research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of a heterometallic coordination polymer: catena-poly[[[tetra­aqua­cobalt(II)]-μ-pyridine-2,6-di­carboxyl­ato-calcium(II)-μ-pyridine-2,6-di­carboxyl­ato] dihydrate]

CROSSMARK_Color_square_no_text.svg

aKey Laboratory of Catalysis and Materials Sciences of the State Ethnic Affairs Commission & Ministry of Education, College of Chemistry and Material Science, South-Central University for Nationalities, Wuhan 430074, People's Republic of China
*Correspondence e-mail: zhangbg68@yahoo.com

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 2 April 2018; accepted 10 May 2018; online 18 May 2018)

In the crystal of the title polymeric complex, {[CoCa(C7H3NO4)2(H2O)4]·2H2O}n (1), the CoII ion is N,O,O′-chelated by two pyridine-2,6-di­carboxyl­ate anions in a distorted N2O4 octa­hedral geometry, and two carboxyl­ate O atoms of pyridine-2,6-di­carboxyl­ate anions bridge tetra­aqua­calcium(II) units to form polymeric chains propagating along the b-axis direction. In the crystal, O—H⋯O and C—H⋯O hydrogen bonds, and offset ππ stacking inter­actions [inter­centroid distances = 3.551 (1) and 3.746 (1) Å] involving inversion-related pyridine rings link the polymeric chains and lattice water mol­ecules to form a supra­molecular three-dimensional framework.

1. Chemical context

The controllable synthesis of heterometallic polymers, with their fascinating structures and outstanding properties, is still a challenge in crystal engineering (Cai et al., 2012[Cai, S. L., Zheng, S. R., Wen, Z. Z., Fan, J. & Zhang, W. G. (2012). Cryst. Growth Des. 12, 5737-5745.]; Ma et al., 2014[Ma, Y. Z., Zhang, L. M., Peng, G., Zhao, C. J., Dong, R. T., Yang, C. F. & Deng, H. (2014). CrystEngComm, 16, 667-683.]; Sun et al., 2014[Sun, Q. Z., Yin, Y. B., Chai, L. Y., Liu, H., Hao, P. F., Yan, X. P. & Guo, Y. Q. (2014). J. Mol. Struct. 1070, 75-79.]; Ward, 2007[Ward, M. D. (2007). Coord. Chem. Rev. 251, 1663-1677.]). The influencing factors include the coordination geometry of the metal centre, reaction of solvent, temperature, metal-to-ligand ratio, pH value, the nature of ligand, and so on (Chen et al., 2012[Chen, M., Lu, Y., Fan, J., Lv, G. C., Zhao, Y., Zhang, Y. & Sun, W. (2012). CrystEngComm, 14, 2015-2023.]; Guo & Cao, 2009[Guo, Z. G., Cao, R., Wang, X., Li, H., Yuan, W., Wang, G., Wu, H. & Li, J. (2009). J. Am. Chem. Soc. 131, 6894-6895.]; Ni et al., 2009[Ni, L.-B., Zhang, R.-H., Liu, Q.-X., Xia, W.-S., Wang, H. & Zhou, Z.-H. (2009). J. Solid State Chem. 182, 2698-2706.]; Yamada et al., 2011[Yamada, T., Maruta, G. & Takeda, S. (2011). Chem. Commun. 47, 653-655.]). According to our earlier study (Sun et al., 2016[Sun, Q. Z., Yin, Y. B., Pan, J. Q., Chai, L. Y., Su, N., Liu, H., Zhao, Y. L. & Liu, X. T. (2016). J. Mol. Struct. 1106, 64-69.]), heterometallic complexes containing both alkaline earth metals and d-block transition metals are available because the former are structurally malleable and they have a strong affinity to O atoms rather than N atoms (Cao et al., 2015[Cao, K.-L., Xia, Y., Wang, G.-X. & Feng, Y.-L. (2015). Inorg. Chem. Commun. 53, 42-45.]; Yu et al., 2013[Yu, K., Wan, B., Yu, Y., Wang, L., Su, Z.-H., Wang, C.-M., Wang, C.-X. & Zhou, B.-B. (2013). Inorg. Chem. 52, 485-498.]), and the latter have a strong tendency to coordinate to both N- and O-atom donors (Hu et al., 2013[Hu, X.-L., Sun, C.-Y., Qin, C., Wang, X.-L., Wang, H.-N., Zhou, E.-L., Li, W.-E. & Su, Z.-M. (2013). Chem. Commun. 49, 3564-3566.]; Zhang et al., 2013[Zhang, D.-J., Zhang, R.-C., Wang, J.-J., Qiao, W.-Z. & Jing, X.-M. (2013). Inorg. Chem. Commun. 32, 47-50.]). Meanwhile, pyridinedi­carb­oxy­lic acid (H2pdc) is widely used in the construction of various metal–organic frameworks for two main reasons. Firstly, the O and N atoms in these ligands made them easy to chelate or bridge metal ions. Secondly, they can be completely or partially deprotonated to generate Hpdc or pyc2−, displaying a variety of coordination modes. As a part of our ongoing studies on heterometallic frameworks, we describe here the synthesis and crystal structure of the title complex,1

2. Structural commentary

The asymmetric unit of 1 contains one cobalt centre, one calcium centre, two pdc2− anions, four coordinated water mol­ecules and two lattice water mol­ecules (Fig. 1[link]). The Co—O(N) bond lengths are in the range 2.0172 (13)–2.2018 (12) Å and the Ca—O bond lengths are in the range 2.3358 (12)–2.3727 (12) Å (Table 1[link]). All the data are comparable to those reported for other related CoII–pdc and CaII–pdc complexes (Jung et al., 2008[Jung, E. J., Lee, U. & Koo, B. K. (2008). Inorg. Chim. Acta, 361, 2962-2966.]; Shi et al., 2012[Shi, F., Deng, J. & Dai, H. (2012). Acta Cryst. E68, m685-m686.]). Each CoII centre is chelated by four O and two N atoms from two pdc2− anions, forming a distorted octa­hedral geometry. The mean deviation of the equatorial plane constructed by atoms N1, N2, O5 and O7 is 0.02 Å. Each CaII centre is six-coordinated by two carboxyl­ate O atoms from two pdc2− anions and four water mol­ecules, displaying a distorted octa­hedron (Fig. 1[link]). The mean deviation of the equatorial plane constructed by atoms O4, OW1, OW3 and OW4 is 0.08 Å. The CoN2O4 and CaO6 polyhedra are linked by pdc2− anions to form polymeric chains along the b-axis direction (Fig. 2[link]).

[Scheme 1]

Table 1
Selected bond lengths (Å)

Co1—N1 2.0172 (13) Ca1—O4i 2.3358 (12)
Co1—N2 2.0199 (13) Ca1—OW4 2.3449 (13)
Co1—O5 2.1466 (12) Ca1—O8 2.3458 (12)
Co1—O3 2.1469 (13) Ca1—OW1 2.3476 (13)
Co1—O1 2.1643 (12) Ca1—OW3 2.3719 (13)
Co1—O7 2.2018 (12) Ca1—OW2 2.3727 (12)
Symmetry code: (i) x, y-1, z.
[Figure 1]
Figure 1
The coordination mode and atom-numbering scheme for the asymmetric unit of 1. Displacement ellipsoids are drawn at the 50% probability level [symmetry codes: (A) x, y − 1, z; (B) x, y + 1, z].
[Figure 2]
Figure 2
The chain formed by pdc2− anions, and CoII and CaII centres, propagating along the b-axis direction.

3. Supra­molcular features

In the crystal of 1, the polymeric chains are linked by O—H⋯O and C—H⋯O hydrogen bonds involving the water mol­ecules and carboxyl groups, so forming a supra­molecular three-dimensional framework (Table 2[link] and Fig. 3[link]). Within the framework, inversion-related pyridine rings are linked by offset ππ inter­actions reinforcing the framework: Cg5⋯Cg5vii = 3.746 (1) Å, inter­planar distance = 3.309 (1) Å, slippage = 1.755 Å; Cg6⋯Cg6viii = 3.551 (1) Å, inter­planar distance = 3.279 (1) Å, slippage = 1.363 Å; Cg5 and Cg6 are the centroids of pyridine rings N1/C1–C5 and N2/C8–C12, respectively; symmetry codes: (vii) −x + 1, −y + 1, −z; (viii) −x + 1, −y, −z + 1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
OW1—HW1A⋯O2ii 0.84 (1) 1.93 (1) 2.769 (2) 171 (3)
OW1—HW1B⋯O2iii 0.85 (1) 2.06 (1) 2.870 (2) 161 (3)
OW2—HW2A⋯OW6 0.85 (1) 2.00 (1) 2.846 (2) 175 (3)
OW2—HW2B⋯O5iv 0.85 (1) 1.89 (1) 2.730 (2) 173 (3)
OW3—HW3A⋯O1ii 0.84 (1) 1.99 (1) 2.817 (2) 172 (3)
OW3—HW3B⋯O6v 0.84 (1) 2.12 (1) 2.923 (2) 162 (3)
OW4—HW4A⋯O6iv 0.84 (1) 2.02 (1) 2.851 (2) 172 (3)
OW4—HW4B⋯OW5 0.84 (1) 1.90 (1) 2.741 (2) 173 (3)
OW5—HW5A⋯O8vi 0.85 (1) 2.10 (1) 2.946 (2) 174 (3)
OW5—HW5B⋯O3v 0.85 (1) 2.08 (2) 2.870 (2) 153 (3)
OW6—HW6A⋯O7i 0.84 (1) 2.13 (1) 2.945 (2) 163 (3)
OW6—HW6B⋯O2iv 0.84 (1) 2.34 (1) 3.140 (2) 160 (3)
C2—H2A⋯O7iii 0.93 2.56 3.448 (2) 160
C10—H10A⋯O3v 0.93 2.55 3.246 (2) 132
Symmetry codes: (i) x, y-1, z; (ii) x+1, y, z; (iii) -x+1, -y, -z; (iv) x+1, y-1, z; (v) -x+1, -y, -z+1; (vi) -x+1, -y-1, -z+1.
[Figure 3]
Figure 3
A view along the c axis of the crystal packing of 1. The hydrogen bonds are shown as dashed lines (see Table 2[link]). For clarity, only the H atoms involved in these inter­actions have been included.

4. Database survey

A search of the Cambridge Structural Database (Version 5.39, last update February 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for cobalt complexes of the ligand pyridine-2,6-di­carb­oxy­lic acid gave 180 hits, of which 58 are polymeric complexes. They include a number of alkali metal heterometallic coordination polymes, four involving K+ and seven Na+, but no alkali earth metal heterometallic coordination polymers. Hence, the title compound 1 is the first reported heterometallic coordination polymer involving the ligand pyridine-2,6-di­carb­oxy­lic acid, CoII and an alkali earth metal (CaII).

5. Synthesis and crystallization

A mixture of H2pdc (167 mg, 1 mmol), Co(CH3COO)2·4H2O (125 mg, 0.5 mmol) and CaCl2 (110 mg, 1 mmol) in 15 ml of distilled H2O was stirred for 10 min in air. 0.5 M NaOH was added dropwise and the mixture was turned into a Parr Teflon-lined stainless steel vessel and heated at 423 K for 3 d. Blue [purple in CIF?] block-shaped crystals of 1 were obtained in a yield of 70% (based on pyridine-2,6-di­carb­oxy­lic acid).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The H atoms of the water mol­ecules were located from difference-Fourier maps and refined with distance restraints: O—H = 0.85 (1) Å, H⋯H = 1.34 (1) Å with Uiso(H) = 1.5Ueq(O). C-bound H atoms atoms were included in calculated positions and refined as riding: C—H = 0.93 Å with Uiso(H) = 1.2Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula [CaCo(C7H3NO4)2(H2O)4]·2H2O
Mr 537.31
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 8.6299 (8), 8.7781 (8), 14.0726 (12)
α, β, γ (°) 80.683 (1), 73.602 (1), 89.568 (1)
V3) 1008.38 (16)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.18
Crystal size (mm) 0.35 × 0.33 × 0.33
 
Data collection
Diffractometer Bruker SMART CCD
No. of measured, independent and observed [I > 2σ(I)] reflections 7052, 3537, 3342
Rint 0.012
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.064, 1.01
No. of reflections 3537
No. of parameters 326
No. of restraints 18
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.44, −0.49
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wiscosin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL97 (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

catena-Poly[[[tetraaquacobalt(II)]-µ-pyridine-2,6-dicarboxylato-\ calcium(II)-µ-pyridine-2,6-dicarboxylato] dihydrate] top
Crystal data top
[CaCo(C7H3NO4)2(H2O)4]·2H2OZ = 2
Mr = 537.31F(000) = 550
Triclinic, P1Dx = 1.770 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.6299 (8) ÅCell parameters from 5842 reflections
b = 8.7781 (8) Åθ = 2.4–27.7°
c = 14.0726 (12) ŵ = 1.18 mm1
α = 80.683 (1)°T = 296 K
β = 73.602 (1)°Block, purple
γ = 89.568 (1)°0.35 × 0.33 × 0.33 mm
V = 1008.38 (16) Å3
Data collection top
Bruker SMART CCD
diffractometer
3342 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.012
Graphite monochromatorθmax = 25.0°, θmin = 2.6°
φ and ω scansh = 1010
7052 measured reflectionsk = 109
3537 independent reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.023H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.064 w = 1/[σ2(Fo2) + (0.0385P)2 + 0.4728P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
3537 reflectionsΔρmax = 0.44 e Å3
326 parametersΔρmin = 0.49 e Å3
18 restraintsExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0300 (14)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.39269 (3)0.14153 (3)0.252249 (15)0.02155 (10)
Ca10.86691 (4)0.38042 (3)0.24956 (2)0.01922 (10)
O10.24638 (15)0.02836 (14)0.18004 (9)0.0291 (3)
O20.20443 (16)0.02565 (16)0.03080 (10)0.0364 (3)
O30.55173 (16)0.32701 (14)0.25445 (9)0.0301 (3)
O40.73160 (16)0.50764 (15)0.15426 (11)0.0351 (3)
O50.19108 (15)0.25552 (15)0.33569 (9)0.0308 (3)
O60.02552 (14)0.25623 (14)0.48985 (9)0.0297 (3)
O70.57745 (15)0.03428 (14)0.24055 (9)0.0295 (3)
O80.63798 (15)0.25231 (14)0.32698 (10)0.0325 (3)
N10.47499 (16)0.24083 (15)0.10671 (10)0.0192 (3)
N20.33969 (16)0.01759 (15)0.39227 (10)0.0192 (3)
C10.42012 (19)0.18591 (18)0.03843 (12)0.0200 (3)
C20.4907 (2)0.23423 (19)0.06355 (12)0.0247 (4)
H2A0.45150.19750.11110.030*
C30.6221 (2)0.3394 (2)0.09255 (13)0.0280 (4)
H3A0.67390.37130.16040.034*
C40.6763 (2)0.3971 (2)0.02081 (13)0.0263 (4)
H4A0.76310.46850.03970.032*
C50.59765 (19)0.34531 (18)0.07952 (12)0.0209 (3)
C60.27915 (19)0.06991 (19)0.08568 (12)0.0226 (3)
C70.6325 (2)0.39819 (19)0.16942 (13)0.0237 (4)
C80.22421 (19)0.06489 (18)0.46591 (12)0.0194 (3)
C90.1926 (2)0.0107 (2)0.56454 (12)0.0236 (4)
H9A0.11310.02270.61590.028*
C100.2824 (2)0.13715 (19)0.58450 (12)0.0251 (4)
H10A0.26280.19010.64980.030*
C110.4018 (2)0.18510 (19)0.50709 (12)0.0232 (3)
H11A0.46270.26980.51970.028*
C120.42759 (19)0.10363 (18)0.41099 (12)0.0200 (3)
C130.13795 (19)0.20400 (19)0.42944 (12)0.0216 (3)
C140.55835 (19)0.13350 (19)0.31863 (12)0.0222 (3)
OW10.95691 (18)0.19898 (17)0.10151 (11)0.0404 (3)
OW21.02789 (16)0.59450 (15)0.21033 (10)0.0319 (3)
OW31.06339 (17)0.23885 (16)0.29216 (10)0.0354 (3)
OW40.84002 (17)0.51094 (15)0.41287 (9)0.0325 (3)
OW50.6149 (3)0.4991 (2)0.59299 (15)0.0782 (7)
OW60.8857 (2)0.8525 (2)0.16230 (15)0.0604 (5)
HW1A1.039 (2)0.139 (3)0.080 (2)0.091*
HW4A0.902 (3)0.577 (3)0.430 (2)0.091*
HW3A1.126 (3)0.163 (2)0.2603 (17)0.091*
HW4B0.771 (3)0.499 (3)0.4666 (13)0.091*
HW3B1.060 (4)0.247 (3)0.3528 (8)0.091*
HW1B0.898 (3)0.168 (3)0.0638 (19)0.091*
HW2A0.985 (4)0.668 (2)0.192 (2)0.091*
HW2B1.072 (3)0.639 (3)0.2531 (18)0.091*
HW6A0.7978 (18)0.902 (3)0.172 (2)0.091*
HW5B0.596 (4)0.447 (3)0.6408 (17)0.091*
HW6B0.958 (2)0.907 (3)0.134 (2)0.091*
HW5A0.539 (3)0.569 (3)0.613 (2)0.091*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.02474 (14)0.02310 (14)0.01634 (14)0.00250 (9)0.00629 (9)0.00120 (9)
Ca10.01825 (18)0.01797 (18)0.02199 (19)0.00136 (13)0.00637 (13)0.00374 (13)
O10.0303 (7)0.0314 (7)0.0239 (6)0.0101 (5)0.0077 (5)0.0011 (5)
O20.0394 (7)0.0394 (8)0.0349 (7)0.0162 (6)0.0220 (6)0.0022 (6)
O30.0390 (7)0.0304 (7)0.0253 (7)0.0001 (6)0.0148 (6)0.0069 (5)
O40.0356 (7)0.0294 (7)0.0482 (8)0.0055 (6)0.0228 (6)0.0095 (6)
O50.0333 (7)0.0340 (7)0.0240 (6)0.0140 (6)0.0087 (5)0.0014 (5)
O60.0273 (6)0.0335 (7)0.0293 (7)0.0119 (5)0.0074 (5)0.0094 (5)
O70.0306 (7)0.0314 (7)0.0226 (6)0.0071 (5)0.0027 (5)0.0022 (5)
O80.0291 (7)0.0267 (7)0.0385 (7)0.0121 (5)0.0044 (6)0.0060 (6)
N10.0195 (7)0.0200 (7)0.0191 (7)0.0001 (5)0.0077 (5)0.0025 (5)
N20.0193 (7)0.0200 (7)0.0193 (7)0.0026 (5)0.0068 (5)0.0038 (5)
C10.0203 (8)0.0204 (8)0.0210 (8)0.0017 (6)0.0089 (6)0.0035 (6)
C20.0296 (9)0.0265 (9)0.0205 (8)0.0037 (7)0.0098 (7)0.0059 (7)
C30.0274 (9)0.0317 (10)0.0199 (8)0.0013 (7)0.0005 (7)0.0008 (7)
C40.0204 (8)0.0240 (9)0.0314 (9)0.0025 (7)0.0042 (7)0.0014 (7)
C50.0181 (8)0.0191 (8)0.0265 (8)0.0016 (6)0.0086 (6)0.0034 (6)
C60.0212 (8)0.0206 (8)0.0276 (9)0.0003 (7)0.0096 (7)0.0033 (7)
C70.0227 (8)0.0212 (8)0.0328 (10)0.0056 (7)0.0152 (7)0.0079 (7)
C80.0178 (7)0.0214 (8)0.0206 (8)0.0005 (6)0.0067 (6)0.0059 (6)
C90.0230 (8)0.0276 (9)0.0198 (8)0.0004 (7)0.0046 (7)0.0051 (7)
C100.0296 (9)0.0252 (9)0.0199 (8)0.0034 (7)0.0086 (7)0.0010 (7)
C110.0256 (8)0.0186 (8)0.0268 (9)0.0016 (7)0.0109 (7)0.0012 (7)
C120.0195 (8)0.0180 (8)0.0239 (8)0.0007 (6)0.0076 (6)0.0050 (6)
C130.0206 (8)0.0230 (8)0.0244 (8)0.0025 (7)0.0096 (7)0.0074 (7)
C140.0203 (8)0.0215 (8)0.0261 (9)0.0011 (7)0.0073 (7)0.0069 (7)
OW10.0403 (8)0.0436 (8)0.0358 (8)0.0165 (7)0.0177 (6)0.0116 (6)
OW20.0345 (7)0.0307 (7)0.0338 (7)0.0123 (6)0.0144 (6)0.0069 (6)
OW30.0389 (8)0.0386 (8)0.0292 (7)0.0145 (6)0.0115 (6)0.0036 (6)
OW40.0392 (8)0.0295 (7)0.0255 (7)0.0071 (6)0.0057 (6)0.0014 (5)
OW50.0881 (15)0.0622 (12)0.0629 (12)0.0295 (10)0.0275 (10)0.0355 (10)
OW60.0414 (9)0.0520 (10)0.0866 (13)0.0007 (8)0.0021 (9)0.0370 (9)
Geometric parameters (Å, º) top
Co1—N12.0172 (13)C2—H2A0.9300
Co1—N22.0199 (13)C3—C41.389 (3)
Co1—O52.1466 (12)C3—H3A0.9300
Co1—O32.1469 (13)C4—C51.384 (2)
Co1—O12.1643 (12)C4—H4A0.9300
Co1—O72.2018 (12)C5—C71.521 (2)
Ca1—O4i2.3358 (12)C8—C91.390 (2)
Ca1—OW42.3449 (13)C8—C131.519 (2)
Ca1—O82.3458 (12)C9—C101.386 (2)
Ca1—OW12.3476 (13)C9—H9A0.9300
Ca1—OW32.3719 (13)C10—C111.390 (2)
Ca1—OW22.3727 (12)C10—H10A0.9300
O1—C61.268 (2)C11—C121.382 (2)
O2—C61.243 (2)C11—H11A0.9300
O3—C71.266 (2)C12—C141.520 (2)
O4—C71.242 (2)OW1—HW1A0.844 (10)
O4—Ca1ii2.3358 (12)OW1—HW1B0.846 (10)
O5—C131.274 (2)OW2—HW2A0.849 (10)
O6—C131.236 (2)OW2—HW2B0.845 (10)
O7—C141.258 (2)OW3—HW3A0.838 (10)
O8—C141.253 (2)OW3—HW3B0.837 (10)
N1—C51.334 (2)OW4—HW4A0.840 (10)
N1—C11.338 (2)OW4—HW4B0.842 (10)
N2—C81.338 (2)OW5—HW5B0.854 (10)
N2—C121.337 (2)OW5—HW5A0.854 (10)
C1—C21.387 (2)OW6—HW6A0.843 (10)
C1—C61.517 (2)OW6—HW6B0.839 (10)
C2—C31.392 (3)
N1—Co1—N2170.56 (5)C4—C3—H3A119.8
N1—Co1—O5113.11 (5)C2—C3—H3A119.8
N2—Co1—O576.33 (5)C5—C4—C3118.16 (16)
N1—Co1—O376.31 (5)C5—C4—H4A120.9
N2—Co1—O3104.44 (5)C3—C4—H4A120.9
O5—Co1—O389.74 (5)N1—C5—C4120.99 (15)
N1—Co1—O176.52 (5)N1—C5—C7112.31 (14)
N2—Co1—O1103.75 (5)C4—C5—C7126.69 (15)
O5—Co1—O193.20 (5)O2—C6—O1125.55 (15)
O3—Co1—O1151.54 (5)O2—C6—C1118.66 (15)
N1—Co1—O794.39 (5)O1—C6—C1115.77 (14)
N2—Co1—O776.18 (5)O4—C7—O3125.91 (16)
O5—Co1—O7152.44 (5)O4—C7—C5118.68 (16)
O3—Co1—O795.18 (5)O3—C7—C5115.38 (14)
O1—Co1—O795.16 (5)N2—C8—C9120.75 (15)
O4i—Ca1—OW4116.69 (5)N2—C8—C13113.26 (13)
O4i—Ca1—O892.96 (5)C9—C8—C13126.00 (14)
OW4—Ca1—O884.24 (5)C10—C9—C8118.39 (15)
O4i—Ca1—OW182.87 (5)C10—C9—H9A120.8
OW4—Ca1—OW1160.32 (5)C8—C9—H9A120.8
O8—Ca1—OW197.60 (5)C9—C10—C11120.17 (15)
O4i—Ca1—OW3160.85 (5)C9—C10—H10A119.9
OW4—Ca1—OW380.10 (5)C11—C10—H10A119.9
O8—Ca1—OW398.14 (5)C12—C11—C10118.30 (15)
OW1—Ca1—OW380.24 (5)C12—C11—H11A120.8
O4i—Ca1—OW278.31 (5)C10—C11—H11A120.8
OW4—Ca1—OW280.75 (5)N2—C12—C11121.15 (15)
O8—Ca1—OW2156.81 (5)N2—C12—C14113.20 (14)
OW1—Ca1—OW2102.49 (5)C11—C12—C14125.58 (14)
OW3—Ca1—OW296.57 (5)O6—C13—O5125.96 (15)
C6—O1—Co1115.23 (10)O6—C13—C8119.55 (15)
C7—O3—Co1115.79 (10)O5—C13—C8114.48 (14)
C7—O4—Ca1ii136.36 (12)O8—C14—O7126.01 (15)
C13—O5—Co1116.59 (10)O8—C14—C12117.73 (15)
C14—O7—Co1114.36 (10)O7—C14—C12116.25 (14)
C14—O8—Ca1144.69 (12)Ca1—OW1—HW1A131.0 (19)
C5—N1—C1121.46 (14)Ca1—OW1—HW1B123.2 (19)
C5—N1—Co1118.88 (11)HW1A—OW1—HW1B104.7 (15)
C1—N1—Co1119.07 (11)Ca1—OW2—HW2A117 (2)
C8—N2—C12121.24 (14)Ca1—OW2—HW2B118 (2)
C8—N2—Co1119.12 (11)HW2A—OW2—HW2B104.6 (15)
C12—N2—Co1119.49 (11)Ca1—OW3—HW3A132.0 (19)
N1—C1—C2120.97 (15)Ca1—OW3—HW3B118.4 (19)
N1—C1—C6112.71 (14)HW3A—OW3—HW3B108.0 (15)
C2—C1—C6126.33 (15)Ca1—OW4—HW4A126.5 (19)
C1—C2—C3117.92 (15)Ca1—OW4—HW4B128.2 (18)
C1—C2—H2A121.0HW4A—OW4—HW4B105.2 (15)
C3—C2—H2A121.0HW5B—OW5—HW5A103.9 (15)
C4—C3—C2120.46 (16)HW6A—OW6—HW6B105.7 (15)
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW1—HW1A···O2iii0.84 (1)1.93 (1)2.769 (2)171 (3)
OW1—HW1B···O2iv0.85 (1)2.06 (1)2.870 (2)161 (3)
OW2—HW2A···OW60.85 (1)2.00 (1)2.846 (2)175 (3)
OW2—HW2B···O5v0.85 (1)1.89 (1)2.730 (2)173 (3)
OW3—HW3A···O1iii0.84 (1)1.99 (1)2.817 (2)172 (3)
OW3—HW3B···O6vi0.84 (1)2.12 (1)2.923 (2)162 (3)
OW4—HW4A···O6v0.84 (1)2.02 (1)2.851 (2)172 (3)
OW4—HW4B···OW50.84 (1)1.90 (1)2.741 (2)173 (3)
OW5—HW5A···O8vii0.85 (1)2.10 (1)2.946 (2)174 (3)
OW5—HW5B···O3vi0.85 (1)2.08 (2)2.870 (2)153 (3)
OW6—HW6A···O7i0.84 (1)2.13 (1)2.945 (2)163 (3)
OW6—HW6B···O2v0.84 (1)2.34 (1)3.140 (2)160 (3)
C2—H2A···O7iv0.932.563.448 (2)160
C10—H10A···O3vi0.932.553.246 (2)132
Symmetry codes: (i) x, y1, z; (iii) x+1, y, z; (iv) x+1, y, z; (v) x+1, y1, z; (vi) x+1, y, z+1; (vii) x+1, y1, z+1.
 

Funding information

This work was supported financially by the National Natural Science Foundation of China (No. 21271189).

References

First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wiscosin, USA.  Google Scholar
First citationCai, S. L., Zheng, S. R., Wen, Z. Z., Fan, J. & Zhang, W. G. (2012). Cryst. Growth Des. 12, 5737–5745.  CrossRef Google Scholar
First citationCao, K.-L., Xia, Y., Wang, G.-X. & Feng, Y.-L. (2015). Inorg. Chem. Commun. 53, 42–45.  CrossRef Google Scholar
First citationChen, M., Lu, Y., Fan, J., Lv, G. C., Zhao, Y., Zhang, Y. & Sun, W. (2012). CrystEngComm, 14, 2015–2023.  CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGuo, Z. G., Cao, R., Wang, X., Li, H., Yuan, W., Wang, G., Wu, H. & Li, J. (2009). J. Am. Chem. Soc. 131, 6894–6895.  CrossRef Google Scholar
First citationHu, X.-L., Sun, C.-Y., Qin, C., Wang, X.-L., Wang, H.-N., Zhou, E.-L., Li, W.-E. & Su, Z.-M. (2013). Chem. Commun. 49, 3564–3566.  CrossRef Google Scholar
First citationJung, E. J., Lee, U. & Koo, B. K. (2008). Inorg. Chim. Acta, 361, 2962–2966.  CrossRef Google Scholar
First citationMa, Y. Z., Zhang, L. M., Peng, G., Zhao, C. J., Dong, R. T., Yang, C. F. & Deng, H. (2014). CrystEngComm, 16, 667–683.  CrossRef Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNi, L.-B., Zhang, R.-H., Liu, Q.-X., Xia, W.-S., Wang, H. & Zhou, Z.-H. (2009). J. Solid State Chem. 182, 2698–2706.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShi, F., Deng, J. & Dai, H. (2012). Acta Cryst. E68, m685–m686.  CrossRef IUCr Journals Google Scholar
First citationSun, Q. Z., Yin, Y. B., Chai, L. Y., Liu, H., Hao, P. F., Yan, X. P. & Guo, Y. Q. (2014). J. Mol. Struct. 1070, 75–79.  CrossRef Google Scholar
First citationSun, Q. Z., Yin, Y. B., Pan, J. Q., Chai, L. Y., Su, N., Liu, H., Zhao, Y. L. & Liu, X. T. (2016). J. Mol. Struct. 1106, 64–69.  CrossRef Google Scholar
First citationWard, M. D. (2007). Coord. Chem. Rev. 251, 1663–1677.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamada, T., Maruta, G. & Takeda, S. (2011). Chem. Commun. 47, 653–655.  CrossRef Google Scholar
First citationYu, K., Wan, B., Yu, Y., Wang, L., Su, Z.-H., Wang, C.-M., Wang, C.-X. & Zhou, B.-B. (2013). Inorg. Chem. 52, 485–498.  CrossRef Google Scholar
First citationZhang, D.-J., Zhang, R.-C., Wang, J.-J., Qiao, W.-Z. & Jing, X.-M. (2013). Inorg. Chem. Commun. 32, 47–50.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds