research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­(1-ethyl-1H-imidazole-κN3)(5,10,15,20-tetra­phenyl­porphyrinato-κ4N)iron(II) tetra­hydro­furan monosolvate

CROSSMARK_Color_square_no_text.svg

aCollege of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Yianqi Lake, Huairou District, Beijing 101408, People's Republic of China
*Correspondence e-mail: jfli@ucas.ac.cn

Edited by P. McArdle, National University of Ireland, Ireland (Received 23 April 2018; accepted 24 April 2018; online 1 May 2018)

The title complex, [Fe(C44H28N4)(C5H8N2)2]·C4H8O, possesses inversion symmetry with the iron(II) atom located on a center of symmetry. The metal atom is coordinated in a symmetric octa­hedral geometry by four pyrrole N atoms of the porphyrin ligand in the equatorial plane and two N atoms of 1-ethyl­imidazole ligands in the axial sites; the complex crystallizes with a tetra­hydro­furan solvent mol­ecule. The average Fe—Np (Np is a porphyrin N atom) bond length is 1.995 (3) Å and the axial Fe—NIm (NIm is an imidazole N atom) bond length is 1.994 (2) Å. The two 1-ethyl­imidazole ligands are mutually parallel. The dihedral angle between the 1-ethyl­imidazole plane and the plane of the closest Fe—Np vector is 24.5°. In the crystal, the only significant inter­molecular inter­actions present are C—H⋯π inter­actions.

1. Chemical context

Bis-histidine coordinated hemes are present in various cytochrome b complexes, and are known to be involved in electron-transfer processes (Xia et al., 1997[Xia, D., Yu, C.-A., Kim, H., Xia, J.-Z., Kachurin, A. M., Zhang, L., Yu, L. & Deisenhofer, J. (1997). Science, 277, 60-66.]). As models of these six-coordinate heme complexes, a number of single-crystal structures of [Fe(II,III)(Porph)(L)2]0,+ (Porph is a porphyrinato ligand and L is a N-donor imidazole ligand) have been reported (Walker, 2004[Walker, F. A. (2004). Chem. Rev. 104, 589-615.]). The first ferrous porphyrin crystal structure with two 1-ethyl­imidazole ligands is [FeII(TpivPP)(1-EtIm)2]·0.5C7H8 [TpivPP = α,α,α,α-tetra­kis­(o-pivalamido­phen­yl)porphyrinato; 1-EtIm = 1-ethyl­imidazole], which was reported by Li and co-workers (Li et al., 2008[Li, J., Nair, S. M., Noll, B. C., Schulz, C. E. & Scheidt, W. R. (2008). Inorg. Chem. 47, 3841-3850.]). Later, another analogue of [FeII(TFPPBr8)(1-EtIm)2] [TFPPBr8 = 2,3,7,8,12,13,17,18-octa­bromo-5,10,15,20-tetra­kis­(penta­fluoro­phen­yl)πorphyrinato] was reported (Hu et al., 2016[Hu, B., He, M., Yao, Z., Schulz, C. E. & Li, J. (2016). Inorg. Chem. 55, 9632-9643.]). Herein, we report the structural properties of the iron(II)–porphyrin complex [FeII(TPP)(1-EtIm)2]·THF where the metal center is likewise octa­hedrally coordinated.

2. Structural commentary

The asymmetric unit of the title compound (Fig. 1[link]), contains half of an FeII porphyrin complex, with the iron(II) atom located on an inversion center, an 1-ethyl­imidazole ligand mol­ecule, and half of a THF solvent mol­ecule. The THF mol­ecule is disordered over two positions; the site occupancy factors (SOFs) of the two disordered moieties being 0.35 and 0.15. The two 1-ethyl­imidazole ligands of [FeII(TPP)(1-EtIm)2] are mutually parallel, as required by the crystal symmetry. Additional qu­anti­tative information about the structure is displayed in Fig. 2[link], which includes the displacement of each porphyrin core atom (in units of 0.01 Å) from the 24-atom mean plane. The orientation of the 1-ethyl­imidazole ligand including the value of the dihedral angles is also given. As can be seen in Fig. 2[link], the porphyrin core of [FeII(TPP)(1-EtIm)2] is near-planar and the iron(II) atom is in the 24-atom plane. The displacements of every porphyrin core atom is less than 0.06 Å.

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of the title complex, with displacement ellipsoids drawn at the 50% probability level. The disordered THF mol­ecule has been omitted for clarity, and unlabelled atoms are related to labelled atoms by the inversion symmetry code: (i) −x, −y + 1, −z + 1.
[Figure 2]
Figure 2
Formal diagram of the porphyrinate core of [FeII(TPP)(1-EtIm)2]. Averaged values of the chemically unique bond distances (in Å) and angles (in °) are shown. The numbers in parentheses are the e.s.d.'s calculated on the assumption that the averaged values were all drawn from the same population. The perpendicular displacements (in units of 0.01 Å) of the porphyrin core atoms from the 24-atom mean plane are also displayed. Positive values of the displacement are towards the hindered porphyrin side, the solid line and dashed line indicate the plane of imidazole on the unhindered porphyrin side.

The average Fe—Np bond length of 1.995 (3) Å is similar to 1.993 (6) Å in [FeII(TpivPP)(1-EtIm)2] (Li et al., 2008[Li, J., Nair, S. M., Noll, B. C., Schulz, C. E. & Scheidt, W. R. (2008). Inorg. Chem. 47, 3841-3850.]) and 1.994 (10) Å in [FeII(TFPPBr8)(1-EtIm)2] (Hu et al., 2016[Hu, B., He, M., Yao, Z., Schulz, C. E. & Li, J. (2016). Inorg. Chem. 55, 9632-9643.]), which are typical values for six-coordinated low-spin (porphinato)iron(II) derivatives (Scheidt et al., 1981[Scheidt, W. R. & Reed, C. A. (1981). Chem. Rev. 81, 543-555.]). The axial Fe—NIm bond length is 1.994 (2) Å. The average Np—Fe—Np angle is ideal at 90.00 (6)°. The dihedral angle between the 1-ethyl­imidazole plane and the plane of the closest Fe—Np vector is 24.5°.

3. Supra­molecular features

In the title compound, as shown in Fig. 3[link], the distance between the hydrogen atom H14B (C14) of the ethyl group of 1-EtIm and the pyrrole plane of the neighboring porphyrin is 2.66 Å, smaller than 2.9 Å, which is a limit suggested for the existence of a C—H⋯π inter­action (Takahashi et al., 2001[Takahashi, O., Kohno, Y., Iwasaki, S., Saito, K., Iwaoka, M., Tomoda, S., Umezawa, Y., Tsuboyama, S. & Nishio, M. (2001). Bull. Chem. Soc. Jpn, 74, 2421-2430.]). Details of this inter­action are given in Table 1[link]. The mol­ecular packing is shown in Fig. 4[link].

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the N2/C7–C10 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14BCgi 0.99 (4) 2.69 (4) 3.437 (3) 133 (2)
Symmetry code: (i) -x+1, -y+1, -z+1.
[Figure 3]
Figure 3
The C—H⋯π inter­actions in the title compound. Dashed lines show the distances between H atoms of 1-ethyl­imidazole and the pyrrole core planes. Solvent (THF) mol­ecules and other H atoms have been omitted for clarity.
[Figure 4]
Figure 4
A view along the a axis of the mol­ecular packing of the title compound. H atoms have been omitted for clarity.

4. Synthesis and crystallization

4.1 General information. All reactions were done using standard Schlenk techniques unless otherwise specified. All solvents were freeze/pump/thaw/degassed prior to use. Benzene and tetra­hydro­furan (THF) were refluxed in the presence of sodium and benzo­phenone under argon until the solution was blue. Hexanes was distilled from sodium/potassium alloy under argon. Ethane­thiol and 1-ethyl­imidazole were distilled under an argon atmosphere. (H2TPP), [Fe(TPP)Cl] and [Fe(TPP)]2O were prepared according to the literature method (Adler et al., 1967[Adler, A. D., Longo, F. R., Finarelli, J. D., Goldmacher, J., Assour, J. & Korsakoff, L. (1967). J. Org. Chem. 32, 476-476.], 1970[Adler, A. D., Longo, F. R., Kampas, F. & Kim, J. (1970). J. Inorg. Nucl. Chem. 32, 2443-2445.]; Fleischer & Srivastava, 1969[Fleischer, E. B. & Srivastava, T. S. (1969). J. Am. Chem. Soc. 91, 2403-2405.]).

4.2 Synthesis of bis­(1-ethyl-1H-imidazole-κN3)(5,10,15,20-tetra­phenyl­porphyrinato-κ4N)iron(II) tetra­hydro­furan monosolvate

The purple powder [Fe(TPP)]2O (15.9 mg, 0.018 mmol) was dried in vacuum for 1 h in a Schlenk tube. Benzene (∼5 ml) was transferred into the Schlenk tube by cannula and ethane­thiol (2 ml, 0.028 mol) was added via syringe. The mixture was stirred under argon at ambient temperature. After 36 h, the reduction was complete and the solvent was evaporated by pump. THF (∼5 ml) was transferred into the Schlenk tube via a cannula, and 1-ethyl­imidazole (0.5 ml, 5.19 mmol) was added using a syringe. Hexanes were then allowed to diffuse slowly into the reaction solution. After several weeks purple block-shaped crystals of the title compound were obtained.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The hydrogen atoms (H14A, H14B) attached to atom C14 of the 1-ethyl­imidazole ligand were located in a difference-Fourier map and refined freely. All other hydrogen atoms were placed in calculated positions (C—H = 0.95, 0.98 and 0.99 Å for aryl, methyl and methlyene H atoms, respectively) and refined using a riding model with Uiso(H) = 1.5Ueq(C) for methyl H atoms or Uiso(H) = 1.2Ueq(C) otherwise. The C—O, C—C, C⋯C distances in the disordered THF mol­ecule were constrained to 1.42 (1), 1.50 (1) and 1.55 (1) Å, respectively. Six atoms (C30A, C28B, C29B, C30B, C31B, O1B) of the THF solvent mol­ecule exhibited unusual thermal motion and were restrained by a SIMU command. Five outlier reflections were omitted in the final cycles of refinement.

Table 2
Experimental details

Crystal data
Chemical formula [Fe(C44H28N4)(C5H8N2)2]·C4H8O
Mr 932.92
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 9.2962 (3), 10.7051 (4), 13.4920 (5)
α, β, γ (°) 79.809 (1), 76.034 (1), 75.933 (1)
V3) 1253.90 (8)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.35
Crystal size (mm) 0.26 × 0.17 × 0.08
 
Data collection
Diffractometer Bruker D8 QUEST System
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.931, 0.972
No. of measured, independent and observed [I > 2σ(I)] reflections 19292, 5147, 4542
Rint 0.044
(sin θ/λ)max−1) 0.626
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.167, 1.11
No. of reflections 5147
No. of parameters 386
No. of restraints 113
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.53, −0.47
Computer programs: APEX2 (Bruker, 2014[Bruker (2014). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), SAINT-Plus (Bruker, 2014[Bruker (2014). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) and XPREP (Bruker, 2014[Bruker (2014). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), XP (Sheldrick, 2008[Sheldrick, G. M. (2008). XCIF and XP. University of Göttingen, Germany.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), XCIF (Sheldrick, 2008[Sheldrick, G. M. (2008). XCIF and XP. University of Göttingen, Germany.]) and enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SHELXL2014 (Sheldrick, 2015b); data reduction: SAINT-Plus (Bruker, 2014) and XPREP (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: XP (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: XCIF (Sheldrick, 2008) and enCIFer (Allen et al., 2004).

Bis(1-ethyl-1H-imidazole-κN3)(5,10,15,20-tetraphenylporphyrinato-κ4N)iron(II) tetrahydrofuran monosolvate top
Crystal data top
[Fe(C44H28N4)(C5H8N2)2]·C4H8OZ = 1
Mr = 932.92F(000) = 490
Triclinic, P1Dx = 1.235 Mg m3
a = 9.2962 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.7051 (4) ÅCell parameters from 9016 reflections
c = 13.4920 (5) Åθ = 2.4–26.4°
α = 79.809 (1)°µ = 0.35 mm1
β = 76.034 (1)°T = 100 K
γ = 75.933 (1)°Block, purple
V = 1253.90 (8) Å30.26 × 0.17 × 0.08 mm
Data collection top
Bruker D8 QUEST System
diffractometer
4542 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.044
φ and ω scansθmax = 26.4°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 1111
Tmin = 0.931, Tmax = 0.972k = 1313
19292 measured reflectionsl = 1616
5147 independent reflections
Refinement top
Refinement on F2113 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.058H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.167 w = 1/[σ2(Fo2) + (0.0784P)2 + 2.6414P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
5147 reflectionsΔρmax = 1.53 e Å3
386 parametersΔρmin = 0.46 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.00000.50000.50000.00924 (16)
N30.1978 (2)0.5561 (2)0.45844 (17)0.0121 (4)
N40.3804 (2)0.6544 (2)0.45874 (17)0.0138 (5)
N10.0234 (2)0.4581 (2)0.35771 (16)0.0118 (4)
N20.1056 (2)0.3198 (2)0.54207 (16)0.0108 (4)
C10.1057 (3)0.6676 (3)0.2771 (2)0.0130 (5)
C20.0246 (3)0.5395 (3)0.2750 (2)0.0141 (5)
C30.0205 (3)0.4727 (3)0.1849 (2)0.0205 (6)
H30.00370.50840.11800.025*
C40.0910 (3)0.3506 (3)0.2132 (2)0.0196 (6)
H40.13180.28350.17040.024*
C50.0927 (3)0.3410 (3)0.3208 (2)0.0137 (5)
C60.1548 (3)0.2286 (2)0.3780 (2)0.0127 (5)
C70.1616 (3)0.2208 (2)0.4811 (2)0.0120 (5)
C80.2351 (3)0.1062 (3)0.5377 (2)0.0147 (5)
H80.28220.02540.51260.018*
C90.2248 (3)0.1346 (3)0.6327 (2)0.0144 (5)
H90.26430.07830.68710.017*
C100.1421 (3)0.2673 (2)0.6363 (2)0.0114 (5)
C110.2390 (3)0.6380 (3)0.5032 (2)0.0152 (5)
H110.17670.68000.55980.018*
C120.3189 (3)0.5190 (3)0.3805 (2)0.0168 (5)
H120.32300.46040.33400.020*
C130.4321 (3)0.5794 (3)0.3804 (2)0.0183 (6)
H130.52830.57100.33460.022*
C140.4615 (3)0.7433 (3)0.4831 (2)0.0193 (6)
H14A0.454 (4)0.818 (3)0.431 (3)0.021 (8)*
H14B0.570 (4)0.701 (3)0.468 (3)0.024 (9)*
C150.4039 (3)0.7774 (3)0.5914 (2)0.0204 (6)
H15A0.29670.82100.60040.031*
H15B0.46270.83540.60410.031*
H15C0.41480.69800.64030.031*
C160.1574 (3)0.7373 (3)0.1816 (2)0.0153 (5)
C170.1145 (4)0.8526 (3)0.1325 (2)0.0235 (6)
H170.05000.88800.15960.028*
C180.1651 (4)0.9162 (3)0.0440 (2)0.0304 (7)
H180.13650.99560.01220.037*
C190.2562 (4)0.8655 (3)0.0023 (2)0.0307 (8)
H190.28880.90870.05880.037*
C200.2998 (4)0.7512 (3)0.0498 (2)0.0265 (7)
H200.36300.71590.02140.032*
C210.2516 (3)0.6879 (3)0.1388 (2)0.0194 (6)
H210.28300.60980.17110.023*
C220.2182 (3)0.1072 (3)0.3273 (2)0.0138 (5)
C230.3640 (3)0.0857 (3)0.2667 (2)0.0156 (5)
H230.42340.14950.25570.019*
C240.4230 (3)0.0285 (3)0.2222 (2)0.0195 (6)
H240.52300.04260.18150.023*
C250.3368 (3)0.1223 (3)0.2370 (2)0.0210 (6)
H250.37710.19980.20590.025*
C260.1915 (4)0.1018 (3)0.2975 (2)0.0230 (6)
H260.13240.16590.30840.028*
C270.1325 (3)0.0123 (3)0.3422 (2)0.0201 (6)
H270.03290.02590.38340.024*
O1A0.6922 (6)0.1716 (5)0.1646 (4)0.0128 (6)0.35
C29A0.8416 (9)0.3157 (7)0.0625 (5)0.0124 (7)0.35
H29A0.94720.31110.02330.015*0.35
H29B0.80130.40260.08560.015*0.35
C28A0.8331 (9)0.2105 (7)0.1517 (5)0.0127 (7)0.35
H28A0.91890.13580.13790.015*0.35
H28B0.83800.24290.21480.015*0.35
C30A0.7387 (8)0.2857 (7)0.0043 (5)0.0122 (7)0.35
H30A0.69010.36570.04310.015*0.35
H30B0.79720.22300.05280.015*0.35
C31A0.6257 (9)0.2286 (7)0.0775 (5)0.0128 (7)0.35
H31A0.53530.29700.09810.015*0.35
H31B0.59320.16160.05110.015*0.35
O1B0.5583 (12)0.4284 (11)0.0007 (7)0.0124 (7)0.15
C28B0.5266 (16)0.4209 (16)0.1079 (8)0.0118 (8)0.15
H28C0.43950.37900.13920.014*0.15
H28D0.50400.50830.12990.014*0.15
C29B0.6701 (15)0.3396 (16)0.1373 (10)0.0126 (6)0.15
H29C0.66080.24840.16090.015*0.15
H29D0.69660.37470.19210.015*0.15
C30B0.7903 (17)0.3508 (18)0.0340 (10)0.0125 (7)0.15
H30C0.82860.43170.02380.015*0.15
H30D0.87670.27540.03200.015*0.15
C31B0.6999 (14)0.3523 (16)0.0446 (11)0.0125 (7)0.15
H31C0.74410.39400.11300.015*0.15
H31D0.69090.26380.05060.015*0.15
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0091 (3)0.0097 (3)0.0089 (3)0.00137 (18)0.00237 (19)0.00117 (18)
N30.0125 (11)0.0108 (10)0.0129 (10)0.0014 (8)0.0040 (8)0.0004 (8)
N40.0117 (10)0.0141 (11)0.0160 (11)0.0036 (8)0.0033 (9)0.0013 (9)
N10.0110 (10)0.0118 (10)0.0120 (10)0.0012 (8)0.0024 (8)0.0013 (8)
N20.0109 (10)0.0112 (10)0.0107 (10)0.0032 (8)0.0024 (8)0.0011 (8)
C10.0125 (12)0.0152 (12)0.0113 (12)0.0038 (10)0.0036 (10)0.0006 (10)
C20.0138 (12)0.0172 (13)0.0111 (12)0.0024 (10)0.0029 (10)0.0021 (10)
C30.0249 (15)0.0221 (14)0.0118 (13)0.0036 (11)0.0059 (11)0.0041 (11)
C40.0225 (14)0.0213 (14)0.0126 (13)0.0034 (11)0.0040 (11)0.0061 (11)
C50.0117 (12)0.0162 (13)0.0130 (12)0.0015 (10)0.0020 (10)0.0043 (10)
C60.0111 (12)0.0122 (12)0.0152 (12)0.0017 (9)0.0020 (10)0.0041 (10)
C70.0101 (12)0.0105 (12)0.0156 (12)0.0031 (9)0.0022 (10)0.0018 (10)
C80.0168 (13)0.0104 (12)0.0176 (13)0.0032 (10)0.0052 (10)0.0014 (10)
C90.0167 (13)0.0115 (12)0.0158 (13)0.0037 (10)0.0061 (10)0.0009 (10)
C100.0106 (12)0.0115 (12)0.0129 (12)0.0039 (9)0.0040 (9)0.0003 (9)
C110.0138 (12)0.0177 (13)0.0150 (12)0.0043 (10)0.0031 (10)0.0031 (10)
C120.0148 (13)0.0157 (13)0.0183 (13)0.0028 (10)0.0000 (11)0.0038 (10)
C130.0141 (13)0.0183 (13)0.0207 (14)0.0034 (10)0.0011 (11)0.0043 (11)
C140.0171 (14)0.0199 (14)0.0242 (15)0.0095 (11)0.0066 (11)0.0003 (12)
C150.0233 (15)0.0176 (13)0.0236 (15)0.0058 (11)0.0102 (12)0.0018 (11)
C160.0144 (13)0.0176 (13)0.0110 (12)0.0020 (10)0.0027 (10)0.0012 (10)
C170.0253 (15)0.0252 (15)0.0183 (14)0.0060 (12)0.0050 (12)0.0027 (12)
C180.0369 (18)0.0284 (17)0.0189 (15)0.0022 (14)0.0047 (13)0.0075 (12)
C190.0352 (18)0.0357 (18)0.0130 (14)0.0101 (14)0.0093 (13)0.0001 (12)
C200.0250 (16)0.0354 (18)0.0175 (14)0.0070 (13)0.0088 (12)0.0117 (13)
C210.0199 (14)0.0203 (14)0.0162 (13)0.0026 (11)0.0042 (11)0.0066 (11)
C220.0162 (13)0.0135 (12)0.0126 (12)0.0002 (10)0.0070 (10)0.0022 (10)
C230.0158 (13)0.0179 (13)0.0144 (13)0.0022 (10)0.0049 (10)0.0046 (10)
C240.0199 (14)0.0220 (14)0.0145 (13)0.0048 (11)0.0053 (11)0.0073 (11)
C250.0300 (16)0.0152 (13)0.0182 (14)0.0046 (11)0.0121 (12)0.0064 (11)
C260.0298 (16)0.0153 (14)0.0279 (16)0.0061 (12)0.0111 (13)0.0038 (12)
C270.0175 (14)0.0193 (14)0.0242 (14)0.0042 (11)0.0048 (11)0.0038 (11)
O1A0.0166 (15)0.0189 (15)0.0051 (13)0.0094 (12)0.0044 (12)0.0030 (11)
C29A0.0171 (15)0.0180 (15)0.0047 (13)0.0091 (12)0.0046 (12)0.0024 (12)
C28A0.0169 (15)0.0187 (15)0.0049 (14)0.0093 (12)0.0043 (12)0.0028 (12)
C30A0.0174 (15)0.0176 (15)0.0042 (13)0.0090 (12)0.0048 (12)0.0025 (12)
C31A0.0170 (15)0.0185 (15)0.0050 (13)0.0088 (12)0.0045 (12)0.0030 (12)
O1B0.0180 (16)0.0178 (16)0.0042 (14)0.0089 (13)0.0050 (13)0.0023 (13)
C28B0.0168 (16)0.0179 (16)0.0039 (15)0.0093 (14)0.0051 (13)0.0024 (13)
C29B0.0170 (15)0.0185 (15)0.0048 (13)0.0092 (12)0.0047 (12)0.0030 (11)
C30B0.0174 (15)0.0181 (15)0.0045 (14)0.0090 (13)0.0046 (12)0.0025 (12)
C31B0.0177 (16)0.0182 (16)0.0044 (15)0.0090 (13)0.0048 (13)0.0022 (13)
Geometric parameters (Å, º) top
Fe1—N21.992 (2)C18—C191.375 (5)
Fe1—N2i1.992 (2)C18—H180.9500
Fe1—N31.994 (2)C19—C201.382 (5)
Fe1—N3i1.994 (2)C19—H190.9500
Fe1—N1i1.998 (2)C20—C211.388 (4)
Fe1—N11.998 (2)C20—H200.9500
N3—C111.320 (3)C21—H210.9500
N3—C121.375 (3)C22—C231.392 (4)
N4—C111.346 (3)C22—C271.396 (4)
N4—C131.364 (4)C23—C241.389 (4)
N4—C141.471 (3)C23—H230.9500
N1—C51.381 (3)C24—C251.390 (4)
N1—C21.383 (3)C24—H240.9500
N2—C71.379 (3)C25—C261.388 (4)
N2—C101.382 (3)C25—H250.9500
C1—C10i1.396 (4)C26—C271.390 (4)
C1—C21.397 (4)C26—H260.9500
C1—C161.494 (3)C27—H270.9500
C2—C31.442 (4)O1A—C28A1.431 (9)
C3—C41.346 (4)O1A—C31A1.432 (8)
C3—H30.9500C29A—C28A1.497 (10)
C4—C51.440 (4)C29A—C30A1.580 (10)
C4—H40.9500C29A—H29A0.9900
C5—C61.388 (4)C29A—H29B0.9900
C6—C71.395 (4)C28A—H28A0.9900
C6—C221.502 (3)C28A—H28B0.9900
C7—C81.438 (4)C30A—C31A1.486 (10)
C8—C91.346 (4)C30A—H30A0.9900
C8—H80.9500C30A—H30B0.9900
C9—C101.444 (4)C31A—H31A0.9900
C9—H90.9500C31A—H31B0.9900
C10—C1i1.396 (4)O1B—C28B1.415 (9)
C11—H110.9500O1B—C31B1.421 (9)
C12—C131.363 (4)O1B—O1Bii1.65 (2)
C12—H120.9500C28B—C29B1.505 (10)
C13—H130.9500C28B—H28C0.9900
C14—C151.507 (4)C28B—H28D0.9900
C14—H14A0.97 (4)C29B—C30B1.568 (9)
C14—H14B0.99 (4)C29B—H29C0.9900
C15—H15A0.9800C29B—H29D0.9900
C15—H15B0.9800C30B—C31B1.499 (9)
C15—H15C0.9800C30B—H30C0.9900
C16—C171.394 (4)C30B—H30D0.9900
C16—C211.398 (4)C31B—H31C0.9900
C17—C181.392 (4)C31B—H31D0.9900
C17—H170.9500
N2—Fe1—N2i180.0C16—C17—H17119.7
N2—Fe1—N390.27 (9)C19—C18—C17120.7 (3)
N2i—Fe1—N389.72 (9)C19—C18—H18119.6
N2—Fe1—N3i89.73 (9)C17—C18—H18119.6
N2i—Fe1—N3i90.28 (9)C18—C19—C20119.5 (3)
N3—Fe1—N3i180.0C18—C19—H19120.3
N2—Fe1—N1i89.51 (9)C20—C19—H19120.3
N2i—Fe1—N1i90.49 (9)C19—C20—C21120.2 (3)
N3—Fe1—N1i89.95 (9)C19—C20—H20119.9
N3i—Fe1—N1i90.05 (9)C21—C20—H20119.9
N2—Fe1—N190.49 (9)C20—C21—C16121.0 (3)
N2i—Fe1—N189.51 (9)C20—C21—H21119.5
N3—Fe1—N190.05 (9)C16—C21—H21119.5
N3i—Fe1—N189.95 (9)C23—C22—C27118.9 (2)
N1i—Fe1—N1180.0C23—C22—C6120.9 (2)
C11—N3—C12105.6 (2)C27—C22—C6120.2 (2)
C11—N3—Fe1125.62 (19)C24—C23—C22120.4 (3)
C12—N3—Fe1128.74 (18)C24—C23—H23119.8
C11—N4—C13107.0 (2)C22—C23—H23119.8
C11—N4—C14127.4 (2)C23—C24—C25120.4 (3)
C13—N4—C14125.5 (2)C23—C24—H24119.8
C5—N1—C2105.2 (2)C25—C24—H24119.8
C5—N1—Fe1127.09 (17)C26—C25—C24119.6 (3)
C2—N1—Fe1127.71 (18)C26—C25—H25120.2
C7—N2—C10105.1 (2)C24—C25—H25120.2
C7—N2—Fe1126.70 (17)C25—C26—C27120.0 (3)
C10—N2—Fe1128.22 (17)C25—C26—H26120.0
C10i—C1—C2123.5 (2)C27—C26—H26120.0
C10i—C1—C16118.7 (2)C26—C27—C22120.7 (3)
C2—C1—C16117.8 (2)C26—C27—H27119.7
N1—C2—C1125.7 (2)C22—C27—H27119.7
N1—C2—C3110.1 (2)C28A—O1A—C31A109.1 (5)
C1—C2—C3124.3 (2)C28A—C29A—C30A102.9 (6)
C4—C3—C2107.3 (2)C28A—C29A—H29A111.2
C4—C3—H3126.3C30A—C29A—H29A111.2
C2—C3—H3126.3C28A—C29A—H29B111.2
C3—C4—C5107.0 (2)C30A—C29A—H29B111.2
C3—C4—H4126.5H29A—C29A—H29B109.1
C5—C4—H4126.5O1A—C28A—C29A107.4 (6)
N1—C5—C6125.6 (2)O1A—C28A—H28A110.2
N1—C5—C4110.4 (2)C29A—C28A—H28A110.2
C6—C5—C4124.0 (2)O1A—C28A—H28B110.2
C5—C6—C7123.9 (2)C29A—C28A—H28B110.2
C5—C6—C22118.7 (2)H28A—C28A—H28B108.5
C7—C6—C22117.3 (2)C31A—C30A—C29A100.8 (5)
N2—C7—C6126.2 (2)C31A—C30A—H30A111.6
N2—C7—C8110.5 (2)C29A—C30A—H30A111.6
C6—C7—C8123.3 (2)C31A—C30A—H30B111.6
C9—C8—C7107.3 (2)C29A—C30A—H30B111.6
C9—C8—H8126.4H30A—C30A—H30B109.4
C7—C8—H8126.4O1A—C31A—C30A109.3 (6)
C8—C9—C10106.9 (2)O1A—C31A—H31A109.8
C8—C9—H9126.6C30A—C31A—H31A109.8
C10—C9—H9126.6O1A—C31A—H31B109.8
N2—C10—C1i125.3 (2)C30A—C31A—H31B109.8
N2—C10—C9110.3 (2)H31A—C31A—H31B108.3
C1i—C10—C9124.3 (2)C28B—O1B—C31B115.1 (11)
N3—C11—N4111.6 (2)C28B—O1B—O1Bii86.3 (9)
N3—C11—H11124.2C31B—O1B—O1Bii147.8 (13)
N4—C11—H11124.2O1B—C28B—C29B103.8 (11)
C13—C12—N3109.2 (2)O1B—C28B—H28C111.0
C13—C12—H12125.4C29B—C28B—H28C111.0
N3—C12—H12125.4O1B—C28B—H28D111.0
C12—C13—N4106.6 (2)C29B—C28B—H28D111.0
C12—C13—H13126.7H28C—C28B—H28D109.0
N4—C13—H13126.7C28B—C29B—C30B102.7 (11)
N4—C14—C15112.8 (2)C28B—C29B—H29C111.2
N4—C14—H14A106 (2)C30B—C29B—H29C111.2
C15—C14—H14A113 (2)C28B—C29B—H29D111.2
N4—C14—H14B106 (2)C30B—C29B—H29D111.2
C15—C14—H14B114 (2)H29C—C29B—H29D109.1
H14A—C14—H14B104 (3)C31B—C30B—C29B102.1 (11)
C14—C15—H15A109.5C31B—C30B—H30C111.4
C14—C15—H15B109.5C29B—C30B—H30C111.4
H15A—C15—H15B109.5C31B—C30B—H30D111.4
C14—C15—H15C109.5C29B—C30B—H30D111.4
H15A—C15—H15C109.5H30C—C30B—H30D109.2
H15B—C15—H15C109.5O1B—C31B—C30B100.4 (11)
C17—C16—C21117.9 (3)O1B—C31B—H31C111.7
C17—C16—C1121.7 (3)C30B—C31B—H31C111.7
C21—C16—C1120.4 (2)O1B—C31B—H31D111.7
C18—C17—C16120.6 (3)C30B—C31B—H31D111.7
C18—C17—H17119.7H31C—C31B—H31D109.5
C5—N1—C2—C1177.7 (3)Fe1—N3—C12—C13178.97 (19)
Fe1—N1—C2—C12.8 (4)N3—C12—C13—N40.1 (3)
C5—N1—C2—C32.0 (3)C11—N4—C13—C120.3 (3)
Fe1—N1—C2—C3177.45 (19)C14—N4—C13—C12176.0 (2)
C10i—C1—C2—N13.6 (4)C11—N4—C14—C1524.6 (4)
C16—C1—C2—N1175.7 (2)C13—N4—C14—C15160.6 (3)
C10i—C1—C2—C3176.7 (3)C10i—C1—C16—C1759.0 (4)
C16—C1—C2—C34.0 (4)C2—C1—C16—C17121.7 (3)
N1—C2—C3—C42.0 (3)C10i—C1—C16—C21120.9 (3)
C1—C2—C3—C4177.8 (3)C2—C1—C16—C2158.4 (4)
C2—C3—C4—C51.0 (3)C21—C16—C17—C180.4 (4)
C2—N1—C5—C6178.1 (3)C1—C16—C17—C18179.5 (3)
Fe1—N1—C5—C62.4 (4)C16—C17—C18—C191.2 (5)
C2—N1—C5—C41.4 (3)C17—C18—C19—C201.1 (5)
Fe1—N1—C5—C4178.10 (18)C18—C19—C20—C210.2 (5)
C3—C4—C5—N10.2 (3)C19—C20—C21—C160.6 (4)
C3—C4—C5—C6179.3 (3)C17—C16—C21—C200.5 (4)
N1—C5—C6—C73.2 (4)C1—C16—C21—C20179.6 (3)
C4—C5—C6—C7177.4 (3)C5—C6—C22—C2382.2 (3)
N1—C5—C6—C22176.5 (2)C7—C6—C22—C2398.0 (3)
C4—C5—C6—C222.8 (4)C5—C6—C22—C2799.3 (3)
C10—N2—C7—C6178.6 (2)C7—C6—C22—C2780.5 (3)
Fe1—N2—C7—C60.0 (4)C27—C22—C23—C240.2 (4)
C10—N2—C7—C80.7 (3)C6—C22—C23—C24178.3 (2)
Fe1—N2—C7—C8177.96 (17)C22—C23—C24—C250.5 (4)
C5—C6—C7—N21.9 (4)C23—C24—C25—C260.7 (4)
C22—C6—C7—N2177.8 (2)C24—C25—C26—C270.5 (4)
C5—C6—C7—C8175.8 (2)C25—C26—C27—C220.2 (4)
C22—C6—C7—C84.5 (4)C23—C22—C27—C260.0 (4)
N2—C7—C8—C90.2 (3)C6—C22—C27—C26178.5 (3)
C6—C7—C8—C9177.8 (2)C31A—O1A—C28A—C29A10.8 (8)
C7—C8—C9—C100.9 (3)C30A—C29A—C28A—O1A26.6 (8)
C7—N2—C10—C1i179.2 (2)C28A—C29A—C30A—C31A31.6 (7)
Fe1—N2—C10—C1i2.3 (4)C28A—O1A—C31A—C30A11.1 (8)
C7—N2—C10—C91.2 (3)C29A—C30A—C31A—O1A26.5 (8)
Fe1—N2—C10—C9177.34 (17)C31B—O1B—C28B—C29B5.3 (17)
C8—C9—C10—N21.4 (3)O1Bii—O1B—C28B—C29B149.7 (13)
C8—C9—C10—C1i179.0 (2)O1B—C28B—C29B—C30B19.5 (16)
C12—N3—C11—N40.5 (3)C28B—C29B—C30B—C31B36.3 (16)
Fe1—N3—C11—N4178.81 (17)C28B—O1B—C31B—C30B28.6 (17)
C13—N4—C11—N30.5 (3)O1Bii—O1B—C31B—C30B99 (2)
C14—N4—C11—N3176.1 (2)C29B—C30B—C31B—O1B38.1 (16)
C11—N3—C12—C130.4 (3)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the N2/C7–C10 ring.
D—H···AD—HH···AD···AD—H···A
C14—H14B···Cgiii0.99 (4)2.69 (4)3.437 (3)133 (2)
Symmetry code: (iii) x+1, y+1, z+1.
 

Acknowledgements

The authors thank the CAS Hundred Talent Program and the National Natural Science Foundation of China (grant No.21371167, to JL).

Funding information

Funding for this research was provided by: the National Natural Science Foundation of China (grant No. 21371167).

References

First citationAdler, A. D., Longo, F. R., Finarelli, J. D., Goldmacher, J., Assour, J. & Korsakoff, L. (1967). J. Org. Chem. 32, 476–476.  CrossRef CAS Web of Science Google Scholar
First citationAdler, A. D., Longo, F. R., Kampas, F. & Kim, J. (1970). J. Inorg. Nucl. Chem. 32, 2443–2445.  CrossRef CAS Web of Science Google Scholar
First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2014). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFleischer, E. B. & Srivastava, T. S. (1969). J. Am. Chem. Soc. 91, 2403–2405.  CrossRef CAS Web of Science Google Scholar
First citationHu, B., He, M., Yao, Z., Schulz, C. E. & Li, J. (2016). Inorg. Chem. 55, 9632–9643.  CSD CrossRef CAS Google Scholar
First citationLi, J., Nair, S. M., Noll, B. C., Schulz, C. E. & Scheidt, W. R. (2008). Inorg. Chem. 47, 3841–3850.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationScheidt, W. R. & Reed, C. A. (1981). Chem. Rev. 81, 543–555.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). XCIF and XP. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTakahashi, O., Kohno, Y., Iwasaki, S., Saito, K., Iwaoka, M., Tomoda, S., Umezawa, Y., Tsuboyama, S. & Nishio, M. (2001). Bull. Chem. Soc. Jpn, 74, 2421–2430.  Web of Science CrossRef CAS Google Scholar
First citationWalker, F. A. (2004). Chem. Rev. 104, 589–615.  CrossRef CAS Google Scholar
First citationXia, D., Yu, C.-A., Kim, H., Xia, J.-Z., Kachurin, A. M., Zhang, L., Yu, L. & Deisenhofer, J. (1997). Science, 277, 60–66.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds