research communications
Synthesis and structure of an arylselenenium(II) cation, [C34H41N4Se+]2[Hg(SeCN)4]2−, based on a 5-tert-butyl-1,3-bis(1-pentyl-1H-benzimidazol-2-yl)benzene scaffold
aDepartment of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India, and bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: rbutcher99@yahoo.com
In the title salt, bis{[5-tert-butyl-1,3-bis(1-pentyl-1H-benzimidazol-2-yl)benzene]selenium} tetrakis(selenocyanato)mercury, (C34H41N4Se)2[Hg(SeCN)4], the arylselenenium cations, [C34H41N4Se]+, are linked through [Hg(SeCN)4]2− anions by C—H⋯N hydrogen bonds. In the cation, the geometry around the Se atom in the 5-tert-butyl-1,3-bis(1-pentyl-1H-benzimidazol-2-yl)benzene scaffold is T-shaped, resulting from the coordination of Se by the C atom of the central aromatic ring and the N atoms of both of the benzimidazole moieties. The trans Se—N bond lengths are almost equal [2.087 (3) and 2.099 (3) Å] and the Se—C bond length is 1.886 (3) Å. The N—Se—N angle is 159.29 (11)°. The geometry around the HgII atom in the [Hg(SeCN)4]2− anion is distorted tetrahedral, with Se—Hg—Se angles ranging from 88.78 (3) to 126.64 (2)°. In [Hg(SeCN)4]2−, the Hg—Se bonds are unsymmetrical [2.5972 (4) and 2.7242 (5) Å]. One of the pentyl substituents is disordered over two equivalent conformations, with occupancies of 0.852 (8) and 0.148 (8).
CCDC reference: 1839609
1. Chemical context
Over the past two decades, organochalcogen chemistry has gained the attention of synthetic chemists because of its promising utility in biomimetic chemistry (Mugesh & Singh, 2000; Zhao et al., 2012; Bhuyan & Mugesh, 2012), synthetic organic chemistry (Back 1999; Singh & Wirth, 2012; Chivers & Laitinen, 2015) and material science (Manjare et al., 2014; Kremer et al., 2015). The first stable selenenium cation complex, [2,6-(Me2NCH2)2C6H3Se]+[PF6]−, was isolated while attempting the synthesis of the respective oxides from the reaction of 2,6-bis[(dimethylamino)methyl]phenyl methyl selenide with t-BuOCl (Fujihara et al., 1995). In the literature, examples of arylselenenium(II) cations are limited to a basic scaffold, the [2,6-bis(dimethylaminomethyl)phenyl]selenenium moiety, which is stabilized by different counter-anions [Cl−, Br−, I− (Pop et al., 2014) and HF2− (Poleschner & Seppelt, 2004)].
Our group has been active in the area of synthesis and isolation of novel, unstable arylchalcogen derivatives featuring intramolecular interactions (E⋯D; E = S, Se, Te and D = N, O) between chalcogen heteroatoms by using either one or two coordinating groups (Zade et al., 2004a,b; Selvakumar et al., 2011a,b,c,d; Singh et al., 2011; Prasad et al., 2016). Recently, and for the first time, we have shown the use of the bis-benzimidazole group to isolate an organometallic derivative of a non-transition metal where 1,3-bis(N-substituted benzimidazol-2′-yl)benzene has been used as a pincer ligand with chalcogens (Rani et al., 2018a).
As far as the synthesis of transition metal complexes with the bis-benzimidazole group is concerned, there are several reports in the literature for platinum(II) pincer complexes with similar kinds of scaffolds. Some of these were investigated for their et al., 2014; Dorazco-González, 2014; Chan et al., 2016). Recently, we also reported some palladium(II) pincer complexes with a 1,3-bis(N-substituted benzimidazol-2′-yl)benzene-based ligand. In all the cases, we found that the transition metal complexes were quite stable and in no case was observed (Rani et al., 2018b).
properties (WangIn an attempt to synthesize {4-(tert-butyl)-2,6-bis(1-pentyl-1H-benzo[d]imidazol-2-yl)phenyl}(selenocyanato)mercury (3), [4-tert-butyl-2,6-bis(1-pentyl-1H-benzimidazol-2-yl)phenyl]mercury(II) chloride (1) was reacted with potassium selenocyanate in 1,4-dioxane under reflux conditions. It was observed that, instead of the formation of the desired compound, the reaction leads to the isolation of an arylselenenium(II) cation via (Scheme 1). The procedure for the synthesis of complex 1 will be reported elsewhere. A plausible mechanism for the formation of complex 2 is shown in Scheme 2. Organomercury complex 1 reacts with potassium selenocyanate to form the desired product 3 with potassium chloride as a by-product. However, if complex II is unstable, mercury may be eliminated in elemental form via a pathway to form intermediate III. Strong secondary bonding interactions between Se⋯N atoms may facilitate and the formation of an arylselenenium cation with CN− as the counter-anion IV. In the presence of a polar protic solvent, there is the possibility of decomposition of organomercury complex 1 to give the free ligand along with HgCl2 and Hg(OMe)2 as by-products.
HgCl2 reacts with an excess of KSeCN to form K2[Hg(SeCN)4] (Space & Armeanu, 1930). Two selenenium cations can then associate with the [Hg(SeCN)4]2− anion to form complex 2. Since we only used one equivalent of potassium selenocyanate for the reaction, the product was obtained in low yield (11%).
2. Structural commentary
The title compound, 2, crystallizes in the monoclinic C2/c. The contains a selenenium cation along with half of a [Hg(SeCN)4]2− anion with the Hg atom located on a crystallographic twofold axis (Fig. 1). In the cation, the coordination geometry around Se is T-shaped with each Se atom bonded to the central carbon atom of the aromatic ring and intramolecularly coordinated to the two N atoms. This coordination gives rise to a heptacyclic framework. The tetracyanoselenomercurate anion [Hg(SeCN)4]2− is sandwiched between two arylselenenium cationic units. The observed Se—C bond length is 1.886 (3) Å, which is comparable with that found for a NCN pincer-based selenenium cation [2,6-(Me2NCH2)2C6H3Se]+[PF6]− (1.874 Å; Furukawa et al., 1995), and an OCN pincer-based selenenium cation [2-NO2,6-(C6H5N=CH)C6H3Se]+[Br3]− (1.84 Å). The Se3—N1 and Se3—N2 bond lengths are almost equal [2.087 (3) and 2.099 (3) Å]. The Se—N distances are shorter than the sum of the van der Waals radii for Se and N [Σrvdw(Se,N) 3.45 Å] and longer than the covalent radii [Σrcov(Se,N) 1.91 Å] (Bondi, 1964). This implies stronger intramolecular Se⋯N interactions in the selenenium cation. The N1—Se3—N2 bond angle is found to be 159.29 (11)°. In related molecules (Rani et al., 2017a,b,c), in the absence of coordinated Hg or Se atoms, the benzimidazole arms are twisted significantly out of the plane of the central phenyl ring. However, in the present structure, as a result of the interaction with Se, the two benzimidazole arms are almost in the plane of the central phenyl ring [dihedral angles of 3.10 (16) and 7.18 (19)°]. The Se atom is displaced by 0.116 (4) Å from the plane of the central phenyl ring. The atoms involved in the chelating system (N2, C11, C6, C1, C2, C11A, N1) form a plane (r.m.s deviation for fitted atoms of 0.0182 Å) with the Se in this plane [deviation from the plane of 0.011 (2) Å].
In the anion, the mercury atom is coordinated by four selenocyanate anions (two are crystallographically unique) and the geometry around the mercury atom is distorted tetrahedral with Se—Hg—Se angles ranging from 88.78 (3) to 126.64 (2)°. The tetracyanoselenomercurate anion [Hg(SeCN)4]2− acts as a bridging moiety between two selenenium cationic units. The Se3⋯Se2(−x, −y, 1 − z) distance is 4.189 (2) Å and the C1—Se3⋯Se2(−x, −y, 1 − z) angle is 163.40 (9)°, which indicates that there is a weak secondary interaction between the two different kinds of Se atoms in the cation and anion (Se3 and Se2). In the [Hg(SeCN)4]2− anion, two sets of Hg—Se bonds exist. One set is shorter [2.5972 (4) Å] and the other set is longer [2.7242 (5) Å]. The Hg–SeCN moieties are not linear, with Hg—Se—C angles of 101.31 (14) and 101.43 (11)°.
3. Supramolecular features
In the crystal, the molecules are arranged in a parallel fashion along the b-axis direction as shown in Fig. 2. These parallel units are stacked together by C18—H18A⋯N1S and C18A—H18C⋯N2S interactions (numerical details are given in Table 1) and π–π stacking interactions between the benzimidazole rings (centroid–centroid distances = 3.535 Å).
4. Database survey
There are no structural reports in the literature on a [phenylenebis(benzimidazole)]selenenium cation. However, there have been several reports of structures containing [Hg(SeCN)x]2− moieties [CICLOP, Brodersen et al. 1984; LENHES, Li et al., 2006a; LENHES01, Sun et al., 2005; MURQOH, Li et al., 2006b; PUMVAU, Kushch, et al., 1998; WUYGUU, Sun et al., 2013; YIHKUV, Shibaeva et al. 1994; YIHKUV01, Shibaeva et al. 1997]
5. Synthesis and crystallization
To a solution of 1 (0.2 g, 0.269 mmol) in 1,4-dioxane (30 ml) was added potassium selenocyanate (0.039 g, 0.270 mmol) dissolved in MeOH. The reaction mixture was stirred for 6 h under a nitrogen atmosphere and refluxed. The reaction mixture was filtered and the precipitate was washed with dioxane. Colourless prism-shaped crystals of 2 were obtained by layering a MeOH solution with diethyl ether at room temperature.
Yield 11% (0.058 g, 0.036 mmol); m. p. turned blackish after 423 K was reached. FT–IR (KBr) (cm−1): 3059 (w), 2957 (s), 2931 (s), 2869 (s), 2124 (s, needle-like, C≡N), 1614 (m), 1464 (s), 1458 (s), 1440 (s), 1330 (w), 1288 (w), 1273 (w), 1154 (w), 1137 (w), 1011 (w), 892 (w), 746 (s). ESI–MS: m/z calculated for C34H41N4Se: 585.2496. Found: 585.2552.
6. Refinement
Crystal data, data collection and structure . The H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H distances ranging from 0.95 to 0.99 Å. Uiso(H) = xUeq(C), where x = 1.5 for methyl H atoms and 1.2 for all other C-bound H atoms. One of the pentyl substituents is disordered with an occupancy ratio of 0.852 (8):0.148 (8). It was refined as two equivalent conformations using SAME and SIMU instructions (SAME 0.01 and SIMU 0.01).
details are summarized in Table 2Supporting information
CCDC reference: 1839609
https://doi.org/10.1107/S2056989018006394/zl2726sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018006394/zl2726Isup2.hkl
Data collection: APEX2 (Bruker, 2005); cell
SAINT (Bruker, 2002); data reduction: SAINT, SADABS and XPREP (Bruker, 2002); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).(C34H41N4Se)2[Hg(CNSe)4] | F(000) = 3528 |
Mr = 1789.84 | Dx = 1.698 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 12.7788 (15) Å | Cell parameters from 9623 reflections |
b = 27.276 (3) Å | θ = 2.4–28.8° |
c = 20.180 (3) Å | µ = 5.37 mm−1 |
β = 95.591 (2)° | T = 100 K |
V = 7000.4 (15) Å3 | Prism, colorless |
Z = 4 | 0.24 × 0.23 × 0.19 mm |
Bruker APEXII CCD diffractometer | 8196 reflections with I > 2σ(I) |
ω scans | Rint = 0.095 |
Absorption correction: multi-scan (SADABS; Bruker, 2002) | θmax = 28.7°, θmin = 3.2° |
Tmin = 0.267, Tmax = 0.336 | h = −17→17 |
46553 measured reflections | k = −36→36 |
9030 independent reflections | l = −26→27 |
Refinement on F2 | 147 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.040 | H-atom parameters constrained |
wR(F2) = 0.097 | w = 1/[σ2(Fo2) + (0.0353P)2 + 29.0826P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.002 |
9030 reflections | Δρmax = 1.97 e Å−3 |
463 parameters | Δρmin = −2.10 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Hg1 | 0.500000 | 0.26306 (2) | 0.750000 | 0.02668 (6) | |
Se1 | 0.34755 (3) | 0.22031 (2) | 0.67740 (2) | 0.03961 (11) | |
Se2 | 0.60087 (4) | 0.33443 (2) | 0.68639 (3) | 0.06039 (16) | |
C1S | 0.3559 (3) | 0.15796 (14) | 0.7105 (2) | 0.0329 (8) | |
N1S | 0.3565 (3) | 0.11791 (14) | 0.7281 (2) | 0.0530 (11) | |
C2S | 0.5511 (4) | 0.32426 (16) | 0.6025 (3) | 0.0527 (14) | |
N2S | 0.5206 (5) | 0.3180 (2) | 0.5468 (3) | 0.0818 (18) | |
Se3 | 0.35746 (3) | 0.55143 (2) | 0.44746 (2) | 0.02529 (8) | |
C1 | 0.3163 (3) | 0.49229 (12) | 0.48583 (17) | 0.0246 (7) | |
N1 | 0.4520 (2) | 0.50194 (11) | 0.40157 (15) | 0.0268 (6) | |
N2 | 0.2460 (2) | 0.57747 (10) | 0.50876 (15) | 0.0266 (6) | |
C2 | 0.3607 (3) | 0.44802 (12) | 0.46652 (17) | 0.0253 (7) | |
N3 | 0.1405 (2) | 0.56201 (11) | 0.58694 (16) | 0.0266 (6) | |
C3 | 0.3253 (3) | 0.40392 (13) | 0.49273 (18) | 0.0274 (7) | |
H3 | 0.355121 | 0.373771 | 0.480319 | 0.033* | |
N4 | 0.5031 (2) | 0.42500 (11) | 0.39049 (15) | 0.0258 (6) | |
C4 | 0.2474 (3) | 0.40351 (12) | 0.53656 (18) | 0.0268 (7) | |
C5 | 0.2061 (3) | 0.44847 (12) | 0.55594 (18) | 0.0264 (7) | |
H5 | 0.153811 | 0.448618 | 0.586325 | 0.032* | |
C6 | 0.2404 (3) | 0.49287 (12) | 0.53141 (17) | 0.0244 (7) | |
C7 | 0.2071 (3) | 0.35552 (12) | 0.56442 (19) | 0.0289 (7) | |
C8 | 0.2489 (4) | 0.35045 (15) | 0.6371 (2) | 0.0415 (10) | |
H8A | 0.220563 | 0.320554 | 0.655474 | 0.062* | |
H8B | 0.227426 | 0.378964 | 0.661992 | 0.062* | |
H8C | 0.325862 | 0.348547 | 0.640679 | 0.062* | |
C9 | 0.2425 (5) | 0.31052 (15) | 0.5271 (3) | 0.0593 (15) | |
H9A | 0.319392 | 0.310115 | 0.528966 | 0.089* | |
H9B | 0.212572 | 0.311945 | 0.480534 | 0.089* | |
H9C | 0.218126 | 0.280689 | 0.547898 | 0.089* | |
C10 | 0.0862 (4) | 0.35594 (18) | 0.5592 (4) | 0.0672 (18) | |
H10A | 0.060786 | 0.324118 | 0.573535 | 0.101* | |
H10B | 0.058519 | 0.362129 | 0.513002 | 0.101* | |
H10C | 0.062382 | 0.381828 | 0.587900 | 0.101* | |
C11 | 0.2057 (3) | 0.54262 (12) | 0.54487 (18) | 0.0253 (7) | |
C12 | 0.1378 (3) | 0.61244 (13) | 0.57613 (19) | 0.0276 (7) | |
C13 | 0.0821 (3) | 0.64909 (14) | 0.6057 (2) | 0.0352 (8) | |
H13 | 0.038815 | 0.642379 | 0.640317 | 0.042* | |
C14 | 0.0942 (3) | 0.69620 (15) | 0.5809 (2) | 0.0417 (10) | |
H14 | 0.057845 | 0.722574 | 0.599213 | 0.050* | |
C15 | 0.1576 (3) | 0.70585 (14) | 0.5305 (2) | 0.0389 (9) | |
H15 | 0.162170 | 0.738592 | 0.514960 | 0.047* | |
C16 | 0.2146 (3) | 0.66971 (13) | 0.5018 (2) | 0.0325 (8) | |
H16 | 0.258323 | 0.676713 | 0.467486 | 0.039* | |
C17 | 0.2036 (3) | 0.62215 (12) | 0.52651 (19) | 0.0266 (7) | |
C18 | 0.0780 (3) | 0.53739 (13) | 0.63476 (18) | 0.0275 (7) | |
H18A | 0.078020 | 0.557671 | 0.675445 | 0.033* | |
H18B | 0.110525 | 0.505402 | 0.647584 | 0.033* | |
C19 | −0.0355 (3) | 0.52925 (14) | 0.60471 (18) | 0.0317 (8) | |
H19C | −0.069910 | 0.561405 | 0.595627 | 0.038* | |
H19D | −0.035131 | 0.511632 | 0.561841 | 0.038* | |
C20 | −0.0988 (3) | 0.49959 (14) | 0.65154 (19) | 0.0336 (8) | |
H20C | −0.084659 | 0.512629 | 0.697324 | 0.040* | |
H20D | −0.174743 | 0.503795 | 0.637724 | 0.040* | |
C21 | −0.0724 (3) | 0.44565 (15) | 0.6518 (2) | 0.0376 (9) | |
H21C | 0.003550 | 0.441622 | 0.665720 | 0.045* | |
H21D | −0.085951 | 0.432855 | 0.605869 | 0.045* | |
C22 | −0.1347 (3) | 0.41508 (18) | 0.6977 (2) | 0.0482 (11) | |
H22D | −0.125713 | 0.428832 | 0.742783 | 0.072* | |
H22E | −0.108927 | 0.381218 | 0.698705 | 0.072* | |
H22F | −0.209348 | 0.415560 | 0.681153 | 0.072* | |
C11A | 0.4382 (3) | 0.45556 (13) | 0.42009 (17) | 0.0257 (7) | |
C12A | 0.5610 (3) | 0.45354 (14) | 0.35008 (18) | 0.0276 (7) | |
C13A | 0.6369 (3) | 0.44094 (15) | 0.30797 (18) | 0.0303 (8) | |
H13A | 0.658408 | 0.407932 | 0.302826 | 0.036* | |
C14A | 0.6792 (3) | 0.47904 (16) | 0.2740 (2) | 0.0360 (9) | |
H14A | 0.731050 | 0.472026 | 0.244678 | 0.043* | |
C15A | 0.6474 (3) | 0.52805 (16) | 0.2819 (2) | 0.0355 (9) | |
H15A | 0.678307 | 0.553194 | 0.257699 | 0.043* | |
C16A | 0.5729 (3) | 0.54032 (15) | 0.3238 (2) | 0.0325 (8) | |
H16A | 0.552318 | 0.573426 | 0.329275 | 0.039* | |
C17A | 0.5288 (3) | 0.50248 (13) | 0.35761 (18) | 0.0278 (7) | |
C18A | 0.5203 (10) | 0.3728 (3) | 0.3997 (3) | 0.0244 (14) | 0.852 (8) |
H18C | 0.510020 | 0.364134 | 0.446248 | 0.029* | 0.852 (8) |
H18D | 0.594009 | 0.365117 | 0.392479 | 0.029* | 0.852 (8) |
C19A | 0.4470 (8) | 0.3412 (3) | 0.3527 (5) | 0.0277 (9) | 0.852 (8) |
H19A | 0.450494 | 0.352300 | 0.306284 | 0.033* | 0.852 (8) |
H19B | 0.373681 | 0.345283 | 0.363775 | 0.033* | 0.852 (8) |
C20A | 0.4781 (4) | 0.2871 (3) | 0.3588 (4) | 0.0309 (12) | 0.852 (8) |
H20A | 0.478389 | 0.276876 | 0.405842 | 0.037* | 0.852 (8) |
H20B | 0.424614 | 0.267235 | 0.332065 | 0.037* | 0.852 (8) |
C21A | 0.5855 (4) | 0.27671 (18) | 0.3354 (3) | 0.0380 (11) | 0.852 (8) |
H21A | 0.640296 | 0.291481 | 0.367370 | 0.046* | 0.852 (8) |
H21B | 0.589821 | 0.292579 | 0.291671 | 0.046* | 0.852 (8) |
C22A | 0.6079 (5) | 0.2223 (2) | 0.3291 (3) | 0.0549 (16) | 0.852 (8) |
H22A | 0.604420 | 0.206332 | 0.372400 | 0.082* | 0.852 (8) |
H22B | 0.678187 | 0.217741 | 0.314583 | 0.082* | 0.852 (8) |
H22C | 0.555409 | 0.207595 | 0.296356 | 0.082* | 0.852 (8) |
C18B | 0.517 (6) | 0.3685 (19) | 0.411 (3) | 0.025 (3) | 0.148 (8) |
H18E | 0.592583 | 0.359205 | 0.414384 | 0.031* | 0.148 (8) |
H18F | 0.490086 | 0.362428 | 0.454562 | 0.031* | 0.148 (8) |
C19B | 0.455 (5) | 0.3390 (17) | 0.356 (3) | 0.028 (3) | 0.148 (8) |
H19E | 0.379655 | 0.348402 | 0.354008 | 0.034* | 0.148 (8) |
H19F | 0.480373 | 0.347037 | 0.312626 | 0.034* | 0.148 (8) |
C20B | 0.4652 (19) | 0.2838 (16) | 0.368 (2) | 0.031 (3) | 0.148 (8) |
H20E | 0.431322 | 0.275516 | 0.409056 | 0.037* | 0.148 (8) |
H20F | 0.426915 | 0.266244 | 0.330620 | 0.037* | 0.148 (8) |
C21B | 0.5777 (19) | 0.2659 (10) | 0.3768 (12) | 0.036 (3) | 0.148 (8) |
H21E | 0.577496 | 0.230268 | 0.386154 | 0.043* | 0.148 (8) |
H21F | 0.614890 | 0.282350 | 0.415953 | 0.043* | 0.148 (8) |
C22B | 0.639 (2) | 0.2747 (12) | 0.3169 (13) | 0.042 (5) | 0.148 (8) |
H22G | 0.700518 | 0.253336 | 0.319720 | 0.064* | 0.148 (8) |
H22H | 0.661217 | 0.309070 | 0.316499 | 0.064* | 0.148 (8) |
H22I | 0.593579 | 0.267534 | 0.275995 | 0.064* | 0.148 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Hg1 | 0.02158 (9) | 0.01884 (9) | 0.03905 (12) | 0.000 | −0.00001 (7) | 0.000 |
Se1 | 0.03104 (19) | 0.02352 (18) | 0.0598 (3) | −0.00375 (14) | −0.01827 (18) | 0.00848 (17) |
Se2 | 0.0556 (3) | 0.0361 (2) | 0.0907 (4) | −0.0220 (2) | 0.0137 (3) | 0.0094 (3) |
C1S | 0.0283 (17) | 0.0288 (18) | 0.040 (2) | −0.0052 (14) | −0.0040 (15) | 0.0027 (16) |
N1S | 0.061 (3) | 0.0317 (19) | 0.061 (3) | −0.0115 (17) | −0.018 (2) | 0.0078 (18) |
C2S | 0.053 (3) | 0.031 (2) | 0.080 (4) | 0.0182 (19) | 0.033 (3) | 0.033 (2) |
N2S | 0.110 (4) | 0.076 (3) | 0.066 (3) | 0.052 (3) | 0.038 (3) | 0.045 (3) |
Se3 | 0.02258 (15) | 0.02116 (16) | 0.03000 (18) | −0.00393 (12) | −0.00818 (13) | 0.00354 (13) |
C1 | 0.0241 (15) | 0.0218 (15) | 0.0252 (16) | −0.0042 (12) | −0.0106 (13) | 0.0045 (13) |
N1 | 0.0242 (13) | 0.0267 (14) | 0.0279 (15) | −0.0031 (11) | −0.0055 (11) | 0.0037 (12) |
N2 | 0.0218 (13) | 0.0233 (13) | 0.0332 (16) | −0.0014 (11) | −0.0054 (11) | 0.0018 (12) |
C2 | 0.0263 (16) | 0.0235 (16) | 0.0239 (16) | −0.0023 (13) | −0.0086 (13) | 0.0013 (13) |
N3 | 0.0264 (14) | 0.0214 (13) | 0.0309 (15) | −0.0033 (11) | −0.0034 (11) | 0.0008 (12) |
C3 | 0.0312 (17) | 0.0218 (15) | 0.0278 (17) | −0.0018 (13) | −0.0048 (14) | −0.0008 (13) |
N4 | 0.0255 (13) | 0.0251 (14) | 0.0250 (14) | −0.0026 (11) | −0.0060 (11) | −0.0002 (11) |
C4 | 0.0305 (17) | 0.0209 (15) | 0.0270 (17) | −0.0064 (13) | −0.0068 (13) | 0.0006 (13) |
C5 | 0.0267 (16) | 0.0242 (16) | 0.0265 (17) | −0.0043 (13) | −0.0062 (13) | −0.0007 (13) |
C6 | 0.0232 (15) | 0.0226 (15) | 0.0250 (16) | −0.0017 (12) | −0.0106 (12) | 0.0028 (13) |
C7 | 0.0363 (18) | 0.0184 (15) | 0.0319 (18) | −0.0026 (13) | 0.0025 (14) | −0.0024 (14) |
C8 | 0.062 (3) | 0.0283 (19) | 0.034 (2) | −0.0092 (18) | 0.0025 (19) | 0.0041 (16) |
C9 | 0.108 (4) | 0.0217 (19) | 0.054 (3) | −0.021 (2) | 0.037 (3) | −0.0152 (19) |
C10 | 0.036 (2) | 0.039 (2) | 0.123 (5) | −0.015 (2) | −0.010 (3) | 0.028 (3) |
C11 | 0.0218 (15) | 0.0236 (15) | 0.0282 (17) | −0.0026 (12) | −0.0103 (13) | −0.0001 (13) |
C12 | 0.0273 (16) | 0.0226 (16) | 0.0309 (18) | −0.0013 (13) | −0.0067 (13) | 0.0013 (14) |
C13 | 0.040 (2) | 0.0285 (18) | 0.038 (2) | −0.0022 (16) | 0.0052 (16) | 0.0005 (16) |
C14 | 0.045 (2) | 0.0262 (18) | 0.055 (3) | 0.0020 (17) | 0.0071 (19) | −0.0025 (18) |
C15 | 0.038 (2) | 0.0216 (17) | 0.057 (3) | −0.0031 (15) | 0.0064 (19) | 0.0032 (17) |
C16 | 0.0283 (17) | 0.0247 (17) | 0.044 (2) | −0.0057 (14) | −0.0006 (15) | 0.0043 (16) |
C17 | 0.0242 (15) | 0.0202 (15) | 0.0336 (18) | −0.0017 (12) | −0.0062 (13) | −0.0014 (13) |
C18 | 0.0272 (16) | 0.0271 (17) | 0.0264 (17) | −0.0041 (13) | −0.0066 (13) | 0.0012 (14) |
C19 | 0.0244 (16) | 0.039 (2) | 0.0294 (18) | −0.0047 (14) | −0.0076 (14) | 0.0019 (16) |
C20 | 0.0272 (17) | 0.043 (2) | 0.0294 (18) | −0.0078 (15) | −0.0048 (14) | −0.0012 (16) |
C21 | 0.0316 (19) | 0.043 (2) | 0.037 (2) | −0.0084 (16) | −0.0023 (16) | 0.0050 (17) |
C22 | 0.039 (2) | 0.054 (3) | 0.051 (3) | −0.012 (2) | 0.0008 (19) | 0.013 (2) |
C11A | 0.0243 (15) | 0.0275 (16) | 0.0236 (16) | −0.0007 (13) | −0.0061 (12) | 0.0011 (13) |
C12A | 0.0242 (15) | 0.0329 (18) | 0.0234 (16) | −0.0031 (13) | −0.0100 (13) | 0.0001 (14) |
C13A | 0.0249 (16) | 0.039 (2) | 0.0251 (17) | 0.0003 (14) | −0.0074 (13) | 0.0012 (15) |
C14A | 0.0230 (16) | 0.053 (2) | 0.0300 (19) | −0.0047 (16) | −0.0060 (14) | 0.0019 (17) |
C15A | 0.0292 (18) | 0.044 (2) | 0.0311 (19) | −0.0082 (16) | −0.0074 (15) | 0.0083 (17) |
C16A | 0.0280 (17) | 0.0344 (19) | 0.0331 (19) | −0.0037 (15) | −0.0071 (14) | 0.0056 (16) |
C17A | 0.0234 (15) | 0.0304 (17) | 0.0274 (17) | −0.0021 (13) | −0.0084 (13) | 0.0027 (14) |
C18A | 0.026 (2) | 0.024 (2) | 0.022 (3) | 0.0008 (18) | −0.005 (3) | 0.004 (2) |
C19A | 0.026 (2) | 0.028 (2) | 0.028 (2) | 0.0015 (16) | −0.0036 (17) | −0.0035 (18) |
C20A | 0.034 (2) | 0.027 (2) | 0.030 (3) | −0.0015 (18) | −0.0016 (18) | −0.0035 (19) |
C21A | 0.043 (3) | 0.037 (2) | 0.034 (2) | 0.013 (2) | 0.002 (2) | −0.001 (2) |
C22A | 0.069 (4) | 0.049 (3) | 0.047 (3) | 0.024 (3) | 0.004 (3) | −0.005 (3) |
C18B | 0.026 (6) | 0.024 (6) | 0.026 (6) | 0.003 (6) | −0.001 (6) | 0.000 (6) |
C19B | 0.028 (5) | 0.028 (5) | 0.027 (5) | 0.002 (5) | −0.004 (5) | −0.002 (5) |
C20B | 0.033 (5) | 0.030 (5) | 0.029 (5) | 0.005 (5) | 0.000 (5) | −0.004 (5) |
C21B | 0.039 (5) | 0.034 (5) | 0.033 (5) | 0.005 (5) | −0.002 (5) | −0.004 (5) |
C22B | 0.042 (10) | 0.048 (10) | 0.037 (10) | 0.011 (9) | 0.003 (9) | −0.008 (9) |
Hg1—Se1 | 2.5972 (4) | C18—C19 | 1.533 (4) |
Hg1—Se1i | 2.5972 (4) | C18—H18A | 0.9900 |
Hg1—Se2 | 2.7242 (5) | C18—H18B | 0.9900 |
Hg1—Se2i | 2.7242 (5) | C19—C20 | 1.533 (5) |
Se1—C1S | 1.826 (4) | C19—H19C | 0.9900 |
Se2—C2S | 1.771 (7) | C19—H19D | 0.9900 |
C1S—N1S | 1.149 (5) | C20—C21 | 1.509 (5) |
C2S—N2S | 1.165 (8) | C20—H20C | 0.9900 |
Se3—C1 | 1.886 (3) | C20—H20D | 0.9900 |
Se3—N1 | 2.087 (3) | C21—C22 | 1.527 (5) |
Se3—N2 | 2.099 (3) | C21—H21C | 0.9900 |
C1—C6 | 1.400 (5) | C21—H21D | 0.9900 |
C1—C2 | 1.405 (5) | C22—H22D | 0.9800 |
N1—C11A | 1.336 (4) | C22—H22E | 0.9800 |
N1—C17A | 1.386 (5) | C22—H22F | 0.9800 |
N2—C11 | 1.332 (5) | C12A—C13A | 1.393 (5) |
N2—C17 | 1.395 (4) | C12A—C17A | 1.410 (5) |
C2—C3 | 1.406 (5) | C13A—C14A | 1.384 (6) |
C2—C11A | 1.443 (5) | C13A—H13A | 0.9500 |
N3—C11 | 1.353 (5) | C14A—C15A | 1.410 (6) |
N3—C12 | 1.393 (4) | C14A—H14A | 0.9500 |
N3—C18 | 1.473 (5) | C15A—C16A | 1.375 (6) |
C3—C4 | 1.394 (5) | C15A—H15A | 0.9500 |
C3—H3 | 0.9500 | C16A—C17A | 1.387 (5) |
N4—C11A | 1.355 (5) | C16A—H16A | 0.9500 |
N4—C12A | 1.392 (5) | C18A—C19A | 1.530 (5) |
N4—C18A | 1.450 (9) | C18A—H18C | 0.9900 |
N4—C18B | 1.60 (5) | C18A—H18D | 0.9900 |
C4—C5 | 1.406 (5) | C19A—C20A | 1.530 (5) |
C4—C7 | 1.534 (5) | C19A—H19A | 0.9900 |
C5—C6 | 1.395 (5) | C19A—H19B | 0.9900 |
C5—H5 | 0.9500 | C20A—C21A | 1.520 (6) |
C6—C11 | 1.461 (5) | C20A—H20A | 0.9900 |
C7—C8 | 1.517 (6) | C20A—H20B | 0.9900 |
C7—C9 | 1.531 (5) | C21A—C22A | 1.520 (6) |
C7—C10 | 1.537 (6) | C21A—H21A | 0.9900 |
C8—H8A | 0.9800 | C21A—H21B | 0.9900 |
C8—H8B | 0.9800 | C22A—H22A | 0.9800 |
C8—H8C | 0.9800 | C22A—H22B | 0.9800 |
C9—H9A | 0.9800 | C22A—H22C | 0.9800 |
C9—H9B | 0.9800 | C18B—C19B | 1.531 (9) |
C9—H9C | 0.9800 | C18B—H18E | 0.9900 |
C10—H10A | 0.9800 | C18B—H18F | 0.9900 |
C10—H10B | 0.9800 | C19B—C20B | 1.529 (9) |
C10—H10C | 0.9800 | C19B—H19E | 0.9900 |
C12—C13 | 1.394 (5) | C19B—H19F | 0.9900 |
C12—C17 | 1.394 (5) | C20B—C21B | 1.512 (10) |
C13—C14 | 1.393 (6) | C20B—H20E | 0.9900 |
C13—H13 | 0.9500 | C20B—H20F | 0.9900 |
C14—C15 | 1.387 (6) | C21B—C22B | 1.519 (10) |
C14—H14 | 0.9500 | C21B—H21E | 0.9900 |
C15—C16 | 1.386 (6) | C21B—H21F | 0.9900 |
C15—H15 | 0.9500 | C22B—H22G | 0.9800 |
C16—C17 | 1.402 (5) | C22B—H22H | 0.9800 |
C16—H16 | 0.9500 | C22B—H22I | 0.9800 |
Se1—Hg1—Se1i | 126.637 (19) | H19C—C19—H19D | 108.0 |
Se1—Hg1—Se2 | 114.732 (19) | C21—C20—C19 | 112.7 (3) |
Se1i—Hg1—Se2 | 102.907 (18) | C21—C20—H20C | 109.1 |
Se1—Hg1—Se2i | 102.908 (18) | C19—C20—H20C | 109.1 |
Se1i—Hg1—Se2i | 114.732 (19) | C21—C20—H20D | 109.1 |
Se2—Hg1—Se2i | 88.78 (3) | C19—C20—H20D | 109.1 |
C1S—Se1—Hg1 | 101.43 (11) | H20C—C20—H20D | 107.8 |
C2S—Se2—Hg1 | 101.31 (14) | C20—C21—C22 | 113.9 (4) |
N1S—C1S—Se1 | 175.7 (4) | C20—C21—H21C | 108.8 |
N2S—C2S—Se2 | 178.3 (5) | C22—C21—H21C | 108.8 |
C1—Se3—N1 | 79.95 (14) | C20—C21—H21D | 108.8 |
C1—Se3—N2 | 79.34 (14) | C22—C21—H21D | 108.8 |
N1—Se3—N2 | 159.29 (11) | H21C—C21—H21D | 107.7 |
C6—C1—C2 | 121.1 (3) | C21—C22—H22D | 109.5 |
C6—C1—Se3 | 119.9 (3) | C21—C22—H22E | 109.5 |
C2—C1—Se3 | 119.0 (3) | H22D—C22—H22E | 109.5 |
C11A—N1—C17A | 108.1 (3) | C21—C22—H22F | 109.5 |
C11A—N1—Se3 | 113.0 (2) | H22D—C22—H22F | 109.5 |
C17A—N1—Se3 | 138.9 (2) | H22E—C22—H22F | 109.5 |
C11—N2—C17 | 107.6 (3) | N1—C11A—N4 | 110.9 (3) |
C11—N2—Se3 | 113.7 (2) | N1—C11A—C2 | 115.8 (3) |
C17—N2—Se3 | 138.6 (2) | N4—C11A—C2 | 133.4 (3) |
C1—C2—C3 | 118.5 (3) | N4—C12A—C13A | 131.4 (4) |
C1—C2—C11A | 112.3 (3) | N4—C12A—C17A | 106.8 (3) |
C3—C2—C11A | 129.2 (3) | C13A—C12A—C17A | 121.8 (4) |
C11—N3—C12 | 107.2 (3) | C14A—C13A—C12A | 116.5 (4) |
C11—N3—C18 | 129.7 (3) | C14A—C13A—H13A | 121.8 |
C12—N3—C18 | 123.1 (3) | C12A—C13A—H13A | 121.8 |
C4—C3—C2 | 121.4 (3) | C13A—C14A—C15A | 121.7 (4) |
C4—C3—H3 | 119.3 | C13A—C14A—H14A | 119.2 |
C2—C3—H3 | 119.3 | C15A—C14A—H14A | 119.2 |
C11A—N4—C12A | 107.3 (3) | C16A—C15A—C14A | 121.6 (4) |
C11A—N4—C18A | 129.7 (5) | C16A—C15A—H15A | 119.2 |
C12A—N4—C18A | 122.8 (5) | C14A—C15A—H15A | 119.2 |
C11A—N4—C18B | 122 (3) | C15A—C16A—C17A | 117.4 (4) |
C12A—N4—C18B | 129 (3) | C15A—C16A—H16A | 121.3 |
C3—C4—C5 | 118.7 (3) | C17A—C16A—H16A | 121.3 |
C3—C4—C7 | 121.7 (3) | N1—C17A—C16A | 132.1 (4) |
C5—C4—C7 | 119.6 (3) | N1—C17A—C12A | 107.0 (3) |
C6—C5—C4 | 121.3 (4) | C16A—C17A—C12A | 121.0 (4) |
C6—C5—H5 | 119.4 | N4—C18A—C19A | 113.4 (6) |
C4—C5—H5 | 119.4 | N4—C18A—H18C | 108.9 |
C5—C6—C1 | 119.0 (3) | C19A—C18A—H18C | 108.9 |
C5—C6—C11 | 129.0 (3) | N4—C18A—H18D | 108.9 |
C1—C6—C11 | 112.0 (3) | C19A—C18A—H18D | 108.9 |
C8—C7—C9 | 108.0 (4) | H18C—C18A—H18D | 107.7 |
C8—C7—C4 | 109.4 (3) | C18A—C19A—C20A | 110.8 (4) |
C9—C7—C4 | 112.2 (3) | C18A—C19A—H19A | 109.5 |
C8—C7—C10 | 108.9 (4) | C20A—C19A—H19A | 109.5 |
C9—C7—C10 | 108.4 (4) | C18A—C19A—H19B | 109.5 |
C4—C7—C10 | 109.9 (3) | C20A—C19A—H19B | 109.5 |
C7—C8—H8A | 109.5 | H19A—C19A—H19B | 108.1 |
C7—C8—H8B | 109.5 | C21A—C20A—C19A | 113.0 (5) |
H8A—C8—H8B | 109.5 | C21A—C20A—H20A | 109.0 |
C7—C8—H8C | 109.5 | C19A—C20A—H20A | 109.0 |
H8A—C8—H8C | 109.5 | C21A—C20A—H20B | 109.0 |
H8B—C8—H8C | 109.5 | C19A—C20A—H20B | 109.0 |
C7—C9—H9A | 109.5 | H20A—C20A—H20B | 107.8 |
C7—C9—H9B | 109.5 | C20A—C21A—C22A | 113.0 (5) |
H9A—C9—H9B | 109.5 | C20A—C21A—H21A | 109.0 |
C7—C9—H9C | 109.5 | C22A—C21A—H21A | 109.0 |
H9A—C9—H9C | 109.5 | C20A—C21A—H21B | 109.0 |
H9B—C9—H9C | 109.5 | C22A—C21A—H21B | 109.0 |
C7—C10—H10A | 109.5 | H21A—C21A—H21B | 107.8 |
C7—C10—H10B | 109.5 | C21A—C22A—H22A | 109.5 |
H10A—C10—H10B | 109.5 | C21A—C22A—H22B | 109.5 |
C7—C10—H10C | 109.5 | H22A—C22A—H22B | 109.5 |
H10A—C10—H10C | 109.5 | C21A—C22A—H22C | 109.5 |
H10B—C10—H10C | 109.5 | H22A—C22A—H22C | 109.5 |
N2—C11—N3 | 111.0 (3) | H22B—C22A—H22C | 109.5 |
N2—C11—C6 | 114.9 (3) | C19B—C18B—N4 | 106 (3) |
N3—C11—C6 | 134.1 (3) | C19B—C18B—H18E | 110.5 |
N3—C12—C13 | 130.3 (4) | N4—C18B—H18E | 110.5 |
N3—C12—C17 | 107.0 (3) | C19B—C18B—H18F | 110.5 |
C13—C12—C17 | 122.7 (3) | N4—C18B—H18F | 110.5 |
C14—C13—C12 | 115.4 (4) | H18E—C18B—H18F | 108.7 |
C14—C13—H13 | 122.3 | C20B—C19B—C18B | 111.6 (13) |
C12—C13—H13 | 122.3 | C20B—C19B—H19E | 109.3 |
C15—C14—C13 | 122.1 (4) | C18B—C19B—H19E | 109.3 |
C15—C14—H14 | 118.9 | C20B—C19B—H19F | 109.3 |
C13—C14—H14 | 118.9 | C18B—C19B—H19F | 109.3 |
C16—C15—C14 | 122.7 (4) | H19E—C19B—H19F | 108.0 |
C16—C15—H15 | 118.6 | C21B—C20B—C19B | 113.8 (13) |
C14—C15—H15 | 118.6 | C21B—C20B—H20E | 108.8 |
C15—C16—C17 | 115.7 (4) | C19B—C20B—H20E | 108.8 |
C15—C16—H16 | 122.1 | C21B—C20B—H20F | 108.8 |
C17—C16—H16 | 122.1 | C19B—C20B—H20F | 108.8 |
C12—C17—N2 | 107.2 (3) | H20E—C20B—H20F | 107.7 |
C12—C17—C16 | 121.3 (3) | C20B—C21B—C22B | 114.6 (13) |
N2—C17—C16 | 131.5 (4) | C20B—C21B—H21E | 108.6 |
N3—C18—C19 | 111.1 (3) | C22B—C21B—H21E | 108.6 |
N3—C18—H18A | 109.4 | C20B—C21B—H21F | 108.6 |
C19—C18—H18A | 109.4 | C22B—C21B—H21F | 108.6 |
N3—C18—H18B | 109.4 | H21E—C21B—H21F | 107.6 |
C19—C18—H18B | 109.4 | C21B—C22B—H22G | 109.5 |
H18A—C18—H18B | 108.0 | C21B—C22B—H22H | 109.5 |
C20—C19—C18 | 111.6 (3) | H22G—C22B—H22H | 109.5 |
C20—C19—H19C | 109.3 | C21B—C22B—H22I | 109.5 |
C18—C19—H19C | 109.3 | H22G—C22B—H22I | 109.5 |
C20—C19—H19D | 109.3 | H22H—C22B—H22I | 109.5 |
C18—C19—H19D | 109.3 | ||
N1—Se3—C1—C6 | −179.9 (3) | Se3—N2—C17—C16 | 8.2 (6) |
N2—Se3—C1—C6 | 0.1 (2) | C15—C16—C17—C12 | 1.0 (5) |
N1—Se3—C1—C2 | −1.6 (2) | C15—C16—C17—N2 | 178.2 (4) |
N2—Se3—C1—C2 | 178.3 (3) | C11—N3—C18—C19 | −96.6 (4) |
C6—C1—C2—C3 | 1.5 (5) | C12—N3—C18—C19 | 80.9 (4) |
Se3—C1—C2—C3 | −176.6 (2) | N3—C18—C19—C20 | 174.9 (3) |
C6—C1—C2—C11A | −179.1 (3) | C18—C19—C20—C21 | −76.2 (4) |
Se3—C1—C2—C11A | 2.7 (4) | C19—C20—C21—C22 | −179.7 (3) |
C1—C2—C3—C4 | 0.5 (5) | C17A—N1—C11A—N4 | 0.3 (4) |
C11A—C2—C3—C4 | −178.7 (3) | Se3—N1—C11A—N4 | −178.3 (2) |
C2—C3—C4—C5 | −1.7 (5) | C17A—N1—C11A—C2 | 179.7 (3) |
C2—C3—C4—C7 | 178.9 (3) | Se3—N1—C11A—C2 | 1.1 (4) |
C3—C4—C5—C6 | 1.0 (5) | C12A—N4—C11A—N1 | −0.7 (4) |
C7—C4—C5—C6 | −179.6 (3) | C18A—N4—C11A—N1 | 175.0 (5) |
C4—C5—C6—C1 | 1.0 (5) | C18B—N4—C11A—N1 | 171 (3) |
C4—C5—C6—C11 | 178.9 (3) | C12A—N4—C11A—C2 | −179.9 (3) |
C2—C1—C6—C5 | −2.3 (5) | C18A—N4—C11A—C2 | −4.3 (7) |
Se3—C1—C6—C5 | 175.9 (2) | C18B—N4—C11A—C2 | −9 (3) |
C2—C1—C6—C11 | 179.5 (3) | C1—C2—C11A—N1 | −2.3 (4) |
Se3—C1—C6—C11 | −2.3 (4) | C3—C2—C11A—N1 | 176.9 (3) |
C3—C4—C7—C8 | 106.9 (4) | C1—C2—C11A—N4 | 176.9 (3) |
C5—C4—C7—C8 | −72.5 (4) | C3—C2—C11A—N4 | −3.9 (6) |
C3—C4—C7—C9 | −13.0 (5) | C11A—N4—C12A—C13A | −178.7 (3) |
C5—C4—C7—C9 | 167.7 (4) | C18A—N4—C12A—C13A | 5.3 (6) |
C3—C4—C7—C10 | −133.6 (4) | C18B—N4—C12A—C13A | 11 (3) |
C5—C4—C7—C10 | 47.0 (5) | C11A—N4—C12A—C17A | 0.8 (3) |
C17—N2—C11—N3 | −1.5 (4) | C18A—N4—C12A—C17A | −175.3 (5) |
Se3—N2—C11—N3 | 175.4 (2) | C18B—N4—C12A—C17A | −170 (3) |
C17—N2—C11—C6 | 178.7 (3) | N4—C12A—C13A—C14A | 179.5 (3) |
Se3—N2—C11—C6 | −4.4 (3) | C17A—C12A—C13A—C14A | 0.2 (5) |
C12—N3—C11—N2 | 1.0 (4) | C12A—C13A—C14A—C15A | 0.2 (5) |
C18—N3—C11—N2 | 178.8 (3) | C13A—C14A—C15A—C16A | 0.1 (5) |
C12—N3—C11—C6 | −179.3 (3) | C14A—C15A—C16A—C17A | −0.7 (5) |
C18—N3—C11—C6 | −1.5 (6) | C11A—N1—C17A—C16A | 180.0 (4) |
C5—C6—C11—N2 | −173.6 (3) | Se3—N1—C17A—C16A | −2.0 (6) |
C1—C6—C11—N2 | 4.4 (4) | C11A—N1—C17A—C12A | 0.2 (4) |
C5—C6—C11—N3 | 6.7 (6) | Se3—N1—C17A—C12A | 178.2 (2) |
C1—C6—C11—N3 | −175.3 (3) | C15A—C16A—C17A—N1 | −178.6 (3) |
C11—N3—C12—C13 | 179.1 (4) | C15A—C16A—C17A—C12A | 1.2 (5) |
C18—N3—C12—C13 | 1.1 (6) | N4—C12A—C17A—N1 | −0.6 (3) |
C11—N3—C12—C17 | −0.2 (4) | C13A—C12A—C17A—N1 | 178.9 (3) |
C18—N3—C12—C17 | −178.1 (3) | N4—C12A—C17A—C16A | 179.6 (3) |
N3—C12—C13—C14 | −177.4 (4) | C13A—C12A—C17A—C16A | −0.9 (5) |
C17—C12—C13—C14 | 1.7 (6) | C11A—N4—C18A—C19A | 90.1 (8) |
C12—C13—C14—C15 | −0.2 (6) | C12A—N4—C18A—C19A | −94.9 (10) |
C13—C14—C15—C16 | −1.0 (7) | N4—C18A—C19A—C20A | 172.9 (7) |
C14—C15—C16—C17 | 0.6 (6) | C18A—C19A—C20A—C21A | −65.4 (11) |
N3—C12—C17—N2 | −0.7 (4) | C19A—C20A—C21A—C22A | −169.3 (5) |
C13—C12—C17—N2 | 179.9 (3) | C11A—N4—C18B—C19B | 104 (4) |
N3—C12—C17—C16 | 177.1 (3) | C12A—N4—C18B—C19B | −87 (6) |
C13—C12—C17—C16 | −2.2 (5) | N4—C18B—C19B—C20B | 178 (4) |
C11—N2—C17—C12 | 1.3 (4) | C18B—C19B—C20B—C21B | −55 (7) |
Se3—N2—C17—C12 | −174.3 (2) | C19B—C20B—C21B—C22B | −60 (4) |
C11—N2—C17—C16 | −176.1 (4) |
Symmetry code: (i) −x+1, y, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C18—H18A···N1Sii | 0.99 | 2.62 | 3.568 (5) | 160 |
C18A—H18C···N2S | 0.99 | 2.38 | 3.324 (8) | 159 |
C18B—H18F···N2S | 0.99 | 2.22 | 3.06 (6) | 142 |
Symmetry code: (ii) −x+1/2, y+1/2, −z+3/2. |
Funding information
RJB is grateful for NSF award 1205608, to the Partnership for Reduced Dimensional Materials for partial funding of this research, to Howard University's Nanoscience Facility for access to liquid nitrogen, and the NSF–MRI program (grant No. CHE0619278) for funds to purchase the X-ray diffractometer. HBS is grateful to the DST, New Delhi, for a J. C. Bose National Fellowship. VR gratefully acknowledges the Council of Scientific and Industrial Research (CSIR), New Delhi, for a Senior Research Fellowship.
References
Back, T. G. (1999). Organoselenium Chemistry: A Practical Approach. Oxford University Press. Google Scholar
Bhuyan, B. J. & Mugesh, G. (2012). Biological and Biochemical Aspects of Selenium Compounds. In Organoselenium Chemistry: Synthesis and Reactions edited by T. Wirth, p. 361. Weinheim: Wiley-VCH. Google Scholar
Bondi, A. (1964). J. Phys. Chem. 68, 441–451. CrossRef CAS Web of Science Google Scholar
Brodersen, K., Cygan, M. & Hummel, H.-U. (1984). Z. Naturforschung, Teil B, 39, 582-5. Google Scholar
Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chan, M. H.-Y., Wong, H.-L. & Yam, V. W.-W. (2016). Inorg. Chem. 55, 5570–5577. CrossRef Google Scholar
Chivers, T. & Laitinen, R. S. (2015). Chem. Soc. Rev. 44, 1725–1739. CrossRef CAS Google Scholar
Dorazco-González, A. (2014). Organometallics, 33, 868–875. Google Scholar
Fujihara, H., Mima, H. & Furukawa, N. (1995). J. Am. Chem. Soc. 117, 10153–10154. CSD CrossRef CAS Web of Science Google Scholar
Fujihara, H., Mima, H. & Furukawa, H. (1995). J. Am. Chem. Soc. 117, 10153–10154. CrossRef Google Scholar
Kremer, A., Aurisicchio, C., De Leo, F., Ventura, B., Wouters, J., Armaroli, N., Barbieri, A. & Bonifazi, D. (2015). Chem. Eur. J. 21, 15377–15387. CSD CrossRef CAS Google Scholar
Kushch, N. D., Buravov, L. I., Pesotskii, S. I., Lyubovskii, R. B., Yagubskii, E. B., Kaplunov, M. G., Golubev, E. V., Narymbetov, B. Zh., Khasanov, S. S., Zorina, L. V., Rozenberg, L. P., Shibaeva, R. P., Kobayashi, A. & Kobayashi, H. (1998). J. Mater. Chem. 8, 897–901. CrossRef Google Scholar
Li, S.-L., Fun, H.-K., Chantrapromma, S., Wu, J.-Y. & Tian, Y.-P. (2006a). Acta Cryst. E62, i47–i49. CrossRef IUCr Journals Google Scholar
Li, S.-L., Wu, J.-Y., Tian, Y.-P., Ming, H., Wang, P., Jiang, M.-H. & Fun, H.-K. (2006b). Eur. J. Inorg. Chem. pp. 2900–2907. CrossRef Google Scholar
Manjare, S. T., Kim, Y. & Churchill, D. G. (2014). Acc. Chem. Res. 47, 2985–2998. CrossRef CAS Google Scholar
Mugesh, G. & Singh, H. B. (2000). Chem. Soc. Rev. 29, 347–357. Web of Science CrossRef CAS Google Scholar
Poleschner, H. & Seppelt, K. (2004). Chem. Eur. J. 10, 6565–6574. CrossRef PubMed CAS Google Scholar
Pop, A., Silvestru, A., Juárez-Pérez, E. J., Arca, M., Lippolis, V. & Silvestru, C. (2014). Dalton Trans. 43, 2221–2233. CrossRef Google Scholar
Prasad, P. R., Selvakumar, K., Singh, H. B. & Butcher, R. J. (2016). J. Org. Chem. 81, 3214–3226. CrossRef Google Scholar
Rani, V., Singh, H. B. & Butcher, R. J. (2017a). Acta Cryst. E73, 341–344. CSD CrossRef IUCr Journals Google Scholar
Rani, V., Singh, H. B. & Butcher, R. J. (2017b). IUCrData, 2, x171746. Google Scholar
Rani, V., Singh, H. B. & Butcher, R. J. (2017c). Organometallics, 36, 4741–4752. CrossRef Google Scholar
Rani, V., Singh, H. B. & Butcher, R. J. (2018a). Acta Cryst. E74, 390–393. CrossRef IUCr Journals Google Scholar
Rani, V., Singh, H. B. & Butcher, R. J. (2018b). J. Organomet. Chem. 859, 33–43. CrossRef Google Scholar
Selvakumar, K., Shah, P., Singh, H. B. & Butcher, R. J. (2011a). Chem. Eur. J. 17, 12741–12755. CrossRef Google Scholar
Selvakumar, K., Singh, H. B. & Butcher, R. J. (2011b). Tetrahedron Lett. 52, 6831–6834. CrossRef Google Scholar
Selvakumar, K., Singh, H. B., Goel, N. & Singh, U. P. (2011c). Organometallics, 30, 3892–3896. CrossRef Google Scholar
Selvakumar, K., Singh, V. P., Shah, P. & Singh, H. B. (2011d). Main Group Chemistry, 10, 141–152. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shibaeva, R. P., Khasanov, S. S., Rozenberg, L. P., Kushch, N. D., Yagubskii, E. B. & Canadell, E. (1997). Kristallografiya, 42, 846–850. Google Scholar
Shibaeva, R. P., Rozenberg, L. P., Kushch, N. D. & Yagubskii, E. B. (1994). Kristallografiya, 39, 825–831. Google Scholar
Singh, V. P., Singh, H. B. & Butcher, R. J. (2011). Chem. Commun. 47, 7221–7223. Web of Science CSD CrossRef CAS Google Scholar
Singh, F. V. & Wirth, T. (2012). Selenium Compounds as Ligands and Catalysts. In Organoselenium Chemistry: Synthesis and Reactions edited by T. Wirth, pp. 321–334. Weinheim: Wiley-VCH. Google Scholar
Space, G. & Armeanu, V. (1930). Bul. Soc. Stiinte Cluj, 5, 294–318. Google Scholar
Sun, H.-Q., Wang, X.-Q. & Zhang, W.-W. (2013). Acta Cryst. E69, i59. CrossRef IUCr Journals Google Scholar
Sun, H.-Q., Yu, W.-T., Yuan, D.-R., Wang, X.-Q. & Xue, G. (2005). Acta Cryst. E61, i111–i112. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, Z., Sun, Z., Hao, X.-Q., Niu, J.-L., Wei, D., Tu, T., Gong, J.-F. & Song, M.-P. (2014). Organometallics, 33, 1563–1573. CrossRef Google Scholar
Zade, S. S., Panda, S., Tripathi, S. K., Singh, H. B. & Wolmershäuser, G. (2004a). Eur. J. Org. Chem. pp. 3857–3864. CrossRef Google Scholar
Zade, S. S., Singh, H. B. & Butcher, R. J. (2004b). Angew. Chem. Int. Ed. 43, 4513–4515. CrossRef Google Scholar
Zhao, L., Li, J., Li, Y., Liu, J., Wirth, T. & Li, Z. (2012). Bioorg. Med. Chem. 20, 2558–2563. Web of Science CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.