research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfield surface analysis of 4-phenyl-3-(thio­phen-3-ylmeth­yl)-1H-1,2,4-triazole-5(4H)-thione

CROSSMARK_Color_square_no_text.svg

aFaculty of Chemistry, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam, bDepartment of Chemistry, Hanoi University of Science, 19 Le Thanh Tong Street, Ha Ba Discrict, Hanoi, Vietnam, and cDepartment of Chemistry, KU Leuven, Biomolecular Architecture, Celestijnenlaan 200F, Leuven (Heverlee), B-3001, Belgium
*Correspondence e-mail: luc.vanmeervelt@kuleuven.be

Edited by P. Bombicz, Hungarian Academy of Sciences, Hungary (Received 14 March 2018; accepted 14 May 2018; online 18 May 2018)

In the title compound, C13H11N3S2, the phenyl ring is twisted from the 1,2,4-triazole plane by 63.35 (9)° and by 47.35 (9)° from the thio­phene plane. In the crystal, chains of mol­ecules running along the c-axis direction are formed by N—H⋯S inter­actions [graph-set motif C(4)]. The 1,2,4-triazole and phenyl rings are involved in ππ stacking inter­actions [centroid–centroid distance = 3.4553 (10) Å]. The thio­phene ring is involved in C—H⋯S and C—H⋯π inter­actions. The inter­molecular inter­actions in the crystal packing were further analysed using Hirshfield surface analysis, which indicates that the most significant contacts are H⋯H (35.8%), followed by S⋯H/H⋯S (26.7%) and C⋯H/H⋯C (18.2%).

1. Chemical context

The triazole ring is an important component of bioactive heterocycles because of its effect in bactericides, pesticides and fungicides (Sengupta et al., 1978[Sengupta, A. K., Bajaj, O. P. & Chandura, U. J. (1978). J. Ind. Chem. Soc, 55, 962-964.]; Singh et al., 1979[Singh, H., Yadav, L. D. S. & Bhattacharya, B. K. J. (1979). J. Ind. Chem. Soc. 56, 1013-1017.]; Giri et al., 1978[Giri, S., Singh, H., Yadav, L. D. S. & Kahre, R. K. (1978). J. Ind. Chem. Soc. 55, 168-171.]). Many derivatives containing 1,2,4-triazoline-5-thione show a variety of biological activities: anti-inflamatory (Sahin et al., 2001[Sahin, G., Palaska, E., Kelicen, P., Demirdamar, R. & Altmok, G. (2001). Arzneim.-Forsch. 51, 478-484.]), anti­fungal (Knight et al., 1978[Knight, P. D., Demauriac, R. A. & Graham, P. A. (1978). Ger. Offen. 2811025.], 1979[Knight, P. D., Demauriac, R. A. & Graham, P. A. (1979) Chem. Abstr. 90, 79146s.]), analgesis (Mekuskiene et al., 1998[Mekuskiene, G., Gaidelis, P. & Vainilavicius, P. (1998). Pharmazie, 53, 94-98.]) and bacteriostatic (Eweiss et al., 1986[Eweiss, N. F., Bahajaj, A. A. & Elsherbini, E. A. (1986). J. Heterocycl. Chem. 23, 1451-1458.]; Mazzone et al., 1981[Mazzone, G., Bonina, F., Arrigo Reina, R. & Blandino, G. (1981). Farmaco, 36, 181-196.]). Thio­phene-containing 1,2,4-triazole derivatives have been studied and these compounds have shown promising anti­mycotic activity (Wujec et al., 2004[Wujec, M., Pitucha, M., Dobosz, M., Kosikowska, U. & Malm, A. (2004). Acta Pharm. 54, 251-260.]). Combinations of the thio­phene ring with other heterocyclic rings applied in conducting polymers have also been investigated (Ho et al., 2002[Ho, H. A., Boissinot, M., Bergeron, M. G., Corbeil, G., Doré, K., Boudreau, D. & Leclerc, M. (2002). Angew. Chem. Int. Ed. 41, 1548-1551.]; Mohamed et al., 2014[Mohamed, M. G., Cheng, C. C., Lin, Y. C., Huang, C. W., Lu, F. H., Chang, F. C. & Kuo, S. W. (2014). RSC Adv. 4, 21830-21839.]; Bondarev et al., 2010[Bondarev, D., Zedník, J., Šloufová, I., Sharf, A., Procházka, M., Pfleger, J. & Vohlídal, J. (2010). J. Polym. Sci. A, 48, 3073-3081.]).

[Scheme 1]

As part of our studies, we have synthesized a new thio­phene monomer containing 1,2,4-triazole-5-thione. The polymer obtained from 4-phenyl-3-(thio­phen-3-yl-meth­yl)-1H-1,2,4-triazole-5(4H)-thione was further characterized by IR spectroscopy and TGA. TG–TGA analysis shows that the polymer is thermally stable above 473 K, showing degradation beyond 773 K and exothermic maxima at 745 K. We present here the synthesis and crystal structure of the title compound.

2. Structural commentary

The title compound crystallizes in the monoclinic space group P21/c with one mol­ecule in the asymmetric unit (Fig. 1[link]). In the crystalline state, the central 1,2,4-triazole ring exists in its thione tautomeric state with a C2=S1 distance of 1.6845 (16) Å. The short C4=N5 distance [1.302 (2) Å] indicates its double-bond character. The 1,2,4-triazole ring is almost planar (r.m.s. deviation = 0.002 Å for ring C2/N3/C4/N5/N6), with the substituents S1, C7 and C13 deviating by −0.020 (1), −0.028 (2) and 0.061 (2) Å, respectively. The plane of the 1,2,4-triazole ring forms dihedral angles of 79.70 (9) and 63.35 (9)° with the best planes through the thio­phene and phenyl rings, respectively. The thio­phene and phenyl rings are inclined to each other by 47.35 (9)°. The thio­phene ring does not show rotational disorder as observed in previous structure determinations of similar compounds (Vu Quoc et al., 2017[Vu Quoc, T., Nguyen Ngoc, L., Nguyen Tien, C., Thang Pham, C. & Van Meervelt, L. (2017). Acta Cryst. E73, 901-904.]).

[Figure 1]
Figure 1
View of the asymmetric unit of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as small circles of arbitrary radii.

3. Supra­molecular features

The crystal packing of the title compound is shown in Fig. 2[link]. The packing is dominated by N6—H6⋯S1 inter­actions (Table 1[link]), resulting in the formation of chains of mol­ecules with graph-set motif C(4) propagating along the c-axis direction. In addition, the 1,2,4-triazole and phenyl rings exhibit ππ stacking inter­actions [Cg2⋯Cg3i = 3.4553 (10) Å; angle of inclination = 9.98 (9)°; Cg2 and Cg3 are the centroids of the 1,2,4-triazole and phenyl rings, respectively; symmetry code: (i) x, −y + [{3\over 2}], z + [{1\over 2}]; Fig. 2[link]].

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C14/C15/S16/C17/C18 thio­phene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N6—H6⋯S1i 0.88 2.46 3.2866 (16) 156
C8—H8⋯S16ii 0.95 2.82 3.737 (2) 162
C10—H10⋯Cg1iii 0.95 2.83 3.566 (2) 135
C13—H13BCg1iv 0.99 2.76 3.409 (2) 123
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) x-1, y, z-1; (iii) x, y, z-1; (iv) -x+2, -y+1, -z+1.
[Figure 2]
Figure 2
Crystal packing of the title compound shown in projection down the a axis illustrating chain formation along the c-axis direction by N—H⋯S hydrogen bonding (yellow dashed lines) and the ππ stacking inter­actions between the 1,2,4-triazole (yellow) and phenyl (blue) rings.

The thio­phene ring plays also a role in the crystal packing as illustrated by the weaker C8—H8⋯S16 inter­actions and C—H⋯π inter­actions involving H atoms H10 and H13B (Table 1[link], Fig. 3[link]). The crystal packing contains no voids.

[Figure 3]
Figure 3
Partial crystal packing of the title compound, showing the C—H⋯π (gray dashed lines) and C—H⋯S inter­actions (yellow dashed lines) [see Table 1[link]; symmetry codes: (i) x, y, z + 1; (ii) −x + 2, −y + 1, −z + 1; (iii) x − 1, y, z − 1; (iv) x + 1, y, z + 1].

4. Hirshfield surface analysis

Hirshfield surface and two-dimensional fingerprint plot calculations were performed using CrystalExplorer (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]). The larger bright-red spots near atoms S1, N6, S16 and H8 (labelled 1, 2, 3 and 4) on the Hirshfield surface mapped over dnorm in Fig. 4[link]a and b represent the N—H⋯S and C—H⋯S hydrogen bonds present in the crystal packing. The pale-red spots in Fig. 4[link]a near atom N5 and the phenyl ring (labelled 5 and 6) are the result of the ππ stacking between the 1,2,4-triazole and phenyl rings. In Fig. 4[link]b, an additional pale-red spot is present near atom S16 (labelled 7), indicating a short S⋯S contact [S16⋯S16i = 3.4688 (7) Å; symmetry code: (i) −x + 2, −y + 1, −z + 2]. The relative contributions of the different inter­molecular inter­actions to the Hirshfield surface area, in descending order, are: H⋯H (35.8%), S⋯H/H⋯S (26.7%), C⋯H/H⋯C (18.2%), N⋯H/H⋯N (8.5%), C⋯N/N⋯C (3.7%), C⋯C (3.1%), S⋯C/C⋯S (2.8%) and S⋯S (1.2%). The latter value indicates that the S⋯S contact only makes a marginal contribution to the packing of the title compound.

[Figure 4]
Figure 4
Two views of the Hirshfield surface for the title compound mapped over dnorm in the range −0.386 to +1.111 a.u., showing (a) the N—H⋯S and C—H⋯S hydrogen bonding and ππ inter­actions between the 1,2,4-triazole and phenyl rings, and (b) the N—H⋯S and C—H⋯S hydrogen bonding and S⋯S inter­actions.

5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.39, last update November 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for crystal structures containing a 1H-1,2,4-triazole-5(4H)-thione moiety results in 287 (only organics) or 375 structures (including organometallics). When considering only organics, the average C=S and C=N distances are, respectively, 1.676 (9) Å [ranging from 1.608 to 1.699 Å] and 1.302 (11) Å [ranging from 1.275 to 1.410 Å]. For the 66 structures with atom N3 bearing a phenyl subsituent (only organics), the dihedral angle between the 1,2,4-triazole and phenyl rings varies from 55.3 to 90° (the latter when bulky substituents are present at position C4). In the case of a –CH2R group at position C4, 53 structures are retrieved from the CSD. In this case, the torsion angle N=C—CH2R shows three favoured regions: (1) synperiplanar for small subsituents (torsion angles between −23 and +32°, 28 hits), (2) +anti­clinal (torsion angles between 67 and 115°, 15 hits) and (3) −anti­clinal (torsion angles between −87 and −140°, 10 hits).

6. Synthesis and crystallization

The reaction scheme used to synthesize the title compound, (3), is given in Fig. 5[link]. Methyl 2-(thio­phen-3-yl)acetate, (1), and 2-(thio­phen-3-yl)acetohydrazide, (2), were synthesized as described in a previous study (Vu Quoc et al., 2017[Vu Quoc, T., Nguyen Ngoc, L., Nguyen Tien, C., Thang Pham, C. & Van Meervelt, L. (2017). Acta Cryst. E73, 901-904.]).

[Figure 5]
Figure 5
Reaction scheme for the title compound.

A mixture of hydrazide (2) (0.01 mol), phenyl­iso­thio­cyanate (0.01 mol) and 20 mL ethanol was refluxed at 353 K for 8h. The solid precipitate was filtered, washed and recrystallized from ethanol to give white crystals (m.p. 416 K). Then, the mixture of the resulting solid (0.411 g), 10 mL ethanol and NaOH 10% (1.25 mmol) was refluxed at 353 K for 3 h. The reaction mixture was cooled and neutralized with HCl 10% to pH = 1–2. The product was filtered, washed and recrystallized from ethanol to give 1.42 g (yield 52%) of (3) in the form of pale-yellow crystals (m.p. 451 K). IR (Nicolet Impact 410 FTIR, KBr, cm−1): 3453 (NH), 3088, 2911 (CH), 1576 (C=C thio­phene), 1278, 1207 (C=S). 1H NMR [Bruker XL-500, 500 MHz, d6-DMSO, δ (ppm), J (Hz)]: 6.96 (m, 1H, H2), 6.75 (d, 1H, 5J = 4.5, H4), 7.38 (dd, 1H, 2J = 3.0, 4J = 5.0, H5), 3.85 (s, 2H, H6), 13.77 (s, 1H, H8), 7.26–7.28 (m, 2H, H11 and H15), 7.48–7.50 (m, 3H, H12, H13 and H14). 13C NMR [Bruker XL-500, 125 MHz, d6-DMSO, δ (ppm)]: 123.86 (C2), 134.24 (C3), 128.02 (C4), 126.14 (C5), 26.35 (C6), 150.83 (C7), 167.85 (C9), 133.55 (C10), 128.16 (C11 and C15), 129.20 (C12 and C14), 129.34 (C13). Calculation for C13H11N3S2: M = 273 a.u.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The H atoms were placed at calculated positions and refined in riding mode, with a N—H distance of 0.88 Å or C—H distances of 0.95 (aromatic) and 0.99 Å (CH2), and isotropic displacement parameters equal to 1.2Ueq of the parent atoms.

Table 2
Experimental details

Crystal data
Chemical formula C13H11N3S2
Mr 273.37
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 8.8257 (8), 16.0776 (16), 9.7437 (9)
β (°) 116.383 (3)
V3) 1238.6 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.41
Crystal size (mm) 0.31 × 0.21 × 0.09
 
Data collection
Diffractometer Bruker D8 Quest CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.700, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 20908, 3082, 2697
Rint 0.038
(sin θ/λ)max−1) 0.668
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.097, 1.06
No. of reflections 3082
No. of parameters 163
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.59, −0.38
Computer programs: APEX2 (Bruker, 2014[Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2013[Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

4-Phenyl-3-(thiophen-3-ylmethyl)-1H-1,2,4-triazole-5(4H)-thione top
Crystal data top
C13H11N3S2F(000) = 568
Mr = 273.37Dx = 1.466 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.8257 (8) ÅCell parameters from 9914 reflections
b = 16.0776 (16) Åθ = 2.9–28.3°
c = 9.7437 (9) ŵ = 0.41 mm1
β = 116.383 (3)°T = 100 K
V = 1238.6 (2) Å3Block, yellow
Z = 40.31 × 0.21 × 0.09 mm
Data collection top
Bruker D8 Quest CMOS
diffractometer
2697 reflections with I > 2σ(I)
φ and ω scansRint = 0.038
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
θmax = 28.4°, θmin = 2.9°
Tmin = 0.700, Tmax = 0.746h = 1111
20908 measured reflectionsk = 2121
3082 independent reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0467P)2 + 1.0177P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
3082 reflectionsΔρmax = 0.59 e Å3
163 parametersΔρmin = 0.38 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.24329 (5)0.74179 (3)0.05131 (5)0.01795 (11)
C20.40447 (19)0.69570 (10)0.19985 (17)0.0138 (3)
N30.54765 (16)0.65826 (8)0.20563 (14)0.0132 (3)
C40.64077 (19)0.62860 (10)0.35345 (17)0.0141 (3)
N50.56488 (17)0.64436 (8)0.43857 (15)0.0158 (3)
N60.42054 (16)0.68568 (8)0.34200 (15)0.0151 (3)
H60.3452690.7039540.3710180.018*
C70.59244 (19)0.64996 (9)0.08099 (17)0.0130 (3)
C80.4894 (2)0.60295 (10)0.04588 (18)0.0184 (3)
H80.3909200.5766020.0505090.022*
C90.5328 (2)0.59507 (11)0.16594 (19)0.0235 (4)
H90.4622160.5638990.2541760.028*
C100.6780 (2)0.63219 (11)0.1584 (2)0.0225 (4)
H100.7070290.6263180.2408400.027*
C110.7808 (2)0.67794 (11)0.02992 (19)0.0201 (3)
H110.8812150.7027790.0239790.024*
C120.7379 (2)0.68777 (10)0.09068 (18)0.0163 (3)
H120.8072110.7198830.1780220.020*
C130.8089 (2)0.58721 (11)0.40650 (18)0.0183 (3)
H13A0.8916350.6279250.4036380.022*
H13B0.7994210.5413640.3352890.022*
C140.87343 (19)0.55283 (10)0.56653 (18)0.0154 (3)
C151.0020 (2)0.58833 (10)0.69147 (18)0.0174 (3)
H151.0584400.6380220.6879210.021*
S161.04926 (5)0.53259 (3)0.85492 (5)0.02086 (12)
C170.89607 (19)0.45897 (10)0.76090 (17)0.0150 (3)
H170.8725390.4120450.8075100.018*
C180.8116 (2)0.47912 (11)0.60493 (19)0.0196 (3)
H180.7218520.4467600.5320240.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01244 (19)0.0249 (2)0.0173 (2)0.00407 (14)0.00726 (15)0.00491 (15)
C20.0135 (7)0.0139 (7)0.0161 (7)0.0021 (5)0.0084 (6)0.0012 (5)
N30.0134 (6)0.0155 (6)0.0117 (6)0.0015 (5)0.0066 (5)0.0012 (5)
C40.0159 (7)0.0148 (7)0.0115 (7)0.0002 (5)0.0061 (6)0.0009 (5)
N50.0159 (6)0.0175 (6)0.0146 (6)0.0017 (5)0.0073 (5)0.0016 (5)
N60.0147 (6)0.0178 (6)0.0154 (6)0.0019 (5)0.0091 (5)0.0001 (5)
C70.0141 (7)0.0147 (7)0.0120 (6)0.0038 (5)0.0073 (5)0.0024 (5)
C80.0163 (7)0.0208 (8)0.0164 (7)0.0002 (6)0.0058 (6)0.0006 (6)
C90.0274 (9)0.0267 (9)0.0145 (7)0.0019 (7)0.0075 (7)0.0030 (6)
C100.0284 (9)0.0267 (9)0.0176 (8)0.0108 (7)0.0150 (7)0.0061 (7)
C110.0185 (7)0.0235 (8)0.0226 (8)0.0049 (6)0.0132 (7)0.0083 (6)
C120.0154 (7)0.0182 (8)0.0151 (7)0.0013 (6)0.0067 (6)0.0021 (6)
C130.0184 (7)0.0238 (8)0.0143 (7)0.0070 (6)0.0087 (6)0.0053 (6)
C140.0157 (7)0.0178 (7)0.0137 (7)0.0046 (6)0.0073 (6)0.0028 (6)
C150.0179 (7)0.0183 (8)0.0165 (7)0.0007 (6)0.0080 (6)0.0023 (6)
S160.0193 (2)0.0267 (2)0.0146 (2)0.00099 (16)0.00573 (16)0.00087 (15)
C170.0129 (7)0.0168 (7)0.0132 (7)0.0010 (5)0.0038 (6)0.0004 (5)
C180.0194 (8)0.0213 (8)0.0159 (7)0.0015 (6)0.0058 (6)0.0007 (6)
Geometric parameters (Å, º) top
S1—C21.6845 (16)C10—C111.386 (3)
C2—N31.378 (2)C11—H110.9500
C2—N61.338 (2)C11—C121.395 (2)
N3—C41.3876 (19)C12—H120.9500
N3—C71.4407 (19)C13—H13A0.9900
C4—N51.302 (2)C13—H13B0.9900
C4—C131.494 (2)C13—C141.507 (2)
N5—N61.3727 (18)C14—C151.367 (2)
N6—H60.8800C14—C181.423 (2)
C7—C81.388 (2)C15—H150.9500
C7—C121.385 (2)C15—S161.7098 (16)
C8—H80.9500S16—C171.7226 (16)
C8—C91.389 (2)C17—H170.9500
C9—H90.9500C17—C181.401 (2)
C9—C101.386 (3)C18—H180.9500
C10—H100.9500
N3—C2—S1129.51 (12)C10—C11—H11119.8
N6—C2—S1127.09 (12)C10—C11—C12120.48 (16)
N6—C2—N3103.39 (13)C12—C11—H11119.8
C2—N3—C4107.58 (13)C7—C12—C11118.91 (15)
C2—N3—C7126.59 (13)C7—C12—H12120.5
C4—N3—C7125.83 (13)C11—C12—H12120.5
N3—C4—C13123.47 (14)C4—C13—H13A109.1
N5—C4—N3111.06 (14)C4—C13—H13B109.1
N5—C4—C13125.43 (14)C4—C13—C14112.45 (13)
C4—N5—N6103.95 (12)H13A—C13—H13B107.8
C2—N6—N5114.02 (13)C14—C13—H13A109.1
C2—N6—H6123.0C14—C13—H13B109.1
N5—N6—H6123.0C15—C14—C13123.41 (15)
C8—C7—N3118.99 (14)C15—C14—C18112.18 (14)
C12—C7—N3119.67 (14)C18—C14—C13124.39 (15)
C12—C7—C8121.33 (15)C14—C15—H15124.1
C7—C8—H8120.6C14—C15—S16111.90 (12)
C7—C8—C9118.88 (16)S16—C15—H15124.1
C9—C8—H8120.6C15—S16—C1793.21 (8)
C8—C9—H9119.6S16—C17—H17125.3
C10—C9—C8120.70 (16)C18—C17—S16109.37 (12)
C10—C9—H9119.6C18—C17—H17125.3
C9—C10—H10120.2C14—C18—H18123.3
C9—C10—C11119.68 (16)C17—C18—C14113.35 (14)
C11—C10—H10120.2C17—C18—H18123.3
S1—C2—N3—C4179.20 (12)N6—C2—N3—C40.37 (16)
S1—C2—N3—C70.1 (2)N6—C2—N3—C7178.76 (14)
S1—C2—N6—N5178.97 (11)C7—N3—C4—N5178.60 (14)
C2—N3—C4—N50.55 (18)C7—N3—C4—C133.6 (2)
C2—N3—C4—C13177.23 (15)C7—C8—C9—C101.1 (3)
C2—N3—C7—C863.5 (2)C8—C7—C12—C110.1 (2)
C2—N3—C7—C12117.40 (17)C8—C9—C10—C110.2 (3)
N3—C2—N6—N50.10 (17)C9—C10—C11—C120.9 (3)
N3—C4—N5—N60.46 (17)C10—C11—C12—C71.0 (2)
N3—C4—C13—C14173.79 (14)C12—C7—C8—C91.0 (2)
N3—C7—C8—C9179.97 (15)C13—C4—N5—N6177.26 (15)
N3—C7—C12—C11178.94 (14)C13—C14—C15—S16178.12 (12)
C4—N3—C7—C8115.47 (17)C13—C14—C18—C17178.09 (15)
C4—N3—C7—C1263.6 (2)C14—C15—S16—C170.21 (13)
C4—N5—N6—C20.22 (18)C15—C14—C18—C170.4 (2)
C4—C13—C14—C15106.27 (18)C15—S16—C17—C180.01 (13)
C4—C13—C14—C1875.4 (2)S16—C17—C18—C140.22 (18)
N5—C4—C13—C148.8 (2)C18—C14—C15—S160.37 (18)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C14/C15/S16/C17/C18 thiophene ring.
D—H···AD—HH···AD···AD—H···A
N6—H6···S1i0.882.463.2866 (16)156
C8—H8···S16ii0.952.823.737 (2)162
C10—H10···Cg1iii0.952.833.566 (2)135
C13—H13B···Cg1iv0.992.763.409 (2)123
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x1, y, z1; (iii) x, y, z1; (iv) x+2, y+1, z+1.
 

Funding information

LVM thanks VLIR-UOS (project ZEIN2014Z182) for financial support.

References

First citationBondarev, D., Zedník, J., Šloufová, I., Sharf, A., Procházka, M., Pfleger, J. & Vohlídal, J. (2010). J. Polym. Sci. A, 48, 3073–3081.  CrossRef Google Scholar
First citationBruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEweiss, N. F., Bahajaj, A. A. & Elsherbini, E. A. (1986). J. Heterocycl. Chem. 23, 1451–1458.  CrossRef CAS Google Scholar
First citationGiri, S., Singh, H., Yadav, L. D. S. & Kahre, R. K. (1978). J. Ind. Chem. Soc. 55, 168–171.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHo, H. A., Boissinot, M., Bergeron, M. G., Corbeil, G., Doré, K., Boudreau, D. & Leclerc, M. (2002). Angew. Chem. Int. Ed. 41, 1548–1551.  CrossRef Google Scholar
First citationKnight, P. D., Demauriac, R. A. & Graham, P. A. (1978). Ger. Offen. 2811025.  Google Scholar
First citationKnight, P. D., Demauriac, R. A. & Graham, P. A. (1979) Chem. Abstr. 90, 79146s.  Google Scholar
First citationMazzone, G., Bonina, F., Arrigo Reina, R. & Blandino, G. (1981). Farmaco, 36, 181–196.  Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814.  Google Scholar
First citationMekuskiene, G., Gaidelis, P. & Vainilavicius, P. (1998). Pharmazie, 53, 94–98.  Google Scholar
First citationMohamed, M. G., Cheng, C. C., Lin, Y. C., Huang, C. W., Lu, F. H., Chang, F. C. & Kuo, S. W. (2014). RSC Adv. 4, 21830–21839.  CrossRef Google Scholar
First citationSahin, G., Palaska, E., Kelicen, P., Demirdamar, R. & Altmok, G. (2001). Arzneim.-Forsch. 51, 478–484.  CAS Google Scholar
First citationSengupta, A. K., Bajaj, O. P. & Chandura, U. J. (1978). J. Ind. Chem. Soc, 55, 962–964.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, H., Yadav, L. D. S. & Bhattacharya, B. K. J. (1979). J. Ind. Chem. Soc. 56, 1013–1017.  Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationVu Quoc, T., Nguyen Ngoc, L., Nguyen Tien, C., Thang Pham, C. & Van Meervelt, L. (2017). Acta Cryst. E73, 901–904.  CrossRef IUCr Journals Google Scholar
First citationWujec, M., Pitucha, M., Dobosz, M., Kosikowska, U. & Malm, A. (2004). Acta Pharm. 54, 251–260.  PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds