research communications
catena-poly[[[tetraaquacobalt(II)]-μ-pyridine-2,6-dicarboxylato-calcium(II)-μ-pyridine-2,6-dicarboxylato] dihydrate]
of a heterometallic coordination polymer:aKey Laboratory of Catalysis and Materials Sciences of the State Ethnic Affairs Commission & Ministry of Education, College of Chemistry and Material Science, South-Central University for Nationalities, Wuhan 430074, People's Republic of China
*Correspondence e-mail: zhangbg68@yahoo.com
In the crystal of the title polymeric complex, {[CoCa(C7H3NO4)2(H2O)4]·2H2O}n (1), the CoII ion is N,O,O′-chelated by two pyridine-2,6-dicarboxylate anions in a distorted N2O4 octahedral geometry, and two carboxylate O atoms of pyridine-2,6-dicarboxylate anions bridge tetraaquacalcium(II) units to form polymeric chains propagating along the b-axis direction. In the crystal, O—H⋯O and C—H⋯O hydrogen bonds, and offset π–π stacking interactions [intercentroid distances = 3.551 (1) and 3.746 (1) Å] involving inversion-related pyridine rings link the polymeric chains and lattice water molecules to form a supramolecular three-dimensional framework.
Keywords: crystal structure; heterometallic complex; cobalt carboxylates; calcium carboxylates; pyridine-2,6-dicarboxylate anions; hydrogen bonds; offset π–π interactions.
CCDC reference: 1832782
1. Chemical context
The controllable synthesis of heterometallic polymers, with their fascinating structures and outstanding properties, is still a challenge in crystal engineering (Cai et al., 2012; Ma et al., 2014; Sun et al., 2014; Ward, 2007). The influencing factors include the coordination geometry of the metal centre, reaction of solvent, temperature, metal-to-ligand ratio, pH value, the nature of ligand, and so on (Chen et al., 2012; Guo & Cao, 2009; Ni et al., 2009; Yamada et al., 2011). According to our earlier study (Sun et al., 2016), heterometallic complexes containing both alkaline earth metals and d-block transition metals are available because the former are structurally malleable and they have a strong affinity to O atoms rather than N atoms (Cao et al., 2015; Yu et al., 2013), and the latter have a strong tendency to coordinate to both N- and O-atom donors (Hu et al., 2013; Zhang et al., 2013). Meanwhile, pyridinedicarboxylic acid (H2pdc) is widely used in the construction of various metal–organic frameworks for two main reasons. Firstly, the O and N atoms in these ligands made them easy to chelate or bridge metal ions. Secondly, they can be completely or partially deprotonated to generate Hpdc− or pyc2−, displaying a variety of coordination modes. As a part of our ongoing studies on heterometallic frameworks, we describe here the synthesis and of the title complex,1
2. Structural commentary
The 1 contains one cobalt centre, one calcium centre, two pdc2− anions, four coordinated water molecules and two lattice water molecules (Fig. 1). The Co—O(N) bond lengths are in the range 2.0172 (13)–2.2018 (12) Å and the Ca—O bond lengths are in the range 2.3358 (12)–2.3727 (12) Å (Table 1). All the data are comparable to those reported for other related CoII–pdc and CaII–pdc complexes (Jung et al., 2008; Shi et al., 2012). Each CoII centre is chelated by four O and two N atoms from two pdc2− anions, forming a distorted octahedral geometry. The mean deviation of the equatorial plane constructed by atoms N1, N2, O5 and O7 is 0.02 Å. Each CaII centre is six-coordinated by two carboxylate O atoms from two pdc2− anions and four water molecules, displaying a distorted octahedron (Fig. 1). The mean deviation of the equatorial plane constructed by atoms O4, OW1, OW3 and OW4 is 0.08 Å. The CoN2O4 and CaO6 polyhedra are linked by pdc2− anions to form polymeric chains along the b-axis direction (Fig. 2).
of3. Supramolcular features
In the crystal of 1, the polymeric chains are linked by O—H⋯O and C—H⋯O hydrogen bonds involving the water molecules and carboxyl groups, so forming a supramolecular three-dimensional framework (Table 2 and Fig. 3). Within the framework, inversion-related pyridine rings are linked by offset π–π interactions reinforcing the framework: Cg5⋯Cg5vii = 3.746 (1) Å, interplanar distance = 3.309 (1) Å, slippage = 1.755 Å; Cg6⋯Cg6viii = 3.551 (1) Å, interplanar distance = 3.279 (1) Å, slippage = 1.363 Å; Cg5 and Cg6 are the centroids of pyridine rings N1/C1–C5 and N2/C8–C12, respectively; symmetry codes: (vii) −x + 1, −y + 1, −z; (viii) −x + 1, −y, −z + 1.
4. Database survey
A search of the Cambridge Structural Database (Version 5.39, last update February 2018; Groom et al., 2016) for cobalt complexes of the ligand pyridine-2,6-dicarboxylic acid gave 180 hits, of which 58 are polymeric complexes. They include a number of alkali metal heterometallic coordination polymes, four involving K+ and seven Na+, but no alkali earth metal heterometallic coordination polymers. Hence, the title compound 1 is the first reported heterometallic coordination polymer involving the ligand pyridine-2,6-dicarboxylic acid, CoII and an alkali earth metal (CaII).
5. Synthesis and crystallization
A mixture of H2pdc (167 mg, 1 mmol), Co(CH3COO)2·4H2O (125 mg, 0.5 mmol) and CaCl2 (110 mg, 1 mmol) in 15 ml of distilled H2O was stirred for 10 min in air. 0.5 M NaOH was added dropwise and the mixture was turned into a Parr Teflon-lined stainless steel vessel and heated at 423 K for 3 d. Blue [purple in CIF?] block-shaped crystals of 1 were obtained in a yield of 70% (based on pyridine-2,6-dicarboxylic acid).
6. Refinement
Crystal data, data collection and structure . The H atoms of the water molecules were located from difference-Fourier maps and refined with distance restraints: O—H = 0.85 (1) Å, H⋯H = 1.34 (1) Å with Uiso(H) = 1.5Ueq(O). C-bound H atoms atoms were included in calculated positions and refined as riding: C—H = 0.93 Å with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 3
|
Supporting information
CCDC reference: 1832782
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL97 (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).[CaCo(C7H3NO4)2(H2O)4]·2H2O | Z = 2 |
Mr = 537.31 | F(000) = 550 |
Triclinic, P1 | Dx = 1.770 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.6299 (8) Å | Cell parameters from 5842 reflections |
b = 8.7781 (8) Å | θ = 2.4–27.7° |
c = 14.0726 (12) Å | µ = 1.18 mm−1 |
α = 80.683 (1)° | T = 296 K |
β = 73.602 (1)° | Block, purple |
γ = 89.568 (1)° | 0.35 × 0.33 × 0.33 mm |
V = 1008.38 (16) Å3 |
Bruker SMART CCD diffractometer | 3342 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.012 |
Graphite monochromator | θmax = 25.0°, θmin = 2.6° |
φ and ω scans | h = −10→10 |
7052 measured reflections | k = −10→9 |
3537 independent reflections | l = −16→16 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.023 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.064 | w = 1/[σ2(Fo2) + (0.0385P)2 + 0.4728P] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max = 0.001 |
3537 reflections | Δρmax = 0.44 e Å−3 |
326 parameters | Δρmin = −0.49 e Å−3 |
18 restraints | Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0300 (14) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Co1 | 0.39269 (3) | 0.14153 (3) | 0.252249 (15) | 0.02155 (10) | |
Ca1 | 0.86691 (4) | −0.38042 (3) | 0.24956 (2) | 0.01922 (10) | |
O1 | 0.24638 (15) | 0.02836 (14) | 0.18004 (9) | 0.0291 (3) | |
O2 | 0.20443 (16) | 0.02565 (16) | 0.03080 (10) | 0.0364 (3) | |
O3 | 0.55173 (16) | 0.32701 (14) | 0.25445 (9) | 0.0301 (3) | |
O4 | 0.73160 (16) | 0.50764 (15) | 0.15426 (11) | 0.0351 (3) | |
O5 | 0.19108 (15) | 0.25552 (15) | 0.33569 (9) | 0.0308 (3) | |
O6 | 0.02552 (14) | 0.25623 (14) | 0.48985 (9) | 0.0297 (3) | |
O7 | 0.57745 (15) | −0.03428 (14) | 0.24055 (9) | 0.0295 (3) | |
O8 | 0.63798 (15) | −0.25231 (14) | 0.32698 (10) | 0.0325 (3) | |
N1 | 0.47499 (16) | 0.24083 (15) | 0.10671 (10) | 0.0192 (3) | |
N2 | 0.33969 (16) | 0.01759 (15) | 0.39227 (10) | 0.0192 (3) | |
C1 | 0.42012 (19) | 0.18591 (18) | 0.03843 (12) | 0.0200 (3) | |
C2 | 0.4907 (2) | 0.23423 (19) | −0.06355 (12) | 0.0247 (4) | |
H2A | 0.4515 | 0.1975 | −0.1111 | 0.030* | |
C3 | 0.6221 (2) | 0.3394 (2) | −0.09255 (13) | 0.0280 (4) | |
H3A | 0.6739 | 0.3713 | −0.1604 | 0.034* | |
C4 | 0.6763 (2) | 0.3971 (2) | −0.02081 (13) | 0.0263 (4) | |
H4A | 0.7631 | 0.4685 | −0.0397 | 0.032* | |
C5 | 0.59765 (19) | 0.34531 (18) | 0.07952 (12) | 0.0209 (3) | |
C6 | 0.27915 (19) | 0.06991 (19) | 0.08568 (12) | 0.0226 (3) | |
C7 | 0.6325 (2) | 0.39819 (19) | 0.16942 (13) | 0.0237 (4) | |
C8 | 0.22421 (19) | 0.06489 (18) | 0.46591 (12) | 0.0194 (3) | |
C9 | 0.1926 (2) | −0.0107 (2) | 0.56454 (12) | 0.0236 (4) | |
H9A | 0.1131 | 0.0227 | 0.6159 | 0.028* | |
C10 | 0.2824 (2) | −0.13715 (19) | 0.58450 (12) | 0.0251 (4) | |
H10A | 0.2628 | −0.1901 | 0.6498 | 0.030* | |
C11 | 0.4018 (2) | −0.18510 (19) | 0.50709 (12) | 0.0232 (3) | |
H11A | 0.4627 | −0.2698 | 0.5197 | 0.028* | |
C12 | 0.42759 (19) | −0.10363 (18) | 0.41099 (12) | 0.0200 (3) | |
C13 | 0.13795 (19) | 0.20400 (19) | 0.42944 (12) | 0.0216 (3) | |
C14 | 0.55835 (19) | −0.13350 (19) | 0.31863 (12) | 0.0222 (3) | |
OW1 | 0.95691 (18) | −0.19898 (17) | 0.10151 (11) | 0.0404 (3) | |
OW2 | 1.02789 (16) | −0.59450 (15) | 0.21033 (10) | 0.0319 (3) | |
OW3 | 1.06339 (17) | −0.23885 (16) | 0.29216 (10) | 0.0354 (3) | |
OW4 | 0.84002 (17) | −0.51094 (15) | 0.41287 (9) | 0.0325 (3) | |
OW5 | 0.6149 (3) | −0.4991 (2) | 0.59299 (15) | 0.0782 (7) | |
OW6 | 0.8857 (2) | −0.8525 (2) | 0.16230 (15) | 0.0604 (5) | |
HW1A | 1.039 (2) | −0.139 (3) | 0.080 (2) | 0.091* | |
HW4A | 0.902 (3) | −0.577 (3) | 0.430 (2) | 0.091* | |
HW3A | 1.126 (3) | −0.163 (2) | 0.2603 (17) | 0.091* | |
HW4B | 0.771 (3) | −0.499 (3) | 0.4666 (13) | 0.091* | |
HW3B | 1.060 (4) | −0.247 (3) | 0.3528 (8) | 0.091* | |
HW1B | 0.898 (3) | −0.168 (3) | 0.0638 (19) | 0.091* | |
HW2A | 0.985 (4) | −0.668 (2) | 0.192 (2) | 0.091* | |
HW2B | 1.072 (3) | −0.639 (3) | 0.2531 (18) | 0.091* | |
HW6A | 0.7978 (18) | −0.902 (3) | 0.172 (2) | 0.091* | |
HW5B | 0.596 (4) | −0.447 (3) | 0.6408 (17) | 0.091* | |
HW6B | 0.958 (2) | −0.907 (3) | 0.134 (2) | 0.091* | |
HW5A | 0.539 (3) | −0.569 (3) | 0.613 (2) | 0.091* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.02474 (14) | 0.02310 (14) | 0.01634 (14) | 0.00250 (9) | −0.00629 (9) | −0.00120 (9) |
Ca1 | 0.01825 (18) | 0.01797 (18) | 0.02199 (19) | 0.00136 (13) | −0.00637 (13) | −0.00374 (13) |
O1 | 0.0303 (7) | 0.0314 (7) | 0.0239 (6) | −0.0101 (5) | −0.0077 (5) | 0.0011 (5) |
O2 | 0.0394 (7) | 0.0394 (8) | 0.0349 (7) | −0.0162 (6) | −0.0220 (6) | 0.0022 (6) |
O3 | 0.0390 (7) | 0.0304 (7) | 0.0253 (7) | −0.0001 (6) | −0.0148 (6) | −0.0069 (5) |
O4 | 0.0356 (7) | 0.0294 (7) | 0.0482 (8) | −0.0055 (6) | −0.0228 (6) | −0.0095 (6) |
O5 | 0.0333 (7) | 0.0340 (7) | 0.0240 (6) | 0.0140 (6) | −0.0087 (5) | −0.0014 (5) |
O6 | 0.0273 (6) | 0.0335 (7) | 0.0293 (7) | 0.0119 (5) | −0.0074 (5) | −0.0094 (5) |
O7 | 0.0306 (7) | 0.0314 (7) | 0.0226 (6) | 0.0071 (5) | −0.0027 (5) | −0.0022 (5) |
O8 | 0.0291 (7) | 0.0267 (7) | 0.0385 (7) | 0.0121 (5) | −0.0044 (6) | −0.0060 (6) |
N1 | 0.0195 (7) | 0.0200 (7) | 0.0191 (7) | 0.0001 (5) | −0.0077 (5) | −0.0025 (5) |
N2 | 0.0193 (7) | 0.0200 (7) | 0.0193 (7) | 0.0026 (5) | −0.0068 (5) | −0.0038 (5) |
C1 | 0.0203 (8) | 0.0204 (8) | 0.0210 (8) | 0.0017 (6) | −0.0089 (6) | −0.0035 (6) |
C2 | 0.0296 (9) | 0.0265 (9) | 0.0205 (8) | 0.0037 (7) | −0.0098 (7) | −0.0059 (7) |
C3 | 0.0274 (9) | 0.0317 (10) | 0.0199 (8) | 0.0013 (7) | −0.0005 (7) | −0.0008 (7) |
C4 | 0.0204 (8) | 0.0240 (9) | 0.0314 (9) | −0.0025 (7) | −0.0042 (7) | −0.0014 (7) |
C5 | 0.0181 (8) | 0.0191 (8) | 0.0265 (8) | 0.0016 (6) | −0.0086 (6) | −0.0034 (6) |
C6 | 0.0212 (8) | 0.0206 (8) | 0.0276 (9) | 0.0003 (7) | −0.0096 (7) | −0.0033 (7) |
C7 | 0.0227 (8) | 0.0212 (8) | 0.0328 (10) | 0.0056 (7) | −0.0152 (7) | −0.0079 (7) |
C8 | 0.0178 (7) | 0.0214 (8) | 0.0206 (8) | 0.0005 (6) | −0.0067 (6) | −0.0059 (6) |
C9 | 0.0230 (8) | 0.0276 (9) | 0.0198 (8) | 0.0004 (7) | −0.0046 (7) | −0.0051 (7) |
C10 | 0.0296 (9) | 0.0252 (9) | 0.0199 (8) | −0.0034 (7) | −0.0086 (7) | 0.0010 (7) |
C11 | 0.0256 (8) | 0.0186 (8) | 0.0268 (9) | 0.0016 (7) | −0.0109 (7) | −0.0012 (7) |
C12 | 0.0195 (8) | 0.0180 (8) | 0.0239 (8) | 0.0007 (6) | −0.0076 (6) | −0.0050 (6) |
C13 | 0.0206 (8) | 0.0230 (8) | 0.0244 (8) | 0.0025 (7) | −0.0096 (7) | −0.0074 (7) |
C14 | 0.0203 (8) | 0.0215 (8) | 0.0261 (9) | 0.0011 (7) | −0.0073 (7) | −0.0069 (7) |
OW1 | 0.0403 (8) | 0.0436 (8) | 0.0358 (8) | −0.0165 (7) | −0.0177 (6) | 0.0116 (6) |
OW2 | 0.0345 (7) | 0.0307 (7) | 0.0338 (7) | 0.0123 (6) | −0.0144 (6) | −0.0069 (6) |
OW3 | 0.0389 (8) | 0.0386 (8) | 0.0292 (7) | −0.0145 (6) | −0.0115 (6) | −0.0036 (6) |
OW4 | 0.0392 (8) | 0.0295 (7) | 0.0255 (7) | 0.0071 (6) | −0.0057 (6) | −0.0014 (5) |
OW5 | 0.0881 (15) | 0.0622 (12) | 0.0629 (12) | −0.0295 (10) | 0.0275 (10) | −0.0355 (10) |
OW6 | 0.0414 (9) | 0.0520 (10) | 0.0866 (13) | −0.0007 (8) | −0.0021 (9) | −0.0370 (9) |
Co1—N1 | 2.0172 (13) | C2—H2A | 0.9300 |
Co1—N2 | 2.0199 (13) | C3—C4 | 1.389 (3) |
Co1—O5 | 2.1466 (12) | C3—H3A | 0.9300 |
Co1—O3 | 2.1469 (13) | C4—C5 | 1.384 (2) |
Co1—O1 | 2.1643 (12) | C4—H4A | 0.9300 |
Co1—O7 | 2.2018 (12) | C5—C7 | 1.521 (2) |
Ca1—O4i | 2.3358 (12) | C8—C9 | 1.390 (2) |
Ca1—OW4 | 2.3449 (13) | C8—C13 | 1.519 (2) |
Ca1—O8 | 2.3458 (12) | C9—C10 | 1.386 (2) |
Ca1—OW1 | 2.3476 (13) | C9—H9A | 0.9300 |
Ca1—OW3 | 2.3719 (13) | C10—C11 | 1.390 (2) |
Ca1—OW2 | 2.3727 (12) | C10—H10A | 0.9300 |
O1—C6 | 1.268 (2) | C11—C12 | 1.382 (2) |
O2—C6 | 1.243 (2) | C11—H11A | 0.9300 |
O3—C7 | 1.266 (2) | C12—C14 | 1.520 (2) |
O4—C7 | 1.242 (2) | OW1—HW1A | 0.844 (10) |
O4—Ca1ii | 2.3358 (12) | OW1—HW1B | 0.846 (10) |
O5—C13 | 1.274 (2) | OW2—HW2A | 0.849 (10) |
O6—C13 | 1.236 (2) | OW2—HW2B | 0.845 (10) |
O7—C14 | 1.258 (2) | OW3—HW3A | 0.838 (10) |
O8—C14 | 1.253 (2) | OW3—HW3B | 0.837 (10) |
N1—C5 | 1.334 (2) | OW4—HW4A | 0.840 (10) |
N1—C1 | 1.338 (2) | OW4—HW4B | 0.842 (10) |
N2—C8 | 1.338 (2) | OW5—HW5B | 0.854 (10) |
N2—C12 | 1.337 (2) | OW5—HW5A | 0.854 (10) |
C1—C2 | 1.387 (2) | OW6—HW6A | 0.843 (10) |
C1—C6 | 1.517 (2) | OW6—HW6B | 0.839 (10) |
C2—C3 | 1.392 (3) | ||
N1—Co1—N2 | 170.56 (5) | C4—C3—H3A | 119.8 |
N1—Co1—O5 | 113.11 (5) | C2—C3—H3A | 119.8 |
N2—Co1—O5 | 76.33 (5) | C5—C4—C3 | 118.16 (16) |
N1—Co1—O3 | 76.31 (5) | C5—C4—H4A | 120.9 |
N2—Co1—O3 | 104.44 (5) | C3—C4—H4A | 120.9 |
O5—Co1—O3 | 89.74 (5) | N1—C5—C4 | 120.99 (15) |
N1—Co1—O1 | 76.52 (5) | N1—C5—C7 | 112.31 (14) |
N2—Co1—O1 | 103.75 (5) | C4—C5—C7 | 126.69 (15) |
O5—Co1—O1 | 93.20 (5) | O2—C6—O1 | 125.55 (15) |
O3—Co1—O1 | 151.54 (5) | O2—C6—C1 | 118.66 (15) |
N1—Co1—O7 | 94.39 (5) | O1—C6—C1 | 115.77 (14) |
N2—Co1—O7 | 76.18 (5) | O4—C7—O3 | 125.91 (16) |
O5—Co1—O7 | 152.44 (5) | O4—C7—C5 | 118.68 (16) |
O3—Co1—O7 | 95.18 (5) | O3—C7—C5 | 115.38 (14) |
O1—Co1—O7 | 95.16 (5) | N2—C8—C9 | 120.75 (15) |
O4i—Ca1—OW4 | 116.69 (5) | N2—C8—C13 | 113.26 (13) |
O4i—Ca1—O8 | 92.96 (5) | C9—C8—C13 | 126.00 (14) |
OW4—Ca1—O8 | 84.24 (5) | C10—C9—C8 | 118.39 (15) |
O4i—Ca1—OW1 | 82.87 (5) | C10—C9—H9A | 120.8 |
OW4—Ca1—OW1 | 160.32 (5) | C8—C9—H9A | 120.8 |
O8—Ca1—OW1 | 97.60 (5) | C9—C10—C11 | 120.17 (15) |
O4i—Ca1—OW3 | 160.85 (5) | C9—C10—H10A | 119.9 |
OW4—Ca1—OW3 | 80.10 (5) | C11—C10—H10A | 119.9 |
O8—Ca1—OW3 | 98.14 (5) | C12—C11—C10 | 118.30 (15) |
OW1—Ca1—OW3 | 80.24 (5) | C12—C11—H11A | 120.8 |
O4i—Ca1—OW2 | 78.31 (5) | C10—C11—H11A | 120.8 |
OW4—Ca1—OW2 | 80.75 (5) | N2—C12—C11 | 121.15 (15) |
O8—Ca1—OW2 | 156.81 (5) | N2—C12—C14 | 113.20 (14) |
OW1—Ca1—OW2 | 102.49 (5) | C11—C12—C14 | 125.58 (14) |
OW3—Ca1—OW2 | 96.57 (5) | O6—C13—O5 | 125.96 (15) |
C6—O1—Co1 | 115.23 (10) | O6—C13—C8 | 119.55 (15) |
C7—O3—Co1 | 115.79 (10) | O5—C13—C8 | 114.48 (14) |
C7—O4—Ca1ii | 136.36 (12) | O8—C14—O7 | 126.01 (15) |
C13—O5—Co1 | 116.59 (10) | O8—C14—C12 | 117.73 (15) |
C14—O7—Co1 | 114.36 (10) | O7—C14—C12 | 116.25 (14) |
C14—O8—Ca1 | 144.69 (12) | Ca1—OW1—HW1A | 131.0 (19) |
C5—N1—C1 | 121.46 (14) | Ca1—OW1—HW1B | 123.2 (19) |
C5—N1—Co1 | 118.88 (11) | HW1A—OW1—HW1B | 104.7 (15) |
C1—N1—Co1 | 119.07 (11) | Ca1—OW2—HW2A | 117 (2) |
C8—N2—C12 | 121.24 (14) | Ca1—OW2—HW2B | 118 (2) |
C8—N2—Co1 | 119.12 (11) | HW2A—OW2—HW2B | 104.6 (15) |
C12—N2—Co1 | 119.49 (11) | Ca1—OW3—HW3A | 132.0 (19) |
N1—C1—C2 | 120.97 (15) | Ca1—OW3—HW3B | 118.4 (19) |
N1—C1—C6 | 112.71 (14) | HW3A—OW3—HW3B | 108.0 (15) |
C2—C1—C6 | 126.33 (15) | Ca1—OW4—HW4A | 126.5 (19) |
C1—C2—C3 | 117.92 (15) | Ca1—OW4—HW4B | 128.2 (18) |
C1—C2—H2A | 121.0 | HW4A—OW4—HW4B | 105.2 (15) |
C3—C2—H2A | 121.0 | HW5B—OW5—HW5A | 103.9 (15) |
C4—C3—C2 | 120.46 (16) | HW6A—OW6—HW6B | 105.7 (15) |
Symmetry codes: (i) x, y−1, z; (ii) x, y+1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
OW1—HW1A···O2iii | 0.84 (1) | 1.93 (1) | 2.769 (2) | 171 (3) |
OW1—HW1B···O2iv | 0.85 (1) | 2.06 (1) | 2.870 (2) | 161 (3) |
OW2—HW2A···OW6 | 0.85 (1) | 2.00 (1) | 2.846 (2) | 175 (3) |
OW2—HW2B···O5v | 0.85 (1) | 1.89 (1) | 2.730 (2) | 173 (3) |
OW3—HW3A···O1iii | 0.84 (1) | 1.99 (1) | 2.817 (2) | 172 (3) |
OW3—HW3B···O6vi | 0.84 (1) | 2.12 (1) | 2.923 (2) | 162 (3) |
OW4—HW4A···O6v | 0.84 (1) | 2.02 (1) | 2.851 (2) | 172 (3) |
OW4—HW4B···OW5 | 0.84 (1) | 1.90 (1) | 2.741 (2) | 173 (3) |
OW5—HW5A···O8vii | 0.85 (1) | 2.10 (1) | 2.946 (2) | 174 (3) |
OW5—HW5B···O3vi | 0.85 (1) | 2.08 (2) | 2.870 (2) | 153 (3) |
OW6—HW6A···O7i | 0.84 (1) | 2.13 (1) | 2.945 (2) | 163 (3) |
OW6—HW6B···O2v | 0.84 (1) | 2.34 (1) | 3.140 (2) | 160 (3) |
C2—H2A···O7iv | 0.93 | 2.56 | 3.448 (2) | 160 |
C10—H10A···O3vi | 0.93 | 2.55 | 3.246 (2) | 132 |
Symmetry codes: (i) x, y−1, z; (iii) x+1, y, z; (iv) −x+1, −y, −z; (v) x+1, y−1, z; (vi) −x+1, −y, −z+1; (vii) −x+1, −y−1, −z+1. |
Funding information
This work was supported financially by the National Natural Science Foundation of China (No. 21271189).
References
Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wiscosin, USA. Google Scholar
Cai, S. L., Zheng, S. R., Wen, Z. Z., Fan, J. & Zhang, W. G. (2012). Cryst. Growth Des. 12, 5737–5745. CrossRef Google Scholar
Cao, K.-L., Xia, Y., Wang, G.-X. & Feng, Y.-L. (2015). Inorg. Chem. Commun. 53, 42–45. CrossRef Google Scholar
Chen, M., Lu, Y., Fan, J., Lv, G. C., Zhao, Y., Zhang, Y. & Sun, W. (2012). CrystEngComm, 14, 2015–2023. CrossRef Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Guo, Z. G., Cao, R., Wang, X., Li, H., Yuan, W., Wang, G., Wu, H. & Li, J. (2009). J. Am. Chem. Soc. 131, 6894–6895. CrossRef Google Scholar
Hu, X.-L., Sun, C.-Y., Qin, C., Wang, X.-L., Wang, H.-N., Zhou, E.-L., Li, W.-E. & Su, Z.-M. (2013). Chem. Commun. 49, 3564–3566. CrossRef Google Scholar
Jung, E. J., Lee, U. & Koo, B. K. (2008). Inorg. Chim. Acta, 361, 2962–2966. CrossRef Google Scholar
Ma, Y. Z., Zhang, L. M., Peng, G., Zhao, C. J., Dong, R. T., Yang, C. F. & Deng, H. (2014). CrystEngComm, 16, 667–683. CrossRef Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Ni, L.-B., Zhang, R.-H., Liu, Q.-X., Xia, W.-S., Wang, H. & Zhou, Z.-H. (2009). J. Solid State Chem. 182, 2698–2706. CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shi, F., Deng, J. & Dai, H. (2012). Acta Cryst. E68, m685–m686. CrossRef IUCr Journals Google Scholar
Sun, Q. Z., Yin, Y. B., Chai, L. Y., Liu, H., Hao, P. F., Yan, X. P. & Guo, Y. Q. (2014). J. Mol. Struct. 1070, 75–79. CrossRef Google Scholar
Sun, Q. Z., Yin, Y. B., Pan, J. Q., Chai, L. Y., Su, N., Liu, H., Zhao, Y. L. & Liu, X. T. (2016). J. Mol. Struct. 1106, 64–69. CrossRef Google Scholar
Ward, M. D. (2007). Coord. Chem. Rev. 251, 1663–1677. Web of Science CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yamada, T., Maruta, G. & Takeda, S. (2011). Chem. Commun. 47, 653–655. CrossRef Google Scholar
Yu, K., Wan, B., Yu, Y., Wang, L., Su, Z.-H., Wang, C.-M., Wang, C.-X. & Zhou, B.-B. (2013). Inorg. Chem. 52, 485–498. CrossRef Google Scholar
Zhang, D.-J., Zhang, R.-C., Wang, J.-J., Qiao, W.-Z. & Jing, X.-M. (2013). Inorg. Chem. Commun. 32, 47–50. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.