research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of methyl 3-(3-hy­dr­oxy-3-phenyl­prop-2-eno­yl)benzoate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Lomonosov Moscow State University, Lenin's Hills 1/3, Moscow 119991, Russian Federation, and bKurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskiy pr. 31, Moscow 119991, Russian Federation
*Correspondence e-mail: bezzubov@igic.ras.ru

Edited by M. Weil, Vienna University of Technology, Austria (Received 25 April 2018; accepted 14 May 2018; online 18 May 2018)

The title compound, C17H14O4, was synthesized under mild conditions and characterized by various analytical techniques. Combined NMR and X-ray diffraction data show that the substance exists exclusively in the enol tautomeric form. An intra­molecular ⋯O=C—C=C—OH⋯ hydrogen bond is present in the mol­ecular structure. The analysis of the difference density map disclosed two adjacent positions of a disordered hydrogen atom taking part in this hydrogen bond, indicating the presence of two enol tautomers in the crystal. The enol mol­ecules are assembled through numerous C—H⋯π and ππ as well as weak C(ar­yl)—H⋯O inter­actions, thus forming a dense crystal packing. The obtained substance was also studied by UV–Vis spectroscopy and cyclic voltammetry.

1. Chemical context

The high complexing ability via O-donor atoms and excellent optical properties of aromatic β-diketones make them practically irreplaceable in the creation of efficient emitters [as lanthanide or iridium(III) complexes] for application in OLEDs (organic light-emitting diodes; Eliseeva & Bünzli, 2010[Eliseeva, S. V. & Bünzli, J. G. (2010). Chem. Soc. Rev. 39, 189-227.]; Bünzli, 2015[Bünzli, J. G. (2015). Coord. Chem. Rev. 293-294, 19-47.]). In addition, β-diketone-based IrIII complexes have attracted particular attention as promising photosensitizers in dye-sensitized solar cells (Baranoff et al., 2010[Baranoff, E., Yum, J.-H., Jung, I., Vulcano, R., Grätzel, M. & Nazeeruddin, M. K. (2010). Chem. Asian J. 5, 496-499.]). Surprisingly, aromatic β-diketones functionalized by anchoring COOH groups have not been considered as a possible alternative to traditional anchoring 4,4′-dicarb­oxy-2,2′-bi­pyridine groups.

Herein we report on the crystal structure as well as optical and electrochemical properties of a non-symmetric aromatic β-diketone with formula C17H14O4, bearing a carb­oxy­methyl group.

[Scheme 1]

2. Structural commentary

A 1H NMR study of the prepared β-diketone showed that it appears exclusively as an enol tautomer in solution (CDCl3). Single-crystal X-ray diffraction analysis also confirmed unambiguously that the compound exists in the enol form in the solid state (Fig. 1[link]a). In the mol­ecular structure, an intra­molecular resonance-assisted hydrogen bond (for related structures, see: Gilli et al., 2004[Gilli, P., Bertolasi, V., Pretto, L., Ferretti, V. & Gilli, G. (2004). J. Am. Chem. Soc. 126, 3845-3855.]) connects the two oxygen atoms of the keto–enol moiety with the O3⋯O4 distance as short as 2.4358 (10) Å (Table 1[link]). The hydrogen atom involved in this inter­action is disordered over two sites (H21 and H22) with almost equal occupancies. The virtual H⋯H distance of 0.625 (1) Å is a result of the simultaneous presence of two enol forms, O3—H⋯O4 and O3⋯H—O4, respectively, in an approximate 1:1 ratio in the crystal. The title mol­ecule is almost planar with a variation of the dihedral angles between phenyl rings and the keto–enol plane between 5.65 (4) and 11.05 (4)°.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C3–C8 and C12–C17 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H21⋯O4 0.92 (7) 1.54 (7) 2.4358 (10) 162 (4)
O4—H22⋯O3 0.94 (6) 1.55 (6) 2.4358 (10) 156 (3)
C16—H16⋯O3i 0.956 (14) 2.417 (14) 3.0837 (12) 126.6 (11)
C5—H5⋯Cg2ii 0.990 (14) 2.740 (15) 3.525 (13) 135.0 (8)
C14—H14⋯Cg1iii 0.990 (14) 2.758 (15) 3.968 (12) 127.2 (8)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
(a) Mol­ecular structure of 3-(3-hy­droxy-3-phenyl­prop-2-eno­yl)benzoate. Displacement ellipsoids are shown at the 50% probability level; (b) difference-density map in the plane of the hydrogen-bonded ring. This map was computed after least-squares refinement without the hydrogen atoms H21 and H22 involved in the hydrogen bond. Contours are drawn at 0.04 e Å−3 inter­vals.

3. Supra­molecular features

The enol mol­ecules are assembled in a `head-to-tail' manner by several C—H⋯π [range 2.740 (15)–2.758 (15) Å] inter­actions (Table 1[link]]) involving the phenyl H atoms and the centroids of the phenyl rings of adjacent mol­ecules as well as by ππ contacts [range 3.422 (14)–3.531 (15) Å]. The resultant stacks are grafted together by weak C—H⋯O inter­actions (Desiraju & Steiner, 2001[Desiraju, G. R. & Steiner, T. (2001). Chemistry and Biology. IUCr Monographs on Crystallography No. 9. Oxford University Press.]) between the aryl rings and the oxygen atoms of the keto–enol fragment with a C⋯O distance of 3.0837 (12) Å, forming a network structure (Table 1[link]; Figs. 2[link] and 3[link]).

[Figure 2]
Figure 2
Crystal packing of 3-(3-hy­droxy-3-phenyl­prop-2-eno­yl)benzoate.
[Figure 3]
Figure 3
Inter­molecular C—H⋯O hydrogen bonding in the crystal structure of 3-(3-hy­droxy-3-phenyl­prop-2-eno­yl)benzoate.

4. Database survey

Although there have been numerous reports on crystal structures of various symmetric and non-symmetric β-diketones in the Cambridge Structural Database (Version 5.38, February 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), only a few examples of aromatic β-diketones functionalized by COOH groups (or COOR) are well documented (Langer et al., 2006[Langer, J., Gärtner, M., Görls, H. & Walther, D. (2006). Synthesis, pp. 2697-2706.]; Ishikawa & Ugai, 2013[Ishikawa, Y. & Ugai, A. (2013). Acta Cryst. E69, o1231.]; Hui et al., 2010[Hui, Y.-Y., Shu, H.-M., Hu, H.-M., Song, J., Yao, H.-L., Yang, X.-L., Wu, Q.-R., Yang, M.-L. & Xue, G.-L. (2010). Inorg. Chim. Acta, 363, 3238-3243.]). In their mol­ecular structures, the intra­molecular resonance-assisted hydrogen bonds exhibit quite short O⋯O distances (2.39–2.55 Å; Bertolasi et al., 1991[Bertolasi, V., Gilli, P., Ferretti, V. & Gilli, G. (1991). J. Am. Chem. Soc. 113, 4917-4925.]). The hydrogen atom located between these O atoms is either ordered or disordered by symmetry as in di­benzoyl­methane and other symmetrical β-diketones (see, for example: Thomas et al., 2009[Thomas, L. H., Florence, A. J. & Wilson, C. C. (2009). New J. Chem. 33, 2486-2490.]; Andrews et al., 2014[Andrews, P. C., Hennersdorf, F., Junk, P. C. & Thielemann, D. T. (2014). Eur. J. Inorg. Chem. pp. 2849-2854.]) or with unequal occupancies in the vast majority of non-symmetric enols (see, for instance: Aromí et al., 2002[Aromí, G., Gamez, P., Roubeau, O., Carrero-Berzal, P., Kooijman, J., Spek, A. L., Driessen, W. L. & Reedijk, J. (2002). Eur. J. Inorg. Chem. pp. 1046-1048.], Soldatov et al., 2003[Soldatov, D. V., Zanina, A. S., Enright, G. D., Ratcliffe, C. I. & Ripmeester, J. A. (2003). Cryst. Growth Des. 3, 1005-1013.]). In some cases, crystals contain two different enol mol­ecules (O—H⋯O and O⋯H—O) with ordered H atoms (Mohamed et al., 2015[Mohamed, S. K., Mague, J. T., Akkurt, M., Ahmed, E. A. & Albayati, M. R. (2015). Acta Cryst. E71, o917-o918.]; Zheng et al., 2009[Zheng, C., Wang, D. & Fan, L. (2009). Acta Cryst. E65, o160-o161.]; Bertolasi et al., 1991[Bertolasi, V., Gilli, P., Ferretti, V. & Gilli, G. (1991). J. Am. Chem. Soc. 113, 4917-4925.]).

5. Synthesis and crystallization

There are some synthetic difficulties encountered in preparation of carboxyl­ated β-diketones according to the common Claisen condensation. Fortunately, the desired compounds can be obtained under mild conditions via an MgBr2·Et2O-assisted acyl­ation of ketones by benzotriazole amides of the corresponding diesters (Lim et al., 2007[Lim, D., Fang, F., Zhou, G. & Coltart, D. M. (2007). Org. Lett. 9, 4139-4142.]). The title compound was prepared as follows:

To a suspension of MgBr2·Et2O (0.73 g, 2.8 mmol) in dry CH2Cl2 (16 ml), aceto­phenone (0.35 ml, 3.0 mmol) was added and the mixture was sonicated for a minute. N,N-Diiso­propyl­ethyl­amine (0.52 ml, 3.0 mmol) was added to the mixture and it was sonicated for a minute. The resulted suspension was added quickly to a solution of the methyl ester of isophtalic acid benzotriazole amide (1.15 g, 4.0 mmol) in dry CH2Cl2 (16 ml) and the mixture was stirred at 293 K for 34 h. The reaction mixture was treated by a 2 M HCl solution (40 ml) and stirred vigorously for 1 h. The organic layer was separated and the aqueous layer extracted with CH2Cl2 (3 × 20 ml). The combined organic extracts were washed with water (1 × 20 ml) and brine (1 × 20 ml) and filtrated through paper followed by evaporation of the solvent. The resulting oil was crystallized from CH3OH solution at 255 K to give a light-yellow powder, which was purified by column chromatography (SiO2, CHCl3/hexane 1/3 v/v) and dried in vacuo. Yield 457 mg (54%). Single crystals suitable for X-ray analysis were grown by slow evaporation of the solvent from a solution of the substance in chloro­form.

Analysis: calculated for C17H14O4: C, 72.33; H, 5.00. Found: C, 72.28; H, 5.04.

1H NMR (CDCl3, ppm, 400 MHz): δ 3.99 (s, 3H, CH3), 6.92 (s, 1H, C–H), 7.51 (t, J = 7.5 Hz, 2H, Ar–H), 7.57–7.62 (m, 2H, Ar–H), 8.02 (d, J = 7.4 Hz, 2H, Ar–H), 8.22 (t, J = 7.8 Hz, 2H, Ar–H), 8.63 (s, 1H, Ar–H). See supplementary Fig. S1.

13C NMR (CDCl3, ppm, 100 MHz): δ 51.97, 92.81, 126.85, 127.78, 128.29, 128.50, 130.29, 130.96, 132.27, 132.74, 134.82, 135.45, 165.88, 183.99, 185.71. See supplementary Fig. S2.

UV–Vis (CH2Cl2): λmax = 344 nm (max = 32000 cm−1 M−1). See supplementary Fig. S3.

Redox potentials (Ar-saturated CH3CN with 0.01 M (n-Bu4N)ClO4 at scan rate of 25 mV s−1, ferrocene as external standard): Eox1 = 1.15, Eox2 = 1.53 V vs standard hydrogen electrode. See supplementary Fig. S4.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All hydrogen atoms were located from a difference-density map and refined freely. The disordered hydrogen atoms H21 and H22 were clearly discernible from a difference-density map (Fig. 1[link]b). Their occupancies refined to a ratio of 0.44 (7):0.56 (7) and with Uiso(H) = 1.5Ueq(O).

Table 2
Experimental details

Crystal data
Chemical formula C17H14O4
Mr 282.28
Crystal system, space group Monoclinic, P21/n
Temperature (K) 150
a, b, c (Å) 7.8085 (10), 10.5171 (14), 17.124 (2)
β (°) 102.711 (2)
V3) 1371.8 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.40 × 0.40 × 0.40
 
Data collection
Diffractometer Bruker SMART APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
No. of measured, independent and observed [I > 2σ(I)] reflections 16222, 4006, 3488
Rint 0.019
(sin θ/λ)max−1) 0.703
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.114, 1.03
No. of reflections 4006
No. of parameters 249
H-atom treatment Only H-atom coordinates refined
Δρmax, Δρmin (e Å−3) 0.37, −0.22
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

Methyl 3-(3-hydroxy-3-phenylprop-2-enoyl)benzoate top
Crystal data top
C17H14O4F(000) = 592
Mr = 282.28Dx = 1.367 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.8085 (10) ÅCell parameters from 7383 reflections
b = 10.5171 (14) Åθ = 2.3–30.6°
c = 17.124 (2) ŵ = 0.10 mm1
β = 102.711 (2)°T = 150 K
V = 1371.8 (3) Å3Block, colorless
Z = 40.40 × 0.40 × 0.40 mm
Data collection top
Bruker SMART APEXII
diffractometer
3488 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.019
ω scansθmax = 30.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1010
k = 1414
16222 measured reflectionsl = 2423
4006 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Only H-atom coordinates refined
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.0663P)2 + 0.2977P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
4006 reflectionsΔρmax = 0.37 e Å3
249 parametersΔρmin = 0.22 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.02289 (10)0.46985 (7)0.30296 (4)0.02697 (17)
O20.12474 (11)0.26937 (7)0.28859 (4)0.03277 (19)
O30.38132 (11)0.60581 (7)0.53783 (4)0.02964 (17)
H210.453 (8)0.656 (5)0.576 (4)0.044*0.44 (7)
O40.57483 (11)0.70032 (7)0.65449 (4)0.02985 (18)
H220.514 (6)0.679 (3)0.602 (3)0.045*0.56 (7)
C10.10630 (15)0.49402 (11)0.22003 (6)0.0300 (2)
C20.04506 (12)0.35314 (9)0.32993 (5)0.02290 (19)
C30.03831 (11)0.33830 (9)0.41682 (5)0.02148 (18)
C40.00756 (13)0.23323 (10)0.45741 (6)0.0255 (2)
C50.06741 (13)0.21642 (10)0.53842 (6)0.0272 (2)
C60.18868 (12)0.30374 (9)0.57898 (6)0.02360 (19)
C70.23487 (11)0.40975 (8)0.53865 (5)0.01984 (17)
C80.15825 (12)0.42696 (9)0.45750 (5)0.02100 (18)
C90.35890 (12)0.50819 (8)0.57990 (5)0.02039 (18)
C100.44676 (12)0.49939 (8)0.66080 (5)0.02051 (18)
C110.55464 (12)0.59996 (8)0.69575 (5)0.02053 (18)
C120.65178 (12)0.60014 (8)0.78042 (5)0.01982 (17)
C130.66742 (13)0.49140 (9)0.82826 (6)0.02281 (19)
C140.76486 (13)0.49531 (10)0.90678 (6)0.0260 (2)
C150.84439 (13)0.60801 (10)0.93823 (6)0.0264 (2)
C160.82857 (13)0.71666 (10)0.89115 (6)0.0266 (2)
C170.73336 (13)0.71309 (9)0.81247 (6)0.02385 (19)
H10.232 (2)0.4767 (14)0.2115 (9)0.039 (4)*
H20.085 (2)0.5860 (16)0.2101 (9)0.049 (4)*
H30.0581 (19)0.4386 (14)0.1844 (8)0.036 (3)*
H40.0921 (19)0.1711 (14)0.4287 (8)0.036 (3)*
H50.0327 (18)0.1435 (14)0.5681 (8)0.036 (3)*
H60.2389 (17)0.2880 (12)0.6355 (8)0.028 (3)*
H80.1889 (17)0.4998 (13)0.4304 (8)0.030 (3)*
H100.4322 (18)0.4265 (13)0.6917 (8)0.028 (3)*
H130.6130 (18)0.4132 (13)0.8092 (8)0.031 (3)*
H140.7750 (18)0.4169 (13)0.9395 (8)0.034 (3)*
H150.9105 (19)0.6135 (14)0.9943 (9)0.038 (4)*
H160.8836 (18)0.7951 (13)0.9107 (8)0.034 (3)*
H170.7219 (18)0.7909 (13)0.7788 (8)0.035 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0310 (4)0.0272 (4)0.0201 (3)0.0005 (3)0.0001 (3)0.0007 (3)
O20.0381 (4)0.0291 (4)0.0263 (4)0.0026 (3)0.0033 (3)0.0062 (3)
O30.0382 (4)0.0254 (4)0.0218 (3)0.0056 (3)0.0012 (3)0.0055 (3)
O40.0421 (4)0.0227 (3)0.0224 (3)0.0083 (3)0.0019 (3)0.0034 (3)
C10.0315 (5)0.0358 (5)0.0202 (4)0.0036 (4)0.0003 (4)0.0018 (4)
C20.0208 (4)0.0251 (4)0.0221 (4)0.0024 (3)0.0032 (3)0.0035 (3)
C30.0194 (4)0.0241 (4)0.0205 (4)0.0027 (3)0.0035 (3)0.0031 (3)
C40.0227 (4)0.0266 (5)0.0265 (5)0.0031 (3)0.0039 (3)0.0033 (4)
C50.0270 (5)0.0273 (5)0.0269 (5)0.0045 (4)0.0055 (4)0.0016 (4)
C60.0236 (4)0.0259 (4)0.0207 (4)0.0000 (3)0.0037 (3)0.0010 (3)
C70.0186 (4)0.0211 (4)0.0193 (4)0.0018 (3)0.0030 (3)0.0015 (3)
C80.0206 (4)0.0222 (4)0.0197 (4)0.0018 (3)0.0033 (3)0.0010 (3)
C90.0204 (4)0.0204 (4)0.0200 (4)0.0017 (3)0.0035 (3)0.0004 (3)
C100.0234 (4)0.0192 (4)0.0182 (4)0.0011 (3)0.0029 (3)0.0000 (3)
C110.0227 (4)0.0196 (4)0.0194 (4)0.0003 (3)0.0049 (3)0.0007 (3)
C120.0209 (4)0.0198 (4)0.0188 (4)0.0013 (3)0.0044 (3)0.0025 (3)
C130.0240 (4)0.0201 (4)0.0229 (4)0.0024 (3)0.0022 (3)0.0004 (3)
C140.0256 (5)0.0274 (5)0.0234 (4)0.0011 (3)0.0018 (4)0.0027 (3)
C150.0248 (4)0.0320 (5)0.0208 (4)0.0019 (4)0.0015 (3)0.0037 (4)
C160.0283 (5)0.0259 (5)0.0250 (4)0.0056 (4)0.0044 (4)0.0074 (4)
C170.0283 (4)0.0202 (4)0.0233 (4)0.0031 (3)0.0062 (3)0.0028 (3)
Geometric parameters (Å, º) top
O1—C21.3361 (12)C7—C81.3985 (12)
O1—C11.4486 (12)C7—C91.4858 (13)
O2—C21.2127 (12)C8—H80.953 (13)
O3—C91.2881 (11)C9—C101.4072 (12)
O3—H210.92 (7)C10—C111.4017 (12)
O4—C111.2989 (11)C10—H100.952 (13)
O4—H220.94 (6)C11—C121.4811 (12)
C1—H10.980 (15)C12—C131.3963 (13)
C1—H21.003 (17)C12—C171.4015 (12)
C1—H30.977 (14)C13—C141.3922 (13)
C2—C31.4952 (12)C13—H130.950 (14)
C3—C41.3936 (14)C14—C151.3904 (14)
C3—C81.3945 (13)C14—H140.990 (14)
C4—C51.3932 (14)C15—C161.3882 (14)
C4—H40.981 (15)C15—H150.986 (15)
C5—C61.3903 (14)C16—C171.3887 (13)
C5—H50.990 (14)C16—H160.956 (14)
C6—C71.3999 (13)C17—H170.993 (14)
C6—H60.975 (13)
C2—O1—C1115.82 (8)C7—C8—H8119.3 (8)
C9—O3—H21101 (3)O3—C9—C10120.41 (8)
C11—O4—H22103 (2)O3—C9—C7116.37 (8)
O1—C1—H1109.5 (9)C10—C9—C7123.21 (8)
O1—C1—H2106.3 (9)C11—C10—C9119.19 (8)
H1—C1—H2110.7 (13)C11—C10—H10120.3 (8)
O1—C1—H3110.8 (8)C9—C10—H10120.5 (8)
H1—C1—H3108.0 (12)O4—C11—C10120.96 (8)
H2—C1—H3111.5 (12)O4—C11—C12115.73 (8)
O2—C2—O1123.67 (9)C10—C11—C12123.31 (8)
O2—C2—C3124.07 (9)C13—C12—C17119.40 (8)
O1—C2—C3112.25 (8)C13—C12—C11122.22 (8)
C4—C3—C8119.94 (8)C17—C12—C11118.37 (8)
C4—C3—C2118.40 (8)C14—C13—C12120.07 (8)
C8—C3—C2121.65 (8)C14—C13—H13117.7 (8)
C5—C4—C3119.97 (9)C12—C13—H13122.2 (8)
C5—C4—H4120.3 (8)C15—C14—C13120.12 (9)
C3—C4—H4119.8 (8)C15—C14—H14121.2 (8)
C6—C5—C4120.29 (9)C13—C14—H14118.7 (8)
C6—C5—H5119.2 (8)C16—C15—C14120.11 (9)
C4—C5—H5120.4 (8)C16—C15—H15118.5 (8)
C5—C6—C7120.05 (9)C14—C15—H15121.4 (8)
C5—C6—H6117.7 (8)C15—C16—C17120.09 (9)
C7—C6—H6122.2 (8)C15—C16—H16122.1 (8)
C8—C7—C6119.53 (8)C17—C16—H16117.8 (8)
C8—C7—C9118.28 (8)C16—C17—C12120.20 (9)
C6—C7—C9122.15 (8)C16—C17—H17120.1 (8)
C3—C8—C7120.22 (9)C12—C17—H17119.7 (8)
C3—C8—H8120.5 (8)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C3–C8 and C12–C17 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O3—H21···O40.92 (7)1.54 (7)2.4358 (10)162 (4)
O4—H22···O30.94 (6)1.55 (6)2.4358 (10)156 (3)
C16—H16···O3i0.956 (14)2.417 (14)3.0837 (12)126.6 (11)
C5—H5···Cg2ii0.990 (14)2.740 (15)3.525 (13)135.0 (8)
C14—H14···Cg1iii0.990 (14)2.758 (15)3.968 (12)127.2 (8)
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x+1/2, y1/2, z+3/2; (iii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

X-ray diffraction studies were performed at the Centre of Shared Equipment of IGIC RAS.

Funding information

Funding for this research was provided by: Russian Science Foundation (grant No. 17-73-10084).

References

First citationAndrews, P. C., Hennersdorf, F., Junk, P. C. & Thielemann, D. T. (2014). Eur. J. Inorg. Chem. pp. 2849–2854.  CrossRef Google Scholar
First citationAromí, G., Gamez, P., Roubeau, O., Carrero-Berzal, P., Kooijman, J., Spek, A. L., Driessen, W. L. & Reedijk, J. (2002). Eur. J. Inorg. Chem. pp. 1046–1048.  Google Scholar
First citationBaranoff, E., Yum, J.-H., Jung, I., Vulcano, R., Grätzel, M. & Nazeeruddin, M. K. (2010). Chem. Asian J. 5, 496–499.  CrossRef Google Scholar
First citationBertolasi, V., Gilli, P., Ferretti, V. & Gilli, G. (1991). J. Am. Chem. Soc. 113, 4917–4925.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBünzli, J. G. (2015). Coord. Chem. Rev. 293–294, 19–47.  Google Scholar
First citationDesiraju, G. R. & Steiner, T. (2001). Chemistry and Biology. IUCr Monographs on Crystallography No. 9. Oxford University Press.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEliseeva, S. V. & Bünzli, J. G. (2010). Chem. Soc. Rev. 39, 189–227.  CrossRef CAS PubMed Google Scholar
First citationGilli, P., Bertolasi, V., Pretto, L., Ferretti, V. & Gilli, G. (2004). J. Am. Chem. Soc. 126, 3845–3855.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHui, Y.-Y., Shu, H.-M., Hu, H.-M., Song, J., Yao, H.-L., Yang, X.-L., Wu, Q.-R., Yang, M.-L. & Xue, G.-L. (2010). Inorg. Chim. Acta, 363, 3238–3243.  CrossRef Google Scholar
First citationIshikawa, Y. & Ugai, A. (2013). Acta Cryst. E69, o1231.  CrossRef IUCr Journals Google Scholar
First citationLanger, J., Gärtner, M., Görls, H. & Walther, D. (2006). Synthesis, pp. 2697–2706.  Google Scholar
First citationLim, D., Fang, F., Zhou, G. & Coltart, D. M. (2007). Org. Lett. 9, 4139–4142.  CrossRef Google Scholar
First citationMohamed, S. K., Mague, J. T., Akkurt, M., Ahmed, E. A. & Albayati, M. R. (2015). Acta Cryst. E71, o917–o918.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSoldatov, D. V., Zanina, A. S., Enright, G. D., Ratcliffe, C. I. & Ripmeester, J. A. (2003). Cryst. Growth Des. 3, 1005–1013.  Web of Science CSD CrossRef CAS Google Scholar
First citationThomas, L. H., Florence, A. J. & Wilson, C. C. (2009). New J. Chem. 33, 2486–2490.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZheng, C., Wang, D. & Fan, L. (2009). Acta Cryst. E65, o160–o161.  CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds