research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, spectroscopic and Hirshfeld surface analysis and fluorescence studies of (2E,2′E)-3,3′-(1,4-phenyl­ene)bis­­[1-(4-hy­dr­oxy­phen­yl)prop-2-en-1-one] N,N-di­methyl­formamide disolvate

CROSSMARK_Color_square_no_text.svg

aSchool of Chemical Sciences, Universiti Sains Malaysia, Penang 11800 USM, Malaysia, bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, cDepartment of Engineering Chemistry, Vidya Vikas Institute of Engineering & Technology, Visvesvaraya Technological University, Alanahally, Mysuru 570028, Karnataka, India, dDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, eDepartment of Physics, School of Engineering and Technology, Jain University, Bangalore 562 112, India, and fDepartment of Chemistry, Science College, An-Najah National University, PO Box 7, Nablus, West Bank, Palestinian Territories
*Correspondence e-mail: chidankumar@gmail.com, khalil.i@najah.edu

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 4 May 2018; accepted 16 May 2018; online 22 May 2018)

In the bis­chalcone mol­ecule of the title compound, C24H18O4·2C3H7NO, the central benzene and terminal hy­droxy­phenyl rings form a dihedral angle of 14.28 (11)° and the central C=C double bond adopts a trans configuration. In the crystal, the bis­chalcone and solvate mol­ecules are inter­connected via O—H⋯O hydrogen bonds, which were investigated by Hirshfeld surface analysis. Solid-state fluorescence was measured at λex = 4400 Å. The emission wavelength appeared at 5510 Å, which corresponds to yellow light and the solid-state fluorescence quantum yield (Ff) is 0.18.

1. Chemical context

The development of new fluorescent probes has attracted much attention because of their applications in a wide range of electronic and optoelectronic devices related to telecommunications, optical computing, optical storage and optical information processing. Fluorescence generally occurs when a fluorescent probe (fluoro­phore) resonantly absorbs electromagnetic radiation that promotes it to an excited electronic state; subsequent relaxation of the excited state results in the emission of light, in which a portion of the excitation energy is lost through heat or vibration, and the rest is emitted at longer wavelengths compared to the excitation radiation. For a given fluoro­phore, the fluorescence intensity is directly proportional to the intensity of the radiation received. Fluoro­phores can be identified and qu­anti­fied on the basis of their excitation and emission properties. Different materials may exhibit different colours and intensities of fluorescence despite seeming identical when observed in daylight conditions. In recent years, chalcones have been used in the field of material science as non-linear optical devices (Raghavendra et al., 2017[Raghavendra, S., Chidan Kumar, C. S., Shetty, T. C. S., Lakshminarayana, B. N., Quah, C. K., Chandraju, S., Ananthnag, G. S., Gonsalves, R. A. & Dharmaprakash, S. M. (2017). Results Phys. 7, 2550-2556.]; Chandra Shekhara Shetty et al., 2017[Chandra Shekhara Shetty, T., Chidan Kumar, C. S., Gagan Patel, K. N., Chia, T. S., Dharmaprakash, S. M., Ramasami, P., Umar, Y., Chandraju, S. & Quah, C. K. (2017). J. Mol. Struct. 1143, 306-317.]), photorefractive polymers (Sun et al., 1999[Sun, S.-J., Schwarz, G., Kricheldorf, H. R. & Chang, T.-C. (1999). J. Polym. Sci. A Polym. Chem. 37, 1125-1133.]), optical limiting (Shettigar et al., 2006a[Shettigar, S., Chandrasekharan, K., Umesh, G., Sarojini, B. K. & Narayana, B. (2006). Polymer, 47, 3565-3567.]; Chandra Shekhara Shetty et al., 2016[Chandra Shekhara Shetty, T., Raghavendra, S., Chidan Kumar, C. S. & Dharmaprakash, S. M. (2016). Appl. Phys. B, 122, 205-.]) and electrochemical sensing agents (Delavaux-Nicot et al., 2007[Delavaux-Nicot, B., Maynadié, J., Lavabre, D. & Fery-Forgues, S. (2007). J. Organomet. Chem. 692, 874-886.]). The α,β-unsaturated ketone (C=C—C=O) moiety in the chalcone skeleton plays a vital role in its biological activities (Kumar et al., 2013a[Kumar, C., Loh, W. S., Ooi, C., Quah, C. & Fun, H. K. (2013a). Molecules, 18, 12707-12724.],b[Kumar, C. S., Loh, W. S., Ooi, C. W., Quah, C. K. & Fun, H. K. (2013b). Molecules, 18, 11996-12011.]). Apart from these biological activities, the photophysical properties of chalcone derivatives have also attracted considerable attention from both chemists and physicists. In view of the above and as a part of our ongoing work on such mol­ecules (Shettigar et al., 2006b[Shettigar, V., Patil, P. S., Naveen, S., Dharmaprakash, S. M., Sridhar, M. A. & Shashidhara Prasad, J. (2006). J. Cryst. Growth, 295, 44-49.]; Tejkiran et al., 2016[Tejkiran, P. J., Brahma Teja, M. S., Sai Siva Kumar, P., Sankar, P., Philip, R., Naveen, S., Lokanath, N. K. & Nageswara Rao, G. (2016). J. Photochem. Photobiol. Chem. 324, 33-39.]; Pramodh et al., 2018[Pramodh, B., Lokanath, N. K., Naveen, S., Naresh, P., Ganguly, S. & Panda, J. (2018). J. Mol. Struct. 1161, 9-17.]; Naveen et al., 2017[Naveen, S., Ming, L. S., Jamalis, J., Ananda Kumar, C. S. & Lokanath, N. K. (2017). Chem. Data Coll. 7, 58-67.]), we herein report the synthesis, structure determination, Hirshfeld surface analysis and fluorescence properties of (2E,2′E)-3,3′-(1,4-phenyl­ene)bis­[1-(4-hy­droxy­phen­yl)prop-2-en-1-one] N,N-di­methyl­formamide disolvate.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound comprises of half of the bis­chalcone mol­ecule, completed by inversion (symmetry operation 1 − x, 2 − y, −z) and a DMF mol­ecule (Fig. 1[link]). The title compound crystallizes in the triclinic system with Z = 1 in space group P[\overline{1}]. The bis­chalcone mol­ecule is constructed from two individually planar rings (central benzene and terminal hy­droxy­phenyl rings) and a C=C—C(=O)—C enone bridge with the central C=C double bond in a trans configuration. The hy­droxy­phenyl (C1–C6) and benzene (C10–C12/C10A–C12A) rings are almost parallel to each other, subtending a dihedral angle of 14.28 (11)°. The enone fragment and its attached benzene ring are slightly twisted, as indicated by the torsion angles O1—C7—C8—C9 = −5.6 (4)° and C1—C6—C7—O1 = 1.7 (4)°. All bond lengths and angles of the titled compound are in normal ranges (Allen et al., 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-labelling scheme, with 40% probability displacement ellipsoids. Atoms labelled with the suffix A are generated by the symmetry operation 1 − x, 2 − y, −z.

3. Supra­molecular features

In the crystal, the components are linked by O2—H2B⋯O3i hydrogen bonds, which connect the DMF solvate mol­ecules to both terminal 4-hy­droxy­phenyl rings of the main mol­ecules (Fig. 2[link], Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2B⋯O3i 0.99 (4) 1.63 (5) 2.592 (3) 162 (4)
Symmetry code: (i) -x, -y, -z+1.
[Figure 2]
Figure 2
Partial crystal packing, showing the O—H⋯O hydrogen bonds (Table 1[link]) between the bis­chalcone and DMF solvate mol­ecules.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.39, last update November 2016; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using (2E,2′E)-3,3′-(1,4-phenyl­ene)bis­(1-phenyl­prop-2-en-1-one) as main skeleton revealed the presence of four structures containing a similar bis-chalcone moiety to the title compound but with different substituents on the terminal phenyl rings, viz. 3,3′-(1,4-phenyl­ene)bis­[1-(X)prop-2-en-1-one], where X = 2-hy­droxy­phenyl (Gaur & Mishra, 2013[Gaur, R. & Mishra, L. (2013). RSC Adv. 3, 12210-12219.]), 4-chloro­phenyl (KIKFUG; Harrison et al., 2007[Harrison, W. T. A., Ravindra, H. J., Kumar, M. R. S. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o3702.]), 4-meth­oxy­phenyl (Harrison et al., 2007a[Harrison, W. T. A., Ravindra, H. J., Suresh Kumar, M. R. & Dharmaprakash, S. M. (2007a). Acta Cryst. E63, o3067.]) and 3,4-meth­oxy­phenyl (Harrison et al., 2007b[Harrison, W. T. A., Ravindra, H. J., Suresh Kumar, M. R. & Dharmaprakash, S. M. (2007b). Acta Cryst. E63, o3068.]). In these four compounds, the dihedral angles between the central and terminal phenyl ring are in the range 10.91–46.27°. In the positional isomer of the title compound, the 2-hy­droxy­phenyl moiety forms a dihedral angle of 10.91° with the benzene ring, compared to 14.28 (11)° in the title compound. The difference may arise from the intra­molecular hydrogen bond between 2-hy­droxy­phenyl unit and the adjacent carbonyl moiety.

5. Hirshfeld surface analysis

Hirshfeld surface analysis (McKinnon et al., 2004[McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627-668.], 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814-3816.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]; Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]) was undertaken to qu­antify and give visual confirmation of the inter­molecular inter­action, and to explain the observed crystal structure. The dnorm surface plots, electrostatic potential and 2D fingerprint plots were generated by CrystalExplorer 3.1 (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). University of Western Australia.]). The red spots on the dnorm surface arise as a result of the short inter­atomic contact; the positive electrostatic potential (blue regions) over the surface indicate hydrogen-donor potential, whereas the hydrogen-bond acceptors are represented by negative electrostatic potential (red regions). The dnorm surface plots and electrostatic potential of the title compound are shown in Fig. 3[link].

[Figure 3]
Figure 3
dnorm and electrostatic potential mapped on Hirshfeld surfaces to visualize the inter­molecular contacts in the title compound. The mol­ecule in the ball-and-stick model is in the same orientation as for the Hirshfeld surface and electrostatic potential plots.

The surface shows a red spot on the hydroxyl and carbonyl groups of the main mol­ecule and solvate, respectively. This is a result of the O2—H2B⋯O3 hydrogen bonds present in the structure (Fig. 4[link]a). These observations are further confirmed by the respective electrostatic potential map in which the atoms involved in the formation of hydrogen bonds are seen as blue (hydrogen-bond donor) and red (hydrogen-bond acceptor) spots (Fig. 4[link]b). The corresponding fingerprint plots (FP) for Hirshfeld surfaces show characteristic pseudo-symmetry wings in the de and di diagonal axes in the overall 2D FP (Fig. 5[link]a). H⋯H contacts (i.e. dispersive forces) make the greatest percentage contribution to the Hirshfeld surface, followed by O⋯H/H⋯O and C⋯H/H⋯C contacts (Fig. 6[link]). The H⋯H contacts appear as the largest region on the fingerprint plot with a high concentration in the middle region, at de = di ∼ 1.2 Å with an overall contribution to the Hirshfeld surface of 54.0% (Fig. 5[link]b). The reciprocal O⋯H/H⋯O inter­action (26.4%) appears as two sharp symmetric spikes in the FP plot, which is characteristic of a strong hydrogen-bonding inter­action, at de + di ≃ 1.7 Å (Fig. 5[link]c). Two symmetrical broad blunted wings corresponding to the C⋯H/H⋯C inter­action (with a 9.8% contribution) appear at de + di ≃ 3.0 Å (Fig. 5[link]d). Analysis of the close contact on the dnorm surface plot suggests that the C⋯H/H⋯C inter­action might arise from weak C—H⋯π and C—H⋯alkene inter­actions between the solvate and main mol­ecules (Fig. 7[link]).

[Figure 4]
Figure 4
(a) dnorm and (b) electrostatic potential mapped on Hirshfeld surfaces in order to visualize the inter­molecular O—H⋯O inter­actions in the title compound.
[Figure 5]
Figure 5
The two-dimensional fingerprint plots for the title compound showing contributions from different contacts; the views on the right highlight the relevant surface patches associated with the specific contacts.
[Figure 6]
Figure 6
Percentage contributions of the various inter­molecular contacts contributing to the Hirshfeld surfaces of the title compound.
[Figure 7]
Figure 7
dnorm mapped on Hirshfeld surfaces to visualize the weak inter­molecular C—H⋯π and C—H⋯alkene inter­actions in the title compound.

6. Solid-state fluorescence studies

A powder sample of the subject compound (0.72 mol) was heaped in the tray, covered with a quartz plate and was then fixed in the fluorescence spectrometer. The solid-state fluorescence properties were measured at the excitation wavelength (λex) of 4400 Å, which was selected from the absorption spectrum of the compound. The difference in the relative intensities of reflections between the sample and MgO powder was calibrated using diffusion reflections in a non-absorbed wavelength, in the present case this was 6500 Å. Finally, the fluorescence quantum yield (Ff) was determined by Wrighton's method and calculated according to the Φf = jf/(ϒjoj) (Wrighton et al., 1974[Wrighton, M. S., Ginley, D. S. & Morse, D. L. (1974). J. Phys. Chem. 78, 2229-2233.]) where, jf is the fluorescence intensity of the sample, ϒ the calibration factor, j0 the back-scattered intensity of excitation light from a blank (here MgO) and j the back-scattered intensity of a loaded sample. The solid-state excitation and emission spectrum of the title compound (λex at 4400 Å) is shown in Fig. 8[link]. The emission wavelength (blue line) appears at 5510 Å, which corresponds to yellow light. The solid-state fluorescence quantum yield (Ff) of the title compound is 0.18.

[Figure 8]
Figure 8
Solid-state excitation and emission spectrum for the title compound

7. Synthesis and crystallization

A mixture of corresponding 4-hy­droxy­aceto­phenone 0.02 mol) and terephthaldi­aldehyde (0.01 mol) was dissolved in methanol (20 mL). A catalytic amount of NaOH was added to the solution dropwise with vigorous stirring. The reaction mixture was stirred for about 5–6 h at room temperature. The resultant crude product was filtered, washed successively with distilled water and recrystallized from acetone solution. Crystals suitable for X-ray diffraction studies were obtained by the slow evaporation technique using DMF as solvent. Yield: 85%, m.p. = 544–546 K.

FT–IR [ATR (solid) cm−1]: 3193 (O—H, ν), 3193 (Ar, C—H, ν), 2945 (methyl, C—H, νs), 2884 (methyl, C–H, ν), 1605 (C=O, ν), 1586, 1336 (Ar, C=C, ν), 1221 (C—O, ν), 1169 (C—N, ν). 1H NMR (500 MHz, DMSO): δ (ppm) 8.120–8.103 (d, 4H, J = 8.7 Hz, 1CH, 5CH), 8.028–7.997 (d, 2H, J = 15.6 Hz, 8CH), 7.964 (s, 4H, 11CH, 12CH), 7.737–7.706 (d, 2H, J = 15.6 Hz, 9CH), 6.931–6.914 (d, 4H, J = 8.7 Hz, 2CH, 4CH); 13C NMR (125 MHz, DMSO): δ ppm 187.05 (C7), 162.29 (C3), 141.86 (C9), 136.65 (C10), 131.28 (C1, C5), 129.92 (C6), 129.19 (C11, C12), 123.05 (C8), 115.39 (C2, C4).

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The O-bound H atom was located in a difference-Fourier map and refined freely. C–bound H atoms were positioned geometrically [C—H = 0.93–0.96 Å] and refined using a riding model with Uiso(H) = 1.5Ueq(C–meth­yl) and 1.2Ueq(C) for other H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C24H18O4·2C3H7NO
Mr 516.57
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 294
a, b, c (Å) 6.0569 (5), 9.5801 (5), 11.9941 (8)
α, β, γ (°) 72.867 (2), 84.649 (2), 86.710 (2)
V3) 661.86 (8)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.25 × 0.24 × 0.10
 
Data collection
Diffractometer Bruker APEXII DUO CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison. Wisconsin, USA.])
Tmin, Tmax 0.961, 0.991
No. of measured, independent and observed [I > 2σ(I)] reflections 21963, 3039, 1944
Rint 0.043
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.177, 1.07
No. of reflections 3039
No. of parameters 178
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.17, −0.19
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison. Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: SHELXL2013 (Sheldrick, 2015) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2015) and PLATON (Spek, 2009).

(2E,2'E)-3,3'-(1,4-phenylene)bis[1-(4-hydroxyphenyl)prop-2-en-1-one] N,N-dimethylformamide disolvate top
Crystal data top
C24H18O4·2C3H7NOZ = 1
Mr = 516.57F(000) = 274
Triclinic, P1Dx = 1.296 Mg m3
a = 6.0569 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.5801 (5) ÅCell parameters from 4190 reflections
c = 11.9941 (8) Åθ = 2.4–23.5°
α = 72.867 (2)°µ = 0.09 mm1
β = 84.649 (2)°T = 294 K
γ = 86.710 (2)°Block, colourless
V = 661.86 (8) Å30.25 × 0.24 × 0.10 mm
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
3039 independent reflections
Radiation source: fine-focus sealed tube1944 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
φ and ω scansθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 77
Tmin = 0.961, Tmax = 0.991k = 1212
21963 measured reflectionsl = 1515
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.057H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.177 w = 1/[σ2(Fo2) + (0.0694P)2 + 0.2543P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
3039 reflectionsΔρmax = 0.17 e Å3
178 parametersΔρmin = 0.19 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1262 (3)0.5766 (2)0.23944 (17)0.0750 (6)
O20.2445 (3)0.0650 (2)0.64822 (17)0.0793 (6)
H2B0.108 (7)0.010 (5)0.682 (4)0.145 (15)*
C10.0487 (4)0.3283 (3)0.4223 (2)0.0545 (6)
H1A0.18590.34210.39110.065*
C20.0096 (4)0.2057 (3)0.5127 (2)0.0571 (6)
H2A0.11970.13760.54230.069*
C30.1943 (4)0.1834 (3)0.5599 (2)0.0542 (6)
C40.3540 (4)0.2863 (3)0.5152 (2)0.0643 (7)
H4A0.49090.27270.54680.077*
C50.3131 (4)0.4087 (3)0.4244 (2)0.0557 (6)
H5A0.42330.47670.39510.067*
C60.1110 (3)0.4324 (2)0.37597 (18)0.0460 (5)
C70.0568 (4)0.5610 (2)0.2773 (2)0.0527 (6)
C80.2297 (4)0.6688 (2)0.2225 (2)0.0552 (6)
H8A0.36350.66000.25660.066*
C90.2000 (4)0.7762 (2)0.1276 (2)0.0503 (5)
H9A0.06340.78140.09680.060*
C100.3566 (3)0.8892 (2)0.06404 (18)0.0452 (5)
C110.5544 (4)0.9078 (2)0.1063 (2)0.0515 (6)
H11A0.59250.84630.17810.062*
C120.3042 (4)0.9840 (2)0.0435 (2)0.0513 (6)
H12A0.17160.97400.07330.062*
N10.3441 (3)0.2611 (2)0.16532 (17)0.0539 (5)
O30.0634 (3)0.1066 (2)0.23142 (17)0.0752 (6)
C130.2500 (4)0.1452 (3)0.2375 (2)0.0610 (6)
H13A0.33120.08800.29770.073*
C140.5659 (4)0.3002 (3)0.1757 (3)0.0788 (8)
H14A0.62900.22760.23920.118*
H14B0.56110.39350.19060.118*
H14C0.65530.30550.10420.118*
C150.2266 (5)0.3526 (3)0.0692 (3)0.0767 (8)
H15A0.08100.31600.07280.115*
H15B0.30650.35180.00360.115*
H15C0.21420.45080.07460.115*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0553 (10)0.0705 (12)0.0816 (13)0.0128 (9)0.0211 (9)0.0120 (10)
O20.0605 (11)0.0750 (13)0.0769 (13)0.0169 (9)0.0191 (9)0.0242 (10)
C10.0427 (12)0.0581 (14)0.0556 (13)0.0102 (10)0.0092 (10)0.0021 (11)
C20.0456 (12)0.0556 (14)0.0594 (14)0.0185 (10)0.0057 (10)0.0034 (11)
C30.0496 (12)0.0534 (13)0.0500 (13)0.0106 (10)0.0049 (10)0.0018 (10)
C40.0446 (12)0.0718 (17)0.0646 (15)0.0158 (11)0.0162 (11)0.0047 (13)
C50.0469 (12)0.0555 (14)0.0556 (14)0.0185 (10)0.0063 (10)0.0018 (11)
C60.0460 (11)0.0456 (12)0.0431 (11)0.0080 (9)0.0033 (9)0.0065 (9)
C70.0500 (13)0.0511 (13)0.0525 (13)0.0072 (10)0.0079 (10)0.0062 (10)
C80.0517 (13)0.0524 (13)0.0545 (14)0.0100 (10)0.0106 (10)0.0012 (11)
C90.0473 (12)0.0462 (12)0.0516 (13)0.0047 (9)0.0045 (9)0.0047 (10)
C100.0476 (11)0.0393 (11)0.0445 (12)0.0030 (9)0.0027 (9)0.0060 (9)
C110.0558 (13)0.0463 (12)0.0445 (12)0.0046 (10)0.0115 (10)0.0018 (9)
C120.0496 (12)0.0490 (13)0.0511 (13)0.0069 (10)0.0127 (10)0.0047 (10)
N10.0451 (10)0.0505 (11)0.0621 (12)0.0071 (8)0.0028 (9)0.0097 (9)
O30.0622 (11)0.0740 (12)0.0797 (13)0.0249 (9)0.0030 (9)0.0060 (10)
C130.0598 (15)0.0552 (15)0.0622 (15)0.0043 (12)0.0051 (11)0.0074 (12)
C140.0536 (15)0.083 (2)0.104 (2)0.0178 (14)0.0046 (14)0.0301 (17)
C150.0751 (18)0.0691 (18)0.0739 (19)0.0094 (14)0.0138 (14)0.0016 (14)
Geometric parameters (Å, º) top
O1—C71.221 (3)C9—H9A0.9300
O2—C31.347 (3)C10—C111.383 (3)
O2—H2B0.99 (4)C10—C121.393 (3)
C1—C21.370 (3)C11—C12i1.377 (3)
C1—C61.387 (3)C11—H11A0.9300
C1—H1A0.9300C12—C11i1.377 (3)
C2—C31.386 (3)C12—H12A0.9300
C2—H2A0.9300N1—C131.312 (3)
C3—C41.377 (3)N1—C141.441 (3)
C4—C51.374 (3)N1—C151.445 (3)
C4—H4A0.9300O3—C131.224 (3)
C5—C61.382 (3)C13—H13A0.9300
C5—H5A0.9300C14—H14A0.9600
C6—C71.481 (3)C14—H14B0.9600
C7—C81.480 (3)C14—H14C0.9600
C8—C91.310 (3)C15—H15A0.9600
C8—H8A0.9300C15—H15B0.9600
C9—C101.466 (3)C15—H15C0.9600
C3—O2—H2B110 (2)C11—C10—C12117.98 (19)
C2—C1—C6121.8 (2)C11—C10—C9123.14 (19)
C2—C1—H1A119.1C12—C10—C9118.88 (19)
C6—C1—H1A119.1C12i—C11—C10121.0 (2)
C1—C2—C3119.8 (2)C12i—C11—H11A119.5
C1—C2—H2A120.1C10—C11—H11A119.5
C3—C2—H2A120.1C11i—C12—C10121.0 (2)
O2—C3—C4118.0 (2)C11i—C12—H12A119.5
O2—C3—C2123.0 (2)C10—C12—H12A119.5
C4—C3—C2119.0 (2)C13—N1—C14122.5 (2)
C5—C4—C3120.6 (2)C13—N1—C15119.9 (2)
C5—C4—H4A119.7C14—N1—C15117.6 (2)
C3—C4—H4A119.7O3—C13—N1124.9 (2)
C4—C5—C6121.1 (2)O3—C13—H13A117.6
C4—C5—H5A119.4N1—C13—H13A117.6
C6—C5—H5A119.4N1—C14—H14A109.5
C5—C6—C1117.6 (2)N1—C14—H14B109.5
C5—C6—C7123.92 (19)H14A—C14—H14B109.5
C1—C6—C7118.46 (19)N1—C14—H14C109.5
O1—C7—C8120.2 (2)H14A—C14—H14C109.5
O1—C7—C6120.7 (2)H14B—C14—H14C109.5
C8—C7—C6119.10 (19)N1—C15—H15A109.5
C9—C8—C7122.0 (2)N1—C15—H15B109.5
C9—C8—H8A119.0H15A—C15—H15B109.5
C7—C8—H8A119.0N1—C15—H15C109.5
C8—C9—C10127.7 (2)H15A—C15—H15C109.5
C8—C9—H9A116.2H15B—C15—H15C109.5
C10—C9—H9A116.2
C6—C1—C2—C30.1 (4)C1—C6—C7—C8176.6 (2)
C1—C2—C3—O2179.5 (2)O1—C7—C8—C95.6 (4)
C1—C2—C3—C40.5 (4)C6—C7—C8—C9172.7 (2)
O2—C3—C4—C5179.4 (2)C7—C8—C9—C10179.5 (2)
C2—C3—C4—C50.6 (4)C8—C9—C10—C118.4 (4)
C3—C4—C5—C60.3 (4)C8—C9—C10—C12172.3 (2)
C4—C5—C6—C10.0 (4)C12—C10—C11—C12i0.5 (4)
C4—C5—C6—C7179.3 (2)C9—C10—C11—C12i179.8 (2)
C2—C1—C6—C50.1 (4)C11—C10—C12—C11i0.5 (4)
C2—C1—C6—C7179.3 (2)C9—C10—C12—C11i179.8 (2)
C5—C6—C7—O1179.0 (2)C14—N1—C13—O3179.1 (3)
C1—C6—C7—O11.7 (4)C15—N1—C13—O30.8 (4)
C5—C6—C7—C82.7 (4)
Symmetry code: (i) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2B···O3ii0.99 (4)1.63 (5)2.592 (3)162 (4)
Symmetry code: (ii) x, y, z+1.
 

Acknowledgements

The authors extend their appreciation to the Vidya Vikas Research & Development Centre for the facilities and encouragement.

Funding information

HCK thanks the Malaysian Government for a MyBrain15 (MyPhD) scholarship. The authors thank the Malaysian Government and Universiti Sains Malaysia (USM) for the Research University Individual Grant (1001/PFIZIK/811278).

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison. Wisconsin, USA.  Google Scholar
First citationChandra Shekhara Shetty, T., Chidan Kumar, C. S., Gagan Patel, K. N., Chia, T. S., Dharmaprakash, S. M., Ramasami, P., Umar, Y., Chandraju, S. & Quah, C. K. (2017). J. Mol. Struct. 1143, 306–317.  CrossRef Google Scholar
First citationChandra Shekhara Shetty, T., Raghavendra, S., Chidan Kumar, C. S. & Dharmaprakash, S. M. (2016). Appl. Phys. B, 122, 205–.  CrossRef Google Scholar
First citationDelavaux-Nicot, B., Maynadié, J., Lavabre, D. & Fery-Forgues, S. (2007). J. Organomet. Chem. 692, 874–886.  Google Scholar
First citationGaur, R. & Mishra, L. (2013). RSC Adv. 3, 12210–12219.  CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHarrison, W. T. A., Ravindra, H. J., Kumar, M. R. S. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o3702.  CSD CrossRef IUCr Journals Google Scholar
First citationHarrison, W. T. A., Ravindra, H. J., Suresh Kumar, M. R. & Dharmaprakash, S. M. (2007a). Acta Cryst. E63, o3067.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHarrison, W. T. A., Ravindra, H. J., Suresh Kumar, M. R. & Dharmaprakash, S. M. (2007b). Acta Cryst. E63, o3068.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKumar, C., Loh, W. S., Ooi, C., Quah, C. & Fun, H. K. (2013a). Molecules, 18, 12707–12724.  CrossRef Google Scholar
First citationKumar, C. S., Loh, W. S., Ooi, C. W., Quah, C. K. & Fun, H. K. (2013b). Molecules, 18, 11996–12011.  CrossRef Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816.  Google Scholar
First citationMcKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNaveen, S., Ming, L. S., Jamalis, J., Ananda Kumar, C. S. & Lokanath, N. K. (2017). Chem. Data Coll. 7, 58–67.  Google Scholar
First citationPramodh, B., Lokanath, N. K., Naveen, S., Naresh, P., Ganguly, S. & Panda, J. (2018). J. Mol. Struct. 1161, 9–17.  CrossRef Google Scholar
First citationRaghavendra, S., Chidan Kumar, C. S., Shetty, T. C. S., Lakshminarayana, B. N., Quah, C. K., Chandraju, S., Ananthnag, G. S., Gonsalves, R. A. & Dharmaprakash, S. M. (2017). Results Phys. 7, 2550–2556.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShettigar, S., Chandrasekharan, K., Umesh, G., Sarojini, B. K. & Narayana, B. (2006). Polymer, 47, 3565–3567.  Web of Science CrossRef CAS Google Scholar
First citationShettigar, V., Patil, P. S., Naveen, S., Dharmaprakash, S. M., Sridhar, M. A. & Shashidhara Prasad, J. (2006). J. Cryst. Growth, 295, 44–49.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, S.-J., Schwarz, G., Kricheldorf, H. R. & Chang, T.-C. (1999). J. Polym. Sci. A Polym. Chem. 37, 1125–1133.  CrossRef Google Scholar
First citationTejkiran, P. J., Brahma Teja, M. S., Sai Siva Kumar, P., Sankar, P., Philip, R., Naveen, S., Lokanath, N. K. & Nageswara Rao, G. (2016). J. Photochem. Photobiol. Chem. 324, 33–39.  Web of Science CSD CrossRef CAS Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). University of Western AustraliaGoogle Scholar
First citationWrighton, M. S., Ginley, D. S. & Morse, D. L. (1974). J. Phys. Chem. 78, 2229–2233.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds