research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and structure of an aryl­selenenium(II) cation, [C34H41N4Se+]2[Hg(SeCN)4]2−, based on a 5-tert-butyl-1,3-bis­­(1-pentyl-1H-benzimidazol-2-yl)benzene scaffold

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India, and bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: rbutcher99@yahoo.com

Edited by M. Zeller, Purdue University, USA (Received 16 March 2018; accepted 25 April 2018; online 15 May 2018)

In the title salt, bis­{[5-tert-butyl-1,3-bis­(1-pentyl-1H-benzimidazol-2-yl)benzene]selenium} tetra­kis­(seleno­cyanato)­mercury, (C34H41N4Se)2[Hg(SeCN)4], the aryl­selenenium cations, [C34H41N4Se]+, are linked through [Hg(SeCN)4]2− anions by C—H⋯N hydrogen bonds. In the cation, the geometry around the Se atom in the 5-tert-butyl-1,3-bis­(1-pentyl-1H-benzimidazol-2-yl)benzene scaffold is T-shaped, resulting from the coordination of Se by the C atom of the central aromatic ring and the N atoms of both of the benzimidazole moieties. The trans Se—N bond lengths are almost equal [2.087 (3) and 2.099 (3) Å] and the Se—C bond length is 1.886 (3) Å. The N—Se—N angle is 159.29 (11)°. The geometry around the HgII atom in the [Hg(SeCN)4]2− anion is distorted tetra­hedral, with Se—Hg—Se angles ranging from 88.78 (3) to 126.64 (2)°. In [Hg(SeCN)4]2−, the Hg—Se bonds are unsymmetrical [2.5972 (4) and 2.7242 (5) Å]. One of the pentyl substituents is disordered over two equivalent conformations, with occupancies of 0.852 (8) and 0.148 (8).

1. Chemical context

Over the past two decades, organochalcogen chemistry has gained the attention of synthetic chemists because of its promising utility in biomimetic chemistry (Mugesh & Singh, 2000[Mugesh, G. & Singh, H. B. (2000). Chem. Soc. Rev. 29, 347-357.]; Zhao et al., 2012[Zhao, L., Li, J., Li, Y., Liu, J., Wirth, T. & Li, Z. (2012). Bioorg. Med. Chem. 20, 2558-2563.]; Bhuyan & Mugesh, 2012[Bhuyan, B. J. & Mugesh, G. (2012). Biological and Biochemical Aspects of Selenium Compounds. In Organoselenium Chemistry: Synthesis and Reactions edited by T. Wirth, p. 361. Weinheim: Wiley-VCH.]), synthetic organic chemistry (Back 1999[Back, T. G. (1999). Organoselenium Chemistry: A Practical Approach. Oxford University Press.]; Singh & Wirth, 2012[Singh, F. V. & Wirth, T. (2012). Selenium Compounds as Ligands and Catalysts. In Organoselenium Chemistry: Synthesis and Reactions edited by T. Wirth, pp. 321-334. Weinheim: Wiley-VCH.]; Chivers & Laitinen, 2015[Chivers, T. & Laitinen, R. S. (2015). Chem. Soc. Rev. 44, 1725-1739.]) and material science (Manjare et al., 2014[Manjare, S. T., Kim, Y. & Churchill, D. G. (2014). Acc. Chem. Res. 47, 2985-2998.]; Kremer et al., 2015[Kremer, A., Aurisicchio, C., De Leo, F., Ventura, B., Wouters, J., Armaroli, N., Barbieri, A. & Bonifazi, D. (2015). Chem. Eur. J. 21, 15377-15387.]). The first stable selenenium cation complex, [2,6-(Me2NCH2)2C6H3Se]+[PF6], was isolated while attempting the synthesis of the respective oxides from the reaction of 2,6-bis­[(di­methyl­amino)­meth­yl]phenyl methyl selenide with t-BuOCl (Fujihara et al., 1995[Fujihara, H., Mima, H. & Furukawa, N. (1995). J. Am. Chem. Soc. 117, 10153-10154.]). In the literature, examples of aryl­selenenium(II) cations are limited to a basic scaffold, the [2,6-bis­(di­methyl­amino­meth­yl)phen­yl]sel­enen­ium moiety, which is stabilized by different counter-anions [Cl, Br, I (Pop et al., 2014[Pop, A., Silvestru, A., Juárez-Pérez, E. J., Arca, M., Lippolis, V. & Silvestru, C. (2014). Dalton Trans. 43, 2221-2233.]) and HF2 (Poleschner & Seppelt, 2004[Poleschner, H. & Seppelt, K. (2004). Chem. Eur. J. 10, 6565-6574.])].

Our group has been active in the area of synthesis and isolation of novel, unstable aryl­chalcogen derivatives featuring intra­molecular inter­actions (ED; E = S, Se, Te and D = N, O) between chalcogen heteroatoms by using either one or two coordinating groups (Zade et al., 2004a[Zade, S. S., Panda, S., Tripathi, S. K., Singh, H. B. & Wolmershäuser, G. (2004a). Eur. J. Org. Chem. pp. 3857-3864.],b[Zade, S. S., Singh, H. B. & Butcher, R. J. (2004b). Angew. Chem. Int. Ed. 43, 4513-4515.]; Selvakumar et al., 2011a[Selvakumar, K., Shah, P., Singh, H. B. & Butcher, R. J. (2011a). Chem. Eur. J. 17, 12741-12755.],b[Selvakumar, K., Singh, H. B. & Butcher, R. J. (2011b). Tetrahedron Lett. 52, 6831-6834.],c[Selvakumar, K., Singh, H. B., Goel, N. & Singh, U. P. (2011c). Organometallics, 30, 3892-3896.],d[Selvakumar, K., Singh, V. P., Shah, P. & Singh, H. B. (2011d). Main Group Chemistry, 10, 141-152.]; Singh et al., 2011[Singh, V. P., Singh, H. B. & Butcher, R. J. (2011). Chem. Commun. 47, 7221-7223.]; Prasad et al., 2016[Prasad, P. R., Selvakumar, K., Singh, H. B. & Butcher, R. J. (2016). J. Org. Chem. 81, 3214-3226.]). Recently, and for the first time, we have shown the use of the bis-benzimidazole group to isolate an organometallic derivative of a non-transition metal where 1,3-bis­(N-substituted benzimidazol-2′-yl)benzene has been used as a pincer ligand with chalcogens (Rani et al., 2018a[Rani, V., Singh, H. B. & Butcher, R. J. (2018a). Acta Cryst. E74, 390-393.]).

As far as the synthesis of transition metal complexes with the bis-benzimidazole group is concerned, there are several reports in the literature for platinum(II) pincer complexes with similar kinds of scaffolds. Some of these were investigated for their photoluminescence properties (Wang et al., 2014[Wang, Z., Sun, Z., Hao, X.-Q., Niu, J.-L., Wei, D., Tu, T., Gong, J.-F. & Song, M.-P. (2014). Organometallics, 33, 1563-1573.]; Dorazco-González, 2014[Dorazco-González, A. (2014). Organometallics, 33, 868-875.]; Chan et al., 2016[Chan, M. H.-Y., Wong, H.-L. & Yam, V. W.-W. (2016). Inorg. Chem. 55, 5570-5577.]). Recently, we also reported some palladium(II) pincer complexes with a 1,3-bis­(N-substituted benzimidazol-2′-yl)benzene-based ligand. In all the cases, we found that the transition metal complexes were quite stable and in no case was auto-ionization observed (Rani et al., 2018b[Rani, V., Singh, H. B. & Butcher, R. J. (2018b). J. Organomet. Chem. 859, 33-43.]).

In an attempt to synthesize {4-(tert-but­yl)-2,6-bis­(1-pentyl-1H-benzo[d]imidazol-2-yl)phen­yl}(seleno­cyanato)­mercury (3), [4-tert-butyl-2,6-bis­(1-pentyl-1H-benzimidazol-2-yl)phen­yl]mercury(II) chloride (1) was reacted with potassium seleno­cyanate in 1,4-dioxane under reflux conditions. It was observed that, instead of the formation of the desired compound, the reaction leads to the isolation of an aryl­selenenium(II) cation via auto-ionization (Scheme 1[link]). The procedure for the synthesis of complex 1 will be reported elsewhere. A plausible mechanism for the formation of complex 2 is shown in Scheme 2[link]. Organomercury complex 1 reacts with potassium seleno­cyanate to form the desired product 3 with potassium chloride as a by-product. However, if complex II is unstable, mercury may be eliminated in elemental form via a reductive elimination pathway to form inter­mediate III. Strong secondary bonding inter­actions between Se⋯N atoms may facilitate auto-ionization and the formation of an aryl­selenenium cation with CN as the counter-anion IV. In the presence of a polar protic solvent, there is the possibility of decomposition of organomercury complex 1 to give the free ligand along with HgCl2 and Hg(OMe)2 as by-products.

[Scheme 1]

HgCl2 reacts with an excess of KSeCN to form K2[Hg(SeCN)4] (Space & Armeanu, 1930[Space, G. & Armeanu, V. (1930). Bul. Soc. Stiinte Cluj, 5, 294-318.]). Two selenenium cations can then associate with the [Hg(SeCN)4]2− anion to form complex 2. Since we only used one equivalent of potassium seleno­cyanate for the reaction, the product was obtained in low yield (11%).

[Scheme 3]
[Scheme 2]

2. Structural commentary

The title compound, 2, crystallizes in the monoclinic space group C2/c. The asymmetric unit contains a selenenium cation along with half of a [Hg(SeCN)4]2− anion with the Hg atom located on a crystallographic twofold axis (Fig. 1[link]). In the cation, the coordination geometry around Se is T-shaped with each Se atom bonded to the central carbon atom of the aromatic ring and intra­molecularly coordinated to the two N atoms. This coordination gives rise to a hepta­cyclic framework. The tetra­cyano­seleno­mercurate anion [Hg(SeCN)4]2− is sandwiched between two aryl­selenenium cationic units. The observed Se—C bond length is 1.886 (3) Å, which is comparable with that found for a NCN pincer-based selenenium cation [2,6-(Me2NCH2)2C6H3Se]+[PF6] (1.874 Å; Furukawa et al., 1995[Fujihara, H., Mima, H. & Furukawa, H. (1995). J. Am. Chem. Soc. 117, 10153-10154.]), and an OCN pincer-based selenenium cation [2-NO2,6-(C6H5N=CH)C6H3Se]+[Br3] (1.84 Å). The Se3—N1 and Se3—N2 bond lengths are almost equal [2.087 (3) and 2.099 (3) Å]. The Se—N distances are shorter than the sum of the van der Waals radii for Se and N [Σrvdw(Se,N) 3.45 Å] and longer than the covalent radii [Σrcov(Se,N) 1.91 Å] (Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]). This implies stronger intra­molecular Se⋯N inter­actions in the selenenium cation. The N1—Se3—N2 bond angle is found to be 159.29 (11)°. In related mol­ecules (Rani et al., 2017a[Rani, V., Singh, H. B. & Butcher, R. J. (2017a). Acta Cryst. E73, 341-344.],b[Rani, V., Singh, H. B. & Butcher, R. J. (2017b). IUCrData, 2, x171746.],c[Rani, V., Singh, H. B. & Butcher, R. J. (2017c). Organometallics, 36, 4741-4752.]), in the absence of coordinated Hg or Se atoms, the benzimidazole arms are twisted significantly out of the plane of the central phenyl ring. However, in the present structure, as a result of the inter­action with Se, the two benzimid­azole arms are almost in the plane of the central phenyl ring [dihedral angles of 3.10 (16) and 7.18 (19)°]. The Se atom is displaced by 0.116 (4) Å from the plane of the central phenyl ring. The atoms involved in the chelating system (N2, C11, C6, C1, C2, C11A, N1) form a plane (r.m.s deviation for fitted atoms of 0.0182 Å) with the Se in this plane [deviation from the plane of 0.011 (2) Å].

[Figure 1]
Figure 1
A view of the structure of the title compound, showing the atom-labelling scheme and the disorder in the pentyl side chain. Displacement ellipsoids are drawn at the 50% probability level. Symmetry code for generating equivalent atoms: 1 − x, y, [{3\over 2}] − z.

In the anion, the mercury atom is coordinated by four seleno­cyanate anions (two are crystallographically unique) and the geometry around the mercury atom is distorted tetra­hedral with Se—Hg—Se angles ranging from 88.78 (3) to 126.64 (2)°. The tetra­cyano­seleno­mercurate anion [Hg(SeCN)4]2− acts as a bridging moiety between two selenenium cationic units. The Se3⋯Se2(−x, −y, 1 − z) distance is 4.189 (2) Å and the C1—Se3⋯Se2(−x, −y, 1 − z) angle is 163.40 (9)°, which indicates that there is a weak secondary inter­action between the two different kinds of Se atoms in the cation and anion (Se3 and Se2). In the [Hg(SeCN)4]2− anion, two sets of Hg—Se bonds exist. One set is shorter [2.5972 (4) Å] and the other set is longer [2.7242 (5) Å]. The Hg–SeCN moieties are not linear, with Hg—Se—C angles of 101.31 (14) and 101.43 (11)°.

3. Supra­molecular features

In the crystal, the mol­ecules are arranged in a parallel fashion along the b-axis direction as shown in Fig. 2[link]. These parallel units are stacked together by C18—H18A⋯N1S and C18A—H18C⋯N2S inter­actions (numerical details are given in Table 1[link]) and ππ stacking inter­actions between the benzimidazole rings (centroid–centroid distances = 3.535 Å).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18A⋯N1Si 0.99 2.62 3.568 (5) 160
C18A—H18C⋯N2S 0.99 2.38 3.324 (8) 159
C18B—H18F⋯N2S 0.99 2.22 3.06 (6) 142
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
Packing diagram viewed along the b axis. C—H⋯N inter­actions linking the cations and anions are shown as dashed lines. Only the major disorder component is shown for clarity.

4. Database survey

There are no structural reports in the literature on a [phenyl­enebis(benzimidazole)]selenenium cation. However, there have been several reports of structures containing [Hg(SeCN)x]2− moieties [CICLOP, Brodersen et al. 1984[Brodersen, K., Cygan, M. & Hummel, H.-U. (1984). Z. Naturforschung, Teil B, 39, 582-5.]; LENHES, Li et al., 2006a[Li, S.-L., Fun, H.-K., Chantrapromma, S., Wu, J.-Y. & Tian, Y.-P. (2006a). Acta Cryst. E62, i47-i49.]; LENHES01, Sun et al., 2005[Sun, H.-Q., Yu, W.-T., Yuan, D.-R., Wang, X.-Q. & Xue, G. (2005). Acta Cryst. E61, i111-i112.]; MURQOH, Li et al., 2006b[Li, S.-L., Wu, J.-Y., Tian, Y.-P., Ming, H., Wang, P., Jiang, M.-H. & Fun, H.-K. (2006b). Eur. J. Inorg. Chem. pp. 2900-2907.]; PUMVAU, Kushch, et al., 1998[Kushch, N. D., Buravov, L. I., Pesotskii, S. I., Lyubovskii, R. B., Yagubskii, E. B., Kaplunov, M. G., Golubev, E. V., Narymbetov, B. Zh., Khasanov, S. S., Zorina, L. V., Rozenberg, L. P., Shibaeva, R. P., Kobayashi, A. & Kobayashi, H. (1998). J. Mater. Chem. 8, 897-901.]; WUYGUU, Sun et al., 2013[Sun, H.-Q., Wang, X.-Q. & Zhang, W.-W. (2013). Acta Cryst. E69, i59.]; YIHKUV, Shibaeva et al. 1994[Shibaeva, R. P., Rozenberg, L. P., Kushch, N. D. & Yagubskii, E. B. (1994). Kristallografiya, 39, 825-831.]; YIHKUV01, Shibaeva et al. 1997[Shibaeva, R. P., Khasanov, S. S., Rozenberg, L. P., Kushch, N. D., Yagubskii, E. B. & Canadell, E. (1997). Kristallografiya, 42, 846-850.]]

5. Synthesis and crystallization

To a solution of 1 (0.2 g, 0.269 mmol) in 1,4-dioxane (30 ml) was added potassium seleno­cyanate (0.039 g, 0.270 mmol) dissolved in MeOH. The reaction mixture was stirred for 6 h under a nitro­gen atmosphere and refluxed. The reaction mixture was filtered and the precipitate was washed with dioxane. Colourless prism-shaped crystals of 2 were obtained by layering a MeOH solution with diethyl ether at room temperature.

Yield 11% (0.058 g, 0.036 mmol); m. p. turned blackish after 423 K was reached. FT–IR (KBr) (cm−1): 3059 (w), 2957 (s), 2931 (s), 2869 (s), 2124 (s, needle-like, C≡N), 1614 (m), 1464 (s), 1458 (s), 1440 (s), 1330 (w), 1288 (w), 1273 (w), 1154 (w), 1137 (w), 1011 (w), 892 (w), 746 (s). ESI–MS: m/z calculated for C34H41N4Se: 585.2496. Found: 585.2552.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H distances ranging from 0.95 to 0.99 Å. Uiso(H) = xUeq(C), where x = 1.5 for methyl H atoms and 1.2 for all other C-bound H atoms. One of the pentyl substituents is disordered with an occupancy ratio of 0.852 (8):0.148 (8). It was refined as two equivalent conformations using SAME and SIMU instructions (SAME 0.01 and SIMU 0.01).

Table 2
Experimental details

Crystal data
Chemical formula (C34H41N4Se)2[Hg(CNSe)4]
Mr 1789.84
Crystal system, space group Monoclinic, C2/c
Temperature (K) 100
a, b, c (Å) 12.7788 (15), 27.276 (3), 20.180 (3)
β (°) 95.591 (2)
V3) 7000.4 (15)
Z 4
Radiation type Mo Kα
μ (mm−1) 5.37
Crystal size (mm) 0.24 × 0.23 × 0.19
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.267, 0.336
No. of measured, independent and observed [I > 2σ(I)] reflections 46553, 9030, 8196
Rint 0.095
(sin θ/λ)max−1) 0.676
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.097, 1.03
No. of reflections 9030
No. of parameters 463
No. of restraints 147
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.97, −2.10
Computer programs: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT and XPREP (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT, SADABS and XPREP (Bruker, 2002); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Bis{[5-tert-butyl-1,3-bis(1-pentyl-1H-benzimidazol-2-yl)benzene]selenium} tetrakis(selenocyanato)mercury top
Crystal data top
(C34H41N4Se)2[Hg(CNSe)4]F(000) = 3528
Mr = 1789.84Dx = 1.698 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 12.7788 (15) ÅCell parameters from 9623 reflections
b = 27.276 (3) Åθ = 2.4–28.8°
c = 20.180 (3) ŵ = 5.37 mm1
β = 95.591 (2)°T = 100 K
V = 7000.4 (15) Å3Prism, colorless
Z = 40.24 × 0.23 × 0.19 mm
Data collection top
Bruker APEXII CCD
diffractometer
8196 reflections with I > 2σ(I)
ω scansRint = 0.095
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
θmax = 28.7°, θmin = 3.2°
Tmin = 0.267, Tmax = 0.336h = 1717
46553 measured reflectionsk = 3636
9030 independent reflectionsl = 2627
Refinement top
Refinement on F2147 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0353P)2 + 29.0826P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.002
9030 reflectionsΔρmax = 1.97 e Å3
463 parametersΔρmin = 2.10 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Hg10.5000000.26306 (2)0.7500000.02668 (6)
Se10.34755 (3)0.22031 (2)0.67740 (2)0.03961 (11)
Se20.60087 (4)0.33443 (2)0.68639 (3)0.06039 (16)
C1S0.3559 (3)0.15796 (14)0.7105 (2)0.0329 (8)
N1S0.3565 (3)0.11791 (14)0.7281 (2)0.0530 (11)
C2S0.5511 (4)0.32426 (16)0.6025 (3)0.0527 (14)
N2S0.5206 (5)0.3180 (2)0.5468 (3)0.0818 (18)
Se30.35746 (3)0.55143 (2)0.44746 (2)0.02529 (8)
C10.3163 (3)0.49229 (12)0.48583 (17)0.0246 (7)
N10.4520 (2)0.50194 (11)0.40157 (15)0.0268 (6)
N20.2460 (2)0.57747 (10)0.50876 (15)0.0266 (6)
C20.3607 (3)0.44802 (12)0.46652 (17)0.0253 (7)
N30.1405 (2)0.56201 (11)0.58694 (16)0.0266 (6)
C30.3253 (3)0.40392 (13)0.49273 (18)0.0274 (7)
H30.3551210.3737710.4803190.033*
N40.5031 (2)0.42500 (11)0.39049 (15)0.0258 (6)
C40.2474 (3)0.40351 (12)0.53656 (18)0.0268 (7)
C50.2061 (3)0.44847 (12)0.55594 (18)0.0264 (7)
H50.1538110.4486180.5863250.032*
C60.2404 (3)0.49287 (12)0.53141 (17)0.0244 (7)
C70.2071 (3)0.35552 (12)0.56442 (19)0.0289 (7)
C80.2489 (4)0.35045 (15)0.6371 (2)0.0415 (10)
H8A0.2205630.3205540.6554740.062*
H8B0.2274260.3789640.6619920.062*
H8C0.3258620.3485470.6406790.062*
C90.2425 (5)0.31052 (15)0.5271 (3)0.0593 (15)
H9A0.3193920.3101150.5289660.089*
H9B0.2125720.3119450.4805340.089*
H9C0.2181260.2806890.5478980.089*
C100.0862 (4)0.35594 (18)0.5592 (4)0.0672 (18)
H10A0.0607860.3241180.5735350.101*
H10B0.0585190.3621290.5130020.101*
H10C0.0623820.3818280.5879000.101*
C110.2057 (3)0.54262 (12)0.54487 (18)0.0253 (7)
C120.1378 (3)0.61244 (13)0.57613 (19)0.0276 (7)
C130.0821 (3)0.64909 (14)0.6057 (2)0.0352 (8)
H130.0388150.6423790.6403170.042*
C140.0942 (3)0.69620 (15)0.5809 (2)0.0417 (10)
H140.0578450.7225740.5992130.050*
C150.1576 (3)0.70585 (14)0.5305 (2)0.0389 (9)
H150.1621700.7385920.5149600.047*
C160.2146 (3)0.66971 (13)0.5018 (2)0.0325 (8)
H160.2583230.6767130.4674860.039*
C170.2036 (3)0.62215 (12)0.52651 (19)0.0266 (7)
C180.0780 (3)0.53739 (13)0.63476 (18)0.0275 (7)
H18A0.0780200.5576710.6754450.033*
H18B0.1105250.5054020.6475840.033*
C190.0355 (3)0.52925 (14)0.60471 (18)0.0317 (8)
H19C0.0699100.5614050.5956270.038*
H19D0.0351310.5116320.5618410.038*
C200.0988 (3)0.49959 (14)0.65154 (19)0.0336 (8)
H20C0.0846590.5126290.6973240.040*
H20D0.1747430.5037950.6377240.040*
C210.0724 (3)0.44565 (15)0.6518 (2)0.0376 (9)
H21C0.0035500.4416220.6657200.045*
H21D0.0859510.4328550.6058690.045*
C220.1347 (3)0.41508 (18)0.6977 (2)0.0482 (11)
H22D0.1257130.4288320.7427830.072*
H22E0.1089270.3812180.6987050.072*
H22F0.2093480.4155600.6811530.072*
C11A0.4382 (3)0.45556 (13)0.42009 (17)0.0257 (7)
C12A0.5610 (3)0.45354 (14)0.35008 (18)0.0276 (7)
C13A0.6369 (3)0.44094 (15)0.30797 (18)0.0303 (8)
H13A0.6584080.4079320.3028260.036*
C14A0.6792 (3)0.47904 (16)0.2740 (2)0.0360 (9)
H14A0.7310500.4720260.2446780.043*
C15A0.6474 (3)0.52805 (16)0.2819 (2)0.0355 (9)
H15A0.6783070.5531940.2576990.043*
C16A0.5729 (3)0.54032 (15)0.3238 (2)0.0325 (8)
H16A0.5523180.5734260.3292750.039*
C17A0.5288 (3)0.50248 (13)0.35761 (18)0.0278 (7)
C18A0.5203 (10)0.3728 (3)0.3997 (3)0.0244 (14)0.852 (8)
H18C0.5100200.3641340.4462480.029*0.852 (8)
H18D0.5940090.3651170.3924790.029*0.852 (8)
C19A0.4470 (8)0.3412 (3)0.3527 (5)0.0277 (9)0.852 (8)
H19A0.4504940.3523000.3062840.033*0.852 (8)
H19B0.3736810.3452830.3637750.033*0.852 (8)
C20A0.4781 (4)0.2871 (3)0.3588 (4)0.0309 (12)0.852 (8)
H20A0.4783890.2768760.4058420.037*0.852 (8)
H20B0.4246140.2672350.3320650.037*0.852 (8)
C21A0.5855 (4)0.27671 (18)0.3354 (3)0.0380 (11)0.852 (8)
H21A0.6402960.2914810.3673700.046*0.852 (8)
H21B0.5898210.2925790.2916710.046*0.852 (8)
C22A0.6079 (5)0.2223 (2)0.3291 (3)0.0549 (16)0.852 (8)
H22A0.6044200.2063320.3724000.082*0.852 (8)
H22B0.6781870.2177410.3145830.082*0.852 (8)
H22C0.5554090.2075950.2963560.082*0.852 (8)
C18B0.517 (6)0.3685 (19)0.411 (3)0.025 (3)0.148 (8)
H18E0.5925830.3592050.4143840.031*0.148 (8)
H18F0.4900860.3624280.4545620.031*0.148 (8)
C19B0.455 (5)0.3390 (17)0.356 (3)0.028 (3)0.148 (8)
H19E0.3796550.3484020.3540080.034*0.148 (8)
H19F0.4803730.3470370.3126260.034*0.148 (8)
C20B0.4652 (19)0.2838 (16)0.368 (2)0.031 (3)0.148 (8)
H20E0.4313220.2755160.4090560.037*0.148 (8)
H20F0.4269150.2662440.3306200.037*0.148 (8)
C21B0.5777 (19)0.2659 (10)0.3768 (12)0.036 (3)0.148 (8)
H21E0.5774960.2302680.3861540.043*0.148 (8)
H21F0.6148900.2823500.4159530.043*0.148 (8)
C22B0.639 (2)0.2747 (12)0.3169 (13)0.042 (5)0.148 (8)
H22G0.7005180.2533360.3197200.064*0.148 (8)
H22H0.6612170.3090700.3164990.064*0.148 (8)
H22I0.5935790.2675340.2759950.064*0.148 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.02158 (9)0.01884 (9)0.03905 (12)0.0000.00001 (7)0.000
Se10.03104 (19)0.02352 (18)0.0598 (3)0.00375 (14)0.01827 (18)0.00848 (17)
Se20.0556 (3)0.0361 (2)0.0907 (4)0.0220 (2)0.0137 (3)0.0094 (3)
C1S0.0283 (17)0.0288 (18)0.040 (2)0.0052 (14)0.0040 (15)0.0027 (16)
N1S0.061 (3)0.0317 (19)0.061 (3)0.0115 (17)0.018 (2)0.0078 (18)
C2S0.053 (3)0.031 (2)0.080 (4)0.0182 (19)0.033 (3)0.033 (2)
N2S0.110 (4)0.076 (3)0.066 (3)0.052 (3)0.038 (3)0.045 (3)
Se30.02258 (15)0.02116 (16)0.03000 (18)0.00393 (12)0.00818 (13)0.00354 (13)
C10.0241 (15)0.0218 (15)0.0252 (16)0.0042 (12)0.0106 (13)0.0045 (13)
N10.0242 (13)0.0267 (14)0.0279 (15)0.0031 (11)0.0055 (11)0.0037 (12)
N20.0218 (13)0.0233 (13)0.0332 (16)0.0014 (11)0.0054 (11)0.0018 (12)
C20.0263 (16)0.0235 (16)0.0239 (16)0.0023 (13)0.0086 (13)0.0013 (13)
N30.0264 (14)0.0214 (13)0.0309 (15)0.0033 (11)0.0034 (11)0.0008 (12)
C30.0312 (17)0.0218 (15)0.0278 (17)0.0018 (13)0.0048 (14)0.0008 (13)
N40.0255 (13)0.0251 (14)0.0250 (14)0.0026 (11)0.0060 (11)0.0002 (11)
C40.0305 (17)0.0209 (15)0.0270 (17)0.0064 (13)0.0068 (13)0.0006 (13)
C50.0267 (16)0.0242 (16)0.0265 (17)0.0043 (13)0.0062 (13)0.0007 (13)
C60.0232 (15)0.0226 (15)0.0250 (16)0.0017 (12)0.0106 (12)0.0028 (13)
C70.0363 (18)0.0184 (15)0.0319 (18)0.0026 (13)0.0025 (14)0.0024 (14)
C80.062 (3)0.0283 (19)0.034 (2)0.0092 (18)0.0025 (19)0.0041 (16)
C90.108 (4)0.0217 (19)0.054 (3)0.021 (2)0.037 (3)0.0152 (19)
C100.036 (2)0.039 (2)0.123 (5)0.015 (2)0.010 (3)0.028 (3)
C110.0218 (15)0.0236 (15)0.0282 (17)0.0026 (12)0.0103 (13)0.0001 (13)
C120.0273 (16)0.0226 (16)0.0309 (18)0.0013 (13)0.0067 (13)0.0013 (14)
C130.040 (2)0.0285 (18)0.038 (2)0.0022 (16)0.0052 (16)0.0005 (16)
C140.045 (2)0.0262 (18)0.055 (3)0.0020 (17)0.0071 (19)0.0025 (18)
C150.038 (2)0.0216 (17)0.057 (3)0.0031 (15)0.0064 (19)0.0032 (17)
C160.0283 (17)0.0247 (17)0.044 (2)0.0057 (14)0.0006 (15)0.0043 (16)
C170.0242 (15)0.0202 (15)0.0336 (18)0.0017 (12)0.0062 (13)0.0014 (13)
C180.0272 (16)0.0271 (17)0.0264 (17)0.0041 (13)0.0066 (13)0.0012 (14)
C190.0244 (16)0.039 (2)0.0294 (18)0.0047 (14)0.0076 (14)0.0019 (16)
C200.0272 (17)0.043 (2)0.0294 (18)0.0078 (15)0.0048 (14)0.0012 (16)
C210.0316 (19)0.043 (2)0.037 (2)0.0084 (16)0.0023 (16)0.0050 (17)
C220.039 (2)0.054 (3)0.051 (3)0.012 (2)0.0008 (19)0.013 (2)
C11A0.0243 (15)0.0275 (16)0.0236 (16)0.0007 (13)0.0061 (12)0.0011 (13)
C12A0.0242 (15)0.0329 (18)0.0234 (16)0.0031 (13)0.0100 (13)0.0001 (14)
C13A0.0249 (16)0.039 (2)0.0251 (17)0.0003 (14)0.0074 (13)0.0012 (15)
C14A0.0230 (16)0.053 (2)0.0300 (19)0.0047 (16)0.0060 (14)0.0019 (17)
C15A0.0292 (18)0.044 (2)0.0311 (19)0.0082 (16)0.0074 (15)0.0083 (17)
C16A0.0280 (17)0.0344 (19)0.0331 (19)0.0037 (15)0.0071 (14)0.0056 (16)
C17A0.0234 (15)0.0304 (17)0.0274 (17)0.0021 (13)0.0084 (13)0.0027 (14)
C18A0.026 (2)0.024 (2)0.022 (3)0.0008 (18)0.005 (3)0.004 (2)
C19A0.026 (2)0.028 (2)0.028 (2)0.0015 (16)0.0036 (17)0.0035 (18)
C20A0.034 (2)0.027 (2)0.030 (3)0.0015 (18)0.0016 (18)0.0035 (19)
C21A0.043 (3)0.037 (2)0.034 (2)0.013 (2)0.002 (2)0.001 (2)
C22A0.069 (4)0.049 (3)0.047 (3)0.024 (3)0.004 (3)0.005 (3)
C18B0.026 (6)0.024 (6)0.026 (6)0.003 (6)0.001 (6)0.000 (6)
C19B0.028 (5)0.028 (5)0.027 (5)0.002 (5)0.004 (5)0.002 (5)
C20B0.033 (5)0.030 (5)0.029 (5)0.005 (5)0.000 (5)0.004 (5)
C21B0.039 (5)0.034 (5)0.033 (5)0.005 (5)0.002 (5)0.004 (5)
C22B0.042 (10)0.048 (10)0.037 (10)0.011 (9)0.003 (9)0.008 (9)
Geometric parameters (Å, º) top
Hg1—Se12.5972 (4)C18—C191.533 (4)
Hg1—Se1i2.5972 (4)C18—H18A0.9900
Hg1—Se22.7242 (5)C18—H18B0.9900
Hg1—Se2i2.7242 (5)C19—C201.533 (5)
Se1—C1S1.826 (4)C19—H19C0.9900
Se2—C2S1.771 (7)C19—H19D0.9900
C1S—N1S1.149 (5)C20—C211.509 (5)
C2S—N2S1.165 (8)C20—H20C0.9900
Se3—C11.886 (3)C20—H20D0.9900
Se3—N12.087 (3)C21—C221.527 (5)
Se3—N22.099 (3)C21—H21C0.9900
C1—C61.400 (5)C21—H21D0.9900
C1—C21.405 (5)C22—H22D0.9800
N1—C11A1.336 (4)C22—H22E0.9800
N1—C17A1.386 (5)C22—H22F0.9800
N2—C111.332 (5)C12A—C13A1.393 (5)
N2—C171.395 (4)C12A—C17A1.410 (5)
C2—C31.406 (5)C13A—C14A1.384 (6)
C2—C11A1.443 (5)C13A—H13A0.9500
N3—C111.353 (5)C14A—C15A1.410 (6)
N3—C121.393 (4)C14A—H14A0.9500
N3—C181.473 (5)C15A—C16A1.375 (6)
C3—C41.394 (5)C15A—H15A0.9500
C3—H30.9500C16A—C17A1.387 (5)
N4—C11A1.355 (5)C16A—H16A0.9500
N4—C12A1.392 (5)C18A—C19A1.530 (5)
N4—C18A1.450 (9)C18A—H18C0.9900
N4—C18B1.60 (5)C18A—H18D0.9900
C4—C51.406 (5)C19A—C20A1.530 (5)
C4—C71.534 (5)C19A—H19A0.9900
C5—C61.395 (5)C19A—H19B0.9900
C5—H50.9500C20A—C21A1.520 (6)
C6—C111.461 (5)C20A—H20A0.9900
C7—C81.517 (6)C20A—H20B0.9900
C7—C91.531 (5)C21A—C22A1.520 (6)
C7—C101.537 (6)C21A—H21A0.9900
C8—H8A0.9800C21A—H21B0.9900
C8—H8B0.9800C22A—H22A0.9800
C8—H8C0.9800C22A—H22B0.9800
C9—H9A0.9800C22A—H22C0.9800
C9—H9B0.9800C18B—C19B1.531 (9)
C9—H9C0.9800C18B—H18E0.9900
C10—H10A0.9800C18B—H18F0.9900
C10—H10B0.9800C19B—C20B1.529 (9)
C10—H10C0.9800C19B—H19E0.9900
C12—C131.394 (5)C19B—H19F0.9900
C12—C171.394 (5)C20B—C21B1.512 (10)
C13—C141.393 (6)C20B—H20E0.9900
C13—H130.9500C20B—H20F0.9900
C14—C151.387 (6)C21B—C22B1.519 (10)
C14—H140.9500C21B—H21E0.9900
C15—C161.386 (6)C21B—H21F0.9900
C15—H150.9500C22B—H22G0.9800
C16—C171.402 (5)C22B—H22H0.9800
C16—H160.9500C22B—H22I0.9800
Se1—Hg1—Se1i126.637 (19)H19C—C19—H19D108.0
Se1—Hg1—Se2114.732 (19)C21—C20—C19112.7 (3)
Se1i—Hg1—Se2102.907 (18)C21—C20—H20C109.1
Se1—Hg1—Se2i102.908 (18)C19—C20—H20C109.1
Se1i—Hg1—Se2i114.732 (19)C21—C20—H20D109.1
Se2—Hg1—Se2i88.78 (3)C19—C20—H20D109.1
C1S—Se1—Hg1101.43 (11)H20C—C20—H20D107.8
C2S—Se2—Hg1101.31 (14)C20—C21—C22113.9 (4)
N1S—C1S—Se1175.7 (4)C20—C21—H21C108.8
N2S—C2S—Se2178.3 (5)C22—C21—H21C108.8
C1—Se3—N179.95 (14)C20—C21—H21D108.8
C1—Se3—N279.34 (14)C22—C21—H21D108.8
N1—Se3—N2159.29 (11)H21C—C21—H21D107.7
C6—C1—C2121.1 (3)C21—C22—H22D109.5
C6—C1—Se3119.9 (3)C21—C22—H22E109.5
C2—C1—Se3119.0 (3)H22D—C22—H22E109.5
C11A—N1—C17A108.1 (3)C21—C22—H22F109.5
C11A—N1—Se3113.0 (2)H22D—C22—H22F109.5
C17A—N1—Se3138.9 (2)H22E—C22—H22F109.5
C11—N2—C17107.6 (3)N1—C11A—N4110.9 (3)
C11—N2—Se3113.7 (2)N1—C11A—C2115.8 (3)
C17—N2—Se3138.6 (2)N4—C11A—C2133.4 (3)
C1—C2—C3118.5 (3)N4—C12A—C13A131.4 (4)
C1—C2—C11A112.3 (3)N4—C12A—C17A106.8 (3)
C3—C2—C11A129.2 (3)C13A—C12A—C17A121.8 (4)
C11—N3—C12107.2 (3)C14A—C13A—C12A116.5 (4)
C11—N3—C18129.7 (3)C14A—C13A—H13A121.8
C12—N3—C18123.1 (3)C12A—C13A—H13A121.8
C4—C3—C2121.4 (3)C13A—C14A—C15A121.7 (4)
C4—C3—H3119.3C13A—C14A—H14A119.2
C2—C3—H3119.3C15A—C14A—H14A119.2
C11A—N4—C12A107.3 (3)C16A—C15A—C14A121.6 (4)
C11A—N4—C18A129.7 (5)C16A—C15A—H15A119.2
C12A—N4—C18A122.8 (5)C14A—C15A—H15A119.2
C11A—N4—C18B122 (3)C15A—C16A—C17A117.4 (4)
C12A—N4—C18B129 (3)C15A—C16A—H16A121.3
C3—C4—C5118.7 (3)C17A—C16A—H16A121.3
C3—C4—C7121.7 (3)N1—C17A—C16A132.1 (4)
C5—C4—C7119.6 (3)N1—C17A—C12A107.0 (3)
C6—C5—C4121.3 (4)C16A—C17A—C12A121.0 (4)
C6—C5—H5119.4N4—C18A—C19A113.4 (6)
C4—C5—H5119.4N4—C18A—H18C108.9
C5—C6—C1119.0 (3)C19A—C18A—H18C108.9
C5—C6—C11129.0 (3)N4—C18A—H18D108.9
C1—C6—C11112.0 (3)C19A—C18A—H18D108.9
C8—C7—C9108.0 (4)H18C—C18A—H18D107.7
C8—C7—C4109.4 (3)C18A—C19A—C20A110.8 (4)
C9—C7—C4112.2 (3)C18A—C19A—H19A109.5
C8—C7—C10108.9 (4)C20A—C19A—H19A109.5
C9—C7—C10108.4 (4)C18A—C19A—H19B109.5
C4—C7—C10109.9 (3)C20A—C19A—H19B109.5
C7—C8—H8A109.5H19A—C19A—H19B108.1
C7—C8—H8B109.5C21A—C20A—C19A113.0 (5)
H8A—C8—H8B109.5C21A—C20A—H20A109.0
C7—C8—H8C109.5C19A—C20A—H20A109.0
H8A—C8—H8C109.5C21A—C20A—H20B109.0
H8B—C8—H8C109.5C19A—C20A—H20B109.0
C7—C9—H9A109.5H20A—C20A—H20B107.8
C7—C9—H9B109.5C20A—C21A—C22A113.0 (5)
H9A—C9—H9B109.5C20A—C21A—H21A109.0
C7—C9—H9C109.5C22A—C21A—H21A109.0
H9A—C9—H9C109.5C20A—C21A—H21B109.0
H9B—C9—H9C109.5C22A—C21A—H21B109.0
C7—C10—H10A109.5H21A—C21A—H21B107.8
C7—C10—H10B109.5C21A—C22A—H22A109.5
H10A—C10—H10B109.5C21A—C22A—H22B109.5
C7—C10—H10C109.5H22A—C22A—H22B109.5
H10A—C10—H10C109.5C21A—C22A—H22C109.5
H10B—C10—H10C109.5H22A—C22A—H22C109.5
N2—C11—N3111.0 (3)H22B—C22A—H22C109.5
N2—C11—C6114.9 (3)C19B—C18B—N4106 (3)
N3—C11—C6134.1 (3)C19B—C18B—H18E110.5
N3—C12—C13130.3 (4)N4—C18B—H18E110.5
N3—C12—C17107.0 (3)C19B—C18B—H18F110.5
C13—C12—C17122.7 (3)N4—C18B—H18F110.5
C14—C13—C12115.4 (4)H18E—C18B—H18F108.7
C14—C13—H13122.3C20B—C19B—C18B111.6 (13)
C12—C13—H13122.3C20B—C19B—H19E109.3
C15—C14—C13122.1 (4)C18B—C19B—H19E109.3
C15—C14—H14118.9C20B—C19B—H19F109.3
C13—C14—H14118.9C18B—C19B—H19F109.3
C16—C15—C14122.7 (4)H19E—C19B—H19F108.0
C16—C15—H15118.6C21B—C20B—C19B113.8 (13)
C14—C15—H15118.6C21B—C20B—H20E108.8
C15—C16—C17115.7 (4)C19B—C20B—H20E108.8
C15—C16—H16122.1C21B—C20B—H20F108.8
C17—C16—H16122.1C19B—C20B—H20F108.8
C12—C17—N2107.2 (3)H20E—C20B—H20F107.7
C12—C17—C16121.3 (3)C20B—C21B—C22B114.6 (13)
N2—C17—C16131.5 (4)C20B—C21B—H21E108.6
N3—C18—C19111.1 (3)C22B—C21B—H21E108.6
N3—C18—H18A109.4C20B—C21B—H21F108.6
C19—C18—H18A109.4C22B—C21B—H21F108.6
N3—C18—H18B109.4H21E—C21B—H21F107.6
C19—C18—H18B109.4C21B—C22B—H22G109.5
H18A—C18—H18B108.0C21B—C22B—H22H109.5
C20—C19—C18111.6 (3)H22G—C22B—H22H109.5
C20—C19—H19C109.3C21B—C22B—H22I109.5
C18—C19—H19C109.3H22G—C22B—H22I109.5
C20—C19—H19D109.3H22H—C22B—H22I109.5
C18—C19—H19D109.3
N1—Se3—C1—C6179.9 (3)Se3—N2—C17—C168.2 (6)
N2—Se3—C1—C60.1 (2)C15—C16—C17—C121.0 (5)
N1—Se3—C1—C21.6 (2)C15—C16—C17—N2178.2 (4)
N2—Se3—C1—C2178.3 (3)C11—N3—C18—C1996.6 (4)
C6—C1—C2—C31.5 (5)C12—N3—C18—C1980.9 (4)
Se3—C1—C2—C3176.6 (2)N3—C18—C19—C20174.9 (3)
C6—C1—C2—C11A179.1 (3)C18—C19—C20—C2176.2 (4)
Se3—C1—C2—C11A2.7 (4)C19—C20—C21—C22179.7 (3)
C1—C2—C3—C40.5 (5)C17A—N1—C11A—N40.3 (4)
C11A—C2—C3—C4178.7 (3)Se3—N1—C11A—N4178.3 (2)
C2—C3—C4—C51.7 (5)C17A—N1—C11A—C2179.7 (3)
C2—C3—C4—C7178.9 (3)Se3—N1—C11A—C21.1 (4)
C3—C4—C5—C61.0 (5)C12A—N4—C11A—N10.7 (4)
C7—C4—C5—C6179.6 (3)C18A—N4—C11A—N1175.0 (5)
C4—C5—C6—C11.0 (5)C18B—N4—C11A—N1171 (3)
C4—C5—C6—C11178.9 (3)C12A—N4—C11A—C2179.9 (3)
C2—C1—C6—C52.3 (5)C18A—N4—C11A—C24.3 (7)
Se3—C1—C6—C5175.9 (2)C18B—N4—C11A—C29 (3)
C2—C1—C6—C11179.5 (3)C1—C2—C11A—N12.3 (4)
Se3—C1—C6—C112.3 (4)C3—C2—C11A—N1176.9 (3)
C3—C4—C7—C8106.9 (4)C1—C2—C11A—N4176.9 (3)
C5—C4—C7—C872.5 (4)C3—C2—C11A—N43.9 (6)
C3—C4—C7—C913.0 (5)C11A—N4—C12A—C13A178.7 (3)
C5—C4—C7—C9167.7 (4)C18A—N4—C12A—C13A5.3 (6)
C3—C4—C7—C10133.6 (4)C18B—N4—C12A—C13A11 (3)
C5—C4—C7—C1047.0 (5)C11A—N4—C12A—C17A0.8 (3)
C17—N2—C11—N31.5 (4)C18A—N4—C12A—C17A175.3 (5)
Se3—N2—C11—N3175.4 (2)C18B—N4—C12A—C17A170 (3)
C17—N2—C11—C6178.7 (3)N4—C12A—C13A—C14A179.5 (3)
Se3—N2—C11—C64.4 (3)C17A—C12A—C13A—C14A0.2 (5)
C12—N3—C11—N21.0 (4)C12A—C13A—C14A—C15A0.2 (5)
C18—N3—C11—N2178.8 (3)C13A—C14A—C15A—C16A0.1 (5)
C12—N3—C11—C6179.3 (3)C14A—C15A—C16A—C17A0.7 (5)
C18—N3—C11—C61.5 (6)C11A—N1—C17A—C16A180.0 (4)
C5—C6—C11—N2173.6 (3)Se3—N1—C17A—C16A2.0 (6)
C1—C6—C11—N24.4 (4)C11A—N1—C17A—C12A0.2 (4)
C5—C6—C11—N36.7 (6)Se3—N1—C17A—C12A178.2 (2)
C1—C6—C11—N3175.3 (3)C15A—C16A—C17A—N1178.6 (3)
C11—N3—C12—C13179.1 (4)C15A—C16A—C17A—C12A1.2 (5)
C18—N3—C12—C131.1 (6)N4—C12A—C17A—N10.6 (3)
C11—N3—C12—C170.2 (4)C13A—C12A—C17A—N1178.9 (3)
C18—N3—C12—C17178.1 (3)N4—C12A—C17A—C16A179.6 (3)
N3—C12—C13—C14177.4 (4)C13A—C12A—C17A—C16A0.9 (5)
C17—C12—C13—C141.7 (6)C11A—N4—C18A—C19A90.1 (8)
C12—C13—C14—C150.2 (6)C12A—N4—C18A—C19A94.9 (10)
C13—C14—C15—C161.0 (7)N4—C18A—C19A—C20A172.9 (7)
C14—C15—C16—C170.6 (6)C18A—C19A—C20A—C21A65.4 (11)
N3—C12—C17—N20.7 (4)C19A—C20A—C21A—C22A169.3 (5)
C13—C12—C17—N2179.9 (3)C11A—N4—C18B—C19B104 (4)
N3—C12—C17—C16177.1 (3)C12A—N4—C18B—C19B87 (6)
C13—C12—C17—C162.2 (5)N4—C18B—C19B—C20B178 (4)
C11—N2—C17—C121.3 (4)C18B—C19B—C20B—C21B55 (7)
Se3—N2—C17—C12174.3 (2)C19B—C20B—C21B—C22B60 (4)
C11—N2—C17—C16176.1 (4)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18A···N1Sii0.992.623.568 (5)160
C18A—H18C···N2S0.992.383.324 (8)159
C18B—H18F···N2S0.992.223.06 (6)142
Symmetry code: (ii) x+1/2, y+1/2, z+3/2.
 

Funding information

RJB is grateful for NSF award 1205608, to the Partnership for Reduced Dimensional Materials for partial funding of this research, to Howard University's Nanoscience Facility for access to liquid nitro­gen, and the NSF–MRI program (grant No. CHE0619278) for funds to purchase the X-ray diffractometer. HBS is grateful to the DST, New Delhi, for a J. C. Bose National Fellowship. VR gratefully acknowledges the Council of Scientific and Industrial Research (CSIR), New Delhi, for a Senior Research Fellowship.

References

First citationBack, T. G. (1999). Organoselenium Chemistry: A Practical Approach. Oxford University Press.  Google Scholar
First citationBhuyan, B. J. & Mugesh, G. (2012). Biological and Biochemical Aspects of Selenium Compounds. In Organoselenium Chemistry: Synthesis and Reactions edited by T. Wirth, p. 361. Weinheim: Wiley-VCH.  Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationBrodersen, K., Cygan, M. & Hummel, H.-U. (1984). Z. Naturforschung, Teil B, 39, 582-5.  Google Scholar
First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChan, M. H.-Y., Wong, H.-L. & Yam, V. W.-W. (2016). Inorg. Chem. 55, 5570–5577.  CrossRef Google Scholar
First citationChivers, T. & Laitinen, R. S. (2015). Chem. Soc. Rev. 44, 1725–1739.  CrossRef CAS Google Scholar
First citationDorazco-González, A. (2014). Organometallics, 33, 868–875.  Google Scholar
First citationFujihara, H., Mima, H. & Furukawa, N. (1995). J. Am. Chem. Soc. 117, 10153–10154.  CSD CrossRef CAS Web of Science Google Scholar
First citationFujihara, H., Mima, H. & Furukawa, H. (1995). J. Am. Chem. Soc. 117, 10153–10154.  CrossRef Google Scholar
First citationKremer, A., Aurisicchio, C., De Leo, F., Ventura, B., Wouters, J., Armaroli, N., Barbieri, A. & Bonifazi, D. (2015). Chem. Eur. J. 21, 15377–15387.  CSD CrossRef CAS Google Scholar
First citationKushch, N. D., Buravov, L. I., Pesotskii, S. I., Lyubovskii, R. B., Yagubskii, E. B., Kaplunov, M. G., Golubev, E. V., Narymbetov, B. Zh., Khasanov, S. S., Zorina, L. V., Rozenberg, L. P., Shibaeva, R. P., Kobayashi, A. & Kobayashi, H. (1998). J. Mater. Chem. 8, 897–901.  CrossRef Google Scholar
First citationLi, S.-L., Fun, H.-K., Chantrapromma, S., Wu, J.-Y. & Tian, Y.-P. (2006a). Acta Cryst. E62, i47–i49.  CrossRef IUCr Journals Google Scholar
First citationLi, S.-L., Wu, J.-Y., Tian, Y.-P., Ming, H., Wang, P., Jiang, M.-H. & Fun, H.-K. (2006b). Eur. J. Inorg. Chem. pp. 2900–2907.  CrossRef Google Scholar
First citationManjare, S. T., Kim, Y. & Churchill, D. G. (2014). Acc. Chem. Res. 47, 2985–2998.  CrossRef CAS Google Scholar
First citationMugesh, G. & Singh, H. B. (2000). Chem. Soc. Rev. 29, 347–357.  Web of Science CrossRef CAS Google Scholar
First citationPoleschner, H. & Seppelt, K. (2004). Chem. Eur. J. 10, 6565–6574.  CrossRef PubMed CAS Google Scholar
First citationPop, A., Silvestru, A., Juárez-Pérez, E. J., Arca, M., Lippolis, V. & Silvestru, C. (2014). Dalton Trans. 43, 2221–2233.  CrossRef Google Scholar
First citationPrasad, P. R., Selvakumar, K., Singh, H. B. & Butcher, R. J. (2016). J. Org. Chem. 81, 3214–3226.  CrossRef Google Scholar
First citationRani, V., Singh, H. B. & Butcher, R. J. (2017a). Acta Cryst. E73, 341–344.  CSD CrossRef IUCr Journals Google Scholar
First citationRani, V., Singh, H. B. & Butcher, R. J. (2017b). IUCrData, 2, x171746.  Google Scholar
First citationRani, V., Singh, H. B. & Butcher, R. J. (2017c). Organometallics, 36, 4741–4752.  CrossRef Google Scholar
First citationRani, V., Singh, H. B. & Butcher, R. J. (2018a). Acta Cryst. E74, 390–393.  CrossRef IUCr Journals Google Scholar
First citationRani, V., Singh, H. B. & Butcher, R. J. (2018b). J. Organomet. Chem. 859, 33–43.  CrossRef Google Scholar
First citationSelvakumar, K., Shah, P., Singh, H. B. & Butcher, R. J. (2011a). Chem. Eur. J. 17, 12741–12755.  CrossRef Google Scholar
First citationSelvakumar, K., Singh, H. B. & Butcher, R. J. (2011b). Tetrahedron Lett. 52, 6831–6834.  CrossRef Google Scholar
First citationSelvakumar, K., Singh, H. B., Goel, N. & Singh, U. P. (2011c). Organometallics, 30, 3892–3896.  CrossRef Google Scholar
First citationSelvakumar, K., Singh, V. P., Shah, P. & Singh, H. B. (2011d). Main Group Chemistry, 10, 141–152.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShibaeva, R. P., Khasanov, S. S., Rozenberg, L. P., Kushch, N. D., Yagubskii, E. B. & Canadell, E. (1997). Kristallografiya, 42, 846–850.  Google Scholar
First citationShibaeva, R. P., Rozenberg, L. P., Kushch, N. D. & Yagubskii, E. B. (1994). Kristallografiya, 39, 825–831.  Google Scholar
First citationSingh, V. P., Singh, H. B. & Butcher, R. J. (2011). Chem. Commun. 47, 7221–7223.  Web of Science CSD CrossRef CAS Google Scholar
First citationSingh, F. V. & Wirth, T. (2012). Selenium Compounds as Ligands and Catalysts. In Organoselenium Chemistry: Synthesis and Reactions edited by T. Wirth, pp. 321–334. Weinheim: Wiley-VCH.  Google Scholar
First citationSpace, G. & Armeanu, V. (1930). Bul. Soc. Stiinte Cluj, 5, 294–318.  Google Scholar
First citationSun, H.-Q., Wang, X.-Q. & Zhang, W.-W. (2013). Acta Cryst. E69, i59.  CrossRef IUCr Journals Google Scholar
First citationSun, H.-Q., Yu, W.-T., Yuan, D.-R., Wang, X.-Q. & Xue, G. (2005). Acta Cryst. E61, i111–i112.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Z., Sun, Z., Hao, X.-Q., Niu, J.-L., Wei, D., Tu, T., Gong, J.-F. & Song, M.-P. (2014). Organometallics, 33, 1563–1573.  CrossRef Google Scholar
First citationZade, S. S., Panda, S., Tripathi, S. K., Singh, H. B. & Wolmershäuser, G. (2004a). Eur. J. Org. Chem. pp. 3857–3864.  CrossRef Google Scholar
First citationZade, S. S., Singh, H. B. & Butcher, R. J. (2004b). Angew. Chem. Int. Ed. 43, 4513–4515.  CrossRef Google Scholar
First citationZhao, L., Li, J., Li, Y., Liu, J., Wirth, T. & Li, Z. (2012). Bioorg. Med. Chem. 20, 2558–2563.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds