research communications
Spontaneous enantiomorphism in poly-phased alkaline salts of tris(oxalato)ferrate(III): 5[Fe(C2O4)3]2
of cubic NaRbaDepartamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata and IFLP(CONICET), C.C. 67, 1900 La Plata, Argentina, and bCentro de Química Inorgánica (CEQUINOR), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C.C. 962, 1900 La Plata, Argentina
*Correspondence e-mail: geche@fisica.unlp.edu.ar
We show here that the phenomenon of 5[Fe(C2O4)3]2. One enantiomer of the salt crystallizes in the cubic P4332 with Z = 4 and a Flack parameter x = −0.01 (1) and its chiral counterpart in the P4132 with x = −0.00 (1). All metal ions are at crystallographic special positions: the iron(III) ion is on a threefold axis, coordinated by three oxalate dianions in a propeller-like conformation. One of the two independent rubidium ions is on a twofold axis in an eightfold coordination with neighbouring oxalate oxygen atoms, and the other one on a threefold axis in a sixfold RbO6 coordination. The sodium ion is at a site of D3 symmetry in a trigonal–antiprismatic NaO6 coordination.
of enantiomers occurs during the crystallization of the sodium and rubidium double salts of the transition metal complex tris(oxalato)ferrate(III), namely sodium pentarubidium bis[tris(oxalato)ferrate(III)], NaRb1. Chemical context
). is at the core (among other research areas) of the not yet understood origin of the biomolecular asymmetry of life (Meierhenrich, 2008), enantioselective chemical reactions (Knowles, 2001; Noyori, 2001; Sharpless, 2001), biological activity of pharmaceuticals (Nguyen et al., 2006) and in the design of multifunctional solid-state materials endowed with optical activity and long-range magnetic order (Coronado et al., 2003) and also in the understanding of the physical properties of chiral liquid crystals and their tailoring for applications in opto-electronic devices (Goodby, 1998; Coles, 1998).
is the structural property by which a molecule or ion cannot be superposed upon its mirror image through translation and proper rotation operations. This concept along with the related ones of chiral crystal structures and space groups is discussed by Flack (2003While attempting to crystallize the rubidium salt of the tris(oxalato)ferrate(III) transition metal complex, one of the preparations segregated into a poly-phased 3[Fe(C2O4)3]·3H2O compound (monoclinic P21/c), which turned out to be isotypic to the reported potassium salt (Junk, 2005; Piro et al., 2016), and the triclinic (P) Rb(C2O4H)(C2O4H2)·2H2O salt (Kherfi et al., 2010), which is isotypic to the ammonium analogue (Jarzembska et al., 2014). A third phase consisted of large green crystals of a new cubic (P4332) NaRb5[Fe(C2O4)3]2 salt. Interestingly, the isotypic counterpart of this salt where rubidium is replaced by potassium has been reported by Wartchow (1997) to appear in a mixture with crystals of the monoclinic K3[Fe(C2O4)3]·3H2O salt, hence confirming the tendency of potassium and rubidium alkaline ions to form isotypic crystal analogues (Piro et al., 2016). Curiously, in a previous work, Henneicke & Wartchow (1997) reported the chiral counterpart of the cubic NaK5[Fe(C2O4)3]2 salt, which crystallizes in the P4132. This prompted us to search for the chiral rubidium analogue in the very same batch as the single-crystals that solved in the P4332 NaRb5[Fe(C2O4)3]2. By chance, we picked a single crystal and submitted it to X-ray diffraction scrutiny to find that it now belonged to the P4132. This strongly suggests that the NaM5[Fe(C2O4)3]2 (M = K, Rb) crystal samples could be racemic conglomerates generated by a rare event discovered by Louis Pasteur in 1848 (Pasteur, 1848a,b) in a famous experiment in which he hand-sorted the chirally resolved crystals of sodium ammonium tartrate tetrahydrate on the basis of their observed morphology and then examined their respective solutions with a polarimeter to find opposite rotations of the plane of (Flack, 2009). Recently, we found that the phenomenon could also have occurred in isotypic [M(Lap)2]n (M = Cd, Mn; HLap = 2-hydroxy-3-(3-methyl-2-butenyl)-1,4-naphtoquinone, C15H14O3) complexes whose enantiomers crystallize in the tetragonal and enantiomorphic space groups P43212 and P41212 (Farfán et al., 2015).
It contained the intended Rb2. Structural commentary
Fig. 1 shows an ORTEP (Farrugia, 2012) drawing of the P4332 enantiomer of the title compound. Bond lengths and angles around iron(III) and within the oxalate dianion are listed in Table 1 and contact distances around the alkali ions are shown in Table 2. All metal ions are at crystallographic special positions while the oxalate anion is on a general position. The iron(III) ion is on a threefold axis, C3 symmetry (Wyckoft c site), in an octahedral environment (FeO6 core). It is coordinated to three, symmetry-related, oxalate anions acting as bidentate ligands through the oxygen atoms of their opposite carboxylic groups in a propeller-like conformation and along one electron pair lobe on each oxygen ligand. The FeO6 bond geometry and metrics are consistent with the oxalate being a weak-field ligand that gives rise to the high-spin (S = 5/2) electronic ground state exhibited by the complex, as probed by (Delgado et al., 2002) and ESR spectroscopy (Collison & Powell, 1990) in synthetic minguzzite, K3[Fe(C2O4)3]·3H2O, by polarized electronic absorption spectroscopy in single crystal NaMg[(Fe, Al)(C2O4)3]·9H2O mixtures (Piper & Carlin, 1961) and also by Mössbauer spectroscopy in K3[Fe(C2O4)3]·3H2O (Bancroft et al., 1970; Sato & Tominaga, 1979; Ladriere, 1992) and in the alkali (Na, Rb, Cs) family of tris(oxalato)ferrate(III) salts (Piro et al., 2016).
|
The planes of the carboxylic –COO− groups of the oxalate ligand are slightly tilted from each other, by 12 (1)° around the C—C σ-bond. As expected, the C—O bond lengths involving the coordinated-to-metal oxygen atoms are significantly longer [1.286 (7) and 1.283 (7) Å] than the ones corresponding to the uncoordinated oxalate oxygen atoms [both equal to 1.211 (7) Å].
There are two independent rubidium ions, one (Rb1) lying on a twofold axis, C2 symmetry (d site) in an eightfold coordination with neighbouring oxalate oxygen atoms, the other one (Rb2) on a threefold axis, C3 (c site) in a sixfold coordination. The sodium ion is at a site of D3 symmetry (a site) in a trigonal–antiprismatic NaO6 coordination with one oxygen atom of six neighbouring, symmetry-related, oxalate ions.
When dealing with octahedral Fe(C2O4)3 tris-chelated metal complexes, it is customary to describe its employing Λ- and Δ-descriptors (Meierhenrich, 2008). It turns out that the enantiomeric complexes correlate with the corresponding chiral space groups, as indicated in Fig. 2.
The possibility of controlling the crystal et al., 2006). To this purpose, two general synthetic routes have been developed to reach optically active coordination compounds, namely either by enantioselective synthesis using enantiopure chiral species, which yields enantiopure samples (Knof & von Zelewsky, 1999) or by upon crystallization from a racemate, which yields a conglomerate (Pérez-García & Amabilino, 2002). As explained above, the chiral NaRb5[Fe(C2O4)3]2 crystals were obtained through the phenomena of from a racemic solution of [Fe(C2O4)3]3− complex ions into a This is presumably followed by a structural by these chiral molecular ions on the alkali metal ions through shared oxalate ligands. In fact, not only is the FeIII ion a `stereogenic centre' in the Fe(C2O4)3 tris-chelated metal complex, but so also are the sodium and one (Rb2) of the rubidium ions. These metal ions are in a distorted octahedral environment coordinated to six oxalate anions, acting as monodentate ligand through one of their oxygen atoms and resembling a six-bladed propeller-like conformation. From the structural data, it turns out that the of this local arrangement around the alkaline ions is coincident with the one of the [Fe(C2O4)3]3− inductor and therefore the chiral crystals reported here can be more conveniently described as Λ-NaΛ-Rb2Rb3[Λ-Fe(C2O4)3]2 (P4332) and Δ-NaΔ-Rb2Rb3[Δ-Fe(C2O4)3]2 (P4132). However, no definitive can be unambiguously assigned to the other independent rubidium (Rb1) ion which is in an eightfold polyhedral coordination.
and therefore obtaining enhanced optical activity of functional materials has been discussed (Gruselle3. Database survey
The formation of racemic conglomerates of single crystals, adequate for structural X-ray diffraction, generated by et al., 2016) invoking the term `spontaneous resolution' showed seventeen entries, and another one using as a target `chiral crystals' produced a further four hits. Among them there were reported the chiral to each other (M)- and (P)-catena-{[μ2-2-(imidazo[4,5-f](1,10)phenanthrolin-2-yl)benzoato-N,N′,O]aquachlorozinc(II)} (CSD refcodes EJINOB and EJINUH; Wei et al., 2011) and catena-[(μ8-benzene-1,3,5-tricarboxylato)lithiumzinc] (CSD refcodes WAJHUM and WAJJAU; Xie et al., 2010).
is an infrequent phenomenon. In fact, a search of the Cambridge Structural Database (Groom4. Synthesis and crystallization
As stated in the Chemical context, in one of the preparations generated during the synthesis of the rubidium salt of [Fe(C2O4)3]3−, by reaction of freshly precipitated Fe(OH)3 (obtained by dropwise addition of a small excess of 20% NaOH to an FeIII solution) with rubidium oxalate: Fe(OH)3 + 3Rb(HC2O4) + 3H2O → Rb3[Fe(C2O4)3]·3H2O + 3H2O) (Piro et al., 2016), we found a relatively complex reaction giving rise to a poly-phased crystal mixture, from which the NaRb5[Fe(C2O4)3]2 chiral pair could be isolated.
5. details
Crystal data, data collection procedure and structure . The structure was solved by intrinsic phasing with SHELXT (Sheldrick, 2015a). The were determined through of the Flack parameter. This is the fractional contribution to the diffraction pattern due to the molecule racemic twin and for the correct enantiomeric crystal it should be zero to within experimental error.
results are summarized in Table 3
|
Supporting information
https://doi.org/10.1107/S2056989018008022/hb7735sup1.cif
contains datablocks P4332, P4132, global. DOI:Structure factors: contains datablock P4332. DOI: https://doi.org/10.1107/S2056989018008022/hb7735P4332sup2.hkl
Structure factors: contains datablock P4132. DOI: https://doi.org/10.1107/S2056989018008022/hb7735P4132sup3.hkl
Data collection: CrysAlis PRO (Agilent, 2014) for P4332; CrysAlis PRO (Rigaku OD, 2015) for P4132. Cell
CrysAlis PRO (Agilent, 2014) for P4332; CrysAlis PRO (Rigaku OD, 2015) for P4132. Data reduction: CrysAlis PRO (Agilent, 2014) for P4332; CrysAlis PRO (Rigaku OD, 2015) for P4132. For both structures, program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b).NaRb5[Fe(C2O4)3]2 | Mo Kα radiation, λ = 0.71073 Å |
Mr = 1090.16 | Cell parameters from 922 reflections |
Cubic, P4332 | θ = 3.6–27.3° |
a = 13.8058 (4) Å | µ = 10.42 mm−1 |
V = 2631.4 (2) Å3 | T = 297 K |
Z = 4 | Fragment, green |
F(000) = 2048 | 0.48 × 0.42 × 0.38 mm |
Dx = 2.752 Mg m−3 |
Agilent Xcalibur Eos Gemini diffractometer | 959 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 767 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.043 |
Detector resolution: 16.0604 pixels mm-1 | θmax = 27.0°, θmin = 3.3° |
ω scans | h = −8→17 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) | k = −11→16 |
Tmin = 0.690, Tmax = 1.000 | l = −8→10 |
2960 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0274P)2] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.035 | (Δ/σ)max < 0.001 |
wR(F2) = 0.064 | Δρmax = 0.84 e Å−3 |
S = 1.00 | Δρmin = −0.85 e Å−3 |
959 reflections | Absolute structure: Flack x determined using 225 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
68 parameters | Absolute structure parameter: −0.013 (12) |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.3861 (5) | 0.8068 (4) | 0.3863 (5) | 0.0207 (13) | |
C2 | 0.4510 (5) | 0.7715 (5) | 0.3027 (5) | 0.0234 (16) | |
O11 | 0.2953 (3) | 0.7918 (3) | 0.3718 (3) | 0.0241 (10) | |
O12 | 0.4203 (3) | 0.8466 (3) | 0.4566 (3) | 0.0312 (11) | |
O21 | 0.4037 (3) | 0.7481 (3) | 0.2262 (3) | 0.0287 (10) | |
O22 | 0.5380 (3) | 0.7665 (4) | 0.3119 (3) | 0.0402 (13) | |
Fe | 0.26048 (6) | 0.73952 (6) | 0.23952 (6) | 0.0209 (4) | |
Rb1 | 0.25612 (5) | 1.00612 (5) | 0.3750 | 0.0290 (3) | |
Rb2 | 0.67150 (6) | 0.82850 (6) | 0.17150 (6) | 0.0444 (4) | |
Na | 0.3750 | 0.8750 | 0.6250 | 0.0218 (13) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.025 (3) | 0.020 (3) | 0.017 (3) | −0.001 (3) | −0.001 (3) | 0.006 (3) |
C2 | 0.021 (3) | 0.029 (4) | 0.020 (3) | 0.002 (3) | 0.000 (3) | 0.004 (3) |
O11 | 0.020 (2) | 0.032 (3) | 0.020 (2) | 0.000 (2) | 0.002 (2) | 0.000 (2) |
O12 | 0.034 (3) | 0.041 (3) | 0.019 (2) | −0.003 (2) | −0.004 (2) | −0.002 (2) |
O21 | 0.023 (2) | 0.044 (3) | 0.019 (2) | −0.004 (2) | 0.006 (2) | −0.006 (2) |
O22 | 0.020 (2) | 0.069 (4) | 0.032 (3) | 0.004 (3) | 0.003 (2) | 0.002 (3) |
Fe | 0.0209 (4) | 0.0209 (4) | 0.0209 (4) | −0.0006 (4) | −0.0006 (4) | 0.0006 (4) |
Rb1 | 0.0290 (3) | 0.0290 (3) | 0.0288 (5) | −0.0018 (5) | 0.0051 (3) | −0.0051 (3) |
Rb2 | 0.0444 (4) | 0.0444 (4) | 0.0444 (4) | −0.0115 (4) | 0.0115 (4) | −0.0115 (4) |
Na | 0.0218 (13) | 0.0218 (13) | 0.0218 (13) | 0.0014 (16) | −0.0014 (16) | −0.0014 (16) |
C1—O12 | 1.211 (7) | Rb1—O22v | 2.788 (5) |
C1—O11 | 1.286 (7) | Rb1—O22vi | 2.788 (5) |
C1—C2 | 1.540 (9) | Rb1—O11vii | 3.009 (4) |
C2—O22 | 1.211 (7) | Rb1—O11iv | 3.067 (4) |
C2—O21 | 1.283 (7) | Rb1—O11viii | 3.067 (4) |
O11—Fe | 2.021 (4) | Rb1—O12v | 3.133 (5) |
O11—Rb1 | 3.009 (4) | Rb1—O12vi | 3.133 (5) |
O11—Rb1i | 3.067 (4) | Rb1—O12vii | 3.354 (5) |
O12—Na | 2.439 (4) | Rb2—O22ix | 2.808 (4) |
O12—Rb1ii | 3.133 (5) | Rb2—O22x | 2.808 (4) |
O12—Rb1 | 3.354 (5) | Rb2—O21iii | 3.114 (4) |
O21—Fe | 1.989 (4) | Rb2—O21xi | 3.114 (4) |
O21—Rb2iii | 3.114 (4) | Rb2—O21vi | 3.114 (4) |
O22—Rb1ii | 2.788 (5) | Na—O12xii | 2.439 (4) |
O22—Rb2 | 2.808 (4) | Na—O12ii | 2.439 (4) |
Fe—O21iv | 1.989 (4) | Na—O12xiii | 2.439 (4) |
Fe—O21i | 1.989 (4) | Na—O12viii | 2.439 (4) |
Fe—O11i | 2.021 (4) | Na—O12v | 2.439 (4) |
Fe—O11iv | 2.021 (4) | ||
O12—C1—O11 | 125.2 (6) | O11vii—Rb1—O12v | 110.45 (11) |
O12—C1—C2 | 121.2 (6) | O11iv—Rb1—O12v | 151.29 (11) |
O11—C1—C2 | 113.5 (5) | O11viii—Rb1—O12v | 65.47 (11) |
O22—C2—O21 | 125.3 (6) | O22v—Rb1—O12vi | 91.18 (12) |
O22—C2—C1 | 121.1 (6) | O22vi—Rb1—O12vi | 56.14 (12) |
O21—C2—C1 | 113.6 (5) | O11—Rb1—O12vi | 110.45 (11) |
C1—O11—Fe | 115.5 (4) | O11vii—Rb1—O12vi | 95.92 (11) |
C1—O11—Rb1 | 90.8 (3) | O11iv—Rb1—O12vi | 65.47 (11) |
Fe—O11—Rb1 | 108.75 (16) | O11viii—Rb1—O12vi | 151.29 (11) |
C1—O11—Rb1i | 133.5 (4) | O12v—Rb1—O12vi | 133.07 (16) |
Fe—O11—Rb1i | 106.67 (16) | O22v—Rb1—O12vii | 64.52 (12) |
Rb1—O11—Rb1i | 93.73 (11) | O22vi—Rb1—O12vii | 114.33 (13) |
C1—O12—Na | 137.5 (4) | O11—Rb1—O12vii | 141.04 (11) |
C1—O12—Rb1ii | 107.6 (4) | O11vii—Rb1—O12vii | 40.34 (11) |
Na—O12—Rb1ii | 97.96 (14) | O11iv—Rb1—O12vii | 90.55 (10) |
C1—O12—Rb1 | 76.5 (4) | O11viii—Rb1—O12vii | 90.35 (11) |
Na—O12—Rb1 | 92.39 (13) | O12v—Rb1—O12vii | 116.99 (13) |
Rb1ii—O12—Rb1 | 157.89 (15) | O12vi—Rb1—O12vii | 62.32 (15) |
C2—O21—Fe | 116.4 (4) | O22v—Rb1—O12 | 114.33 (14) |
C2—O21—Rb2iii | 133.5 (4) | O22vi—Rb1—O12 | 64.52 (12) |
Fe—O21—Rb2iii | 95.43 (15) | O11—Rb1—O12 | 40.34 (11) |
C2—O22—Rb1ii | 121.7 (4) | O11vii—Rb1—O12 | 141.04 (11) |
C2—O22—Rb2 | 124.2 (4) | O11iv—Rb1—O12 | 90.35 (11) |
Rb1ii—O22—Rb2 | 110.80 (17) | O11viii—Rb1—O12 | 90.55 (10) |
O21iv—Fe—O21i | 88.42 (18) | O12v—Rb1—O12 | 62.32 (15) |
O21iv—Fe—O21 | 88.43 (18) | O12vi—Rb1—O12 | 116.99 (13) |
O21i—Fe—O21 | 88.42 (18) | O12vii—Rb1—O12 | 178.45 (16) |
O21iv—Fe—O11 | 160.91 (17) | O22ix—Rb2—O22x | 116.27 (7) |
O21i—Fe—O11 | 106.20 (17) | O22ix—Rb2—O22 | 116.27 (7) |
O21—Fe—O11 | 79.96 (16) | O22x—Rb2—O22 | 116.27 (7) |
O21iv—Fe—O11i | 106.20 (17) | O22ix—Rb2—O21iii | 131.79 (14) |
O21i—Fe—O11i | 79.96 (16) | O22x—Rb2—O21iii | 81.60 (13) |
O21—Fe—O11i | 160.91 (17) | O22—Rb2—O21iii | 89.01 (12) |
O11—Fe—O11i | 88.73 (17) | O22ix—Rb2—O21xi | 81.60 (13) |
O21iv—Fe—O11iv | 79.96 (16) | O22x—Rb2—O21xi | 89.01 (12) |
O21i—Fe—O11iv | 160.91 (17) | O22—Rb2—O21xi | 131.79 (14) |
O21—Fe—O11iv | 106.20 (17) | O21iii—Rb2—O21xi | 52.88 (13) |
O11—Fe—O11iv | 88.72 (17) | O22ix—Rb2—O21vi | 89.01 (12) |
O11i—Fe—O11iv | 88.73 (17) | O22x—Rb2—O21vi | 131.79 (14) |
O22v—Rb1—O22vi | 95.3 (2) | O22—Rb2—O21vi | 81.60 (13) |
O22v—Rb1—O11 | 152.05 (12) | O21iii—Rb2—O21vi | 52.88 (13) |
O22vi—Rb1—O11 | 83.24 (13) | O21xi—Rb2—O21vi | 52.88 (13) |
O22v—Rb1—O11vii | 83.24 (13) | O12—Na—O12xii | 76.1 (2) |
O22vi—Rb1—O11vii | 152.05 (12) | O12—Na—O12ii | 87.13 (15) |
O11—Rb1—O11vii | 110.74 (16) | O12xii—Na—O12ii | 120.9 (2) |
O22v—Rb1—O11iv | 152.40 (12) | O12—Na—O12xiii | 145.7 (2) |
O22vi—Rb1—O11iv | 83.98 (12) | O12xii—Na—O12xiii | 87.13 (15) |
O11—Rb1—O11iv | 55.43 (15) | O12ii—Na—O12xiii | 76.1 (2) |
O11vii—Rb1—O11iv | 84.73 (11) | O12—Na—O12viii | 120.9 (2) |
O22v—Rb1—O11viii | 83.98 (12) | O12xii—Na—O12viii | 87.13 (15) |
O22vi—Rb1—O11viii | 152.40 (12) | O12ii—Na—O12viii | 145.7 (2) |
O11—Rb1—O11viii | 84.73 (11) | O12xiii—Na—O12viii | 87.13 (15) |
O11vii—Rb1—O11viii | 55.43 (15) | O12—Na—O12v | 87.13 (15) |
O11iv—Rb1—O11viii | 109.10 (16) | O12xii—Na—O12v | 145.7 (2) |
O22v—Rb1—O12v | 56.14 (12) | O12ii—Na—O12v | 87.13 (15) |
O22vi—Rb1—O12v | 91.18 (12) | O12xiii—Na—O12v | 120.9 (2) |
O11—Rb1—O12v | 95.93 (11) | O12viii—Na—O12v | 76.1 (2) |
O12—C1—C2—O22 | 13.4 (10) | Rb1ii—C1—O11—Rb1i | 44.6 (12) |
O11—C1—C2—O22 | −168.2 (6) | O11—C1—O12—Na | 24.7 (10) |
Rb1—C1—C2—O22 | 115.8 (6) | C2—C1—O12—Na | −157.1 (4) |
Rb1ii—C1—C2—O22 | −14.0 (6) | Rb1—C1—O12—Na | 78.5 (5) |
O12—C1—C2—O21 | −167.4 (6) | Rb1ii—C1—O12—Na | −124.1 (6) |
O11—C1—C2—O21 | 11.0 (8) | O11—C1—O12—Rb1ii | 148.8 (5) |
Rb1—C1—C2—O21 | −65.0 (7) | C2—C1—O12—Rb1ii | −32.9 (6) |
Rb1ii—C1—C2—O21 | 165.3 (5) | Rb1—C1—O12—Rb1ii | −157.41 (18) |
O12—C1—C2—Rb1ii | 27.3 (5) | O11—C1—O12—Rb1 | −53.8 (6) |
O11—C1—C2—Rb1ii | −154.2 (5) | C2—C1—O12—Rb1 | 124.5 (6) |
Rb1—C1—C2—Rb1ii | 129.8 (3) | Rb1ii—C1—O12—Rb1 | 157.41 (18) |
O12—C1—C2—Rb2 | −33.2 (10) | O22—C2—O21—Fe | 168.6 (6) |
O11—C1—C2—Rb2 | 145.2 (5) | C1—C2—O21—Fe | −10.6 (7) |
Rb1—C1—C2—Rb2 | 69.2 (7) | Rb1ii—C2—O21—Fe | 124.4 (11) |
Rb1ii—C1—C2—Rb2 | −60.5 (5) | Rb2—C2—O21—Fe | −164.6 (2) |
O12—C1—O11—Fe | 172.3 (5) | O22—C2—O21—Rb2iii | 40.5 (10) |
C2—C1—O11—Fe | −6.1 (6) | C1—C2—O21—Rb2iii | −138.7 (4) |
Rb1—C1—O11—Fe | 111.3 (3) | Rb1ii—C2—O21—Rb2iii | −3.7 (16) |
Rb1ii—C1—O11—Fe | −108.2 (9) | Rb2—C2—O21—Rb2iii | 67.3 (5) |
O12—C1—O11—Rb1 | 61.0 (6) | O21—C2—O22—Rb1ii | −158.0 (5) |
C2—C1—O11—Rb1 | −117.4 (4) | C1—C2—O22—Rb1ii | 21.1 (9) |
Rb1ii—C1—O11—Rb1 | 140.5 (9) | Rb2—C2—O22—Rb1ii | 157.4 (7) |
O12—C1—O11—Rb1i | −34.9 (9) | O21—C2—O22—Rb2 | 44.5 (9) |
C2—C1—O11—Rb1i | 146.7 (4) | C1—C2—O22—Rb2 | −136.3 (5) |
Rb1—C1—O11—Rb1i | −95.9 (4) |
Symmetry codes: (i) −z+1/2, −x+1, y−1/2; (ii) −z+1, x+1/2, −y+3/2; (iii) −y+5/4, −x+5/4, −z+1/4; (iv) −y+1, z+1/2, −x+1/2; (v) y−1/2, −z+3/2, −x+1; (vi) −z+3/4, y+1/4, x−1/4; (vii) y−3/4, x+3/4, −z+3/4; (viii) z−1/4, −y+7/4, x+1/4; (ix) z+1/2, −x+3/2, −y+1; (x) −y+3/2, −z+1, x−1/2; (xi) x+1/4, z+3/4, −y+3/4; (xii) −x+3/4, z+1/4, y−1/4; (xiii) −y+5/4, −x+5/4, −z+5/4. |
NaRb5[Fe(C2O4)3]2 | Mo Kα radiation, λ = 0.71073 Å |
Mr = 1090.16 | Cell parameters from 1328 reflections |
Cubic, P4132 | θ = 4.4–27.3° |
a = 13.7995 (3) Å | µ = 10.43 mm−1 |
V = 2627.79 (17) Å3 | T = 293 K |
Z = 4 | Fragment, green |
F(000) = 2048 | 0.48 × 0.35 × 0.25 mm |
Dx = 2.756 Mg m−3 |
Rigaku Oxford Diffraction Xcalibur, Eos, Gemini diffractometer | 961 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 814 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.038 |
Detector resolution: 16.0604 pixels mm-1 | θmax = 27.0°, θmin = 3.3° |
ω scans | h = −14→16 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2015) | k = −14→10 |
Tmin = 0.786, Tmax = 1.000 | l = −17→16 |
4284 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.031P)2 + 3.9422P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.032 | (Δ/σ)max < 0.001 |
wR(F2) = 0.068 | Δρmax = 1.02 e Å−3 |
S = 1.02 | Δρmin = −0.95 e Å−3 |
961 reflections | Absolute structure: Flack x determined using 251 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013). |
68 parameters | Absolute structure parameter: −0.003 (10) |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.1366 (5) | 0.5569 (4) | 0.1362 (5) | 0.0228 (14) | |
C2 | 0.0522 (5) | 0.5213 (5) | 0.2007 (5) | 0.0256 (15) | |
O11 | 0.1218 (3) | 0.5418 (3) | 0.0448 (3) | 0.0254 (10) | |
O12 | −0.0240 (3) | 0.4977 (3) | 0.1533 (3) | 0.0291 (10) | |
O21 | 0.2066 (3) | 0.5967 (3) | 0.1708 (3) | 0.0327 (11) | |
O22 | 0.0621 (4) | 0.5170 (4) | 0.2882 (4) | 0.0422 (14) | |
Fe | −0.01047 (6) | 0.48953 (6) | 0.01047 (6) | 0.0218 (4) | |
Rb1 | 0.24391 (5) | 0.50609 (5) | 0.3750 | 0.0291 (2) | |
Rb2 | −0.07858 (6) | 0.57858 (6) | 0.42142 (6) | 0.0451 (4) | |
Na | 0.3750 | 0.6250 | 0.1250 | 0.0234 (12) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.018 (3) | 0.024 (3) | 0.027 (4) | 0.007 (3) | −0.001 (3) | 0.001 (3) |
C2 | 0.026 (4) | 0.034 (4) | 0.017 (3) | 0.006 (3) | 0.003 (3) | −0.001 (3) |
O11 | 0.023 (2) | 0.032 (3) | 0.022 (3) | −0.003 (2) | 0.002 (2) | −0.0003 (18) |
O12 | 0.020 (2) | 0.042 (3) | 0.025 (3) | −0.005 (2) | 0.0052 (18) | −0.005 (2) |
O21 | 0.022 (3) | 0.041 (3) | 0.036 (3) | −0.003 (2) | −0.005 (2) | 0.000 (2) |
O22 | 0.032 (3) | 0.069 (4) | 0.025 (3) | −0.001 (3) | 0.003 (2) | 0.002 (3) |
Fe | 0.0218 (4) | 0.0218 (4) | 0.0218 (4) | 0.0003 (4) | −0.0003 (4) | −0.0003 (4) |
Rb1 | 0.0292 (3) | 0.0292 (3) | 0.0290 (5) | 0.0020 (4) | −0.0047 (3) | −0.0047 (3) |
Rb2 | 0.0451 (4) | 0.0451 (4) | 0.0451 (4) | −0.0124 (4) | 0.0124 (4) | −0.0124 (4) |
Na | 0.0234 (12) | 0.0234 (12) | 0.0234 (12) | −0.0014 (15) | −0.0014 (15) | 0.0014 (15) |
C1—O21 | 1.210 (7) | Rb1—O22vi | 2.785 (5) |
C1—O11 | 1.295 (8) | Rb1—O11vii | 3.006 (4) |
C1—C2 | 1.546 (9) | Rb1—O11viii | 3.006 (4) |
C2—O22 | 1.216 (8) | Rb1—O11ix | 3.059 (4) |
C2—O12 | 1.280 (7) | Rb1—O11x | 3.059 (4) |
O11—Fe | 2.019 (4) | Rb1—O21vi | 3.125 (5) |
O11—Rb1i | 3.006 (4) | Rb1—O21viii | 3.357 (5) |
O11—Rb1ii | 3.059 (4) | Rb1—O21vii | 3.357 (5) |
O12—Fe | 1.983 (4) | Rb2—O22xi | 2.805 (5) |
O12—Rb2iii | 3.106 (4) | Rb2—O22xii | 2.805 (5) |
O21—Na | 2.439 (4) | Rb2—O12xiii | 3.106 (4) |
O21—Rb1 | 3.125 (5) | Rb2—O12xiv | 3.106 (4) |
O21—Rb1i | 3.357 (5) | Rb2—O12xv | 3.106 (4) |
O22—Rb1 | 2.785 (5) | Na—O21vii | 2.439 (4) |
O22—Rb2 | 2.805 (5) | Na—O21x | 2.439 (4) |
Fe—O12iv | 1.983 (4) | Na—O21xvi | 2.439 (4) |
Fe—O12v | 1.983 (4) | Na—O21i | 2.439 (4) |
Fe—O11v | 2.019 (4) | Na—O21xvii | 2.439 (4) |
Fe—O11iv | 2.019 (4) | ||
O21—C1—O11 | 125.7 (6) | O11viii—Rb1—O11x | 55.34 (16) |
O21—C1—C2 | 121.2 (6) | O11ix—Rb1—O11x | 108.96 (17) |
O11—C1—C2 | 113.0 (5) | O22vi—Rb1—O21vi | 56.08 (13) |
O21—C1—Rb1i | 82.8 (4) | O22—Rb1—O21vi | 91.06 (13) |
O11—C1—Rb1i | 66.1 (3) | O11vii—Rb1—O21vi | 110.57 (12) |
C2—C1—Rb1i | 123.0 (4) | O11viii—Rb1—O21vi | 95.97 (11) |
O21—C1—Rb1 | 53.9 (3) | O11ix—Rb1—O21vi | 65.63 (12) |
O11—C1—Rb1 | 154.8 (4) | O11x—Rb1—O21vi | 151.23 (11) |
C2—C1—Rb1 | 74.1 (3) | O22vi—Rb1—O21 | 91.06 (13) |
Rb1i—C1—Rb1 | 131.92 (18) | O22—Rb1—O21 | 56.09 (13) |
O22—C2—O12 | 125.9 (6) | O11vii—Rb1—O21 | 95.97 (11) |
O22—C2—C1 | 120.2 (6) | O11viii—Rb1—O21 | 110.57 (12) |
O12—C2—C1 | 113.9 (5) | O11ix—Rb1—O21 | 151.23 (11) |
O22—C2—Rb1 | 41.2 (3) | O11x—Rb1—O21 | 65.63 (12) |
O12—C2—Rb1 | 159.2 (4) | O21vi—Rb1—O21 | 132.93 (17) |
C1—C2—Rb1 | 81.3 (3) | O22vi—Rb1—O21viii | 114.16 (14) |
O22—C2—Rb2 | 39.9 (3) | O22—Rb1—O21viii | 64.53 (13) |
O12—C2—Rb2 | 94.4 (4) | O11vii—Rb1—O21viii | 141.04 (12) |
C1—C2—Rb2 | 142.1 (4) | O11viii—Rb1—O21viii | 40.54 (11) |
Rb1—C2—Rb2 | 79.41 (13) | O11ix—Rb1—O21viii | 90.67 (11) |
C1—O11—Fe | 115.3 (4) | O11x—Rb1—O21viii | 90.36 (11) |
C1—O11—Rb1i | 90.7 (3) | O21vi—Rb1—O21viii | 62.26 (16) |
Fe—O11—Rb1i | 108.83 (17) | O21—Rb1—O21viii | 116.94 (14) |
C1—O11—Rb1ii | 133.3 (4) | C1vii—Rb1—O21viii | 160.09 (13) |
Fe—O11—Rb1ii | 106.92 (16) | C1viii—Rb1—O21viii | 20.95 (13) |
Rb1i—O11—Rb1ii | 93.89 (12) | O22vi—Rb1—O21vii | 64.53 (13) |
C2—O12—Fe | 116.4 (4) | O22—Rb1—O21vii | 114.16 (14) |
C2—O12—Rb2iii | 133.5 (4) | O11vii—Rb1—O21vii | 40.54 (11) |
Fe—O12—Rb2iii | 95.68 (16) | O11viii—Rb1—O21vii | 141.04 (12) |
C1—O21—Na | 137.0 (4) | O11ix—Rb1—O21vii | 90.36 (11) |
C1—O21—Rb1 | 107.8 (4) | O11x—Rb1—O21vii | 90.67 (11) |
Na—O21—Rb1 | 98.10 (14) | O21vi—Rb1—O21vii | 116.94 (14) |
C1—O21—Rb1i | 76.2 (4) | O21—Rb1—O21vii | 62.26 (16) |
Na—O21—Rb1i | 92.25 (14) | C1vii—Rb1—O21vii | 20.95 (13) |
Rb1—O21—Rb1i | 158.07 (17) | C1viii—Rb1—O21vii | 160.09 (13) |
C2—O22—Rb1 | 122.0 (4) | O21viii—Rb1—O21vii | 178.23 (16) |
C2—O22—Rb2 | 124.0 (5) | O22—Rb2—O22xi | 116.26 (7) |
Rb1—O22—Rb2 | 110.97 (18) | O22—Rb2—O22xii | 116.26 (7) |
O12—Fe—O12iv | 88.19 (18) | O22xi—Rb2—O22xii | 116.26 (7) |
O12—Fe—O12v | 88.19 (18) | O22—Rb2—O12xiii | 89.16 (13) |
O12iv—Fe—O12v | 88.19 (18) | O22xi—Rb2—O12xiii | 131.71 (15) |
O12—Fe—O11v | 161.01 (17) | O22xii—Rb2—O12xiii | 81.59 (14) |
O12iv—Fe—O11v | 106.36 (18) | O22—Rb2—O12xiv | 131.71 (15) |
O12v—Fe—O11v | 80.31 (17) | O22xi—Rb2—O12xiv | 81.59 (14) |
O12—Fe—O11iv | 106.35 (18) | O22xii—Rb2—O12xiv | 89.16 (13) |
O12iv—Fe—O11iv | 80.31 (17) | O12xiii—Rb2—O12xiv | 52.74 (13) |
O12v—Fe—O11iv | 161.01 (17) | O22—Rb2—O12xv | 81.59 (14) |
O11v—Fe—O11iv | 88.44 (18) | O22xi—Rb2—O12xv | 89.16 (13) |
O12—Fe—O11 | 80.31 (17) | O22xii—Rb2—O12xv | 131.71 (15) |
O12iv—Fe—O11 | 161.01 (17) | O12xiii—Rb2—O12xv | 52.74 (13) |
O12v—Fe—O11 | 106.36 (18) | O12xiv—Rb2—O12xv | 52.74 (13) |
O11v—Fe—O11 | 88.43 (18) | O21—Na—O21vii | 86.98 (16) |
O11iv—Fe—O11 | 88.43 (18) | O21—Na—O21x | 76.2 (2) |
O22vi—Rb1—O22 | 95.0 (2) | O21vii—Na—O21x | 121.3 (2) |
O22vi—Rb1—O11vii | 83.52 (14) | O21—Na—O21xvi | 145.5 (2) |
O22—Rb1—O11vii | 152.04 (13) | O21vii—Na—O21xvi | 76.2 (2) |
O22vi—Rb1—O11viii | 152.04 (13) | O21x—Na—O21xvi | 86.97 (16) |
O22—Rb1—O11viii | 83.52 (14) | O21—Na—O21i | 86.97 (16) |
O11vii—Rb1—O11viii | 110.46 (16) | O21vii—Na—O21i | 86.97 (16) |
O22vi—Rb1—O11ix | 84.14 (13) | O21x—Na—O21i | 145.5 (2) |
O22—Rb1—O11ix | 152.50 (13) | O21xvi—Na—O21i | 121.3 (2) |
O11vii—Rb1—O11ix | 55.34 (16) | O21—Na—O21xvii | 121.3 (2) |
O11viii—Rb1—O11ix | 84.61 (12) | O21vii—Na—O21xvii | 145.5 (2) |
O22vi—Rb1—O11x | 152.49 (13) | O21x—Na—O21xvii | 86.97 (16) |
O22—Rb1—O11x | 84.14 (13) | O21xvi—Na—O21xvii | 86.97 (16) |
O11vii—Rb1—O11x | 84.61 (12) | O21i—Na—O21xvii | 76.2 (2) |
O21—C1—C2—O22 | −13.0 (10) | Rb1—C1—O11—Rb1ii | −44.8 (12) |
O11—C1—C2—O22 | 168.7 (6) | O22—C2—O12—Fe | −169.1 (6) |
Rb1i—C1—C2—O22 | −115.7 (6) | C1—C2—O12—Fe | 10.3 (7) |
Rb1—C1—C2—O22 | 14.4 (6) | Rb1—C2—O12—Fe | −124.2 (11) |
O21—C1—C2—O12 | 167.5 (6) | Rb2—C2—O12—Fe | 164.4 (2) |
O11—C1—C2—O12 | −10.8 (8) | O22—C2—O12—Rb2iii | −40.6 (10) |
Rb1i—C1—C2—O12 | 64.8 (6) | C1—C2—O12—Rb2iii | 138.9 (4) |
Rb1—C1—C2—O12 | −165.1 (5) | Rb1—C2—O12—Rb2iii | 4.4 (16) |
O21—C1—C2—Rb1 | −27.4 (5) | Rb2—C2—O12—Rb2iii | −67.1 (5) |
O11—C1—C2—Rb1 | 154.3 (5) | O11—C1—O21—Na | −24.5 (10) |
Rb1i—C1—C2—Rb1 | −130.1 (3) | C2—C1—O21—Na | 157.3 (4) |
O21—C1—C2—Rb2 | 32.8 (10) | Rb1i—C1—O21—Na | −78.2 (5) |
O11—C1—C2—Rb2 | −145.6 (5) | Rb1—C1—O21—Na | 124.2 (6) |
Rb1i—C1—C2—Rb2 | −69.9 (7) | O11—C1—O21—Rb1 | −148.7 (5) |
Rb1—C1—C2—Rb2 | 60.1 (5) | C2—C1—O21—Rb1 | 33.2 (6) |
O21—C1—O11—Fe | −172.2 (5) | Rb1i—C1—O21—Rb1 | 157.58 (19) |
C2—C1—O11—Fe | 6.0 (6) | O11—C1—O21—Rb1i | 53.7 (6) |
Rb1i—C1—O11—Fe | −111.3 (3) | C2—C1—O21—Rb1i | −124.4 (6) |
Rb1—C1—O11—Fe | 107.9 (9) | Rb1—C1—O21—Rb1i | −157.58 (19) |
O21—C1—O11—Rb1i | −60.9 (6) | O12—C2—O22—Rb1 | 157.6 (5) |
C2—C1—O11—Rb1i | 117.3 (4) | C1—C2—O22—Rb1 | −21.9 (8) |
Rb1—C1—O11—Rb1i | −140.8 (9) | Rb2—C2—O22—Rb1 | −158.5 (8) |
O21—C1—O11—Rb1ii | 35.0 (9) | O12—C2—O22—Rb2 | −43.9 (9) |
C2—C1—O11—Rb1ii | −146.7 (4) | C1—C2—O22—Rb2 | 136.6 (5) |
Rb1i—C1—O11—Rb1ii | 96.0 (4) | Rb1—C2—O22—Rb2 | 158.5 (8) |
Symmetry codes: (i) −z+1/2, −x+1, y−1/2; (ii) −x+1/2, −y+1, z−1/2; (iii) y−3/4, −x+1/4, z−1/4; (iv) −z, x+1/2, −y+1/2; (v) y−1/2, −z+1/2, −x; (vi) −y+3/4, −x+3/4, −z+3/4; (vii) −y+1, z+1/2, −x+1/2; (viii) −z+1/4, y−1/4, x+1/4; (ix) −x+1/2, −y+1, z+1/2; (x) y−1/4, x+1/4, −z+1/4; (xi) −y+1/2, −z+1, x+1/2; (xii) z−1/2, −x+1/2, −y+1; (xiii) −x−1/4, −z+3/4, −y+3/4; (xiv) −y+1/4, x+3/4, z+1/4; (xv) z−1/4, y+1/4, −x+1/4; (xvi) −x+3/4, −z+3/4, −y+3/4; (xvii) z+1/4, −y+5/4, x−1/4. |
Funding information
Funding for this research was provided by: CONICET (PIP 11220130100651CO) and UNLP (Project 11/X709) of Argentina. OEP and GAE are Research Fellows of CONICET.
References
Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England. Google Scholar
Bancroft, G. M., Dharmawardena, K. G. & Maddock, A. G. (1970). Inorg. Chem. 9, 223–226. CrossRef Web of Science Google Scholar
Coles, H. (1998). Chiral Nematics: Physical Properties and Applications. In Handbook of Liquid Crystals, Vol. 2A, edited by D. Demus, J. Goodby, G. W. Gray, H. W. Spiess & V. Vill, ch. IV, pp. 335–409. Weinheim: Wiley-VCH. Google Scholar
Collison, D. & Powell, A. K. (1990). Inorg. Chem. 29, 4735–4746. CrossRef Web of Science Google Scholar
Coronado, E., Palacio, F. & Veciana, J. (2003). Angew. Chem. Int. Ed. 42, 2570–2572. Web of Science CrossRef CAS Google Scholar
Delgado, G., Mora, A. J. & Sagredo, V. (2002). Physica B, 320, 410–412. Web of Science CrossRef Google Scholar
Farfán, R. A., Espíndola, J. A., Gómez, M. I., de Jiménez, M. C. L., Piro, O. E., Castellano, E. E. & Martínez, M. A. (2015). J. Mol. Struct. 1087, 80–87. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (2003). Helv. Chim. Acta, 86, 905–921. Web of Science CrossRef CAS Google Scholar
Flack, H. D. (2009). Acta Cryst. A65, 371–389. Web of Science CrossRef CAS IUCr Journals Google Scholar
Goodby, J. W. (1998). Symmetry and Chirality in Liquid Crystals. In Handbook of Liquid Crystals, Vol. 1, edited by D. Demus, J. Goodby, G. W. Gray, H. W. Spiess & V. Vill, ch V, pp. 115–132. Weinheim: Wiley-VCH. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gruselle, M., Train, C., Boubekeur, K., Gredin, P. & Ovanesyan, N. (2006). Coord. Chem. Rev. 250, 2491–2500. Web of Science CrossRef CAS Google Scholar
Henneicke, S. & Wartchow, R. (1997). Z. Kristallogr. 212, 56. Google Scholar
Jarzembska, K. N., Kamiński, R., Dobrzycki, Ł. & Cyrański, M. K. (2014). Acta Cryst. B70, 847–855. Web of Science CSD CrossRef IUCr Journals Google Scholar
Junk, P. C. (2005). J. Coord. Chem. 58, 355–361. Google Scholar
Kherfi, H., Hamadene, M., Guehria-Laidoudi, A., Dahaoui, S. & Lecomte, C. (2010). Materials 3, 1281–1301. Web of Science CrossRef Google Scholar
Knof, U. & von Zelewsky, A. (1999). Angew. Chem. Int. Ed. 38, 302–322. CrossRef Google Scholar
Knowles, W. S. (2001). Nobel lecture: Asymmetric Hydrogenation. https://www. nobelprize. org/nobel_prizes/chemistry/laureates/2001/knowles-lecture. pdf Google Scholar
Ladriere, J. (1992). Hyperfine Interact. 70, 1095–1098. CrossRef Web of Science Google Scholar
Meierhenrich, U. (2008). Amino Acids and the Asymmetry of Life. Berlin: Springer-Verlag. Google Scholar
Nguyen, L. A., He, H. & Pham-Huy, C. (2006). Int. J. Biomed. Sci. 2, 85–100. CAS PubMed Google Scholar
Noyori, R. (2001). Nobel lecture: Asymmetric Catalysis: Science and Opportunities. https://www. nobelprize. org/nobel_prizes/chemistry/laureates/2001/noyori-lecture. pdf Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Pasteur, L. (1848a). C. R. Acad. Sci. Paris, 26, 535–538. Google Scholar
Pasteur, L. (1848b). Anal. Chim. Phys. 24, 442–459. Google Scholar
Pérez-García, L. & Amabilino, D. B. (2002). Chem. Soc. Rev. 31, 342–356. Web of Science PubMed Google Scholar
Piper, T. S. & Carlin, R. L. (1961). J. Chem. Phys. 35, 1809–1815. CrossRef Web of Science Google Scholar
Piro, O. E., Echeverría, G. A., Mercader, R. A., González-Baró, A. C. & Baran, E. J. (2016). J. Coord. Chem. 69, 3715–3725. Web of Science CrossRef Google Scholar
Rigaku OD (2014). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sato, H. & Tominaga, T. (1979). Bull. Chem. Soc. Jpn, 52, 1402–1407. CrossRef Web of Science Google Scholar
Sharpless, K. B. (2001). Nobel lecture: Searching for New Reactivity. https://www. nobelprize. org/nobel_prizes/chemistry/laureates/2001/sharpless-lecture. pdf Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Wartchow, R. (1997). Z. Kristallogr. 212, 57. Google Scholar
Wei, Y., Wu, K., He, J., Zheng, W. & Xiao, X. (2011). CrystEngComm, 13, 52–54. Web of Science CrossRef Google Scholar
Xie, L.-H., Lin, J.-B., Liu, X.-M., Wang, Y., Zhang, W.-X., Zhang, J.-P. & Chen, X.-M. (2010). Inorg. Chem. 49, 1158–1165. Web of Science CSD CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.