Tl2Axi—O9—Tl2Cvi133.37 (12)
O5—Fe2—O3iv174.72 (8)Tl2Cxi—O9—Tl2Cvi130.68 (17)
O11—Fe2—O3iv85.61 (9)Tl2Bxi—O9—Tl2Cvi135.38 (17)
O1—Fe2—O3iv89.11 (8)Tl2Cxiii—O9—Tl2Cvi41.7 (3)
O10x—Fe2—O3iv87.34 (8)As3—O9—Tl2Bxiii56.73 (8)
O7ii—Fe2—O3iv84.23 (9)Fe1—O9—Tl2Bxiii99.49 (9)
O5—Fe2—Tl1B83.71 (16)Tl2Bviii—O9—Tl2Bxiii70.07 (7)
O11—Fe2—Tl1B134.23 (14)Tl2Aviii—O9—Tl2Bxiii73.39 (8)
O1—Fe2—Tl1B40.21 (13)Tl2Cviii—O9—Tl2Bxiii71.7 (2)
O10x—Fe2—Tl1B134.14 (13)Tl2Axi—O9—Tl2Bxiii152.83 (7)
O7ii—Fe2—Tl1B50.57 (15)Tl2Cxi—O9—Tl2Bxiii152.35 (17)
O3iv—Fe2—Tl1B98.97 (16)Tl2Bxi—O9—Tl2Bxiii150.11 (7)
O5—Fe2—Tl2Cxii135.2 (2)Tl2Cxiii—O9—Tl2Bxiii5.39 (19)
O11—Fe2—Tl2Cxii115.68 (19)Tl2Cvi—O9—Tl2Bxiii46.99 (13)
O1—Fe2—Tl2Cxii111.3 (3)As3—O10—Fe2x135.25 (12)
O10x—Fe2—Tl2Cxii62.1 (3)As3—O10—Tl2Bviii98.29 (12)
O7ii—Fe2—Tl2Cxii54.13 (19)Fe2x—O10—Tl2Bviii93.44 (9)
O3iv—Fe2—Tl2Cxii40.4 (2)As3—O10—Tl2Cviii105.5 (2)
Tl1B—Fe2—Tl2Cxii94.5 (3)Fe2x—O10—Tl2Cviii87.1 (2)
O5—Fe2—Tl2Bxii133.55 (8)Tl2Bviii—O10—Tl2Cviii7.4 (3)
O11—Fe2—Tl2Bxii111.03 (9)As3—O10—Tl2Aviii101.32 (11)
O1—Fe2—Tl2Bxii117.77 (7)Fe2x—O10—Tl2Aviii89.85 (10)
O10x—Fe2—Tl2Bxii55.86 (7)Tl2Bviii—O10—Tl2Aviii3.64 (12)
O7ii—Fe2—Tl2Bxii59.09 (9)Tl2Cviii—O10—Tl2Aviii4.2 (2)
O3iv—Fe2—Tl2Bxii41.56 (7)As3—O10—Tl1Bxiii95.8 (2)
Tl1B—Fe2—Tl2Bxii101.28 (17)Fe2x—O10—Tl1Bxiii101.6 (2)
Tl2Cxii—Fe2—Tl2Bxii7.1 (2)Tl2Bviii—O10—Tl1Bxiii140.98 (15)
O5—Fe2—Tl2Axii136.51 (9)Tl2Cviii—O10—Tl1Bxiii139.3 (3)
O11—Fe2—Tl2Axii112.58 (9)Tl2Aviii—O10—Tl1Bxiii141.70 (15)
O1—Fe2—Tl2Axii112.92 (9)As3—O10—Tl1Axiii91.72 (8)
O10x—Fe2—Tl2Axii60.69 (9)Fe2x—O10—Tl1Axiii106.28 (8)
O7ii—Fe2—Tl2Axii57.26 (8)Tl2Bviii—O10—Tl1Axiii139.97 (8)
O3iv—Fe2—Tl2Axii38.83 (8)Tl2Cviii—O10—Tl1Axiii139.3 (2)
Tl1B—Fe2—Tl2Axii97.41 (17)Tl2Aviii—O10—Tl1Axiii141.15 (8)
Tl2Cxii—Fe2—Tl2Axii3.2 (2)Tl1Bxiii—O10—Tl1Axiii4.7 (2)
Tl2Bxii—Fe2—Tl2Axii4.85 (8)As3—O10—Tl1Biv87.8 (2)
O5—Fe2—Tl1A84.15 (7)Fe2x—O10—Tl1Biv110.8 (2)
O11—Fe2—Tl1A131.70 (7)Tl2Bviii—O10—Tl1Biv138.59 (14)
O1—Fe2—Tl1A37.68 (6)Tl2Cviii—O10—Tl1Biv138.8 (3)
O10x—Fe2—Tl1A136.69 (6)Tl2Aviii—O10—Tl1Biv140.17 (14)
O7ii—Fe2—Tl1A52.97 (6)Tl1Bxiii—O10—Tl1Biv9.3 (4)
O3iv—Fe2—Tl1A98.74 (6)Tl1Axiii—O10—Tl1Biv4.6 (2)
Tl1B—Fe2—Tl1A2.55 (12)As3—O10—Tl2Bxiii84.04 (10)
Tl2Cxii—Fe2—Tl1A95.9 (2)Fe2x—O10—Tl2Bxiii140.47 (10)
Tl2Bxii—Fe2—Tl1A102.81 (6)Tl2Bviii—O10—Tl2Bxiii82.48 (8)
Tl2Axii—Fe2—Tl1A98.84 (7)Tl2Cviii—O10—Tl2Bxiii84.9 (2)
O5—Fe2—Tl1Bi84.53 (14)Tl2Aviii—O10—Tl2Bxiii84.87 (9)
O11—Fe2—Tl1Bi129.48 (12)Tl1Bxiii—O10—Tl2Bxiii63.04 (16)
O1—Fe2—Tl1Bi35.47 (11)Tl1Axiii—O10—Tl2Bxiii60.05 (6)
O10x—Fe2—Tl1Bi138.92 (11)Tl1Biv—O10—Tl2Bxiii57.31 (15)
O7ii—Fe2—Tl1Bi55.08 (13)As3—O10—Tl2Axiii81.21 (9)
O3iv—Fe2—Tl1Bi98.53 (14)Fe2x—O10—Tl2Axiii142.78 (10)
Tl1B—Fe2—Tl1Bi4.8 (2)Tl2Bviii—O10—Tl2Axiii86.56 (9)
Tl2Cxii—Fe2—Tl1Bi97.2 (3)Tl2Cviii—O10—Tl2Axiii89.2 (2)
Tl2Bxii—Fe2—Tl1Bi104.14 (15)Tl2Aviii—O10—Tl2Axiii89.05 (10)
Tl2Axii—Fe2—Tl1Bi100.08 (15)Tl1Bxiii—O10—Tl2Axiii59.95 (17)
Tl1A—Fe2—Tl1Bi2.23 (10)Tl1Axiii—O10—Tl2Axiii56.72 (6)
O4—As1—O1111.35 (11)Tl1Biv—O10—Tl2Axiii53.75 (16)
O4—As1—O3108.09 (11)Tl2Bxiii—O10—Tl2Axiii4.64 (6)
O1—As1—O3117.28 (10)As3—O10—Tl2Cxiii78.23 (19)
O4—As1—O2105.89 (12)Fe2x—O10—Tl2Cxiii146.03 (18)
O1—As1—O2103.87 (11)Tl2Bviii—O10—Tl2Cxiii85.1 (2)
O3—As1—O2109.74 (11)Tl2Cviii—O10—Tl2Cxiii88.2 (4)
O4—As1—Tl2Bvi82.50 (10)Tl2Aviii—O10—Tl2Cxiii87.7 (2)
O1—As1—Tl2Bvi161.67 (10)Tl1Bxiii—O10—Tl2Cxiii62.5 (2)
O3—As1—Tl2Bvi44.89 (11)Tl1Axiii—O10—Tl2Cxiii59.12 (19)
O2—As1—Tl2Bvi82.71 (11)Tl1Biv—O10—Tl2Cxiii55.9 (2)
O4—As1—Tl2Avi77.17 (11)Tl2Bxiii—O10—Tl2Cxiii6.0 (2)
O1—As1—Tl2Avi163.46 (9)Tl2Axiii—O10—Tl2Cxiii3.57 (13)
O3—As1—Tl2Avi46.32 (9)As3—O11—Fe2147.97 (13)
O2—As1—Tl2Avi86.55 (11)As3—O11—Tl1Biv74.11 (15)
Tl2Bvi—As1—Tl2Avi5.82 (8)Fe2—O11—Tl1Biv136.20 (15)
O4—As1—Tl1B109.71 (17)As3—O11—Tl1Axiii74.20 (8)
O1—As1—Tl1B41.4 (2)Fe2—O11—Tl1Axiii136.91 (9)
O3—As1—Tl1B141.82 (17)Tl1Biv—O11—Tl1Axiii4.21 (18)
O2—As1—Tl1B64.3 (2)As3—O11—Tl1Bxiii74.37 (14)
Tl2Bvi—As1—Tl1B146.8 (2)Fe2—O11—Tl1Bxiii137.28 (15)
Tl2Avi—As1—Tl1B150.9 (2)Tl1Biv—O11—Tl1Bxiii8.3 (4)
O4—As1—Tl2Cvi78.6 (3)Tl1Axiii—O11—Tl1Bxiii4.13 (17)
O1—As1—Tl2Cvi159.27 (18)As3—O11—Tl2Bxii159.69 (11)
O3—As1—Tl2Cvi42.3 (2)Fe2—O11—Tl2Bxii47.38 (8)
O2—As1—Tl2Cvi90.0 (2)Tl1Biv—O11—Tl2Bxii97.08 (15)
Tl2Bvi—As1—Tl2Cvi7.5 (3)Tl1Axiii—O11—Tl2Bxii95.68 (7)
Tl2Avi—As1—Tl2Cvi4.29 (16)Tl1Bxiii—O11—Tl2Bxii94.27 (15)
Tl1B—As1—Tl2Cvi154.2 (3)As3—O11—Tl2Cxii164.81 (18)
O4—As1—Tl1A110.64 (9)Fe2—O11—Tl2Cxii43.96 (14)
O1—As1—Tl1A46.10 (7)Tl1Biv—O11—Tl2Cxii98.2 (2)
O3—As1—Tl1A141.27 (7)Tl1Axiii—O11—Tl2Cxii97.17 (15)
O2—As1—Tl1A59.36 (9)Tl1Bxiii—O11—Tl2Cxii96.12 (19)
Tl2Bvi—As1—Tl1A141.78 (6)Tl2Bxii—O11—Tl2Cxii5.36 (18)
Tl2Avi—As1—Tl1A145.90 (8)As3—O12—Tl2Cxiii142.6 (4)
Tl1B—As1—Tl1A5.0 (2)As3—O12—Tl2Axiii140.85 (15)
Tl2Cvi—As1—Tl1A149.2 (2)Tl2Cxiii—O12—Tl2Axiii5.1 (2)
O4—As1—Tl1Bi111.38 (17)As3—O12—Tl2Bxiii134.29 (12)
O1—As1—Tl1Bi50.7 (2)Tl2Cxiii—O12—Tl2Bxiii8.8 (3)
O3—As1—Tl1Bi140.23 (15)Tl2Axiii—O12—Tl2Bxiii6.95 (9)
O2—As1—Tl1Bi54.5 (2)As3—O12—Tl2Cvi136.8 (2)
Tl2Bvi—As1—Tl1Bi137.0 (2)Tl2Cxiii—O12—Tl2Cvi69.0 (4)
Tl2Avi—As1—Tl1Bi141.1 (2)Tl2Axiii—O12—Tl2Cvi73.2 (2)
Tl1B—As1—Tl1Bi9.8 (4)Tl2Bxiii—O12—Tl2Cvi77.4 (2)
Tl2Cvi—As1—Tl1Bi144.4 (3)As3—O12—Tl1Biv105.94 (19)
Tl1A—As1—Tl1Bi4.8 (2)Tl2Cxiii—O12—Tl1Biv76.4 (3)
O4—As1—Tl2B65.74 (9)Tl2Axiii—O12—Tl1Biv71.88 (15)
O1—As1—Tl2B104.61 (8)Tl2Bxiii—O12—Tl1Biv74.80 (17)
O3—As1—Tl2B135.82 (8)Tl2Cvi—O12—Tl1Biv111.5 (3)
O2—As1—Tl2B42.84 (9)As3—O12—Tl1Axiii101.85 (10)
Tl2Bvi—As1—Tl2B91.89 (9)Tl2Cxiii—O12—Tl1Axiii78.1 (2)
Tl2Avi—As1—Tl2B91.78 (7)Tl2Axiii—O12—Tl1Axiii73.36 (9)
Tl1B—As1—Tl2B67.5 (2)Tl2Bxiii—O12—Tl1Axiii75.74 (10)
Tl2Cvi—As1—Tl2B96.05 (17)Tl2Cvi—O12—Tl1Axiii116.3 (2)
Tl1A—As1—Tl2B64.33 (4)Tl1Biv—O12—Tl1Axiii4.8 (2)
Tl1Bi—As1—Tl2B61.4 (2)As3—O12—Tl2Avi133.49 (12)
O4—As1—Tl2A70.99 (11)Tl2Cxiii—O12—Tl2Avi71.4 (3)
O1—As1—Tl2A103.97 (9)Tl2Axiii—O12—Tl2Avi75.76 (13)
O3—As1—Tl2A134.43 (9)Tl2Bxiii—O12—Tl2Avi79.68 (10)
O2—As1—Tl2A37.60 (11)Tl2Cvi—O12—Tl2Avi3.4 (2)
Tl2Bvi—As1—Tl2A91.71 (10)Tl1Biv—O12—Tl2Avi114.7 (2)
Tl2Avi—As1—Tl2A92.14 (8)Tl1Axiii—O12—Tl2Avi119.42 (8)
Tl1B—As1—Tl2A65.3 (2)As3—O12—Tl1Bxiii98.06 (16)
Tl2Cvi—As1—Tl2A96.43 (18)Tl2Cxiii—O12—Tl1Bxiii79.6 (3)
Tl1A—As1—Tl2A61.81 (6)Tl2Axiii—O12—Tl1Bxiii74.82 (14)
Tl1Bi—As1—Tl2A58.5 (2)Tl2Bxiii—O12—Tl1Bxiii76.69 (16)
Tl2B—As1—Tl2A5.35 (7)Tl2Cvi—O12—Tl1Bxiii120.6 (3)
O6—As2—O5112.19 (11)Tl1Biv—O12—Tl1Bxiii9.2 (4)
O6—As2—O7108.23 (11)Tl1Axiii—O12—Tl1Bxiii4.42 (17)
O5—As2—O7109.50 (11)Tl2Avi—O12—Tl1Bxiii123.78 (19)
O6—As2—O8108.63 (11)As3—O12—Tl2Bvi134.55 (12)
O5—As2—O8111.53 (11)Tl2Cxiii—O12—Tl2Bvi73.0 (3)
O7—As2—O8106.56 (10)Tl2Axiii—O12—Tl2Bvi77.09 (9)
O6—As2—Tl1Bii102.43 (17)Tl2Bxiii—O12—Tl2Bvi81.46 (12)
O5—As2—Tl1Bii62.73 (19)Tl2Cvi—O12—Tl2Bvi4.5 (2)
O7—As2—Tl1Bii53.70 (19)Tl1Biv—O12—Tl2Bvi111.1 (2)
O8—As2—Tl1Bii147.66 (17)Tl1Axiii—O12—Tl2Bvi115.93 (9)
O6—As2—Tl2Axi48.51 (9)Tl2Avi—O12—Tl2Bvi4.80 (8)
O5—As2—Tl2Axi110.40 (10)Tl1Bxiii—O12—Tl2Bvi120.33 (19)
O7—As2—Tl2Axi63.33 (9)As3—O12—Tl2Bviii57.27 (8)
O8—As2—Tl2Axi137.72 (10)Tl2Cxiii—O12—Tl2Bviii87.6 (4)
Tl1Bii—As2—Tl2Axi61.81 (17)Tl2Axiii—O12—Tl2Bviii87.72 (12)
O6—As2—Tl2Cxi48.7 (2)Tl2Bxiii—O12—Tl2Bviii80.79 (8)
O5—As2—Tl2Cxi114.46 (19)Tl2Cvi—O12—Tl2Bviii119.4 (3)
O7—As2—Tl2Cxi61.6 (2)Tl1Biv—O12—Tl2Bviii115.9 (2)
O8—As2—Tl2Cxi133.80 (19)Tl1Axiii—O12—Tl2Bviii111.69 (9)
Tl1Bii—As2—Tl2Cxi64.3 (2)Tl2Avi—O12—Tl2Bviii117.69 (10)
Tl2Axi—As2—Tl2Cxi4.18 (17)Tl1Bxiii—O12—Tl2Bviii107.8 (2)
O6—As2—Tl1Axi101.68 (8)Tl2Bvi—O12—Tl2Bviii122.47 (11)
O5—As2—Tl1Axi61.84 (8)As3—O12—Tl2Aviii57.41 (8)
O7—As2—Tl1Axi55.05 (7)Tl2Cxiii—O12—Tl2Aviii87.4 (4)
O8—As2—Tl1Axi148.71 (8)Tl2Axiii—O12—Tl2Aviii87.47 (11)
Tl1Bii—As2—Tl1Axi1.42 (17)Tl2Bxiii—O12—Tl2Aviii80.53 (8)
Tl2Axi—As2—Tl1Axi61.71 (6)Tl2Cvi—O12—Tl2Aviii119.6 (3)
Tl2Cxi—As2—Tl1Axi64.28 (19)Tl1Biv—O12—Tl2Aviii115.5 (2)
O6—As2—Tl2Cvii77.7 (2)Tl1Axiii—O12—Tl2Aviii111.30 (7)
O5—As2—Tl2Cvii156.3 (2)Tl2Avi—O12—Tl2Aviii117.93 (10)
O7—As2—Tl2Cvii47.2 (2)Tl1Bxiii—O12—Tl2Aviii107.4 (2)
O8—As2—Tl2Cvii83.6 (3)Tl2Bvi—O12—Tl2Aviii122.72 (7)
Tl1Bii—As2—Tl2Cvii94.6 (3)Tl2Bviii—O12—Tl2Aviii0.42 (11)
Tl2Axi—As2—Tl2Cvii59.0 (2)As3—O12—H12101 (3)
Tl2Cxi—As2—Tl2Cvii54.9 (4)Tl2Cxiii—O12—H12116 (3)
Tl1Axi—As2—Tl2Cvii95.6 (2)Tl2Axiii—O12—H12118 (3)
O6—As2—Tl2Bxi48.84 (8)Tl2Bxiii—O12—H12125 (3)
O5—As2—Tl2Bxi109.53 (11)Tl2Cvi—O12—H1256 (3)
O7—As2—Tl2Bxi63.38 (9)Tl1Biv—O12—H1295 (3)
O8—As2—Tl2Bxi138.60 (11)Tl1Axiii—O12—H1298 (3)
Tl1Bii—As2—Tl2Bxi61.06 (16)Tl2Avi—O12—H1256 (3)
Tl2Axi—As2—Tl2Bxi0.88 (12)Tl1Bxiii—O12—H12101 (3)
Tl2Cxi—As2—Tl2Bxi5.0 (2)Tl2Bvi—O12—H1252 (3)
Tl1Axi—As2—Tl2Bxi60.95 (5)Tl2Bviii—O12—H12146 (3)
Tl2Cvii—As2—Tl2Bxi59.7 (2)Tl2Aviii—O12—H12146 (3)
O6—As2—Tl1B136.29 (14)
Symmetry codes: (i) x+1, y+2, z; (ii) x, y+2, z; (iii) x+1, y, z; (iv) x+1, y+1, z; (v) x, y+1, z; (vi) x+1, y+1, z+1; (vii) x, y+2, z+1; (viii) x, y+1, z+1; (ix) x+1, y+2, z+1; (x) x, y+1, z; (xi) x1, y, z; (xii) x, y, z1; (xiii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O9iii0.85 (3)1.86 (3)2.707 (3)176 (5)
O8—H8···O10v0.982 (2)1.598 (2)2.569 (3)169.44 (15)
O12—H12···O30.88 (3)1.86 (3)2.729 (3)172 (5)
Symmetry codes: (iii) x+1, y, z; (v) x, y+1, z.
Compilation of all published compounds adopting the (NH4)Fe(HPO4)2 structure type (Yakubovich, 1993) and the RbFe(HPO4)2 structure type (Lii &amp; Wu, 1994) top
(NH4)Fe(HPO4)2 type (P1, Z = 3)
a (Å)b (Å)c (Å)α (°)β (°)γ (°)V3)
CsSc(HAsO4)2a7.520 (2)9.390 (2)10.050 (2)65.48 (3)70.66 (3)70.10 (3)592.0 (2)
TlFe(HAsO4)27.346 (2)9.148 (2)9.662 (2)64.89 (3)70.51 (3)69.94 (3)538.6 (2)
(NH4)Fe(HAsO4)2b7.3473 (7)9.1917 (8)9.7504 (9)64.545 (5)70.710 (7)69.638 (6)544.54 (2)
(NH4)Fe(HPO4)2c7.185 (3)8.857 (3)9.478 (3)64.79 (3)70.20 (3)69.38 (3)498.0 (3)
(NH4)Fe(HPO4)2d7.1218.8399.46564.59870.32169.574491.88
(NH4)V(HPO4)2e7.173 (2)8.841 (2)9.458 (2)65.08 (2)70.68 (2)69.59 (2)497.59 (2)
(NH4)(Al0.64Ga0.36)f(HPO4)27.109 (4)8.695 (4)9.252 (6)65.01 (4)70.25 (5)69.01 (4)472.1 (4)
(ND4)Fe(DPO4)2d,g7.11830 (3)8.83828 (4)9.46407 (4)64.5802 (4)70.3127 (4)69.5733 (5)491.495 (4)
KFe(HPO4)2h7.208.769.4964.5869.8270.13
(H3O)Al(HPO4)2i7.1177 (2)8.6729 (2)9.2200 (3)65.108 (2)70.521 (1)68.504 (2)469.4 (2)
CsIn(HPO4)2j7.4146 (3)9.0915 (3)9.7849 (3)65.525 (3)70.201 (3)69.556 (3)547.77 (4)
RbFe(HPO4)2j7.2025 (4)8.8329 (8)9.4540 (8)65.149 (8)70.045 (6)69.591 (6)497.44 (8)
RbV(HPO4)2k7.188 (2)8.831 (1)9.450(265.3470.44969.739498.5 (2)
RbFe(HPO4)2 type (R3c, Z = 18)
RbIn(HAsO4)2l8.512 (1)8.512 (1)56.43 (1)90901203541.1 (9)
CsIn(HAsO4)2l8.629 (1)8.629 (1)56.99 (1)90901203674.7 (9)
RbAl(HAsO4)2m8.318 (1)8.318 (1)52.87 (1)90901203167.9 (9)
RbFe(HAsO4)28.425 (1)8.425 (1)54.75 (1)90901203365.5 (9)
CsFe(HAsO4)2m8.525 (1)8.525 (1)55.00 (1)90901203461.5 (9)
RbFe(HPO4)2n8.160 (1)8.160 (1)52.75 (1)90901203041.82
RbAl(HPO4)2j8.0581 (18)8.0581 (18)51.081 (12)90901202872 (11)
RbGa(HPO4)2j8.1188 (15)8.1188 (15)51.943 (4)90901202965.1 (8)
Notes: (a) Schwendtner & Kolitsch (2004); (b) Ouerfelli et al. (2014); (c) Yakubovich (1993), transformed from I1; (d) Alfonso et al. (2011), converted to reduced cell; (e) Bircsak & Harrison (1998); (f) Stalder & Wilkinson (1998); (g) Alfonso et al. (2010); (h) Smith & Brown (1959); (i) Yan et al. (2000); (j) Lesage et al. (2007); (k) Haushalter et al. (1995), converted to reduced cell; (l) Schwendtner & Kolitsch (2017); (m) Schwendtner & Kolitsch (2018); (n) Lii & Wu (1994).
 

Acknowledgements

The authors acknowledge the TU Wien University Library for financial support through its Open Access Funding Program.

Funding information

Funding for this research was provided by: Doc fForte Fellowship of the Austrian Academy of Sciences to K. Schwendtner.

References

First citationAlfonso, B. F., Blanco, J. A., Fernández-Díaz, M. T., Trobajo, C., Khainakov, S. A. & García, J. R. (2010). Dalton Trans. 39, 1891–1796.  Google Scholar
First citationAlfonso, B. F., Piqué, C., Trobajo, C., García, J. R., Fernández, J. R., Fernández-Díaz, M. T. & Blanco, J. A. (2011). J. Phys. Conf. Ser. 325, 012014.  CrossRef Google Scholar
First citationBaur, W. H. (1981). Structure and Bonding in Crystals, edited by M. O'Keeffe & A. Navrotsky, pp. 31–52. New York: Academic Press.  Google Scholar
First citationBircsak, Z. & Harrison, W. T. A. (1998). Acta Cryst. C54, 1195–1197.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCambon, O., Haines, J., Fraysse, G., Detaint, J., Capelle, B. & Van der Lee, A. (2005). J. Appl. Phys. 97, 074110074111-074110/074117.  CrossRef Google Scholar
First citationCambon, O., Yot, P., Rul, S., Haines, J. & Philippot, E. (2003). Solid State Sci. 5, 469–472.  Web of Science CrossRef CAS Google Scholar
First citationCarvajal, J. J., Parreu, I., Solé, R., Solans, X., Díaz, F. & Aguiló, M. (2005). Chem. Mater. 17, 6746–6754.  CrossRef CAS Google Scholar
First citationChang, R.-S., Wang, S.-L. & Lii, K.-H. (1997). Inorg. Chem. 36, 3410–3413.  CrossRef CAS Google Scholar
First citationChouchene, S., Jaouadi, K., Mhiri, T. & Zouari, N. (2017). Solid State Ionics, 301, 78–85.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGagné, O. C. & Hawthorne, F. C. (2015). Acta Cryst. B71, 562–578.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGagné, O. C. & Hawthorne, F. C. (2016). Acta Cryst. B72, 602–625.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGagné, O. C. & Hawthorne, F. C. (2018). Acta Cryst. B74, 63–78.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGarlea, O. V., Sanjeewa, L. D., McGuire, M. A., Kumar, P., Sulejmanovic, D., He, J. & Hwu, S.-J. (2014). Phys. Rev. B: Condens. Matter Mater. Phys. 89, 014426014421-014426/014429.  Google Scholar
First citationHaushalter, R. C., Wang, Z., Thompson, M. E. & Zubieta, J. (1995). Inorg. Chim. Acta, 232, 83–89.  CrossRef CAS Web of Science Google Scholar
First citationKato, K. (1975). Opt. Commun. 13, 93–95.  CrossRef CAS Web of Science Google Scholar
First citationKrempl, P. W. (2005). J. Phys. IV Fr. 126, 95–100.  Web of Science CrossRef CAS Google Scholar
First citationLesage, J., Adam, L., Guesdon, A. & Raveau, B. (2007). J. Solid State Chem. 180, 1799–1808.  Web of Science CrossRef CAS Google Scholar
First citationLii, K.-H. & Wu, L.-S. (1994). J. Chem. Soc. A, 10, 1577–1580.  Google Scholar
First citationMasquelier, C., d'Yvoire, F. & Collin, G. (1994). Solid State Ionic Materials, Proceedings of the 4th Asian Conference on Solid State Ionics, Kuala Lumpur, Malaysia, 2–6 August 1994, edited by B. V. R. Chowdari, M. Yahaya, I. A. Talib & M. M. Salleh, pp. 167–172. Singapore: World Scientific.  Google Scholar
First citationMasquelier, C., d'Yvoire, F. & Collin, G. (1995). J. Solid State Chem. 118, 33–42.  CrossRef ICSD CAS Web of Science Google Scholar
First citationMasquelier, C., d'Yvoire, F. & Rodier, N. (1990). Acta Cryst. C46, 1584–1587.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMasquelier, C., Padhi, A. K., Nanjundaswamy, K. S. & Goodenough, J. B. (1998). J. Solid State Chem. 135, 228–234.  Web of Science CrossRef CAS Google Scholar
First citationMasquelier, C., Padhi, A. K., Nanjundaswamy, K. S., Okada, S. & Goodenough, J. B. (1996). Proceedings of the 37th Power Sources Conference, June 17–20, 1996, pp. 188–191. Cherry Hill, New Jersey. Fort Monmouth, NJ: US Army Research Laboratory.  Google Scholar
First citationNonius (2003). COLLECT. Nonius, B. V., Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228–234.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOuerfelli, N., Guesmi, A., Mazza, D., Madani, A., Zid, M. F. & Driss, A. (2007a). J. Solid State Chem. 180, 1224–1229.  Web of Science CrossRef CAS Google Scholar
First citationOuerfelli, N., Guesmi, A., Mazza, D., Zid, M. F. & Driss, A. (2008). Acta Cryst. C64, i41–i44.  Web of Science CrossRef ICSD IUCr Journals Google Scholar
First citationOuerfelli, N., Guesmi, A., Molinié, P., Mazza, D., Zid, M. F. & Driss, A. (2007b). J. Solid State Chem. 180, 2942–2949.  Web of Science CrossRef CAS Google Scholar
First citationOuerfelli, N., Souilem, A., Zid, M. F. & Driss, A. (2014). Acta Cryst. E70, i21–i22.  CrossRef IUCr Journals Google Scholar
First citationPintard-Scrépel, M., d'Yvoire, F. & Bretey, E. (1983). Stud. Inorg. Chem. 3, 215–218.  Google Scholar
First citationPrem, M., Lengauer, C. & Tillmanns, E. (2005a). University of Vienna, Austria. ICDD Grant-in-Aid.  Google Scholar
First citationPrem, M., Lengauer, C. & Tillmanns, E. (2005b). University of Vienna, Austria. ICDD Grant-in-Aid.  Google Scholar
First citationRen, J., Ma, Z., He, C., Sa, R., Li, Q. & Wu, K. (2015). Comput. Mater. Sci. 106, 1–4.  Web of Science CrossRef CAS Google Scholar
First citationSchwendtner, K. (2008). PhD thesis, Universität Wien, Austria.  Google Scholar
First citationSchwendtner, K. & Kolitsch, U. (2004). Acta Cryst. C60, i84–i88.  Web of Science CrossRef ICSD CAS IUCr Journals Google Scholar
First citationSchwendtner, K. & Kolitsch, U. (2017). Acta Cryst. E73, 1580–1586.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSchwendtner, K. & Kolitsch, U. (2018). Acta Cryst. C. Submitted.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmith, J. P. & Brown, W. E. (1959). Am. Mineral. 44, 138–142.  CAS Google Scholar
First citationStalder, S. M. & Wilkinson, A. P. (1998). J. Mater. Chem. 8, 261–263.  Web of Science CrossRef CAS Google Scholar
First citationSun, Y., Yang, Z., Hou, D. & Pan, S. (2017). RSC Adv. 7, 2804–2809.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYakubovich, O. V. (1993). Kristallografiya, 38, 43–48.  CAS Google Scholar
First citationYan, W., Yu, J., Shi, Z. & Xu, R. (2000). Chem. Commun. pp. 1431–1432.  Web of Science CrossRef Google Scholar
First citationd'Yvoire, F., Bretey, E. & Collin, G. (1988). Solid State Ionics, 28–30, 1259–1264.  CrossRef Web of Science Google Scholar
First citationd'Yvoire, F., Pintard-Scrépel, M. & Bretey, E. (1986). Solid State Ionics, 18–19, 502–506.  CrossRef CAS Web of Science Google Scholar
First citationd'Yvoire, F., Pintard-Scrépel, M., Bretey, E. & de la Rochère, M. (1983). Solid State Ionics, 9–10, 851–857.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds