research communications
Two tris(3,5-disubstituted phenyl)phosphines and their isostructural PV oxides
aChemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, T1K3M4, Canada
*Correspondence e-mail: boere@uleth.ca
The crystal structures of tris(3,5-dimethylphenyl)phosphine (C24H27P), (I), tris(3,5-dimethylphenyl)phosphine oxide (C24H27OP), (II), tris(4-methoxy-3,5-dimethylphenyl)phosphine (C27H33O3P), (III), and tris(4-methoxy-3,5-dimethylphenyl)phosphine oxide (C27H33O4P), (IV), are reported. The strucure of (III) has been described before [Romain et al. (2000). Organometallics, 19, 2047–2050], but it is rereported here on the basis of modern area-detector data and to facilitate comparison with the other structures reported here. Compounds (I) and (II) crystallize isostructurally in P21/c. Similarly, (III) and (IV) crystallize isostructurally in Pbca. The conformations of (I) and (II) in the solid state deviate strongly from helical, whereas those of (III) and (IV) are found to be closer to an ideal threefold rotational symmetry. The pyramidality indices, ∑(C—P—C), are 305.35 (16), 317.23 (15), 307.2 (4) and 318.67 (18)° for (I), (II), (III) and (IV), respectively. Each is found to be more pyramidal than Ph3P or Ph3PO. Hybrid DFT calculations incorporating terms for dispersion provide evidence that the causes of the increased pyramidality, despite the 3,5-dimethyl group substitution, include dispersion interactions. The calculated ∑(C—P—C) values are 304.8° for both (I) and (III) and 317.4° for both (II) and (IV), with no difference arising from the substitution at ring position 4.
1. Chemical context
The two bulky triarylphosphines (I) and (III) are of considerable interest in coordination chemistry and catalysis (Kakizoe et al., 2017; Lian et al., 2017; Ogiwara et al., 2017; Nishikawa et al., 2016; Naruto et al., 2015; Jover et al., 2010; Romain et al., 2000) and have been investigated for frustrated Lewis-pair activity (Wang & Stephan, 2014; Ullrich et al., 2010). The synthesis of (I) was first mentioned in the non-patent literature by Hengartner et al. (1979) and in more detail twelve years later (Culcasi et al., 1991) and is now commercially available from several sources, but its has not been reported. The preparation of (III) was reported by Romain et al. (2000) some 11 years after it appeared in the patent literature. These authors reported a Cambridge Structural Database (CSD, Version 5.39, with updates to November 2017; Groom et al., 2016) refcode: FOQNOO. However, as this determination used molybdenum radiation and a serial diffractometer, we have repeated it here under the same conditions as the other three compounds to improve comparability. Phosphine oxide (II) was first mentioned for its use as an additive that enhances the enantiomeric excess in stoichiometric asymmetric epoxidation of E-methylstyrene (Kerrigan et al., 2002) and a schematic synthesis was reported a year later (Henschke et al., 2003) but the characterization details are not found in the open literature. Similarly, phosphine oxide (IV) is mentioned only in the patent literature. Here we report the crystal structures of (I), (II) and (IV) and full details for synthesis and characterization of (II) and (IV), for the first time, and the redetermination of (III).
2. Structural commentary
Phosphine (I) crystallizes in P21/c with one molecule in the that is distinctly pyramidal (Fig. 1). It has a sum of angles around the central phosphorus atom, the pyramidality index (see Boeré & Zhang, 2013), ∑(C—P—C) = 305.35 (16)°. This is a smaller value than that in PPh3, ∑(C—P—C) = 308.3 (2)° (Boeré & Zhang, 2005), indicating a more pyramidal structure, despite the potential steric interference of the three endo-oriented methyl substituents at C3, C13, and C23. Similarly, (III) crystallizes in Pbca also with Z′ = 1 and ∑(C—P—C) = 307.2 (4)°. By contrast, with 2,6-disubstitution patterns have greatly reduced pyramidality. For example, ∑(C—P—C) = 335.6 (3)° in Dipp3P, (Boeré et al., 2008) 334.4 (3)° in Tripp3P, (Sasaki et al., 2002) and 329.1 (5)° in Mes3P, (Blount et al., 1994). Oxidation or protonation of Ar3P always leads to some flattening at the phosphorus atom. Thus, although (II) is isostructural with (I), ∑(C—P—C) = 317.23 (15)° differs by some 12°, while (IV), which is isostructural with (II), has ∑(C—P—C) = 318.67 (18)° (Fig. 2). In sixteen independent structure determinations of Ph3PO reported in the CSD, the average value with s.u. of ∑(C—P—C) is 319.3 (3)°. Thus, for both the title and their oxides, the pyramidality index for the title compounds is lower than in the corresponding Ph3P or Ph3PO.
That all these 3,5-dimethyl-substituted compounds should be more pyramidal than corresponding C6H5– derivatives is at first surprising. A plausible explanation for this is that the substitution induces greater intramolecular dispersion interactions, i.e. between the methyl groups and the π-clouds of adjacent rings. To find evidence for this, hybrid density functional theory (DFT) calculations [with Becke's non-local three parameter exchange and the Lee–Yang–Parr correlation functional (B3LYP) and also incorporating Grimme's D3 empirical dispersion corrections] with the 6-31G(2d,p) basis set, as implemented in the Gaussian16 program package (Frisch et al., 2016), were undertaken. The optimized geometries by DFT are characterized by common ∑(C—P—C) = 304.8° for both (I) and (III) and 317.4° for both (II) and (IV). This supports dispersion as an origin for the observed increased pyramidality caused by 3,5-dimethyl group substitution. Interestingly, whereas the crystal structures have flatter structures for the 4-CH3O derivatives (III) and (IV), the DFT calculations have identical pyramidality indices whether the substituent at the 4-position is H or CH3O. This indicates that intermolecular interactions in the extended structures involving the methoxy groups affect the observed structures compared to that predicted by computation.
In the isostructural pairs, the volumes of the unit cells are larger due to oxygen incorporation. For (I) and (II), the increase is a mere 14 Å3 (0.7%) for the whole or 3.5 Å3 per oxygen atom, whereas for (III) and (IV) the increase in volume is larger at 106 Å3 (2.2%) or 13.3 Å3 per oxygen atom. The van der Waals volume of an oxygen atom is 14.7 Å3. In the extended structure, the oxygen atoms in (II) are oriented into a void space (Fig. 3), whereas in (IV) they are directed towards the backside of the next P=O pyramid (Fig. 4). Thus, the nearest P⋯Pii separations in the crystal increase from 5.148 (2) Å along the b-axis direction in (III) to 6.039 (2) Å in (IV) [Symmetry code: (ii) − x, − + y, z]. As a consequence, the a:b lattice parameter ratio changes from 12.30:10.27 in (III) to 11.29:11.90 in (IV).
3. Supramolecular features
As mentioned, the supramolecular organization in (III) and (IV) approximately stacks the Ar3P structures along the b-axis direction [the P–O vectors in (IV) alternate 21.7° off the P⋯P directions] and the rings are arranged so that alternating molecules are approximately staggered (Fig. 4). This geometry facilitates helical structures, and thus the ring-tilt dihedral angles (defined from the molecular threefold axis through C1,11,21 to C6,16,26) are 26.2 (1), 44.3 (1) and 49.0 (1)° in (III) and 17.0 (1), 38.8 (1) and 39.3 (1)° in (IV).
By contrast, the molecules of (I) and (II) are not aligned in their crystals and are pronouncedly less helical in the crystals, as seen by ring-tilt dihedral angles of 35.6 (1), 8.3 (1) and 58.1 (1)° in (I) and 29.4 (1), 9.1 (1) and 61.2 (1)° in (II). In each of these structures, the C1 aryl rings are almost parallel to the molecular threefold axes, a geometry that was defined as the transition state for Mislow's `one-ring flip' mechanism for of propeller-shaped molecules (Gust & Mislow, 1973). As shown in Fig. 3a, the molecules in (I) are centrosymmetrically related to one another and there are short intermolecular contacts between the C1 rings on adjacent molecules (C2 and C1 to methyl hydrogen H7Ci of 2.84 and 2.90 Å and H4 to C14i of 2.87 Å. It is likely that this packing preference is responsible for the non-helical arrangement of the rings in this structure. Similarly, in (II) short contacts link C14 with H4i at 2.88 Å and C16 with methyl hydrogen H7Bi at 2.68 Å (Fig. 3b) [Symmetry code: (i) −x, 1 − y, −z]. There are some short intermolecular C—H⋯O interactions in structures (II)–(IV), as listed in Tables 1–3.
4. Database survey
The structure of phosphine (I) can be profitably compared to six recently reported diffraction studies reported for its metal complexes or adducts. The cationic silver complex (undecamethyl-1H-1-carba-closo-dodecaborate)(tris(3,5-dimethylphenyl)phosphine)silver(I), [LAg][closo-1-H-CB11Me11] (refcode ASIZIL; Clarke et al., 2004) employs the large distal steric bulk from the methyl groups in (I) to hinder aggregation in the crystal. The ruthenium(II) complex (μ2-aqua)bis(μ2-chloro)-dichlorotetrakis[tris(3,5-dimethylphenyl)phosphine]diruthenium (COQDET01; Naruto & Saito, 2015) is part of a rational design strategy of catalysts for hydrogenation of carboxylic acids. In this complex, one ring in each unique coordinated phosphine re-orients so as to be almost orthogonal to the coordination axis, with a Ru—P—C—C torsion angles of 83.9 (3) and 87.3 (3)°. The borane complex tris(3,5-dimethylphenyl)[tris(2,3,5,6-tetrafluorophenyl)-λ5-boranyl] phosphorane (OLAJIV; Ullrich et al., 2010) is a classical rather than frustrated Lewis-pair adduct. The Tolman cone angle of (I) is estimated to be 151°. In the molybdenum complex trans-acetyl-dicarbonyl(cyclopentadienyl)[tris(3,5-dimethylphenyl)phosphine]molybdenum(II) (RAHHUG; Whited et al., 2017), the methyl groups on the aromatic phosphine substituents impact supramolecular organization. The ruthenium complex dichloro-[(R,R)-1,2-diphenylethylenediamine)bis[tris(3,5-dimethylphenyl)phosphine]ruthenium(II) (XARCOJ; Jing et al., 2005) is competitive with chiral bidentate ligands for the enantioselective hydrogenation of The cationic copper complex (1,10-phenanthroline)bis[tris(3,5-dimethylphenyl)phosphine]copper(I) tetrafluoroborate (BEKZOJ; Kakizoe et al., 2017) is part of a study on the effects of bulky on photophysical properties of copper(I) phenanthroline complexes. Here one of the coordinated re-orients so as to have one almost orthogonal ring, with a Cu—P—C—C torsion angle of 86.6 (2)°. The structure of phosphine (III) can be compared to a single where it is coordinated to an iridium atom that is part of an Ir2Mo2 cyclopentadienyl–carbonyl complex in tris(μ2-carbonyl)[tris(4-methoxy-3,5-dimethylphenyl)phosphine]hexacarbonyl-bis(η5-cyclopentadienyl)diiridiumdimolybdenum (TUTJAV; Fu et al., 2016). In this complex, one of the rings is also found almost orthogonal to the coordination axis, with an Ir—P—C—C torsion angle of 73 (2)°. Thus, having one of the three aryl rings orthogonal seems to be a common configuration in crowded environments around a metal.
No crystal structures of (II) or (IV), nor any of their derivatives, are reported in the CSD.
5. Synthesis and crystallization
Crystals of tris(3,5-dimethylphenyl)phosphine [69227-47-0], (I), and tris(4-methoxy-3,5-dimethylphenyl)phosphine [121898-64-4], (III), were selected for data collection as received from Sigma–Aldrich Inc. Solvents (BDH) were chromatographic grade and used as received. NMR spectra were recorded on a 300 MHz Bruker Avance II spectrometer and are referenced to TMS at 0 (1H), CDCl3 at 77.23 (13C) and 85% H3PO4 at 0 ppm (capillary, 31P).
5.1. Preparation of (II)
Tris(3,5-dimethylphenyl)phosphine oxide [381212-20-0], (II), was prepared by dissolving 0.10 g (I), 0.29 mmol, in 15 ml of acetone (thin-layer TLC, monitoring: Rf = 0.32 in 1:9 ethyl acetate/hexanes), heating to the boil, and adding 3.0 mL of 4% aqueous H2O2 dropwise. After gentle reflux for 1.5 h, the mixture was checked again by TLC (Rf = 0) indicating reaction completion. Removal of all volatiles, dissolving in 10 ml CH2Cl2 and drying overnight with Na2SO4, filtering and evaporating, left a dry solid. Recrystallization from mixed solvents of 5 ml heptane and 2 ml CH2Cl2 at the boil produced colourless blocks on cooling, recovered by slow evaporation to afford 0.06 g (II), 0.17 mmol, 57% yield. Identity was established by X-ray crystallography and very high purity by nuclear magnetic resonance (NMR) spectroscopy (atom numbers are those from the C1 ring in Fig. 1b). 1H NMR (CDCl3): δ 2.312 (CH3, s, 18H); 7.144 (C4H, s, 3H); 7.282 (C2,6H, d 3JPH = 12.3 Hz, 6H). 13C NMR (CDCl3): δ 21.47 (CH3, s); 129.74 (C2&6, d 2JPC = 9.8 Hz); 132.67 (C1, d 1JPC = 102.6 Hz); 133.67 (C4, d 4JPC = 3.0 Hz); 138.16 (C3&5, d 3JPC = 12.8 Hz). 31P NMR (CDCl3): δ +29.73, s (satellites: 1JPC = 102.6 Hz).
5.2. Preparation of (IV)
Tris(4-methoxy-3,5-dimethylphenyl)phosphine oxide [540743-36-0], (IV), was similarly prepared from 0.10 g (III), 0.23 mmol, (TLC: Rf = 0.38 in 1:9 ethyl acetate/hexanes) and 3.0 ml of 4% aqueous H2O2. 1.5 h gentle reflux also sufficed for reaction completion (TLC: Rf = 0). A similar workup and recrystallization procedure afforded colourless plates by slow evaporation, 0.08 g (II), 0.18 mmol, 77% yield. Identity was established by X-ray crystallography and very high purity by nuclear magnetic resonance (NMR) spectroscopy (atom numbers are those from the C1 ring in Fig. 2b). 1H NMR (CDCl3): δ 2.282 (CH3, s, 18H); 3.747 (CH3O, s, 9H); 7.311 (C2,6H, d 3JPH = 12.0 Hz, 6H). 13C NMR (CDCl3): δ 16.37 (CH3, s); 59.75 (CH3O, s); 127.84 (C1, d 1JPC = 105.7 Hz); 131.41 (C3&5, d 3JPC = 13.6 Hz); 132.81 (C2&6, d 2JPC = 10.6 Hz); 160.09 (C4, d 4JPC = 3.0 Hz). 31P NMR (CDCl3): δ +28.49, s (satellites: 1JPC = 105.8 Hz).
6. details
Crystal data, data collection and structure . H atoms attached to C atoms were treated as riding, with C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C) for methyl and C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms.
details are summarized in Table 4Supporting information
https://doi.org/10.1107/S2056989018007831/hb7751sup1.cif
contains datablocks I, II, III, IV. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018007831/hb7751Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989018007831/hb7751IIsup3.hkl
Structure factors: contains datablock III. DOI: https://doi.org/10.1107/S2056989018007831/hb7751IIIsup4.hkl
Structure factors: contains datablock IV. DOI: https://doi.org/10.1107/S2056989018007831/hb7751IVsup5.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989018007831/hb7751Isup6.mol
Supporting information file. DOI: https://doi.org/10.1107/S2056989018007831/hb7751IIsup7.mol
Supporting information file. DOI: https://doi.org/10.1107/S2056989018007831/hb7751IIIsup8.mol
Supporting information file. DOI: https://doi.org/10.1107/S2056989018007831/hb7751IVsup9.mol
Supporting information file. DOI: https://doi.org/10.1107/S2056989018007831/hb7751Isup10.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989018007831/hb7751IIsup11.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989018007831/hb7751IIIsup12.cml
NMR data (H1, C13, P31) for compounds (II) and (IV). DOI: https://doi.org/10.1107/S2056989018007831/hb7751sup13.pdf
For all structures, data collection: CrysAlis PRO (Rigaku OD, 2015); cell
CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015). Program(s) used to solve structure: olex2.solve (Bourhis et al., 2015) for (I), (II), (IV); SHELXT (Sheldrick, 2015a) for (III). For all structures, program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C24H27P | F(000) = 744 |
Mr = 346.42 | Dx = 1.117 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54184 Å |
a = 14.38617 (9) Å | Cell parameters from 33406 reflections |
b = 9.00514 (5) Å | θ = 4.9–76.1° |
c = 17.22745 (12) Å | µ = 1.18 mm−1 |
β = 112.6169 (7)° | T = 108 K |
V = 2060.17 (2) Å3 | Prism, clear colourless |
Z = 4 | 0.24 × 0.2 × 0.2 mm |
Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, Pilatus 200/300K diffractometer | 4296 independent reflections |
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source | 4220 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.025 |
ω scans | θmax = 76.3°, θmin = 3.3° |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2015) | h = −18→18 |
Tmin = 0.907, Tmax = 1.000 | k = −11→11 |
42680 measured reflections | l = −21→21 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.036 | w = 1/[σ2(Fo2) + (0.0521P)2 + 1.0098P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.099 | (Δ/σ)max < 0.001 |
S = 1.05 | Δρmax = 0.28 e Å−3 |
4296 reflections | Δρmin = −0.29 e Å−3 |
233 parameters | Extinction correction: SHELXL2016 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0008 (2) |
Primary atom site location: iterative |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
P1 | 0.24237 (2) | 0.22483 (3) | 0.19991 (2) | 0.01773 (10) | |
C1 | 0.13769 (9) | 0.35790 (14) | 0.17356 (7) | 0.0191 (2) | |
C2 | 0.13216 (9) | 0.48677 (14) | 0.12664 (8) | 0.0217 (3) | |
H2 | 0.185332 | 0.509281 | 0.108761 | 0.026* | |
C3 | 0.05030 (9) | 0.58256 (14) | 0.10568 (8) | 0.0230 (3) | |
C4 | −0.02748 (9) | 0.54669 (15) | 0.13197 (8) | 0.0244 (3) | |
H4 | −0.084271 | 0.610509 | 0.117124 | 0.029* | |
C5 | −0.02410 (9) | 0.41981 (14) | 0.17940 (8) | 0.0236 (3) | |
C6 | 0.05937 (9) | 0.32556 (14) | 0.19978 (7) | 0.0207 (2) | |
H6 | 0.062758 | 0.238468 | 0.231871 | 0.025* | |
C7 | 0.04651 (11) | 0.72101 (15) | 0.05519 (9) | 0.0301 (3) | |
H7A | 0.113295 | 0.740191 | 0.054603 | 0.045* | |
H7B | 0.026011 | 0.805557 | 0.080747 | 0.045* | |
H7C | −0.002220 | 0.707187 | −0.002560 | 0.045* | |
C8 | −0.10812 (10) | 0.38474 (17) | 0.20867 (10) | 0.0335 (3) | |
H8A | −0.114279 | 0.465469 | 0.244548 | 0.050* | |
H8B | −0.092999 | 0.291750 | 0.240681 | 0.050* | |
H8C | −0.171574 | 0.374269 | 0.159769 | 0.050* | |
C11 | 0.25424 (9) | 0.21396 (13) | 0.09776 (7) | 0.0188 (2) | |
C12 | 0.30867 (9) | 0.31418 (14) | 0.06972 (8) | 0.0205 (2) | |
H12 | 0.346853 | 0.390234 | 0.106351 | 0.025* | |
C13 | 0.30765 (9) | 0.30395 (14) | −0.01141 (8) | 0.0228 (3) | |
C14 | 0.25218 (10) | 0.18977 (15) | −0.06370 (8) | 0.0250 (3) | |
H14 | 0.250737 | 0.182438 | −0.119163 | 0.030* | |
C15 | 0.19901 (10) | 0.08650 (14) | −0.03684 (8) | 0.0246 (3) | |
C16 | 0.20062 (9) | 0.10030 (14) | 0.04441 (8) | 0.0209 (2) | |
H16 | 0.164506 | 0.030941 | 0.063658 | 0.025* | |
C17 | 0.36423 (11) | 0.41385 (17) | −0.04288 (9) | 0.0323 (3) | |
H17A | 0.395402 | 0.489222 | 0.000397 | 0.048* | |
H17B | 0.317411 | 0.461883 | −0.094009 | 0.048* | |
H17C | 0.416634 | 0.361845 | −0.055460 | 0.048* | |
C18 | 0.14109 (13) | −0.03762 (17) | −0.09353 (9) | 0.0374 (3) | |
H18A | 0.131846 | −0.015172 | −0.151700 | 0.056* | |
H18B | 0.075139 | −0.047668 | −0.089723 | 0.056* | |
H18C | 0.178614 | −0.130746 | −0.076018 | 0.056* | |
C21 | 0.35253 (9) | 0.33617 (13) | 0.26264 (7) | 0.0192 (2) | |
C22 | 0.34586 (9) | 0.47403 (14) | 0.29659 (8) | 0.0221 (3) | |
H22 | 0.282059 | 0.520911 | 0.280729 | 0.027* | |
C23 | 0.43125 (10) | 0.54477 (15) | 0.35355 (8) | 0.0256 (3) | |
C24 | 0.52445 (9) | 0.47645 (15) | 0.37487 (8) | 0.0254 (3) | |
H24 | 0.582867 | 0.523752 | 0.413673 | 0.031* | |
C25 | 0.53395 (9) | 0.33965 (15) | 0.34040 (8) | 0.0255 (3) | |
C26 | 0.44748 (9) | 0.26980 (14) | 0.28504 (8) | 0.0233 (3) | |
H26 | 0.452905 | 0.175786 | 0.262120 | 0.028* | |
C27 | 0.42188 (12) | 0.69326 (18) | 0.39067 (12) | 0.0417 (4) | |
H27A | 0.453772 | 0.770149 | 0.369034 | 0.063* | |
H27B | 0.455274 | 0.688699 | 0.452071 | 0.063* | |
H27C | 0.350522 | 0.717280 | 0.375004 | 0.063* | |
C28 | 0.63625 (11) | 0.26868 (18) | 0.36317 (11) | 0.0396 (4) | |
H28A | 0.678464 | 0.332243 | 0.343964 | 0.059* | |
H28B | 0.628465 | 0.171292 | 0.336009 | 0.059* | |
H28C | 0.668170 | 0.256499 | 0.424317 | 0.059* |
U11 | U22 | U33 | U12 | U13 | U23 | |
P1 | 0.01727 (16) | 0.01831 (17) | 0.01719 (16) | −0.00102 (10) | 0.00616 (12) | 0.00027 (10) |
C1 | 0.0182 (5) | 0.0207 (6) | 0.0169 (5) | −0.0014 (4) | 0.0050 (4) | −0.0030 (4) |
C2 | 0.0201 (5) | 0.0239 (6) | 0.0208 (6) | −0.0007 (5) | 0.0074 (5) | −0.0003 (5) |
C3 | 0.0233 (6) | 0.0216 (6) | 0.0205 (6) | 0.0004 (5) | 0.0045 (5) | −0.0021 (5) |
C4 | 0.0198 (6) | 0.0242 (6) | 0.0265 (6) | 0.0028 (5) | 0.0058 (5) | −0.0052 (5) |
C5 | 0.0208 (6) | 0.0247 (6) | 0.0260 (6) | −0.0023 (5) | 0.0097 (5) | −0.0071 (5) |
C6 | 0.0215 (6) | 0.0209 (6) | 0.0197 (6) | −0.0022 (5) | 0.0081 (5) | −0.0031 (4) |
C7 | 0.0308 (7) | 0.0251 (7) | 0.0318 (7) | 0.0049 (5) | 0.0090 (6) | 0.0050 (5) |
C8 | 0.0281 (7) | 0.0311 (7) | 0.0486 (9) | 0.0004 (6) | 0.0229 (6) | −0.0040 (6) |
C11 | 0.0172 (5) | 0.0195 (6) | 0.0187 (6) | 0.0030 (4) | 0.0058 (4) | 0.0007 (4) |
C12 | 0.0191 (5) | 0.0199 (6) | 0.0218 (6) | 0.0002 (5) | 0.0071 (5) | −0.0005 (5) |
C13 | 0.0215 (6) | 0.0247 (6) | 0.0234 (6) | 0.0054 (5) | 0.0098 (5) | 0.0049 (5) |
C14 | 0.0286 (6) | 0.0283 (6) | 0.0185 (6) | 0.0074 (5) | 0.0094 (5) | 0.0010 (5) |
C15 | 0.0263 (6) | 0.0226 (6) | 0.0213 (6) | 0.0042 (5) | 0.0052 (5) | −0.0021 (5) |
C16 | 0.0200 (5) | 0.0194 (6) | 0.0218 (6) | 0.0009 (4) | 0.0064 (5) | 0.0000 (4) |
C17 | 0.0318 (7) | 0.0382 (8) | 0.0305 (7) | −0.0001 (6) | 0.0160 (6) | 0.0084 (6) |
C18 | 0.0504 (9) | 0.0310 (8) | 0.0254 (7) | −0.0049 (7) | 0.0086 (6) | −0.0081 (6) |
C21 | 0.0196 (5) | 0.0214 (6) | 0.0165 (5) | −0.0021 (4) | 0.0069 (4) | 0.0007 (4) |
C22 | 0.0201 (6) | 0.0236 (6) | 0.0235 (6) | −0.0008 (5) | 0.0091 (5) | −0.0014 (5) |
C23 | 0.0242 (6) | 0.0246 (6) | 0.0283 (6) | −0.0037 (5) | 0.0106 (5) | −0.0056 (5) |
C24 | 0.0210 (6) | 0.0271 (7) | 0.0257 (6) | −0.0059 (5) | 0.0062 (5) | −0.0039 (5) |
C25 | 0.0205 (6) | 0.0271 (7) | 0.0259 (6) | 0.0001 (5) | 0.0057 (5) | 0.0000 (5) |
C26 | 0.0218 (6) | 0.0230 (6) | 0.0230 (6) | 0.0001 (5) | 0.0064 (5) | −0.0023 (5) |
C27 | 0.0296 (7) | 0.0347 (8) | 0.0567 (10) | −0.0047 (6) | 0.0119 (7) | −0.0227 (7) |
C28 | 0.0217 (7) | 0.0366 (8) | 0.0501 (9) | 0.0032 (6) | 0.0022 (6) | −0.0104 (7) |
P1—C1 | 1.8396 (12) | C14—C15 | 1.3915 (19) |
P1—C11 | 1.8350 (12) | C15—C16 | 1.3965 (17) |
P1—C21 | 1.8350 (12) | C15—C18 | 1.5071 (18) |
C1—C2 | 1.3988 (17) | C16—H16 | 0.9500 |
C1—C6 | 1.3963 (16) | C17—H17A | 0.9800 |
C2—H2 | 0.9500 | C17—H17B | 0.9800 |
C2—C3 | 1.3908 (17) | C17—H17C | 0.9800 |
C3—C4 | 1.3970 (18) | C18—H18A | 0.9800 |
C3—C7 | 1.5091 (18) | C18—H18B | 0.9800 |
C4—H4 | 0.9500 | C18—H18C | 0.9800 |
C4—C5 | 1.3946 (19) | C21—C22 | 1.3912 (17) |
C5—C6 | 1.4005 (17) | C21—C26 | 1.4023 (17) |
C5—C8 | 1.5113 (17) | C22—H22 | 0.9500 |
C6—H6 | 0.9500 | C22—C23 | 1.3967 (18) |
C7—H7A | 0.9800 | C23—C24 | 1.3900 (18) |
C7—H7B | 0.9800 | C23—C27 | 1.5105 (19) |
C7—H7C | 0.9800 | C24—H24 | 0.9500 |
C8—H8A | 0.9800 | C24—C25 | 1.3969 (19) |
C8—H8B | 0.9800 | C25—C26 | 1.3929 (18) |
C8—H8C | 0.9800 | C25—C28 | 1.5114 (18) |
C11—C12 | 1.3971 (17) | C26—H26 | 0.9500 |
C11—C16 | 1.3936 (17) | C27—H27A | 0.9800 |
C12—H12 | 0.9500 | C27—H27B | 0.9800 |
C12—C13 | 1.3950 (17) | C27—H27C | 0.9800 |
C13—C14 | 1.3974 (19) | C28—H28A | 0.9800 |
C13—C17 | 1.5083 (18) | C28—H28B | 0.9800 |
C14—H14 | 0.9500 | C28—H28C | 0.9800 |
C11—P1—C1 | 99.63 (5) | C16—C15—C18 | 120.49 (12) |
C11—P1—C21 | 102.48 (5) | C11—C16—C15 | 121.20 (12) |
C21—P1—C1 | 103.24 (5) | C11—C16—H16 | 119.4 |
C2—C1—P1 | 122.84 (9) | C15—C16—H16 | 119.4 |
C6—C1—P1 | 118.04 (9) | C13—C17—H17A | 109.5 |
C6—C1—C2 | 119.09 (11) | C13—C17—H17B | 109.5 |
C1—C2—H2 | 119.4 | C13—C17—H17C | 109.5 |
C3—C2—C1 | 121.27 (11) | H17A—C17—H17B | 109.5 |
C3—C2—H2 | 119.4 | H17A—C17—H17C | 109.5 |
C2—C3—C4 | 118.43 (12) | H17B—C17—H17C | 109.5 |
C2—C3—C7 | 120.09 (12) | C15—C18—H18A | 109.5 |
C4—C3—C7 | 121.47 (12) | C15—C18—H18B | 109.5 |
C3—C4—H4 | 119.1 | C15—C18—H18C | 109.5 |
C5—C4—C3 | 121.85 (11) | H18A—C18—H18B | 109.5 |
C5—C4—H4 | 119.1 | H18A—C18—H18C | 109.5 |
C4—C5—C6 | 118.47 (11) | H18B—C18—H18C | 109.5 |
C4—C5—C8 | 120.97 (12) | C22—C21—P1 | 123.48 (9) |
C6—C5—C8 | 120.56 (12) | C22—C21—C26 | 118.81 (11) |
C1—C6—C5 | 120.89 (12) | C26—C21—P1 | 117.28 (9) |
C1—C6—H6 | 119.6 | C21—C22—H22 | 119.4 |
C5—C6—H6 | 119.6 | C21—C22—C23 | 121.21 (11) |
C3—C7—H7A | 109.5 | C23—C22—H22 | 119.4 |
C3—C7—H7B | 109.5 | C22—C23—C27 | 120.24 (12) |
C3—C7—H7C | 109.5 | C24—C23—C22 | 118.83 (12) |
H7A—C7—H7B | 109.5 | C24—C23—C27 | 120.93 (12) |
H7A—C7—H7C | 109.5 | C23—C24—H24 | 119.3 |
H7B—C7—H7C | 109.5 | C23—C24—C25 | 121.34 (12) |
C5—C8—H8A | 109.5 | C25—C24—H24 | 119.3 |
C5—C8—H8B | 109.5 | C24—C25—C28 | 120.48 (12) |
C5—C8—H8C | 109.5 | C26—C25—C24 | 118.79 (12) |
H8A—C8—H8B | 109.5 | C26—C25—C28 | 120.72 (12) |
H8A—C8—H8C | 109.5 | C21—C26—H26 | 119.5 |
H8B—C8—H8C | 109.5 | C25—C26—C21 | 120.99 (12) |
C12—C11—P1 | 124.64 (9) | C25—C26—H26 | 119.5 |
C16—C11—P1 | 116.08 (9) | C23—C27—H27A | 109.5 |
C16—C11—C12 | 119.22 (11) | C23—C27—H27B | 109.5 |
C11—C12—H12 | 119.6 | C23—C27—H27C | 109.5 |
C13—C12—C11 | 120.82 (11) | H27A—C27—H27B | 109.5 |
C13—C12—H12 | 119.6 | H27A—C27—H27C | 109.5 |
C12—C13—C14 | 118.54 (12) | H27B—C27—H27C | 109.5 |
C12—C13—C17 | 121.17 (12) | C25—C28—H28A | 109.5 |
C14—C13—C17 | 120.29 (12) | C25—C28—H28B | 109.5 |
C13—C14—H14 | 119.1 | C25—C28—H28C | 109.5 |
C15—C14—C13 | 121.88 (12) | H28A—C28—H28B | 109.5 |
C15—C14—H14 | 119.1 | H28A—C28—H28C | 109.5 |
C14—C15—C16 | 118.32 (12) | H28B—C28—H28C | 109.5 |
C14—C15—C18 | 121.19 (12) |
C24H27OP | F(000) = 776 |
Mr = 362.42 | Dx = 1.161 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54184 Å |
a = 14.65624 (11) Å | Cell parameters from 35213 reflections |
b = 8.97960 (5) Å | θ = 5.2–80.3° |
c = 17.27940 (13) Å | µ = 1.23 mm−1 |
β = 114.2052 (9)° | T = 108 K |
V = 2074.16 (3) Å3 | Prism, clear colourless |
Z = 4 | 0.3 × 0.2 × 0.16 mm |
Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, Pilatus 200/300K diffractometer | 4542 independent reflections |
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source | 4390 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.027 |
ω scans | θmax = 81.1°, θmin = 3.3° |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2015) | h = −18→18 |
Tmin = 0.796, Tmax = 1.000 | k = −11→11 |
48104 measured reflections | l = −22→22 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.037 | w = 1/[σ2(Fo2) + (0.0539P)2 + 0.8817P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.102 | (Δ/σ)max < 0.001 |
S = 1.09 | Δρmax = 0.31 e Å−3 |
4542 reflections | Δρmin = −0.29 e Å−3 |
242 parameters | Extinction correction: SHELXL2016 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0012 (2) |
Primary atom site location: iterative |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
P1 | 0.24572 (2) | 0.24916 (3) | 0.18639 (2) | 0.01699 (10) | |
O1 | 0.23144 (6) | 0.10379 (10) | 0.22115 (5) | 0.02266 (19) | |
C1 | 0.14094 (8) | 0.37373 (13) | 0.16344 (7) | 0.0196 (2) | |
C2 | 0.13398 (9) | 0.50699 (14) | 0.11963 (7) | 0.0228 (2) | |
H2 | 0.184870 | 0.532338 | 0.101282 | 0.027* | |
C3 | 0.05362 (9) | 0.60297 (14) | 0.10254 (8) | 0.0246 (3) | |
C4 | −0.02072 (9) | 0.56194 (15) | 0.12945 (8) | 0.0259 (3) | |
H4 | −0.076327 | 0.626245 | 0.117578 | 0.031* | |
C5 | −0.01577 (9) | 0.42953 (14) | 0.17318 (8) | 0.0244 (3) | |
C6 | 0.06620 (9) | 0.33548 (13) | 0.19023 (7) | 0.0214 (2) | |
H6 | 0.071067 | 0.245050 | 0.220211 | 0.026* | |
C7 | 0.04832 (12) | 0.74754 (16) | 0.05675 (10) | 0.0339 (3) | |
H7A | 0.084944 | 0.824684 | 0.097889 | 0.051* | |
H7B | −0.021764 | 0.777612 | 0.026657 | 0.051* | |
H7C | 0.078336 | 0.734439 | 0.015891 | 0.051* | |
C8 | −0.09711 (11) | 0.38991 (16) | 0.20202 (10) | 0.0338 (3) | |
H8A | −0.106203 | 0.472170 | 0.235453 | 0.051* | |
H8B | −0.078025 | 0.299696 | 0.236953 | 0.051* | |
H8C | −0.159846 | 0.372154 | 0.152347 | 0.051* | |
C11 | 0.25717 (8) | 0.22998 (13) | 0.08669 (7) | 0.0181 (2) | |
C12 | 0.30739 (8) | 0.33312 (13) | 0.05762 (7) | 0.0198 (2) | |
H12 | 0.342407 | 0.413590 | 0.093035 | 0.024* | |
C13 | 0.30635 (9) | 0.31846 (13) | −0.02321 (7) | 0.0208 (2) | |
C14 | 0.25486 (9) | 0.19849 (14) | −0.07324 (7) | 0.0226 (2) | |
H14 | 0.253070 | 0.188474 | −0.128577 | 0.027* | |
C15 | 0.20594 (9) | 0.09278 (13) | −0.04505 (7) | 0.0224 (2) | |
C16 | 0.20744 (8) | 0.11037 (13) | 0.03577 (7) | 0.0195 (2) | |
H16 | 0.174160 | 0.039944 | 0.056146 | 0.023* | |
C17 | 0.35972 (10) | 0.42842 (16) | −0.05602 (8) | 0.0283 (3) | |
H17A | 0.370845 | 0.521303 | −0.023642 | 0.043* | |
H17B | 0.318780 | 0.448660 | −0.116113 | 0.043* | |
H17C | 0.424234 | 0.386794 | −0.049635 | 0.043* | |
C18 | 0.15251 (12) | −0.03725 (16) | −0.09981 (9) | 0.0347 (3) | |
H18A | 0.149360 | −0.023358 | −0.157102 | 0.052* | |
H18B | 0.084510 | −0.043764 | −0.102530 | 0.052* | |
H18C | 0.188859 | −0.129304 | −0.075450 | 0.052* | |
C21 | 0.35568 (9) | 0.34982 (13) | 0.25651 (7) | 0.0193 (2) | |
C22 | 0.34906 (9) | 0.48414 (14) | 0.29400 (8) | 0.0223 (2) | |
H22 | 0.285703 | 0.530544 | 0.278167 | 0.027* | |
C23 | 0.43410 (9) | 0.55168 (15) | 0.35450 (8) | 0.0256 (3) | |
C24 | 0.52640 (9) | 0.48300 (15) | 0.37547 (8) | 0.0255 (3) | |
H24 | 0.584722 | 0.527923 | 0.416774 | 0.031* | |
C25 | 0.53559 (9) | 0.34976 (15) | 0.33741 (8) | 0.0258 (3) | |
C26 | 0.44935 (9) | 0.28327 (14) | 0.27831 (8) | 0.0234 (2) | |
H26 | 0.454120 | 0.191864 | 0.252540 | 0.028* | |
C27 | 0.42575 (11) | 0.69639 (18) | 0.39538 (11) | 0.0417 (4) | |
H27A | 0.455221 | 0.776861 | 0.374843 | 0.063* | |
H27B | 0.461488 | 0.687914 | 0.457132 | 0.063* | |
H27C | 0.355104 | 0.718447 | 0.380735 | 0.063* | |
C28 | 0.63753 (11) | 0.28224 (18) | 0.35922 (11) | 0.0401 (4) | |
H28A | 0.676833 | 0.348165 | 0.339455 | 0.060* | |
H28B | 0.629938 | 0.184983 | 0.331532 | 0.060* | |
H28C | 0.671967 | 0.269752 | 0.420846 | 0.060* |
U11 | U22 | U33 | U12 | U13 | U23 | |
P1 | 0.01757 (16) | 0.01839 (16) | 0.01570 (16) | −0.00143 (10) | 0.00751 (12) | −0.00066 (9) |
O1 | 0.0256 (4) | 0.0219 (4) | 0.0222 (4) | −0.0026 (3) | 0.0116 (3) | 0.0018 (3) |
C1 | 0.0188 (5) | 0.0227 (6) | 0.0170 (5) | −0.0005 (4) | 0.0070 (4) | −0.0031 (4) |
C2 | 0.0209 (5) | 0.0264 (6) | 0.0214 (5) | 0.0002 (5) | 0.0090 (4) | 0.0008 (5) |
C3 | 0.0236 (6) | 0.0258 (6) | 0.0214 (6) | 0.0016 (5) | 0.0062 (5) | −0.0006 (5) |
C4 | 0.0213 (6) | 0.0262 (6) | 0.0282 (6) | 0.0028 (5) | 0.0082 (5) | −0.0044 (5) |
C5 | 0.0218 (6) | 0.0257 (6) | 0.0272 (6) | −0.0033 (5) | 0.0115 (5) | −0.0085 (5) |
C6 | 0.0226 (6) | 0.0212 (6) | 0.0215 (5) | −0.0023 (4) | 0.0103 (4) | −0.0047 (4) |
C7 | 0.0321 (7) | 0.0320 (7) | 0.0362 (8) | 0.0079 (5) | 0.0126 (6) | 0.0096 (5) |
C8 | 0.0313 (7) | 0.0284 (7) | 0.0517 (9) | −0.0016 (5) | 0.0271 (6) | −0.0074 (6) |
C11 | 0.0169 (5) | 0.0198 (5) | 0.0176 (5) | 0.0014 (4) | 0.0071 (4) | −0.0001 (4) |
C12 | 0.0194 (5) | 0.0201 (5) | 0.0195 (5) | −0.0006 (4) | 0.0074 (4) | −0.0005 (4) |
C13 | 0.0194 (5) | 0.0231 (6) | 0.0200 (5) | 0.0027 (4) | 0.0084 (4) | 0.0033 (4) |
C14 | 0.0251 (6) | 0.0265 (6) | 0.0172 (5) | 0.0038 (5) | 0.0095 (4) | 0.0001 (5) |
C15 | 0.0243 (6) | 0.0211 (6) | 0.0194 (5) | 0.0015 (4) | 0.0066 (4) | −0.0017 (4) |
C16 | 0.0193 (5) | 0.0188 (5) | 0.0198 (5) | 0.0005 (4) | 0.0072 (4) | 0.0006 (4) |
C17 | 0.0286 (6) | 0.0343 (7) | 0.0244 (6) | −0.0028 (5) | 0.0131 (5) | 0.0059 (5) |
C18 | 0.0493 (8) | 0.0285 (7) | 0.0238 (6) | −0.0088 (6) | 0.0124 (6) | −0.0073 (5) |
C21 | 0.0211 (5) | 0.0208 (5) | 0.0163 (5) | −0.0023 (4) | 0.0080 (4) | 0.0000 (4) |
C22 | 0.0209 (5) | 0.0230 (6) | 0.0241 (6) | −0.0013 (4) | 0.0104 (5) | −0.0023 (5) |
C23 | 0.0253 (6) | 0.0253 (6) | 0.0276 (6) | −0.0044 (5) | 0.0121 (5) | −0.0071 (5) |
C24 | 0.0223 (6) | 0.0268 (6) | 0.0245 (6) | −0.0060 (5) | 0.0068 (5) | −0.0048 (5) |
C25 | 0.0214 (6) | 0.0261 (6) | 0.0258 (6) | −0.0003 (5) | 0.0056 (5) | −0.0010 (5) |
C26 | 0.0233 (6) | 0.0221 (5) | 0.0227 (6) | 0.0000 (5) | 0.0072 (5) | −0.0039 (5) |
C27 | 0.0298 (7) | 0.0370 (8) | 0.0556 (10) | −0.0064 (6) | 0.0148 (7) | −0.0250 (7) |
C28 | 0.0233 (7) | 0.0365 (8) | 0.0482 (9) | 0.0045 (6) | 0.0023 (6) | −0.0119 (7) |
P1—O1 | 1.4872 (9) | C14—C15 | 1.3925 (17) |
P1—C1 | 1.8077 (12) | C15—C16 | 1.3966 (16) |
P1—C11 | 1.8063 (12) | C15—C18 | 1.5047 (17) |
P1—C21 | 1.8113 (12) | C16—H16 | 0.9500 |
C1—C2 | 1.3971 (17) | C17—H17A | 0.9800 |
C1—C6 | 1.3957 (16) | C17—H17B | 0.9800 |
C2—H2 | 0.9500 | C17—H17C | 0.9800 |
C2—C3 | 1.3900 (17) | C18—H18A | 0.9800 |
C3—C4 | 1.3981 (18) | C18—H18B | 0.9800 |
C3—C7 | 1.5057 (18) | C18—H18C | 0.9800 |
C4—H4 | 0.9500 | C21—C22 | 1.3912 (16) |
C4—C5 | 1.3947 (19) | C21—C26 | 1.3999 (17) |
C5—C6 | 1.3975 (17) | C22—H22 | 0.9500 |
C5—C8 | 1.5109 (17) | C22—C23 | 1.3949 (17) |
C6—H6 | 0.9500 | C23—C24 | 1.3927 (18) |
C7—H7A | 0.9800 | C23—C27 | 1.5077 (18) |
C7—H7B | 0.9800 | C24—H24 | 0.9500 |
C7—H7C | 0.9800 | C24—C25 | 1.3982 (18) |
C8—H8A | 0.9800 | C25—C26 | 1.3922 (17) |
C8—H8B | 0.9800 | C25—C28 | 1.5100 (18) |
C8—H8C | 0.9800 | C26—H26 | 0.9500 |
C11—C12 | 1.3982 (16) | C27—H27A | 0.9800 |
C11—C16 | 1.3904 (16) | C27—H27B | 0.9800 |
C12—H12 | 0.9500 | C27—H27C | 0.9800 |
C12—C13 | 1.3967 (16) | C28—H28A | 0.9800 |
C13—C14 | 1.3938 (17) | C28—H28B | 0.9800 |
C13—C17 | 1.5072 (16) | C28—H28C | 0.9800 |
C14—H14 | 0.9500 | ||
O1—P1—C1 | 112.59 (5) | C14—C15—C16 | 118.26 (11) |
O1—P1—C11 | 112.64 (5) | C14—C15—C18 | 121.25 (11) |
O1—P1—C21 | 113.69 (5) | C16—C15—C18 | 120.49 (11) |
C1—P1—C21 | 106.31 (5) | C11—C16—C15 | 120.62 (11) |
C11—P1—C1 | 104.63 (5) | C11—C16—H16 | 119.7 |
C11—P1—C21 | 106.29 (5) | C15—C16—H16 | 119.7 |
C2—C1—P1 | 121.03 (9) | C13—C17—H17A | 109.5 |
C6—C1—P1 | 119.12 (9) | C13—C17—H17B | 109.5 |
C6—C1—C2 | 119.85 (11) | C13—C17—H17C | 109.5 |
C1—C2—H2 | 119.6 | H17A—C17—H17B | 109.5 |
C3—C2—C1 | 120.89 (11) | H17A—C17—H17C | 109.5 |
C3—C2—H2 | 119.6 | H17B—C17—H17C | 109.5 |
C2—C3—C4 | 118.29 (12) | C15—C18—H18A | 109.5 |
C2—C3—C7 | 120.19 (12) | C15—C18—H18B | 109.5 |
C4—C3—C7 | 121.51 (12) | C15—C18—H18C | 109.5 |
C3—C4—H4 | 119.0 | H18A—C18—H18B | 109.5 |
C5—C4—C3 | 122.03 (11) | H18A—C18—H18C | 109.5 |
C5—C4—H4 | 119.0 | H18B—C18—H18C | 109.5 |
C4—C5—C6 | 118.60 (11) | C22—C21—P1 | 122.10 (9) |
C4—C5—C8 | 120.44 (12) | C22—C21—C26 | 119.52 (11) |
C6—C5—C8 | 120.96 (12) | C26—C21—P1 | 118.19 (9) |
C1—C6—C5 | 120.34 (11) | C21—C22—H22 | 119.5 |
C1—C6—H6 | 119.8 | C21—C22—C23 | 120.97 (11) |
C5—C6—H6 | 119.8 | C23—C22—H22 | 119.5 |
C3—C7—H7A | 109.5 | C22—C23—C27 | 120.44 (12) |
C3—C7—H7B | 109.5 | C24—C23—C22 | 118.46 (12) |
C3—C7—H7C | 109.5 | C24—C23—C27 | 121.10 (12) |
H7A—C7—H7B | 109.5 | C23—C24—H24 | 119.1 |
H7A—C7—H7C | 109.5 | C23—C24—C25 | 121.82 (11) |
H7B—C7—H7C | 109.5 | C25—C24—H24 | 119.1 |
C5—C8—H8A | 109.5 | C24—C25—C28 | 120.16 (12) |
C5—C8—H8B | 109.5 | C26—C25—C24 | 118.58 (11) |
C5—C8—H8C | 109.5 | C26—C25—C28 | 121.25 (12) |
H8A—C8—H8B | 109.5 | C21—C26—H26 | 119.7 |
H8A—C8—H8C | 109.5 | C25—C26—C21 | 120.64 (12) |
H8B—C8—H8C | 109.5 | C25—C26—H26 | 119.7 |
C12—C11—P1 | 123.22 (9) | C23—C27—H27A | 109.5 |
C16—C11—P1 | 116.59 (9) | C23—C27—H27B | 109.5 |
C16—C11—C12 | 120.06 (11) | C23—C27—H27C | 109.5 |
C11—C12—H12 | 119.8 | H27A—C27—H27B | 109.5 |
C13—C12—C11 | 120.35 (11) | H27A—C27—H27C | 109.5 |
C13—C12—H12 | 119.8 | H27B—C27—H27C | 109.5 |
C12—C13—C17 | 121.32 (11) | C25—C28—H28A | 109.5 |
C14—C13—C12 | 118.31 (11) | C25—C28—H28B | 109.5 |
C14—C13—C17 | 120.37 (11) | C25—C28—H28C | 109.5 |
C13—C14—H14 | 118.8 | H28A—C28—H28B | 109.5 |
C15—C14—C13 | 122.38 (11) | H28A—C28—H28C | 109.5 |
C15—C14—H14 | 118.8 | H28B—C28—H28C | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8A···O1i | 0.98 | 2.54 | 3.3868 (19) | 144 |
Symmetry code: (i) −x, y+1/2, −z+1/2. |
C27H33O3P | Dx = 1.213 Mg m−3 |
Mr = 436.50 | Cu Kα radiation, λ = 1.54184 Å |
Orthorhombic, Pbca | Cell parameters from 6866 reflections |
a = 12.3031 (6) Å | θ = 4.3–78.8° |
b = 10.2629 (5) Å | µ = 1.21 mm−1 |
c = 37.856 (2) Å | T = 109 K |
V = 4780.0 (4) Å3 | Plate, clear colourless |
Z = 8 | 0.31 × 0.07 × 0.05 mm |
F(000) = 1872 |
Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, Pilatus 200K diffractometer | 5029 independent reflections |
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source | 4084 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.066 |
ω scans | θmax = 80.6°, θmin = 4.7° |
Absorption correction: gaussian (CrysAlis PRO; Rigaku OD, 2015) | h = −15→12 |
Tmin = 0.792, Tmax = 0.950 | k = −13→12 |
19900 measured reflections | l = −48→46 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.073 | H-atom parameters constrained |
wR(F2) = 0.198 | w = 1/[σ2(Fo2) + (0.0756P)2 + 11.1312P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.001 |
5029 reflections | Δρmax = 0.54 e Å−3 |
289 parameters | Δρmin = −0.67 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
P1 | 0.76672 (6) | 0.54686 (8) | 0.62877 (2) | 0.0256 (2) | |
O1 | 0.29598 (18) | 0.6985 (3) | 0.63244 (7) | 0.0422 (6) | |
O2 | 0.92563 (18) | 0.7706 (3) | 0.49141 (6) | 0.0338 (5) | |
O3 | 0.96498 (17) | 0.8338 (3) | 0.75085 (6) | 0.0335 (5) | |
C1 | 0.6240 (2) | 0.5994 (3) | 0.62927 (7) | 0.0263 (6) | |
C2 | 0.5880 (2) | 0.7150 (3) | 0.61423 (8) | 0.0266 (6) | |
H2 | 0.638858 | 0.771017 | 0.603024 | 0.032* | |
C3 | 0.4788 (2) | 0.7505 (3) | 0.61522 (8) | 0.0277 (6) | |
C4 | 0.4056 (2) | 0.6640 (3) | 0.63115 (8) | 0.0292 (7) | |
C5 | 0.4387 (2) | 0.5500 (3) | 0.64752 (8) | 0.0294 (6) | |
C6 | 0.5494 (2) | 0.5181 (3) | 0.64638 (8) | 0.0273 (6) | |
H6 | 0.574042 | 0.440235 | 0.657356 | 0.033* | |
C7 | 0.4408 (3) | 0.8787 (4) | 0.60070 (9) | 0.0338 (7) | |
H7A | 0.503947 | 0.933229 | 0.595125 | 0.051* | |
H7B | 0.395514 | 0.922845 | 0.618304 | 0.051* | |
H7C | 0.398309 | 0.863773 | 0.579192 | 0.051* | |
C8 | 0.2388 (3) | 0.6623 (5) | 0.60101 (12) | 0.0579 (12) | |
H8A | 0.269918 | 0.708578 | 0.580746 | 0.087* | |
H8B | 0.161910 | 0.685379 | 0.603448 | 0.087* | |
H8C | 0.245547 | 0.568119 | 0.597310 | 0.087* | |
C9 | 0.3589 (3) | 0.4620 (4) | 0.66631 (10) | 0.0417 (8) | |
H9A | 0.314595 | 0.415649 | 0.648830 | 0.062* | |
H9B | 0.311580 | 0.514465 | 0.681517 | 0.062* | |
H9C | 0.398694 | 0.398700 | 0.680751 | 0.062* | |
C11 | 0.8173 (2) | 0.6251 (3) | 0.58820 (8) | 0.0270 (6) | |
C12 | 0.8840 (2) | 0.7339 (3) | 0.58696 (8) | 0.0283 (6) | |
H12 | 0.903538 | 0.775954 | 0.608390 | 0.034* | |
C13 | 0.9232 (2) | 0.7836 (3) | 0.55488 (8) | 0.0286 (6) | |
C14 | 0.8920 (2) | 0.7209 (3) | 0.52394 (8) | 0.0297 (7) | |
C15 | 0.8245 (2) | 0.6114 (4) | 0.52399 (8) | 0.0310 (7) | |
C16 | 0.7885 (2) | 0.5642 (3) | 0.55636 (8) | 0.0291 (6) | |
H16 | 0.743434 | 0.489078 | 0.556934 | 0.035* | |
C17 | 0.9947 (3) | 0.9028 (4) | 0.55430 (9) | 0.0379 (8) | |
H17A | 1.071010 | 0.876368 | 0.556053 | 0.057* | |
H17B | 0.976211 | 0.959229 | 0.574308 | 0.057* | |
H17C | 0.983239 | 0.950390 | 0.532164 | 0.057* | |
C18 | 1.0338 (3) | 0.7319 (4) | 0.48189 (9) | 0.0376 (8) | |
H18A | 1.055911 | 0.777853 | 0.460361 | 0.056* | |
H18B | 1.035495 | 0.637713 | 0.477671 | 0.056* | |
H18C | 1.083902 | 0.753749 | 0.501123 | 0.056* | |
C19 | 0.7907 (3) | 0.5467 (4) | 0.48979 (8) | 0.0385 (8) | |
H19A | 0.854690 | 0.508952 | 0.478277 | 0.058* | |
H19B | 0.757642 | 0.611649 | 0.474132 | 0.058* | |
H19C | 0.737842 | 0.477731 | 0.494810 | 0.058* | |
C21 | 0.8248 (2) | 0.6460 (3) | 0.66423 (8) | 0.0264 (6) | |
C22 | 0.7673 (2) | 0.7393 (3) | 0.68323 (7) | 0.0261 (6) | |
H22 | 0.695207 | 0.760186 | 0.676218 | 0.031* | |
C23 | 0.8124 (2) | 0.8032 (3) | 0.71231 (8) | 0.0266 (6) | |
C24 | 0.9190 (2) | 0.7691 (3) | 0.72226 (8) | 0.0269 (6) | |
C25 | 0.9801 (2) | 0.6791 (3) | 0.70352 (8) | 0.0296 (7) | |
C26 | 0.9313 (2) | 0.6163 (3) | 0.67470 (8) | 0.0292 (7) | |
H26 | 0.971283 | 0.552442 | 0.661997 | 0.035* | |
C27 | 0.7505 (3) | 0.9075 (4) | 0.73180 (8) | 0.0315 (7) | |
H27A | 0.777763 | 0.993395 | 0.724809 | 0.047* | |
H27B | 0.760265 | 0.895847 | 0.757295 | 0.047* | |
H27C | 0.673034 | 0.901011 | 0.725968 | 0.047* | |
C28 | 0.9540 (3) | 0.7629 (4) | 0.78319 (9) | 0.0434 (9) | |
H28A | 0.877062 | 0.743845 | 0.787437 | 0.065* | |
H28B | 0.982687 | 0.815264 | 0.802728 | 0.065* | |
H28C | 0.994753 | 0.681096 | 0.781545 | 0.065* | |
C29 | 1.0948 (3) | 0.6435 (4) | 0.71393 (10) | 0.0392 (8) | |
H29A | 1.094164 | 0.561385 | 0.727137 | 0.059* | |
H29B | 1.125434 | 0.712627 | 0.728759 | 0.059* | |
H29C | 1.139325 | 0.633387 | 0.692632 | 0.059* |
U11 | U22 | U33 | U12 | U13 | U23 | |
P1 | 0.0188 (4) | 0.0319 (4) | 0.0261 (4) | 0.0016 (3) | 0.0008 (3) | 0.0008 (3) |
O1 | 0.0155 (10) | 0.0541 (17) | 0.0568 (15) | 0.0058 (11) | 0.0011 (9) | 0.0071 (12) |
O2 | 0.0254 (11) | 0.0470 (14) | 0.0290 (11) | 0.0017 (10) | 0.0051 (8) | 0.0047 (10) |
O3 | 0.0246 (10) | 0.0459 (14) | 0.0300 (11) | −0.0056 (10) | −0.0063 (8) | 0.0003 (10) |
C1 | 0.0219 (13) | 0.0353 (16) | 0.0216 (12) | −0.0012 (12) | −0.0018 (10) | −0.0025 (11) |
C2 | 0.0192 (13) | 0.0343 (17) | 0.0264 (13) | −0.0011 (12) | 0.0005 (10) | −0.0007 (12) |
C3 | 0.0214 (13) | 0.0370 (17) | 0.0247 (13) | 0.0002 (12) | −0.0036 (10) | −0.0010 (12) |
C4 | 0.0177 (13) | 0.0384 (18) | 0.0314 (15) | 0.0027 (12) | 0.0005 (11) | −0.0023 (13) |
C5 | 0.0213 (14) | 0.0367 (17) | 0.0302 (14) | −0.0009 (13) | 0.0013 (11) | 0.0004 (12) |
C6 | 0.0216 (14) | 0.0344 (17) | 0.0259 (14) | 0.0001 (12) | 0.0000 (10) | 0.0000 (12) |
C7 | 0.0248 (14) | 0.0368 (19) | 0.0399 (17) | 0.0028 (14) | −0.0044 (12) | 0.0039 (14) |
C8 | 0.0264 (17) | 0.066 (3) | 0.081 (3) | −0.0147 (19) | −0.0197 (18) | 0.019 (2) |
C9 | 0.0253 (16) | 0.045 (2) | 0.054 (2) | −0.0017 (16) | 0.0080 (14) | 0.0120 (17) |
C11 | 0.0175 (12) | 0.0344 (17) | 0.0290 (14) | 0.0053 (12) | 0.0005 (10) | 0.0010 (12) |
C12 | 0.0201 (13) | 0.0359 (18) | 0.0289 (14) | 0.0036 (12) | 0.0032 (11) | −0.0004 (12) |
C13 | 0.0209 (13) | 0.0348 (17) | 0.0300 (14) | 0.0043 (12) | 0.0036 (11) | −0.0001 (12) |
C14 | 0.0220 (14) | 0.0405 (18) | 0.0266 (14) | 0.0075 (13) | 0.0028 (11) | 0.0037 (12) |
C15 | 0.0221 (13) | 0.0428 (19) | 0.0281 (14) | 0.0047 (14) | 0.0005 (11) | −0.0003 (13) |
C16 | 0.0196 (13) | 0.0340 (18) | 0.0336 (15) | −0.0009 (12) | 0.0006 (11) | 0.0000 (12) |
C17 | 0.0372 (17) | 0.044 (2) | 0.0320 (16) | −0.0053 (16) | 0.0097 (13) | −0.0028 (14) |
C18 | 0.0281 (16) | 0.051 (2) | 0.0337 (16) | −0.0012 (15) | 0.0088 (13) | −0.0014 (15) |
C19 | 0.0308 (16) | 0.056 (2) | 0.0284 (15) | −0.0071 (16) | −0.0001 (12) | −0.0009 (15) |
C21 | 0.0191 (13) | 0.0341 (17) | 0.0260 (13) | −0.0004 (12) | −0.0005 (10) | 0.0043 (11) |
C22 | 0.0172 (13) | 0.0357 (17) | 0.0255 (13) | −0.0010 (12) | −0.0016 (10) | 0.0037 (12) |
C23 | 0.0177 (13) | 0.0347 (17) | 0.0275 (14) | −0.0025 (12) | −0.0002 (10) | 0.0045 (12) |
C24 | 0.0190 (13) | 0.0348 (17) | 0.0268 (14) | −0.0039 (12) | −0.0043 (10) | 0.0039 (12) |
C25 | 0.0178 (13) | 0.0372 (18) | 0.0337 (15) | −0.0013 (12) | −0.0028 (11) | 0.0061 (13) |
C26 | 0.0188 (13) | 0.0357 (18) | 0.0330 (15) | 0.0055 (13) | 0.0009 (11) | 0.0028 (12) |
C27 | 0.0211 (13) | 0.0410 (19) | 0.0324 (15) | −0.0009 (13) | −0.0031 (12) | −0.0031 (13) |
C28 | 0.0354 (17) | 0.068 (3) | 0.0267 (15) | −0.0023 (18) | −0.0078 (13) | 0.0063 (16) |
C29 | 0.0213 (15) | 0.048 (2) | 0.048 (2) | 0.0043 (15) | −0.0091 (13) | 0.0041 (16) |
P1—C1 | 1.836 (3) | C13—C17 | 1.507 (5) |
P1—C11 | 1.841 (3) | C14—C15 | 1.398 (5) |
P1—C21 | 1.829 (3) | C15—C16 | 1.390 (4) |
O1—C4 | 1.396 (4) | C15—C19 | 1.513 (4) |
O1—C8 | 1.431 (5) | C16—H16 | 0.9500 |
O2—C14 | 1.395 (4) | C17—H17A | 0.9800 |
O2—C18 | 1.435 (4) | C17—H17B | 0.9800 |
O3—C24 | 1.390 (4) | C17—H17C | 0.9800 |
O3—C28 | 1.431 (4) | C18—H18A | 0.9800 |
C1—C2 | 1.389 (4) | C18—H18B | 0.9800 |
C1—C6 | 1.400 (4) | C18—H18C | 0.9800 |
C2—H2 | 0.9500 | C19—H19A | 0.9800 |
C2—C3 | 1.393 (4) | C19—H19B | 0.9800 |
C3—C4 | 1.400 (5) | C19—H19C | 0.9800 |
C3—C7 | 1.500 (5) | C21—C22 | 1.391 (4) |
C4—C5 | 1.385 (5) | C21—C26 | 1.403 (4) |
C5—C6 | 1.401 (4) | C22—H22 | 0.9500 |
C5—C9 | 1.513 (5) | C22—C23 | 1.397 (4) |
C6—H6 | 0.9500 | C23—C24 | 1.408 (4) |
C7—H7A | 0.9800 | C23—C27 | 1.507 (5) |
C7—H7B | 0.9800 | C24—C25 | 1.386 (5) |
C7—H7C | 0.9800 | C25—C26 | 1.402 (4) |
C8—H8A | 0.9800 | C25—C29 | 1.511 (4) |
C8—H8B | 0.9800 | C26—H26 | 0.9500 |
C8—H8C | 0.9800 | C27—H27A | 0.9800 |
C9—H9A | 0.9800 | C27—H27B | 0.9800 |
C9—H9B | 0.9800 | C27—H27C | 0.9800 |
C9—H9C | 0.9800 | C28—H28A | 0.9800 |
C11—C12 | 1.386 (5) | C28—H28B | 0.9800 |
C11—C16 | 1.403 (4) | C28—H28C | 0.9800 |
C12—H12 | 0.9500 | C29—H29A | 0.9800 |
C12—C13 | 1.403 (4) | C29—H29B | 0.9800 |
C13—C14 | 1.390 (4) | C29—H29C | 0.9800 |
C1—P1—C11 | 101.77 (13) | C11—C16—H16 | 119.3 |
C21—P1—C1 | 101.66 (14) | C15—C16—C11 | 121.4 (3) |
C21—P1—C11 | 103.75 (14) | C15—C16—H16 | 119.3 |
C4—O1—C8 | 112.3 (3) | C13—C17—H17A | 109.5 |
C14—O2—C18 | 113.3 (2) | C13—C17—H17B | 109.5 |
C24—O3—C28 | 112.6 (3) | C13—C17—H17C | 109.5 |
C2—C1—P1 | 123.5 (2) | H17A—C17—H17B | 109.5 |
C2—C1—C6 | 119.3 (3) | H17A—C17—H17C | 109.5 |
C6—C1—P1 | 117.2 (2) | H17B—C17—H17C | 109.5 |
C1—C2—H2 | 119.3 | O2—C18—H18A | 109.5 |
C1—C2—C3 | 121.4 (3) | O2—C18—H18B | 109.5 |
C3—C2—H2 | 119.3 | O2—C18—H18C | 109.5 |
C2—C3—C4 | 117.7 (3) | H18A—C18—H18B | 109.5 |
C2—C3—C7 | 121.3 (3) | H18A—C18—H18C | 109.5 |
C4—C3—C7 | 120.9 (3) | H18B—C18—H18C | 109.5 |
O1—C4—C3 | 118.4 (3) | C15—C19—H19A | 109.5 |
C5—C4—O1 | 118.8 (3) | C15—C19—H19B | 109.5 |
C5—C4—C3 | 122.6 (3) | C15—C19—H19C | 109.5 |
C4—C5—C6 | 118.0 (3) | H19A—C19—H19B | 109.5 |
C4—C5—C9 | 121.6 (3) | H19A—C19—H19C | 109.5 |
C6—C5—C9 | 120.4 (3) | H19B—C19—H19C | 109.5 |
C1—C6—C5 | 120.8 (3) | C22—C21—P1 | 124.3 (2) |
C1—C6—H6 | 119.6 | C22—C21—C26 | 118.6 (3) |
C5—C6—H6 | 119.6 | C26—C21—P1 | 116.8 (2) |
C3—C7—H7A | 109.5 | C21—C22—H22 | 119.0 |
C3—C7—H7B | 109.5 | C21—C22—C23 | 121.9 (3) |
C3—C7—H7C | 109.5 | C23—C22—H22 | 119.0 |
H7A—C7—H7B | 109.5 | C22—C23—C24 | 117.7 (3) |
H7A—C7—H7C | 109.5 | C22—C23—C27 | 121.2 (3) |
H7B—C7—H7C | 109.5 | C24—C23—C27 | 121.1 (3) |
O1—C8—H8A | 109.5 | O3—C24—C23 | 117.9 (3) |
O1—C8—H8B | 109.5 | C25—C24—O3 | 119.7 (3) |
O1—C8—H8C | 109.5 | C25—C24—C23 | 122.2 (3) |
H8A—C8—H8B | 109.5 | C24—C25—C26 | 118.2 (3) |
H8A—C8—H8C | 109.5 | C24—C25—C29 | 122.3 (3) |
H8B—C8—H8C | 109.5 | C26—C25—C29 | 119.4 (3) |
C5—C9—H9A | 109.5 | C21—C26—H26 | 119.3 |
C5—C9—H9B | 109.5 | C25—C26—C21 | 121.3 (3) |
C5—C9—H9C | 109.5 | C25—C26—H26 | 119.3 |
H9A—C9—H9B | 109.5 | C23—C27—H27A | 109.5 |
H9A—C9—H9C | 109.5 | C23—C27—H27B | 109.5 |
H9B—C9—H9C | 109.5 | C23—C27—H27C | 109.5 |
C12—C11—P1 | 125.4 (2) | H27A—C27—H27B | 109.5 |
C12—C11—C16 | 118.6 (3) | H27A—C27—H27C | 109.5 |
C16—C11—P1 | 115.9 (2) | H27B—C27—H27C | 109.5 |
C11—C12—H12 | 119.1 | O3—C28—H28A | 109.5 |
C11—C12—C13 | 121.7 (3) | O3—C28—H28B | 109.5 |
C13—C12—H12 | 119.1 | O3—C28—H28C | 109.5 |
C12—C13—C17 | 120.6 (3) | H28A—C28—H28B | 109.5 |
C14—C13—C12 | 117.8 (3) | H28A—C28—H28C | 109.5 |
C14—C13—C17 | 121.6 (3) | H28B—C28—H28C | 109.5 |
O2—C14—C15 | 118.1 (3) | C25—C29—H29A | 109.5 |
C13—C14—O2 | 119.5 (3) | C25—C29—H29B | 109.5 |
C13—C14—C15 | 122.3 (3) | C25—C29—H29C | 109.5 |
C14—C15—C19 | 121.0 (3) | H29A—C29—H29B | 109.5 |
C16—C15—C14 | 118.1 (3) | H29A—C29—H29C | 109.5 |
C16—C15—C19 | 120.9 (3) | H29B—C29—H29C | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
C29—H29A···O3i | 0.98 | 2.58 | 3.524 (5) | 161 |
Symmetry code: (i) −x+2, y−1/2, −z+3/2. |
C27H33O4P | Dx = 1.230 Mg m−3 |
Mr = 452.50 | Cu Kα radiation, λ = 1.54184 Å |
Orthorhombic, Pbca | Cell parameters from 16756 reflections |
a = 11.28601 (11) Å | θ = 4.6–80.0° |
b = 11.90008 (11) Å | µ = 1.24 mm−1 |
c = 36.3801 (3) Å | T = 108 K |
V = 4886.01 (8) Å3 | Plate, clear colourless |
Z = 8 | 0.2 × 0.2 × 0.04 mm |
F(000) = 1936 |
Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, Pilatus 200/300K diffractometer | 5325 independent reflections |
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source | 4821 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.033 |
ω scans | θmax = 80.3°, θmin = 4.6° |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2015) | h = −14→13 |
Tmin = 0.755, Tmax = 1.000 | k = −10→15 |
29719 measured reflections | l = −32→46 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.039 | w = 1/[σ2(Fo2) + (0.0444P)2 + 2.732P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.100 | (Δ/σ)max = 0.002 |
S = 1.05 | Δρmax = 0.35 e Å−3 |
5325 reflections | Δρmin = −0.40 e Å−3 |
299 parameters | Extinction correction: SHELXL2016 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.00025 (5) |
Primary atom site location: iterative |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
P1 | 0.79578 (3) | 0.57887 (3) | 0.63306 (2) | 0.01782 (10) | |
O1 | 0.82216 (9) | 0.45664 (8) | 0.63566 (3) | 0.0241 (2) | |
O2 | 0.27342 (9) | 0.65494 (10) | 0.63075 (3) | 0.0305 (2) | |
O3 | 0.93140 (10) | 0.76996 (11) | 0.48735 (3) | 0.0350 (3) | |
O4 | 1.03456 (9) | 0.84000 (9) | 0.75134 (3) | 0.0258 (2) | |
C1 | 0.63848 (12) | 0.60698 (11) | 0.63380 (3) | 0.0186 (3) | |
C2 | 0.59134 (12) | 0.70862 (11) | 0.62114 (3) | 0.0194 (3) | |
H2 | 0.643113 | 0.766482 | 0.613037 | 0.023* | |
C3 | 0.46935 (12) | 0.72582 (11) | 0.62030 (4) | 0.0209 (3) | |
C4 | 0.39523 (12) | 0.63846 (12) | 0.63188 (4) | 0.0220 (3) | |
C5 | 0.43964 (12) | 0.53723 (12) | 0.64567 (4) | 0.0239 (3) | |
C6 | 0.56272 (12) | 0.52309 (11) | 0.64628 (4) | 0.0209 (3) | |
H6 | 0.595138 | 0.454888 | 0.655395 | 0.025* | |
C7 | 0.41966 (13) | 0.83624 (12) | 0.60764 (4) | 0.0275 (3) | |
H7A | 0.483170 | 0.892330 | 0.606736 | 0.041* | |
H7B | 0.358199 | 0.861138 | 0.624844 | 0.041* | |
H7C | 0.385164 | 0.827349 | 0.583095 | 0.041* | |
C8 | 0.22242 (15) | 0.62574 (16) | 0.59606 (5) | 0.0385 (4) | |
H8A | 0.260981 | 0.669074 | 0.576526 | 0.058* | |
H8B | 0.137480 | 0.642838 | 0.596364 | 0.058* | |
H8C | 0.233832 | 0.545291 | 0.591516 | 0.058* | |
C9 | 0.35923 (14) | 0.44588 (15) | 0.65990 (5) | 0.0372 (4) | |
H9A | 0.375698 | 0.432767 | 0.685999 | 0.056* | |
H9B | 0.373292 | 0.376517 | 0.646050 | 0.056* | |
H9C | 0.276449 | 0.468978 | 0.656900 | 0.056* | |
C11 | 0.84536 (12) | 0.63908 (12) | 0.58997 (4) | 0.0207 (3) | |
C12 | 0.89015 (12) | 0.74785 (12) | 0.58695 (4) | 0.0233 (3) | |
H12 | 0.899650 | 0.792197 | 0.608462 | 0.028* | |
C13 | 0.92131 (13) | 0.79276 (13) | 0.55278 (4) | 0.0267 (3) | |
C14 | 0.90563 (13) | 0.72557 (13) | 0.52171 (4) | 0.0267 (3) | |
C15 | 0.85914 (13) | 0.61662 (13) | 0.52372 (4) | 0.0267 (3) | |
C16 | 0.83036 (13) | 0.57450 (12) | 0.55830 (4) | 0.0241 (3) | |
H16 | 0.799917 | 0.500336 | 0.560367 | 0.029* | |
C17 | 0.96890 (17) | 0.91105 (14) | 0.54979 (4) | 0.0359 (4) | |
H17A | 1.055600 | 0.908816 | 0.548469 | 0.054* | |
H17B | 0.944584 | 0.954406 | 0.571416 | 0.054* | |
H17C | 0.937404 | 0.946656 | 0.527556 | 0.054* | |
C18 | 1.05371 (17) | 0.75999 (18) | 0.47752 (5) | 0.0439 (4) | |
H18A | 1.069584 | 0.805621 | 0.455644 | 0.066* | |
H18B | 1.072181 | 0.681140 | 0.472270 | 0.066* | |
H18C | 1.103135 | 0.786379 | 0.497918 | 0.066* | |
C19 | 0.83794 (16) | 0.54874 (16) | 0.48934 (4) | 0.0367 (4) | |
H19A | 0.789789 | 0.592591 | 0.472108 | 0.055* | |
H19B | 0.796155 | 0.479203 | 0.495677 | 0.055* | |
H19C | 0.914092 | 0.530334 | 0.477881 | 0.055* | |
C21 | 0.86395 (12) | 0.66018 (11) | 0.66909 (3) | 0.0192 (3) | |
C22 | 0.80829 (11) | 0.75201 (11) | 0.68533 (4) | 0.0198 (3) | |
H22 | 0.731414 | 0.773357 | 0.677308 | 0.024* | |
C23 | 0.86343 (12) | 0.81313 (11) | 0.71315 (4) | 0.0210 (3) | |
C24 | 0.97618 (12) | 0.77906 (12) | 0.72445 (4) | 0.0213 (3) | |
C25 | 1.03682 (12) | 0.69022 (12) | 0.70769 (4) | 0.0218 (3) | |
C26 | 0.97866 (12) | 0.63058 (11) | 0.68014 (4) | 0.0214 (3) | |
H26 | 1.017338 | 0.568957 | 0.668667 | 0.026* | |
C27 | 0.80642 (13) | 0.91664 (12) | 0.72900 (4) | 0.0259 (3) | |
H27A | 0.765918 | 0.897242 | 0.751965 | 0.039* | |
H27B | 0.748824 | 0.946793 | 0.711416 | 0.039* | |
H27C | 0.867385 | 0.973307 | 0.733934 | 0.039* | |
C28 | 0.99864 (14) | 0.81185 (15) | 0.78793 (4) | 0.0311 (3) | |
H28A | 0.913403 | 0.825199 | 0.790633 | 0.047* | |
H28B | 1.042074 | 0.858623 | 0.805539 | 0.047* | |
H28C | 1.015864 | 0.732445 | 0.792677 | 0.047* | |
C29 | 1.16351 (13) | 0.66525 (13) | 0.71787 (4) | 0.0280 (3) | |
H29A | 1.215520 | 0.722386 | 0.707106 | 0.042* | |
H29B | 1.185603 | 0.590996 | 0.708450 | 0.042* | |
H29C | 1.171810 | 0.666109 | 0.744687 | 0.042* |
U11 | U22 | U33 | U12 | U13 | U23 | |
P1 | 0.01791 (16) | 0.01810 (17) | 0.01746 (16) | 0.00087 (12) | 0.00009 (11) | −0.00058 (11) |
O1 | 0.0246 (5) | 0.0209 (5) | 0.0269 (5) | 0.0024 (4) | −0.0006 (4) | −0.0009 (4) |
O2 | 0.0181 (5) | 0.0398 (6) | 0.0336 (5) | 0.0018 (4) | −0.0010 (4) | 0.0048 (5) |
O3 | 0.0380 (6) | 0.0477 (7) | 0.0194 (5) | −0.0067 (5) | 0.0043 (4) | 0.0048 (5) |
O4 | 0.0252 (5) | 0.0319 (5) | 0.0203 (4) | −0.0070 (4) | −0.0027 (4) | −0.0028 (4) |
C1 | 0.0198 (6) | 0.0206 (6) | 0.0154 (5) | 0.0004 (5) | −0.0007 (4) | −0.0015 (4) |
C2 | 0.0209 (6) | 0.0199 (6) | 0.0172 (6) | −0.0008 (5) | 0.0004 (5) | −0.0003 (5) |
C3 | 0.0229 (6) | 0.0226 (6) | 0.0173 (6) | 0.0022 (5) | −0.0008 (5) | −0.0008 (5) |
C4 | 0.0175 (6) | 0.0290 (7) | 0.0196 (6) | 0.0011 (5) | −0.0015 (5) | −0.0007 (5) |
C5 | 0.0228 (6) | 0.0258 (7) | 0.0233 (6) | −0.0038 (5) | −0.0025 (5) | 0.0017 (5) |
C6 | 0.0224 (6) | 0.0200 (6) | 0.0205 (6) | −0.0003 (5) | −0.0038 (5) | 0.0007 (5) |
C7 | 0.0237 (7) | 0.0268 (7) | 0.0321 (7) | 0.0050 (6) | −0.0006 (6) | 0.0037 (6) |
C8 | 0.0268 (8) | 0.0465 (10) | 0.0423 (9) | −0.0063 (7) | −0.0138 (7) | 0.0080 (8) |
C9 | 0.0240 (7) | 0.0357 (9) | 0.0518 (10) | −0.0061 (6) | −0.0033 (7) | 0.0145 (7) |
C11 | 0.0179 (6) | 0.0248 (6) | 0.0194 (6) | 0.0018 (5) | 0.0004 (5) | −0.0009 (5) |
C12 | 0.0246 (7) | 0.0262 (7) | 0.0192 (6) | −0.0005 (5) | 0.0023 (5) | −0.0021 (5) |
C13 | 0.0257 (7) | 0.0298 (7) | 0.0245 (7) | −0.0006 (6) | 0.0032 (5) | 0.0007 (6) |
C14 | 0.0251 (7) | 0.0379 (8) | 0.0171 (6) | −0.0003 (6) | 0.0027 (5) | 0.0025 (6) |
C15 | 0.0239 (7) | 0.0362 (8) | 0.0200 (6) | −0.0006 (6) | 0.0000 (5) | −0.0033 (6) |
C16 | 0.0225 (6) | 0.0281 (7) | 0.0215 (6) | −0.0009 (5) | 0.0003 (5) | −0.0027 (5) |
C17 | 0.0473 (10) | 0.0324 (8) | 0.0279 (7) | −0.0073 (7) | 0.0089 (7) | 0.0018 (6) |
C18 | 0.0421 (9) | 0.0629 (12) | 0.0269 (8) | −0.0124 (9) | 0.0125 (7) | −0.0025 (8) |
C19 | 0.0417 (9) | 0.0469 (10) | 0.0216 (7) | −0.0088 (8) | 0.0017 (6) | −0.0075 (7) |
C21 | 0.0203 (6) | 0.0204 (6) | 0.0168 (6) | −0.0011 (5) | 0.0002 (5) | 0.0019 (5) |
C22 | 0.0186 (6) | 0.0224 (6) | 0.0182 (6) | −0.0008 (5) | 0.0005 (5) | 0.0015 (5) |
C23 | 0.0222 (6) | 0.0229 (6) | 0.0178 (6) | −0.0020 (5) | 0.0017 (5) | 0.0016 (5) |
C24 | 0.0233 (6) | 0.0231 (6) | 0.0175 (6) | −0.0060 (5) | −0.0008 (5) | 0.0013 (5) |
C25 | 0.0206 (6) | 0.0240 (6) | 0.0210 (6) | −0.0016 (5) | −0.0017 (5) | 0.0048 (5) |
C26 | 0.0215 (6) | 0.0217 (6) | 0.0210 (6) | 0.0016 (5) | −0.0005 (5) | 0.0014 (5) |
C27 | 0.0244 (7) | 0.0282 (7) | 0.0250 (7) | −0.0010 (6) | 0.0022 (5) | −0.0057 (5) |
C28 | 0.0300 (8) | 0.0436 (9) | 0.0198 (6) | −0.0032 (7) | −0.0021 (6) | −0.0019 (6) |
C29 | 0.0236 (7) | 0.0293 (7) | 0.0311 (7) | 0.0011 (6) | −0.0073 (6) | 0.0023 (6) |
P1—O1 | 1.4878 (10) | C13—C17 | 1.511 (2) |
P1—C1 | 1.8066 (14) | C14—C15 | 1.401 (2) |
P1—C11 | 1.8121 (14) | C15—C16 | 1.393 (2) |
P1—C21 | 1.8018 (13) | C15—C19 | 1.508 (2) |
O2—C4 | 1.3893 (16) | C16—H16 | 0.9500 |
O2—C8 | 1.430 (2) | C17—H17A | 0.9800 |
O3—C14 | 1.3880 (17) | C17—H17B | 0.9800 |
O3—C18 | 1.431 (2) | C17—H17C | 0.9800 |
O4—C24 | 1.3844 (16) | C18—H18A | 0.9800 |
O4—C28 | 1.4314 (17) | C18—H18B | 0.9800 |
C1—C2 | 1.3993 (18) | C18—H18C | 0.9800 |
C1—C6 | 1.3906 (19) | C19—H19A | 0.9800 |
C2—H2 | 0.9500 | C19—H19B | 0.9800 |
C2—C3 | 1.3923 (19) | C19—H19C | 0.9800 |
C3—C4 | 1.399 (2) | C21—C22 | 1.3921 (18) |
C3—C7 | 1.5010 (19) | C21—C26 | 1.4006 (18) |
C4—C5 | 1.398 (2) | C22—H22 | 0.9500 |
C5—C6 | 1.3995 (19) | C22—C23 | 1.3930 (19) |
C5—C9 | 1.508 (2) | C23—C24 | 1.3974 (19) |
C6—H6 | 0.9500 | C23—C27 | 1.5046 (19) |
C7—H7A | 0.9800 | C24—C25 | 1.399 (2) |
C7—H7B | 0.9800 | C25—C26 | 1.3927 (19) |
C7—H7C | 0.9800 | C25—C29 | 1.5066 (19) |
C8—H8A | 0.9800 | C26—H26 | 0.9500 |
C8—H8B | 0.9800 | C27—H27A | 0.9800 |
C8—H8C | 0.9800 | C27—H27B | 0.9800 |
C9—H9A | 0.9800 | C27—H27C | 0.9800 |
C9—H9B | 0.9800 | C28—H28A | 0.9800 |
C9—H9C | 0.9800 | C28—H28B | 0.9800 |
C11—C12 | 1.394 (2) | C28—H28C | 0.9800 |
C11—C16 | 1.3952 (19) | C29—H29A | 0.9800 |
C12—H12 | 0.9500 | C29—H29B | 0.9800 |
C12—C13 | 1.398 (2) | C29—H29C | 0.9800 |
C13—C14 | 1.396 (2) | ||
O1—P1—C1 | 112.13 (6) | C16—C15—C19 | 121.30 (14) |
O1—P1—C11 | 112.32 (6) | C11—C16—H16 | 119.4 |
O1—P1—C21 | 113.16 (6) | C15—C16—C11 | 121.29 (14) |
C1—P1—C11 | 104.08 (6) | C15—C16—H16 | 119.4 |
C21—P1—C1 | 108.02 (6) | C13—C17—H17A | 109.5 |
C21—P1—C11 | 106.57 (6) | C13—C17—H17B | 109.5 |
C4—O2—C8 | 112.96 (12) | C13—C17—H17C | 109.5 |
C14—O3—C18 | 113.31 (13) | H17A—C17—H17B | 109.5 |
C24—O4—C28 | 113.56 (11) | H17A—C17—H17C | 109.5 |
C2—C1—P1 | 121.92 (10) | H17B—C17—H17C | 109.5 |
C6—C1—P1 | 118.43 (10) | O3—C18—H18A | 109.5 |
C6—C1—C2 | 119.62 (12) | O3—C18—H18B | 109.5 |
C1—C2—H2 | 119.7 | O3—C18—H18C | 109.5 |
C3—C2—C1 | 120.69 (12) | H18A—C18—H18B | 109.5 |
C3—C2—H2 | 119.7 | H18A—C18—H18C | 109.5 |
C2—C3—C4 | 118.37 (12) | H18B—C18—H18C | 109.5 |
C2—C3—C7 | 120.33 (13) | C15—C19—H19A | 109.5 |
C4—C3—C7 | 121.29 (12) | C15—C19—H19B | 109.5 |
O2—C4—C3 | 118.53 (13) | C15—C19—H19C | 109.5 |
O2—C4—C5 | 119.15 (13) | H19A—C19—H19B | 109.5 |
C5—C4—C3 | 122.28 (13) | H19A—C19—H19C | 109.5 |
C4—C5—C6 | 117.72 (13) | H19B—C19—H19C | 109.5 |
C4—C5—C9 | 121.92 (13) | C22—C21—P1 | 122.53 (10) |
C6—C5—C9 | 120.35 (13) | C22—C21—C26 | 119.52 (12) |
C1—C6—C5 | 121.25 (13) | C26—C21—P1 | 117.93 (10) |
C1—C6—H6 | 119.4 | C21—C22—H22 | 119.4 |
C5—C6—H6 | 119.4 | C21—C22—C23 | 121.11 (12) |
C3—C7—H7A | 109.5 | C23—C22—H22 | 119.4 |
C3—C7—H7B | 109.5 | C22—C23—C24 | 117.98 (12) |
C3—C7—H7C | 109.5 | C22—C23—C27 | 120.98 (12) |
H7A—C7—H7B | 109.5 | C24—C23—C27 | 120.94 (12) |
H7A—C7—H7C | 109.5 | O4—C24—C23 | 119.30 (12) |
H7B—C7—H7C | 109.5 | O4—C24—C25 | 118.09 (12) |
O2—C8—H8A | 109.5 | C23—C24—C25 | 122.43 (12) |
O2—C8—H8B | 109.5 | C24—C25—C29 | 120.40 (13) |
O2—C8—H8C | 109.5 | C26—C25—C24 | 117.92 (12) |
H8A—C8—H8B | 109.5 | C26—C25—C29 | 121.58 (13) |
H8A—C8—H8C | 109.5 | C21—C26—H26 | 119.5 |
H8B—C8—H8C | 109.5 | C25—C26—C21 | 120.94 (13) |
C5—C9—H9A | 109.5 | C25—C26—H26 | 119.5 |
C5—C9—H9B | 109.5 | C23—C27—H27A | 109.5 |
C5—C9—H9C | 109.5 | C23—C27—H27B | 109.5 |
H9A—C9—H9B | 109.5 | C23—C27—H27C | 109.5 |
H9A—C9—H9C | 109.5 | H27A—C27—H27B | 109.5 |
H9B—C9—H9C | 109.5 | H27A—C27—H27C | 109.5 |
C12—C11—P1 | 123.18 (10) | H27B—C27—H27C | 109.5 |
C12—C11—C16 | 119.37 (13) | O4—C28—H28A | 109.5 |
C16—C11—P1 | 117.33 (11) | O4—C28—H28B | 109.5 |
C11—C12—H12 | 119.5 | O4—C28—H28C | 109.5 |
C11—C12—C13 | 121.08 (13) | H28A—C28—H28B | 109.5 |
C13—C12—H12 | 119.5 | H28A—C28—H28C | 109.5 |
C12—C13—C17 | 120.64 (13) | H28B—C28—H28C | 109.5 |
C14—C13—C12 | 117.98 (14) | C25—C29—H29A | 109.5 |
C14—C13—C17 | 121.38 (13) | C25—C29—H29B | 109.5 |
O3—C14—C13 | 119.00 (14) | C25—C29—H29C | 109.5 |
O3—C14—C15 | 118.55 (13) | H29A—C29—H29B | 109.5 |
C13—C14—C15 | 122.38 (13) | H29A—C29—H29C | 109.5 |
C14—C15—C19 | 120.79 (13) | H29B—C29—H29C | 109.5 |
C16—C15—C14 | 117.89 (13) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O1i | 0.95 | 2.44 | 3.1533 (16) | 132 |
C7—H7A···O1i | 0.98 | 2.55 | 3.4033 (18) | 145 |
Symmetry code: (i) −x+3/2, y+1/2, z. |
Acknowledgements
We thank the University of Lethbridge and the Faculty of Arts & Science for funding the diffractometer.
Funding information
Funding for this research was provided by: Natural Sciences and Engineering Research Council of Canada.
References
Blount, J. F., Camp, D., Hart, R. D., Healy, P. C., Skelton, B. W. & White, A. H. (1994). Aust. J. Chem. 47, 1631–1639. CSD CrossRef CAS Web of Science Google Scholar
Boeré, R. T., Bond, A. M., Cronin, S., Duffy, N. W., Hazendonk, P., Masuda, J. D., Pollard, K., Roemmele, T. L., Tran, P. & Zhang, Y. (2008). New J. Chem. 32, 214–231. Google Scholar
Boeré, R. T. & Zhang, Y. (2005). J. Organomet. Chem. 690, 2651–2657. Google Scholar
Boeré, R. T. & Zhang, Y. (2013). Acta Cryst. C69, 1051–1054. Web of Science CrossRef IUCr Journals Google Scholar
Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75. Web of Science CrossRef IUCr Journals Google Scholar
Clarke, A. J., Ingleson, M. J., Kociok-Köhn, G., Mahon, M. F., Patmore, N. J., Rourke, J. P., Ruggiero, G. D. & Weller, A. S. (2004). J. Am. Chem. Soc. 126, 1503–1517. Web of Science CSD CrossRef PubMed CAS Google Scholar
Culcasi, M., Berchadsky, Y., Gronchi, G. & Tordo, P. (1991). J. Org. Chem. 56, 3537–3542. CrossRef Web of Science Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Frisch, M. J., et al. (2016). Gaussian 16. Gaussian, Inc., Wallingford CT, USA. Google Scholar
Fu, J., Moxey, G. J., Morshedi, M., Barlow, A., Randles, M. D., Simpson, P. V., Schwich, T., Cifuentes, M. P. & Humphrey, M. G. (2016). J. Organomet. Chem. 812, 135–144. Web of Science CrossRef Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gust, D. & Mislow, K. (1973). J. Am. Chem. Soc. 95, 1535–1547. CrossRef Web of Science Google Scholar
Hengartner, U., Valentine, D. Jr, Johnson, K. K., Larscheid, M. E., Pigott, F., Scheidl, F., Scott, J. W., Sun, R. C. & Townsend, J. M. (1979). J. Org. Chem. 44, 3741–3747. CrossRef Web of Science Google Scholar
Henschke, J. P., Zanotti-Gerosa, A., Moran, P., Harrison, P., Mullen, B., Casy, G. & Lennon, I. C. (2003). Tetrahedron Lett. 44, 4379–4383. Web of Science CrossRef Google Scholar
Jing, Q., Zhang, X., Sun, J. & Ding, K. (2005). Adv. Synth. Catal. 347, 1193–1197. Web of Science CrossRef Google Scholar
Jover, J., Fey, N., Harvey, J. N., Lloyd-Jones, G. C., Orpen, A. G., Owen-Smith, G. J. J., Murray, P., Hose, D. R. J., Osborne, R. & Purdie, M. (2010). Organometallics, 29, 6245–6258. Web of Science CrossRef Google Scholar
Kakizoe, D., Nishikawa, M., Fujii, Y. & Tsubomura, T. (2017). Dalton Trans. 46, 14804–14811. Web of Science CrossRef Google Scholar
Kerrigan, N. J., Langan, I. J., Dalton, C. T., Daly, A. M., Bousquet, C. & Gilheany, D. G. (2002). Tetrahedron Lett. 43, 2107–2110. Web of Science CrossRef Google Scholar
Lian, Z., Bhawal, B. N., Yu, P. & Morandi, B. (2017). Science, 356, 1059–1063. Web of Science CrossRef Google Scholar
Naruto, M. & Saito, S. (2015). Nat. Commun. 6, 8140p. Web of Science CrossRef Google Scholar
Nishikawa, D., Hirano, K. & Miura, M. (2016). Org. Lett. 18, 4856–4859. Web of Science CrossRef Google Scholar
Ogiwara, Y., Miyake, M., Kochi, T. & Kakiuchi, F. (2017). Organometallics, 36, 159–164. Web of Science CrossRef Google Scholar
Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Romain, J. K., Ribblett, J. W., Byrn, R. W., Snyder, R. D., Storhoff, B. N. & Huffman, J. C. (2000). Organometallics, 19, 2047–2050. Web of Science CrossRef Google Scholar
Sasaki, S., Sutoh, K., Murakami, M. & Yoshifuji, M. (2002). J. Am. Chem. Soc. 124, 14830–14831. Web of Science CrossRef Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Ullrich, M., Lough, A. J. & Stephan, D. W. (2010). Organometallics, 29, 3647–3654. Web of Science CSD CrossRef CAS Google Scholar
Wang, T. & Stephan, D. W. (2014). Chem. Commun. 50, 7007–7010. Web of Science CrossRef Google Scholar
Whited, M. T., Ruffer, E. J., Zhang, J., Rabaey, D. J. & Janzen, D. E. (2017). IUCrData, 2, x170042. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.