research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Two tris­­(3,5-disubstituted phen­yl)phosphines and their isostructural PV oxides

CROSSMARK_Color_square_no_text.svg

aChemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, T1K3M4, Canada
*Correspondence e-mail: boere@uleth.ca

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 12 May 2018; accepted 25 May 2018; online 5 June 2018)

The crystal structures of tris­(3,5-di­methyl­phen­yl)phosphine (C24H27P), (I), tris­(3,5-di­methyl­phen­yl)phosphine oxide (C24H27OP), (II), tris­(4-meth­oxy-3,5-di­methyl­phen­yl)phosphine (C27H33O3P), (III), and tris­(4-meth­oxy-3,5-di­methyl­phen­yl)phosphine oxide (C27H33O4P), (IV), are reported. The strucure of (III) has been described before [Romain et al. (2000[Romain, J. K., Ribblett, J. W., Byrn, R. W., Snyder, R. D., Storhoff, B. N. & Huffman, J. C. (2000). Organometallics, 19, 2047-2050.]). Organometallics, 19, 2047–2050], but it is rereported here on the basis of modern area-detector data and to facilitate comparison with the other structures reported here. Compounds (I) and (II) crystallize isostructurally in P21/c. Similarly, (III) and (IV) crystallize isostructurally in Pbca. The conformations of (I) and (II) in the solid state deviate strongly from helical, whereas those of (III) and (IV) are found to be closer to an ideal threefold rotational symmetry. The pyramidality indices, ∑(C—P—C), are 305.35 (16), 317.23 (15), 307.2 (4) and 318.67 (18)° for (I), (II), (III) and (IV), respectively. Each is found to be more pyramidal than Ph3P or Ph3PO. Hybrid DFT calculations incorporating terms for dispersion provide evidence that the causes of the increased pyramidality, despite the 3,5-dimethyl group substitution, include dispersion inter­actions. The calculated ∑(C—P—C) values are 304.8° for both (I) and (III) and 317.4° for both (II) and (IV), with no difference arising from the substitution at ring position 4.

1. Chemical context

The two bulky tri­aryl­phosphines (I)[link] and (III)[link] are of considerable inter­est in coordination chemistry and catalysis (Kakizoe et al., 2017[Kakizoe, D., Nishikawa, M., Fujii, Y. & Tsubomura, T. (2017). Dalton Trans. 46, 14804-14811.]; Lian et al., 2017[Lian, Z., Bhawal, B. N., Yu, P. & Morandi, B. (2017). Science, 356, 1059-1063.]; Ogiwara et al., 2017[Ogiwara, Y., Miyake, M., Kochi, T. & Kakiuchi, F. (2017). Organometallics, 36, 159-164.]; Nishikawa et al., 2016[Nishikawa, D., Hirano, K. & Miura, M. (2016). Org. Lett. 18, 4856-4859.]; Naruto et al., 2015[Naruto, M. & Saito, S. (2015). Nat. Commun. 6, 8140p.]; Jover et al., 2010[Jover, J., Fey, N., Harvey, J. N., Lloyd-Jones, G. C., Orpen, A. G., Owen-Smith, G. J. J., Murray, P., Hose, D. R. J., Osborne, R. & Purdie, M. (2010). Organometallics, 29, 6245-6258.]; Romain et al., 2000[Romain, J. K., Ribblett, J. W., Byrn, R. W., Snyder, R. D., Storhoff, B. N. & Huffman, J. C. (2000). Organometallics, 19, 2047-2050.]) and have been investigated for frustrated Lewis-pair activity (Wang & Stephan, 2014[Wang, T. & Stephan, D. W. (2014). Chem. Commun. 50, 7007-7010.]; Ullrich et al., 2010[Ullrich, M., Lough, A. J. & Stephan, D. W. (2010). Organometallics, 29, 3647-3654.]). The synthesis of (I)[link] was first mentioned in the non-patent literature by Hengartner et al. (1979[Hengartner, U., Valentine, D. Jr, Johnson, K. K., Larscheid, M. E., Pigott, F., Scheidl, F., Scott, J. W., Sun, R. C. & Townsend, J. M. (1979). J. Org. Chem. 44, 3741-3747.]) and in more detail twelve years later (Culcasi et al., 1991[Culcasi, M., Berchadsky, Y., Gronchi, G. & Tordo, P. (1991). J. Org. Chem. 56, 3537-3542.]) and is now commercially available from several sources, but its crystal structure has not been reported. The preparation of (III)[link] was reported by Romain et al. (2000[Romain, J. K., Ribblett, J. W., Byrn, R. W., Snyder, R. D., Storhoff, B. N. & Huffman, J. C. (2000). Organometallics, 19, 2047-2050.]) some 11 years after it appeared in the patent literature. These authors reported a crystal structure, Cambridge Structural Database (CSD, Version 5.39, with updates to November 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) refcode: FOQNOO. However, as this determination used molybdenum radiation and a serial diffractometer, we have repeated it here under the same conditions as the other three compounds to improve comparability. Phosphine oxide (II)[link] was first mentioned for its use as an additive that enhances the enanti­omeric excess in stoichiometric asymmetric epoxidation of E-methyl­styrene (Kerrigan et al., 2002[Kerrigan, N. J., Langan, I. J., Dalton, C. T., Daly, A. M., Bousquet, C. & Gilheany, D. G. (2002). Tetrahedron Lett. 43, 2107-2110.]) and a schematic synthesis was reported a year later (Henschke et al., 2003[Henschke, J. P., Zanotti-Gerosa, A., Moran, P., Harrison, P., Mullen, B., Casy, G. & Lennon, I. C. (2003). Tetrahedron Lett. 44, 4379-4383.]) but the characterization details are not found in the open literature. Similarly, phosphine oxide (IV)[link] is mentioned only in the patent literature. Here we report the crystal structures of (I)[link], (II)[link] and (IV)[link] and full details for synthesis and characterization of (II)[link] and (IV)[link], for the first time, and the redetermination of (III)[link].

[Scheme 1]

2. Structural commentary

Phosphine (I)[link] crystallizes in P21/c with one mol­ecule in the asymmetric unit that is distinctly pyramidal (Fig. 1[link]). It has a sum of angles around the central phospho­rus atom, the pyramidality index (see Boeré & Zhang, 2013[Boeré, R. T. & Zhang, Y. (2013). Acta Cryst. C69, 1051-1054.]), ∑(C—P—C) = 305.35 (16)°. This is a smaller value than that in PPh3, ∑(C—P—C) = 308.3 (2)° (Boeré & Zhang, 2005[Boeré, R. T. & Zhang, Y. (2005). J. Organomet. Chem. 690, 2651-2657.]), indicating a more pyramidal structure, despite the potential steric inter­ference of the three endo-oriented methyl substituents at C3, C13, and C23. Similarly, (III)[link] crystallizes in Pbca also with Z′ = 1 and ∑(C—P—C) = 307.2 (4)°. By contrast, phosphines with 2,6-disubstitution patterns have greatly reduced pyramidality. For example, ∑(C—P—C) = 335.6 (3)° in Dipp3P, (Boeré et al., 2008[Boeré, R. T., Bond, A. M., Cronin, S., Duffy, N. W., Hazendonk, P., Masuda, J. D., Pollard, K., Roemmele, T. L., Tran, P. & Zhang, Y. (2008). New J. Chem. 32, 214-231.]) 334.4 (3)° in Tripp3P, (Sasaki et al., 2002[Sasaki, S., Sutoh, K., Murakami, M. & Yoshifuji, M. (2002). J. Am. Chem. Soc. 124, 14830-14831.]) and 329.1 (5)° in Mes3P, (Blount et al., 1994[Blount, J. F., Camp, D., Hart, R. D., Healy, P. C., Skelton, B. W. & White, A. H. (1994). Aust. J. Chem. 47, 1631-1639.]). Oxidation or protonation of Ar3P always leads to some flattening at the phospho­rus atom. Thus, although (II)[link] is isostructural with (I)[link], ∑(C—P—C) = 317.23 (15)° differs by some 12°, while (IV)[link], which is isostructural with (II)[link], has ∑(C—P—C) = 318.67 (18)° (Fig. 2[link]). In sixteen independent structure determinations of Ph3PO reported in the CSD, the average value with s.u. of ∑(C—P—C) is 319.3 (3)°. Thus, for both the title phosphines and their oxides, the pyramidality index for the title compounds is lower than in the corresponding Ph3P or Ph3PO.

[Figure 1]
Figure 1
Displacement ellipsoid plots (50%) of (a) phosphine (I)[link] and (b) phosphine oxide (II)[link], including the atom-numbering schemes.
[Figure 2]
Figure 2
Displacement ellipsoid plots (50%) of (a) phosphine (III)[link] and (b) phosphine oxide (IV)[link], including the atom-numbering schemes.

That all these 3,5-dimethyl-substituted compounds should be more pyramidal than corresponding C6H5– derivatives is at first surprising. A plausible explanation for this is that the substitution induces greater intra­molecular dispersion inter­actions, i.e. between the methyl groups and the π-clouds of adjacent rings. To find evidence for this, hybrid density functional theory (DFT) calculations [with Becke's non-local three parameter exchange and the Lee–Yang–Parr correlation functional (B3LYP) and also incorporating Grimme's D3 empirical dispersion corrections] with the 6-31G(2d,p) basis set, as implemented in the Gaussian16 program package (Frisch et al., 2016[Frisch, M. J., et al. (2016). Gaussian 16. Gaussian, Inc., Wallingford CT, USA.]), were undertaken. The optimized geometries by DFT are characterized by common ∑(C—P—C) = 304.8° for both (I)[link] and (III)[link] and 317.4° for both (II)[link] and (IV)[link]. This supports dispersion as an origin for the observed increased pyramidality caused by 3,5-dimethyl group substitution. Inter­estingly, whereas the crystal structures have flatter structures for the 4-CH3O derivatives (III)[link] and (IV)[link], the DFT calculations have identical pyramidality indices whether the substituent at the 4-position is H or CH3O. This indicates that inter­molecular inter­actions in the extended structures involving the meth­oxy groups affect the observed structures compared to that predicted by computation.

In the isostructural pairs, the volumes of the unit cells are larger due to oxygen incorporation. For (I)[link] and (II)[link], the increase is a mere 14 Å3 (0.7%) for the whole unit cell, or 3.5 Å3 per oxygen atom, whereas for (III)[link] and (IV)[link] the increase in volume is larger at 106 Å3 (2.2%) or 13.3 Å3 per oxygen atom. The van der Waals volume of an oxygen atom is 14.7 Å3. In the extended structure, the oxygen atoms in (II)[link] are oriented into a void space (Fig. 3[link]), whereas in (IV)[link] they are directed towards the backside of the next P=O pyramid (Fig. 4[link]). Thus, the nearest P⋯Pii separations in the crystal increase from 5.148 (2) Å along the b-axis direction in (III)[link] to 6.039 (2) Å in (IV)[link] [Symmetry code: (ii) [{3\over 2}] − x, −[{1\over 2}] + y, z]. As a consequence, the a:b lattice parameter ratio changes from 12.30:10.27 in (III)[link] to 11.29:11.90 in (IV)[link].

[Figure 3]
Figure 3
Stacking inter­actions (ππ and `T' type) linking centrosymmetric pairs of (a) phosphine (I)[link] and (b) phosphine oxide (II)[link], which is a likely cause of the conformations adopted by the C1 rings. [Symmetry code: (i) −x, 1 − y, −z].
[Figure 4]
Figure 4
Views with the b axes vertical in the page, showing the staggered pyramids of (a) phosphine (III)[link] and (b) phosphine oxide (IV)[link] mol­ecules in their respective crystal structures. [Symmetry code for upper mol­ecules: (ii) [{3\over 2}] − x, −[{1\over 2}] + y, z].

3. Supra­molecular features

As mentioned, the supra­molecular organization in (III)[link] and (IV)[link] approximately stacks the Ar3P structures along the b-axis direction [the P–O vectors in (IV)[link] alternate 21.7° off the P⋯P directions] and the rings are arranged so that alternating mol­ecules are approximately staggered (Fig. 4[link]). This geometry facilitates helical structures, and thus the ring-tilt dihedral angles (defined from the mol­ecular threefold axis through C1,11,21 to C6,16,26) are 26.2 (1), 44.3 (1) and 49.0 (1)° in (III)[link] and 17.0 (1), 38.8 (1) and 39.3 (1)° in (IV)[link].

By contrast, the mol­ecules of (I)[link] and (II)[link] are not aligned in their crystals and are pronouncedly less helical in the crystals, as seen by ring-tilt dihedral angles of 35.6 (1), 8.3 (1) and 58.1 (1)° in (I)[link] and 29.4 (1), 9.1 (1) and 61.2 (1)° in (II)[link]. In each of these structures, the C1 aryl rings are almost parallel to the mol­ecular threefold axes, a geometry that was defined as the transition state for Mislow's `one-ring flip' mechanism for racemization of propeller-shaped mol­ecules (Gust & Mislow, 1973[Gust, D. & Mislow, K. (1973). J. Am. Chem. Soc. 95, 1535-1547.]). As shown in Fig. 3[link]a, the mol­ecules in (I)[link] are centrosymmetrically related to one another and there are short inter­molecular contacts between the C1 rings on adjacent mol­ecules (C2 and C1 to methyl hydrogen H7Ci of 2.84 and 2.90 Å and H4 to C14i of 2.87 Å. It is likely that this packing preference is responsible for the non-helical arrangement of the rings in this structure. Similarly, in (II)[link] short contacts link C14 with H4i at 2.88 Å and C16 with methyl hydrogen H7Bi at 2.68 Å (Fig. 3[link]b) [Symmetry code: (i) −x, 1 − y, −z]. There are some short inter­molecular C—H⋯O inter­actions in structures (II)–(IV), as listed in Tables 1[link]–3[link][link].

Table 1
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯O1i 0.98 2.54 3.3868 (19) 144
Symmetry code: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °) for (III)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C29—H29A⋯O3i 0.98 2.58 3.524 (5) 161
Symmetry code: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Table 3
Hydrogen-bond geometry (Å, °) for (IV)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.95 2.44 3.1533 (16) 132
C7—H7A⋯O1i 0.98 2.55 3.4033 (18) 145
Symmetry code: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z].

4. Database survey

The structure of phosphine (I)[link] can be profitably compared to six recently reported diffraction studies reported for its metal complexes or adducts. The cationic silver complex (undeca­methyl-1H-1-carba-closo-dodeca­borate)(tris­(3,5-di­methyl­phen­yl)phosphine)silver(I), [LAg][closo-1-H-CB11Me11] (refcode ASIZIL; Clarke et al., 2004[Clarke, A. J., Ingleson, M. J., Kociok-Köhn, G., Mahon, M. F., Patmore, N. J., Rourke, J. P., Ruggiero, G. D. & Weller, A. S. (2004). J. Am. Chem. Soc. 126, 1503-1517.]) employs the large distal steric bulk from the methyl groups in (I)[link] to hinder aggregation in the crystal. The ruthenium(II) complex (μ2-aqua)­bis­(μ2-chloro)-di­chloro­tetra­kis­[tris­(3,5-di­methyl­phen­yl)phosphine]diruthenium (COQDET01; Naruto & Saito, 2015[Naruto, M. & Saito, S. (2015). Nat. Commun. 6, 8140p.]) is part of a rational design strategy of catalysts for hydrogenation of carb­oxy­lic acids. In this complex, one ring in each unique coordinated phosphine re-orients so as to be almost orthogonal to the coordination axis, with a Ru—P—C—C torsion angles of 83.9 (3) and 87.3 (3)°. The borane complex tris­(3,5-di­methyl­phen­yl)[tris­(2,3,5,6-tetra­fluoro­phen­yl)-λ5-boran­yl] phospho­rane (OLAJIV; Ullrich et al., 2010[Ullrich, M., Lough, A. J. & Stephan, D. W. (2010). Organometallics, 29, 3647-3654.]) is a classical rather than frustrated Lewis-pair adduct. The Tolman cone angle of (I)[link] is estimated to be 151°. In the molybdenum complex trans-acetyl-dicarbon­yl(cyclo­penta­dien­yl)[tris­(3,5-di­methyl­phen­yl)phosphine]molybdenum(II) (RAHHUG; Whited et al., 2017[Whited, M. T., Ruffer, E. J., Zhang, J., Rabaey, D. J. & Janzen, D. E. (2017). IUCrData, 2, x170042.]), the methyl groups on the aromatic phosphine substituents impact supra­molecular organization. The ruthenium complex di­chloro-[(R,R)-1,2-di­phenyl­ethyl­enedi­amine)­bis­[tris­(3,5-di­methyl­phen­yl)phosphine]ruthenium(II) (XARCOJ; Jing et al., 2005[Jing, Q., Zhang, X., Sun, J. & Ding, K. (2005). Adv. Synth. Catal. 347, 1193-1197.]) is competitive with chiral bidentate ligands for the enanti­oselective hydrogenation of ketones. The cationic copper complex (1,10-phenanthroline)bis­[tris­(3,5-di­methyl­phen­yl)phosphine]copper(I) tetra­fluoro­borate (BEKZOJ; Kakizoe et al., 2017[Kakizoe, D., Nishikawa, M., Fujii, Y. & Tsubomura, T. (2017). Dalton Trans. 46, 14804-14811.]) is part of a study on the effects of bulky phosphines on photophysical properties of copper(I) phenanthroline complexes. Here one of the coordinated phosphines re-orients so as to have one almost orthogonal ring, with a Cu—P—C—C torsion angle of 86.6 (2)°. The structure of phosphine (III)[link] can be compared to a single crystal structure where it is coordinated to an iridium atom that is part of an Ir2Mo2 cyclo­penta­dien­yl–carbonyl complex in tris­(μ2-carbon­yl)[tris­(4-meth­oxy-3,5-di­methyl­phen­yl)phos­phine]hexa­carbonyl-bis­(η5-cyclo­penta­dien­yl)diiridium­di­mol­yb­denum (TUTJAV; Fu et al., 2016[Fu, J., Moxey, G. J., Morshedi, M., Barlow, A., Randles, M. D., Simpson, P. V., Schwich, T., Cifuentes, M. P. & Humphrey, M. G. (2016). J. Organomet. Chem. 812, 135-144.]). In this complex, one of the rings is also found almost orthogonal to the coordination axis, with an Ir—P—C—C torsion angle of 73 (2)°. Thus, having one of the three aryl rings orthogonal seems to be a common configuration in crowded environments around a metal.

No crystal structures of (II)[link] or (IV)[link], nor any of their deriv­atives, are reported in the CSD.

5. Synthesis and crystallization

Crystals of tris­(3,5-di­methyl­phen­yl)phosphine [69227-47-0], (I)[link], and tris­(4-meth­oxy-3,5-di­methyl­phen­yl)phosphine [121898-64-4], (III)[link], were selected for data collection as received from Sigma–Aldrich Inc. Solvents (BDH) were chromatographic grade and used as received. NMR spectra were recorded on a 300 MHz Bruker Avance II spectrometer and are referenced to TMS at 0 (1H), CDCl3 at 77.23 (13C) and 85% H3PO4 at 0 ppm (capillary, 31P).

5.1. Preparation of (II)

Tris(3,5-di­methyl­phen­yl)phosphine oxide [381212-20-0], (II)[link], was prepared by dissolving 0.10 g (I)[link], 0.29 mmol, in 15 ml of acetone (thin-layer chromatography, TLC, monitoring: Rf = 0.32 in 1:9 ethyl acetate/hexa­nes), heating to the boil, and adding 3.0 mL of 4% aqueous H2O2 dropwise. After gentle reflux for 1.5 h, the mixture was checked again by TLC (Rf = 0) indicating reaction completion. Removal of all volatiles, dissolving in 10 ml CH2Cl2 and drying overnight with Na2SO4, filtering and evaporating, left a dry solid. Recrystallization from mixed solvents of 5 ml heptane and 2 ml CH2Cl2 at the boil produced colourless blocks on cooling, recovered by slow evaporation to afford 0.06 g (II)[link], 0.17 mmol, 57% yield. Identity was established by X-ray crystallography and very high purity by nuclear magnetic resonance (NMR) spec­troscopy (atom numbers are those from the C1 ring in Fig. 1[link]b). 1H NMR (CDCl3): δ 2.312 (CH3, s, 18H); 7.144 (C4H, s, 3H); 7.282 (C2,6H, d 3JPH = 12.3 Hz, 6H). 13C NMR (CDCl3): δ 21.47 (CH3, s); 129.74 (C2&6, d 2JPC = 9.8 Hz); 132.67 (C1, d 1JPC = 102.6 Hz); 133.67 (C4, d 4JPC = 3.0 Hz); 138.16 (C3&5, d 3JPC = 12.8 Hz). 31P NMR (CDCl3): δ +29.73, s (satellites: 1JPC = 102.6 Hz).

5.2. Preparation of (IV)

Tris(4-meth­oxy-3,5-di­methyl­phen­yl)phosphine oxide [540743-36-0], (IV)[link], was similarly prepared from 0.10 g (III)[link], 0.23 mmol, (TLC: Rf = 0.38 in 1:9 ethyl acetate/hexa­nes) and 3.0 ml of 4% aqueous H2O2. 1.5 h gentle reflux also sufficed for reaction completion (TLC: Rf = 0). A similar workup and recrystallization procedure afforded colourless plates by slow evaporation, 0.08 g (II)[link], 0.18 mmol, 77% yield. Identity was established by X-ray crystallography and very high purity by nuclear magnetic resonance (NMR) spectroscopy (atom numbers are those from the C1 ring in Fig. 2[link]b). 1H NMR (CDCl3): δ 2.282 (CH3, s, 18H); 3.747 (CH3O, s, 9H); 7.311 (C2,6H, d 3JPH = 12.0 Hz, 6H). 13C NMR (CDCl3): δ 16.37 (CH3, s); 59.75 (CH3O, s); 127.84 (C1, d 1JPC = 105.7 Hz); 131.41 (C3&5, d 3JPC = 13.6 Hz); 132.81 (C2&6, d 2JPC = 10.6 Hz); 160.09 (C4, d 4JPC = 3.0 Hz). 31P NMR (CDCl3): δ +28.49, s (satellites: 1JPC = 105.8 Hz).

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. H atoms attached to C atoms were treated as riding, with C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C) for methyl and C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms.

Table 4
Experimental details

  (I) (II) (III) (IV)
Crystal data
Chemical formula C24H27P C24H27OP C27H33O3P C27H33O4P
Mr 346.42 362.42 436.50 452.50
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/c Orthorhombic, Pbca Orthorhombic, Pbca
Temperature (K) 108 108 109 108
a, b, c (Å) 14.38617 (9), 9.00514 (5), 17.22745 (12) 14.65624 (11), 8.97960 (5), 17.27940 (13) 12.3031 (6), 10.2629 (5), 37.856 (2) 11.28601 (11), 11.90008 (11), 36.3801 (3)
α, β, γ (°) 90, 112.6169 (7), 90 90, 114.2052 (9), 90 90, 90, 90 90, 90, 90
V3) 2060.17 (2) 2074.16 (3) 4780.0 (4) 4886.01 (8)
Z 4 4 8 8
Radiation type Cu Kα Cu Kα Cu Kα Cu Kα
μ (mm−1) 1.18 1.23 1.21 1.24
Crystal size (mm) 0.24 × 0.2 × 0.2 0.3 × 0.2 × 0.16 0.31 × 0.07 × 0.05 0.2 × 0.2 × 0.04
 
Data collection
Diffractometer Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, Pilatus 200/300K Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, Pilatus 200/300K Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, Pilatus 200K Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, Pilatus 200/300K
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Gaussian (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.907, 1.000 0.796, 1.000 0.792, 0.950 0.755, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 42680, 4296, 4220 48104, 4542, 4390 19900, 5029, 4084 29719, 5325, 4821
Rint 0.025 0.027 0.066 0.033
(sin θ/λ)max−1) 0.630 0.641 0.640 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.099, 1.05 0.037, 0.102, 1.09 0.073, 0.198, 1.05 0.039, 0.100, 1.05
No. of reflections 4296 4542 5029 5325
No. of parameters 233 242 289 299
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.28, −0.30 0.31, −0.30 0.54, −0.67 0.35, −0.41
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), olex2.solve (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

For all structures, data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015). Program(s) used to solve structure: olex2.solve (Bourhis et al., 2015) for (I), (II), (IV); SHELXT (Sheldrick, 2015a) for (III). For all structures, program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Tris(3,5-dimethylphenyl)phosphane (I) top
Crystal data top
C24H27PF(000) = 744
Mr = 346.42Dx = 1.117 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 14.38617 (9) ÅCell parameters from 33406 reflections
b = 9.00514 (5) Åθ = 4.9–76.1°
c = 17.22745 (12) ŵ = 1.18 mm1
β = 112.6169 (7)°T = 108 K
V = 2060.17 (2) Å3Prism, clear colourless
Z = 40.24 × 0.2 × 0.2 mm
Data collection top
Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, Pilatus 200/300K
diffractometer
4296 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source4220 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.025
ω scansθmax = 76.3°, θmin = 3.3°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
h = 1818
Tmin = 0.907, Tmax = 1.000k = 1111
42680 measured reflectionsl = 2121
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.036 w = 1/[σ2(Fo2) + (0.0521P)2 + 1.0098P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.099(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.28 e Å3
4296 reflectionsΔρmin = 0.29 e Å3
233 parametersExtinction correction: SHELXL2016 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0008 (2)
Primary atom site location: iterative
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.24237 (2)0.22483 (3)0.19991 (2)0.01773 (10)
C10.13769 (9)0.35790 (14)0.17356 (7)0.0191 (2)
C20.13216 (9)0.48677 (14)0.12664 (8)0.0217 (3)
H20.1853320.5092810.1087610.026*
C30.05030 (9)0.58256 (14)0.10568 (8)0.0230 (3)
C40.02748 (9)0.54669 (15)0.13197 (8)0.0244 (3)
H40.0842710.6105090.1171240.029*
C50.02410 (9)0.41981 (14)0.17940 (8)0.0236 (3)
C60.05937 (9)0.32556 (14)0.19978 (7)0.0207 (2)
H60.0627580.2384680.2318710.025*
C70.04651 (11)0.72101 (15)0.05519 (9)0.0301 (3)
H7A0.1132950.7401910.0546030.045*
H7B0.0260110.8055570.0807470.045*
H7C0.0022200.7071870.0025600.045*
C80.10812 (10)0.38474 (17)0.20867 (10)0.0335 (3)
H8A0.1142790.4654690.2445480.050*
H8B0.0929990.2917500.2406810.050*
H8C0.1715740.3742690.1597690.050*
C110.25424 (9)0.21396 (13)0.09776 (7)0.0188 (2)
C120.30867 (9)0.31418 (14)0.06972 (8)0.0205 (2)
H120.3468530.3902340.1063510.025*
C130.30765 (9)0.30395 (14)0.01141 (8)0.0228 (3)
C140.25218 (10)0.18977 (15)0.06370 (8)0.0250 (3)
H140.2507370.1824380.1191630.030*
C150.19901 (10)0.08650 (14)0.03684 (8)0.0246 (3)
C160.20062 (9)0.10030 (14)0.04441 (8)0.0209 (2)
H160.1645060.0309410.0636580.025*
C170.36423 (11)0.41385 (17)0.04288 (9)0.0323 (3)
H17A0.3954020.4892220.0003970.048*
H17B0.3174110.4618830.0940090.048*
H17C0.4166340.3618450.0554600.048*
C180.14109 (13)0.03762 (17)0.09353 (9)0.0374 (3)
H18A0.1318460.0151720.1517000.056*
H18B0.0751390.0476680.0897230.056*
H18C0.1786140.1307460.0760180.056*
C210.35253 (9)0.33617 (13)0.26264 (7)0.0192 (2)
C220.34586 (9)0.47403 (14)0.29659 (8)0.0221 (3)
H220.2820590.5209110.2807290.027*
C230.43125 (10)0.54477 (15)0.35355 (8)0.0256 (3)
C240.52445 (9)0.47645 (15)0.37487 (8)0.0254 (3)
H240.5828670.5237520.4136730.031*
C250.53395 (9)0.33965 (15)0.34040 (8)0.0255 (3)
C260.44748 (9)0.26980 (14)0.28504 (8)0.0233 (3)
H260.4529050.1757860.2621200.028*
C270.42188 (12)0.69326 (18)0.39067 (12)0.0417 (4)
H27A0.4537720.7701490.3690340.063*
H27B0.4552740.6886990.4520710.063*
H27C0.3505220.7172800.3750040.063*
C280.63625 (11)0.26868 (18)0.36317 (11)0.0396 (4)
H28A0.6784640.3322430.3439640.059*
H28B0.6284650.1712920.3360090.059*
H28C0.6681700.2564990.4243170.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.01727 (16)0.01831 (17)0.01719 (16)0.00102 (10)0.00616 (12)0.00027 (10)
C10.0182 (5)0.0207 (6)0.0169 (5)0.0014 (4)0.0050 (4)0.0030 (4)
C20.0201 (5)0.0239 (6)0.0208 (6)0.0007 (5)0.0074 (5)0.0003 (5)
C30.0233 (6)0.0216 (6)0.0205 (6)0.0004 (5)0.0045 (5)0.0021 (5)
C40.0198 (6)0.0242 (6)0.0265 (6)0.0028 (5)0.0058 (5)0.0052 (5)
C50.0208 (6)0.0247 (6)0.0260 (6)0.0023 (5)0.0097 (5)0.0071 (5)
C60.0215 (6)0.0209 (6)0.0197 (6)0.0022 (5)0.0081 (5)0.0031 (4)
C70.0308 (7)0.0251 (7)0.0318 (7)0.0049 (5)0.0090 (6)0.0050 (5)
C80.0281 (7)0.0311 (7)0.0486 (9)0.0004 (6)0.0229 (6)0.0040 (6)
C110.0172 (5)0.0195 (6)0.0187 (6)0.0030 (4)0.0058 (4)0.0007 (4)
C120.0191 (5)0.0199 (6)0.0218 (6)0.0002 (5)0.0071 (5)0.0005 (5)
C130.0215 (6)0.0247 (6)0.0234 (6)0.0054 (5)0.0098 (5)0.0049 (5)
C140.0286 (6)0.0283 (6)0.0185 (6)0.0074 (5)0.0094 (5)0.0010 (5)
C150.0263 (6)0.0226 (6)0.0213 (6)0.0042 (5)0.0052 (5)0.0021 (5)
C160.0200 (5)0.0194 (6)0.0218 (6)0.0009 (4)0.0064 (5)0.0000 (4)
C170.0318 (7)0.0382 (8)0.0305 (7)0.0001 (6)0.0160 (6)0.0084 (6)
C180.0504 (9)0.0310 (8)0.0254 (7)0.0049 (7)0.0086 (6)0.0081 (6)
C210.0196 (5)0.0214 (6)0.0165 (5)0.0021 (4)0.0069 (4)0.0007 (4)
C220.0201 (6)0.0236 (6)0.0235 (6)0.0008 (5)0.0091 (5)0.0014 (5)
C230.0242 (6)0.0246 (6)0.0283 (6)0.0037 (5)0.0106 (5)0.0056 (5)
C240.0210 (6)0.0271 (7)0.0257 (6)0.0059 (5)0.0062 (5)0.0039 (5)
C250.0205 (6)0.0271 (7)0.0259 (6)0.0001 (5)0.0057 (5)0.0000 (5)
C260.0218 (6)0.0230 (6)0.0230 (6)0.0001 (5)0.0064 (5)0.0023 (5)
C270.0296 (7)0.0347 (8)0.0567 (10)0.0047 (6)0.0119 (7)0.0227 (7)
C280.0217 (7)0.0366 (8)0.0501 (9)0.0032 (6)0.0022 (6)0.0104 (7)
Geometric parameters (Å, º) top
P1—C11.8396 (12)C14—C151.3915 (19)
P1—C111.8350 (12)C15—C161.3965 (17)
P1—C211.8350 (12)C15—C181.5071 (18)
C1—C21.3988 (17)C16—H160.9500
C1—C61.3963 (16)C17—H17A0.9800
C2—H20.9500C17—H17B0.9800
C2—C31.3908 (17)C17—H17C0.9800
C3—C41.3970 (18)C18—H18A0.9800
C3—C71.5091 (18)C18—H18B0.9800
C4—H40.9500C18—H18C0.9800
C4—C51.3946 (19)C21—C221.3912 (17)
C5—C61.4005 (17)C21—C261.4023 (17)
C5—C81.5113 (17)C22—H220.9500
C6—H60.9500C22—C231.3967 (18)
C7—H7A0.9800C23—C241.3900 (18)
C7—H7B0.9800C23—C271.5105 (19)
C7—H7C0.9800C24—H240.9500
C8—H8A0.9800C24—C251.3969 (19)
C8—H8B0.9800C25—C261.3929 (18)
C8—H8C0.9800C25—C281.5114 (18)
C11—C121.3971 (17)C26—H260.9500
C11—C161.3936 (17)C27—H27A0.9800
C12—H120.9500C27—H27B0.9800
C12—C131.3950 (17)C27—H27C0.9800
C13—C141.3974 (19)C28—H28A0.9800
C13—C171.5083 (18)C28—H28B0.9800
C14—H140.9500C28—H28C0.9800
C11—P1—C199.63 (5)C16—C15—C18120.49 (12)
C11—P1—C21102.48 (5)C11—C16—C15121.20 (12)
C21—P1—C1103.24 (5)C11—C16—H16119.4
C2—C1—P1122.84 (9)C15—C16—H16119.4
C6—C1—P1118.04 (9)C13—C17—H17A109.5
C6—C1—C2119.09 (11)C13—C17—H17B109.5
C1—C2—H2119.4C13—C17—H17C109.5
C3—C2—C1121.27 (11)H17A—C17—H17B109.5
C3—C2—H2119.4H17A—C17—H17C109.5
C2—C3—C4118.43 (12)H17B—C17—H17C109.5
C2—C3—C7120.09 (12)C15—C18—H18A109.5
C4—C3—C7121.47 (12)C15—C18—H18B109.5
C3—C4—H4119.1C15—C18—H18C109.5
C5—C4—C3121.85 (11)H18A—C18—H18B109.5
C5—C4—H4119.1H18A—C18—H18C109.5
C4—C5—C6118.47 (11)H18B—C18—H18C109.5
C4—C5—C8120.97 (12)C22—C21—P1123.48 (9)
C6—C5—C8120.56 (12)C22—C21—C26118.81 (11)
C1—C6—C5120.89 (12)C26—C21—P1117.28 (9)
C1—C6—H6119.6C21—C22—H22119.4
C5—C6—H6119.6C21—C22—C23121.21 (11)
C3—C7—H7A109.5C23—C22—H22119.4
C3—C7—H7B109.5C22—C23—C27120.24 (12)
C3—C7—H7C109.5C24—C23—C22118.83 (12)
H7A—C7—H7B109.5C24—C23—C27120.93 (12)
H7A—C7—H7C109.5C23—C24—H24119.3
H7B—C7—H7C109.5C23—C24—C25121.34 (12)
C5—C8—H8A109.5C25—C24—H24119.3
C5—C8—H8B109.5C24—C25—C28120.48 (12)
C5—C8—H8C109.5C26—C25—C24118.79 (12)
H8A—C8—H8B109.5C26—C25—C28120.72 (12)
H8A—C8—H8C109.5C21—C26—H26119.5
H8B—C8—H8C109.5C25—C26—C21120.99 (12)
C12—C11—P1124.64 (9)C25—C26—H26119.5
C16—C11—P1116.08 (9)C23—C27—H27A109.5
C16—C11—C12119.22 (11)C23—C27—H27B109.5
C11—C12—H12119.6C23—C27—H27C109.5
C13—C12—C11120.82 (11)H27A—C27—H27B109.5
C13—C12—H12119.6H27A—C27—H27C109.5
C12—C13—C14118.54 (12)H27B—C27—H27C109.5
C12—C13—C17121.17 (12)C25—C28—H28A109.5
C14—C13—C17120.29 (12)C25—C28—H28B109.5
C13—C14—H14119.1C25—C28—H28C109.5
C15—C14—C13121.88 (12)H28A—C28—H28B109.5
C15—C14—H14119.1H28A—C28—H28C109.5
C14—C15—C16118.32 (12)H28B—C28—H28C109.5
C14—C15—C18121.19 (12)
Tris(3,5-dimethylphenyl)(oxo)-λ5-phosphane (II) top
Crystal data top
C24H27OPF(000) = 776
Mr = 362.42Dx = 1.161 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 14.65624 (11) ÅCell parameters from 35213 reflections
b = 8.97960 (5) Åθ = 5.2–80.3°
c = 17.27940 (13) ŵ = 1.23 mm1
β = 114.2052 (9)°T = 108 K
V = 2074.16 (3) Å3Prism, clear colourless
Z = 40.3 × 0.2 × 0.16 mm
Data collection top
Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, Pilatus 200/300K
diffractometer
4542 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source4390 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.027
ω scansθmax = 81.1°, θmin = 3.3°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
h = 1818
Tmin = 0.796, Tmax = 1.000k = 1111
48104 measured reflectionsl = 2222
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.0539P)2 + 0.8817P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.102(Δ/σ)max < 0.001
S = 1.09Δρmax = 0.31 e Å3
4542 reflectionsΔρmin = 0.29 e Å3
242 parametersExtinction correction: SHELXL2016 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0012 (2)
Primary atom site location: iterative
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.24572 (2)0.24916 (3)0.18639 (2)0.01699 (10)
O10.23144 (6)0.10379 (10)0.22115 (5)0.02266 (19)
C10.14094 (8)0.37373 (13)0.16344 (7)0.0196 (2)
C20.13398 (9)0.50699 (14)0.11963 (7)0.0228 (2)
H20.1848700.5323380.1012820.027*
C30.05362 (9)0.60297 (14)0.10254 (8)0.0246 (3)
C40.02072 (9)0.56194 (15)0.12945 (8)0.0259 (3)
H40.0763270.6262450.1175780.031*
C50.01577 (9)0.42953 (14)0.17318 (8)0.0244 (3)
C60.06620 (9)0.33548 (13)0.19023 (7)0.0214 (2)
H60.0710670.2450500.2202110.026*
C70.04832 (12)0.74754 (16)0.05675 (10)0.0339 (3)
H7A0.0849440.8246840.0978890.051*
H7B0.0217640.7776120.0266570.051*
H7C0.0783360.7344390.0158910.051*
C80.09711 (11)0.38991 (16)0.20202 (10)0.0338 (3)
H8A0.1062030.4721700.2354530.051*
H8B0.0780250.2996960.2369530.051*
H8C0.1598460.3721540.1523470.051*
C110.25717 (8)0.22998 (13)0.08669 (7)0.0181 (2)
C120.30739 (8)0.33312 (13)0.05762 (7)0.0198 (2)
H120.3424070.4135900.0930350.024*
C130.30635 (9)0.31846 (13)0.02321 (7)0.0208 (2)
C140.25486 (9)0.19849 (14)0.07324 (7)0.0226 (2)
H140.2530700.1884740.1285770.027*
C150.20594 (9)0.09278 (13)0.04505 (7)0.0224 (2)
C160.20744 (8)0.11037 (13)0.03577 (7)0.0195 (2)
H160.1741600.0399440.0561460.023*
C170.35972 (10)0.42842 (16)0.05602 (8)0.0283 (3)
H17A0.3708450.5213030.0236420.043*
H17B0.3187800.4486600.1161130.043*
H17C0.4242340.3867940.0496350.043*
C180.15251 (12)0.03725 (16)0.09981 (9)0.0347 (3)
H18A0.1493600.0233580.1571020.052*
H18B0.0845100.0437640.1025300.052*
H18C0.1888590.1293040.0754500.052*
C210.35568 (9)0.34982 (13)0.25651 (7)0.0193 (2)
C220.34906 (9)0.48414 (14)0.29400 (8)0.0223 (2)
H220.2857030.5305440.2781670.027*
C230.43410 (9)0.55168 (15)0.35450 (8)0.0256 (3)
C240.52640 (9)0.48300 (15)0.37547 (8)0.0255 (3)
H240.5847220.5279230.4167740.031*
C250.53559 (9)0.34976 (15)0.33741 (8)0.0258 (3)
C260.44935 (9)0.28327 (14)0.27831 (8)0.0234 (2)
H260.4541200.1918640.2525400.028*
C270.42575 (11)0.69639 (18)0.39538 (11)0.0417 (4)
H27A0.4552210.7768610.3748430.063*
H27B0.4614880.6879140.4571320.063*
H27C0.3551040.7184470.3807350.063*
C280.63753 (11)0.28224 (18)0.35922 (11)0.0401 (4)
H28A0.6768330.3481650.3394550.060*
H28B0.6299380.1849830.3315320.060*
H28C0.6719670.2697520.4208460.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.01757 (16)0.01839 (16)0.01570 (16)0.00143 (10)0.00751 (12)0.00066 (9)
O10.0256 (4)0.0219 (4)0.0222 (4)0.0026 (3)0.0116 (3)0.0018 (3)
C10.0188 (5)0.0227 (6)0.0170 (5)0.0005 (4)0.0070 (4)0.0031 (4)
C20.0209 (5)0.0264 (6)0.0214 (5)0.0002 (5)0.0090 (4)0.0008 (5)
C30.0236 (6)0.0258 (6)0.0214 (6)0.0016 (5)0.0062 (5)0.0006 (5)
C40.0213 (6)0.0262 (6)0.0282 (6)0.0028 (5)0.0082 (5)0.0044 (5)
C50.0218 (6)0.0257 (6)0.0272 (6)0.0033 (5)0.0115 (5)0.0085 (5)
C60.0226 (6)0.0212 (6)0.0215 (5)0.0023 (4)0.0103 (4)0.0047 (4)
C70.0321 (7)0.0320 (7)0.0362 (8)0.0079 (5)0.0126 (6)0.0096 (5)
C80.0313 (7)0.0284 (7)0.0517 (9)0.0016 (5)0.0271 (6)0.0074 (6)
C110.0169 (5)0.0198 (5)0.0176 (5)0.0014 (4)0.0071 (4)0.0001 (4)
C120.0194 (5)0.0201 (5)0.0195 (5)0.0006 (4)0.0074 (4)0.0005 (4)
C130.0194 (5)0.0231 (6)0.0200 (5)0.0027 (4)0.0084 (4)0.0033 (4)
C140.0251 (6)0.0265 (6)0.0172 (5)0.0038 (5)0.0095 (4)0.0001 (5)
C150.0243 (6)0.0211 (6)0.0194 (5)0.0015 (4)0.0066 (4)0.0017 (4)
C160.0193 (5)0.0188 (5)0.0198 (5)0.0005 (4)0.0072 (4)0.0006 (4)
C170.0286 (6)0.0343 (7)0.0244 (6)0.0028 (5)0.0131 (5)0.0059 (5)
C180.0493 (8)0.0285 (7)0.0238 (6)0.0088 (6)0.0124 (6)0.0073 (5)
C210.0211 (5)0.0208 (5)0.0163 (5)0.0023 (4)0.0080 (4)0.0000 (4)
C220.0209 (5)0.0230 (6)0.0241 (6)0.0013 (4)0.0104 (5)0.0023 (5)
C230.0253 (6)0.0253 (6)0.0276 (6)0.0044 (5)0.0121 (5)0.0071 (5)
C240.0223 (6)0.0268 (6)0.0245 (6)0.0060 (5)0.0068 (5)0.0048 (5)
C250.0214 (6)0.0261 (6)0.0258 (6)0.0003 (5)0.0056 (5)0.0010 (5)
C260.0233 (6)0.0221 (5)0.0227 (6)0.0000 (5)0.0072 (5)0.0039 (5)
C270.0298 (7)0.0370 (8)0.0556 (10)0.0064 (6)0.0148 (7)0.0250 (7)
C280.0233 (7)0.0365 (8)0.0482 (9)0.0045 (6)0.0023 (6)0.0119 (7)
Geometric parameters (Å, º) top
P1—O11.4872 (9)C14—C151.3925 (17)
P1—C11.8077 (12)C15—C161.3966 (16)
P1—C111.8063 (12)C15—C181.5047 (17)
P1—C211.8113 (12)C16—H160.9500
C1—C21.3971 (17)C17—H17A0.9800
C1—C61.3957 (16)C17—H17B0.9800
C2—H20.9500C17—H17C0.9800
C2—C31.3900 (17)C18—H18A0.9800
C3—C41.3981 (18)C18—H18B0.9800
C3—C71.5057 (18)C18—H18C0.9800
C4—H40.9500C21—C221.3912 (16)
C4—C51.3947 (19)C21—C261.3999 (17)
C5—C61.3975 (17)C22—H220.9500
C5—C81.5109 (17)C22—C231.3949 (17)
C6—H60.9500C23—C241.3927 (18)
C7—H7A0.9800C23—C271.5077 (18)
C7—H7B0.9800C24—H240.9500
C7—H7C0.9800C24—C251.3982 (18)
C8—H8A0.9800C25—C261.3922 (17)
C8—H8B0.9800C25—C281.5100 (18)
C8—H8C0.9800C26—H260.9500
C11—C121.3982 (16)C27—H27A0.9800
C11—C161.3904 (16)C27—H27B0.9800
C12—H120.9500C27—H27C0.9800
C12—C131.3967 (16)C28—H28A0.9800
C13—C141.3938 (17)C28—H28B0.9800
C13—C171.5072 (16)C28—H28C0.9800
C14—H140.9500
O1—P1—C1112.59 (5)C14—C15—C16118.26 (11)
O1—P1—C11112.64 (5)C14—C15—C18121.25 (11)
O1—P1—C21113.69 (5)C16—C15—C18120.49 (11)
C1—P1—C21106.31 (5)C11—C16—C15120.62 (11)
C11—P1—C1104.63 (5)C11—C16—H16119.7
C11—P1—C21106.29 (5)C15—C16—H16119.7
C2—C1—P1121.03 (9)C13—C17—H17A109.5
C6—C1—P1119.12 (9)C13—C17—H17B109.5
C6—C1—C2119.85 (11)C13—C17—H17C109.5
C1—C2—H2119.6H17A—C17—H17B109.5
C3—C2—C1120.89 (11)H17A—C17—H17C109.5
C3—C2—H2119.6H17B—C17—H17C109.5
C2—C3—C4118.29 (12)C15—C18—H18A109.5
C2—C3—C7120.19 (12)C15—C18—H18B109.5
C4—C3—C7121.51 (12)C15—C18—H18C109.5
C3—C4—H4119.0H18A—C18—H18B109.5
C5—C4—C3122.03 (11)H18A—C18—H18C109.5
C5—C4—H4119.0H18B—C18—H18C109.5
C4—C5—C6118.60 (11)C22—C21—P1122.10 (9)
C4—C5—C8120.44 (12)C22—C21—C26119.52 (11)
C6—C5—C8120.96 (12)C26—C21—P1118.19 (9)
C1—C6—C5120.34 (11)C21—C22—H22119.5
C1—C6—H6119.8C21—C22—C23120.97 (11)
C5—C6—H6119.8C23—C22—H22119.5
C3—C7—H7A109.5C22—C23—C27120.44 (12)
C3—C7—H7B109.5C24—C23—C22118.46 (12)
C3—C7—H7C109.5C24—C23—C27121.10 (12)
H7A—C7—H7B109.5C23—C24—H24119.1
H7A—C7—H7C109.5C23—C24—C25121.82 (11)
H7B—C7—H7C109.5C25—C24—H24119.1
C5—C8—H8A109.5C24—C25—C28120.16 (12)
C5—C8—H8B109.5C26—C25—C24118.58 (11)
C5—C8—H8C109.5C26—C25—C28121.25 (12)
H8A—C8—H8B109.5C21—C26—H26119.7
H8A—C8—H8C109.5C25—C26—C21120.64 (12)
H8B—C8—H8C109.5C25—C26—H26119.7
C12—C11—P1123.22 (9)C23—C27—H27A109.5
C16—C11—P1116.59 (9)C23—C27—H27B109.5
C16—C11—C12120.06 (11)C23—C27—H27C109.5
C11—C12—H12119.8H27A—C27—H27B109.5
C13—C12—C11120.35 (11)H27A—C27—H27C109.5
C13—C12—H12119.8H27B—C27—H27C109.5
C12—C13—C17121.32 (11)C25—C28—H28A109.5
C14—C13—C12118.31 (11)C25—C28—H28B109.5
C14—C13—C17120.37 (11)C25—C28—H28C109.5
C13—C14—H14118.8H28A—C28—H28B109.5
C15—C14—C13122.38 (11)H28A—C28—H28C109.5
C15—C14—H14118.8H28B—C28—H28C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O1i0.982.543.3868 (19)144
Symmetry code: (i) x, y+1/2, z+1/2.
Tris(4-methoxy-3,5-dimethylphenyl)phosphane (III) top
Crystal data top
C27H33O3PDx = 1.213 Mg m3
Mr = 436.50Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, PbcaCell parameters from 6866 reflections
a = 12.3031 (6) Åθ = 4.3–78.8°
b = 10.2629 (5) ŵ = 1.21 mm1
c = 37.856 (2) ÅT = 109 K
V = 4780.0 (4) Å3Plate, clear colourless
Z = 80.31 × 0.07 × 0.05 mm
F(000) = 1872
Data collection top
Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, Pilatus 200K
diffractometer
5029 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source4084 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.066
ω scansθmax = 80.6°, θmin = 4.7°
Absorption correction: gaussian
(CrysAlis PRO; Rigaku OD, 2015)
h = 1512
Tmin = 0.792, Tmax = 0.950k = 1312
19900 measured reflectionsl = 4846
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.073H-atom parameters constrained
wR(F2) = 0.198 w = 1/[σ2(Fo2) + (0.0756P)2 + 11.1312P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
5029 reflectionsΔρmax = 0.54 e Å3
289 parametersΔρmin = 0.67 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.76672 (6)0.54686 (8)0.62877 (2)0.0256 (2)
O10.29598 (18)0.6985 (3)0.63244 (7)0.0422 (6)
O20.92563 (18)0.7706 (3)0.49141 (6)0.0338 (5)
O30.96498 (17)0.8338 (3)0.75085 (6)0.0335 (5)
C10.6240 (2)0.5994 (3)0.62927 (7)0.0263 (6)
C20.5880 (2)0.7150 (3)0.61423 (8)0.0266 (6)
H20.6388580.7710170.6030240.032*
C30.4788 (2)0.7505 (3)0.61522 (8)0.0277 (6)
C40.4056 (2)0.6640 (3)0.63115 (8)0.0292 (7)
C50.4387 (2)0.5500 (3)0.64752 (8)0.0294 (6)
C60.5494 (2)0.5181 (3)0.64638 (8)0.0273 (6)
H60.5740420.4402350.6573560.033*
C70.4408 (3)0.8787 (4)0.60070 (9)0.0338 (7)
H7A0.5039470.9332290.5951250.051*
H7B0.3955140.9228450.6183040.051*
H7C0.3983090.8637730.5791920.051*
C80.2388 (3)0.6623 (5)0.60101 (12)0.0579 (12)
H8A0.2699180.7085780.5807460.087*
H8B0.1619100.6853790.6034480.087*
H8C0.2455470.5681190.5973100.087*
C90.3589 (3)0.4620 (4)0.66631 (10)0.0417 (8)
H9A0.3145950.4156490.6488300.062*
H9B0.3115800.5144650.6815170.062*
H9C0.3986940.3987000.6807510.062*
C110.8173 (2)0.6251 (3)0.58820 (8)0.0270 (6)
C120.8840 (2)0.7339 (3)0.58696 (8)0.0283 (6)
H120.9035380.7759540.6083900.034*
C130.9232 (2)0.7836 (3)0.55488 (8)0.0286 (6)
C140.8920 (2)0.7209 (3)0.52394 (8)0.0297 (7)
C150.8245 (2)0.6114 (4)0.52399 (8)0.0310 (7)
C160.7885 (2)0.5642 (3)0.55636 (8)0.0291 (6)
H160.7434340.4890780.5569340.035*
C170.9947 (3)0.9028 (4)0.55430 (9)0.0379 (8)
H17A1.0710100.8763680.5560530.057*
H17B0.9762110.9592290.5743080.057*
H17C0.9832390.9503900.5321640.057*
C181.0338 (3)0.7319 (4)0.48189 (9)0.0376 (8)
H18A1.0559110.7778530.4603610.056*
H18B1.0354950.6377130.4776710.056*
H18C1.0839020.7537490.5011230.056*
C190.7907 (3)0.5467 (4)0.48979 (8)0.0385 (8)
H19A0.8546900.5089520.4782770.058*
H19B0.7576420.6116490.4741320.058*
H19C0.7378420.4777310.4948100.058*
C210.8248 (2)0.6460 (3)0.66423 (8)0.0264 (6)
C220.7673 (2)0.7393 (3)0.68323 (7)0.0261 (6)
H220.6952070.7601860.6762180.031*
C230.8124 (2)0.8032 (3)0.71231 (8)0.0266 (6)
C240.9190 (2)0.7691 (3)0.72226 (8)0.0269 (6)
C250.9801 (2)0.6791 (3)0.70352 (8)0.0296 (7)
C260.9313 (2)0.6163 (3)0.67470 (8)0.0292 (7)
H260.9712830.5524420.6619970.035*
C270.7505 (3)0.9075 (4)0.73180 (8)0.0315 (7)
H27A0.7777630.9933950.7248090.047*
H27B0.7602650.8958470.7572950.047*
H27C0.6730340.9010110.7259680.047*
C280.9540 (3)0.7629 (4)0.78319 (9)0.0434 (9)
H28A0.8770620.7438450.7874370.065*
H28B0.9826870.8152640.8027280.065*
H28C0.9947530.6810960.7815450.065*
C291.0948 (3)0.6435 (4)0.71393 (10)0.0392 (8)
H29A1.0941640.5613850.7271370.059*
H29B1.1254340.7126270.7287590.059*
H29C1.1393250.6333870.6926320.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0188 (4)0.0319 (4)0.0261 (4)0.0016 (3)0.0008 (3)0.0008 (3)
O10.0155 (10)0.0541 (17)0.0568 (15)0.0058 (11)0.0011 (9)0.0071 (12)
O20.0254 (11)0.0470 (14)0.0290 (11)0.0017 (10)0.0051 (8)0.0047 (10)
O30.0246 (10)0.0459 (14)0.0300 (11)0.0056 (10)0.0063 (8)0.0003 (10)
C10.0219 (13)0.0353 (16)0.0216 (12)0.0012 (12)0.0018 (10)0.0025 (11)
C20.0192 (13)0.0343 (17)0.0264 (13)0.0011 (12)0.0005 (10)0.0007 (12)
C30.0214 (13)0.0370 (17)0.0247 (13)0.0002 (12)0.0036 (10)0.0010 (12)
C40.0177 (13)0.0384 (18)0.0314 (15)0.0027 (12)0.0005 (11)0.0023 (13)
C50.0213 (14)0.0367 (17)0.0302 (14)0.0009 (13)0.0013 (11)0.0004 (12)
C60.0216 (14)0.0344 (17)0.0259 (14)0.0001 (12)0.0000 (10)0.0000 (12)
C70.0248 (14)0.0368 (19)0.0399 (17)0.0028 (14)0.0044 (12)0.0039 (14)
C80.0264 (17)0.066 (3)0.081 (3)0.0147 (19)0.0197 (18)0.019 (2)
C90.0253 (16)0.045 (2)0.054 (2)0.0017 (16)0.0080 (14)0.0120 (17)
C110.0175 (12)0.0344 (17)0.0290 (14)0.0053 (12)0.0005 (10)0.0010 (12)
C120.0201 (13)0.0359 (18)0.0289 (14)0.0036 (12)0.0032 (11)0.0004 (12)
C130.0209 (13)0.0348 (17)0.0300 (14)0.0043 (12)0.0036 (11)0.0001 (12)
C140.0220 (14)0.0405 (18)0.0266 (14)0.0075 (13)0.0028 (11)0.0037 (12)
C150.0221 (13)0.0428 (19)0.0281 (14)0.0047 (14)0.0005 (11)0.0003 (13)
C160.0196 (13)0.0340 (18)0.0336 (15)0.0009 (12)0.0006 (11)0.0000 (12)
C170.0372 (17)0.044 (2)0.0320 (16)0.0053 (16)0.0097 (13)0.0028 (14)
C180.0281 (16)0.051 (2)0.0337 (16)0.0012 (15)0.0088 (13)0.0014 (15)
C190.0308 (16)0.056 (2)0.0284 (15)0.0071 (16)0.0001 (12)0.0009 (15)
C210.0191 (13)0.0341 (17)0.0260 (13)0.0004 (12)0.0005 (10)0.0043 (11)
C220.0172 (13)0.0357 (17)0.0255 (13)0.0010 (12)0.0016 (10)0.0037 (12)
C230.0177 (13)0.0347 (17)0.0275 (14)0.0025 (12)0.0002 (10)0.0045 (12)
C240.0190 (13)0.0348 (17)0.0268 (14)0.0039 (12)0.0043 (10)0.0039 (12)
C250.0178 (13)0.0372 (18)0.0337 (15)0.0013 (12)0.0028 (11)0.0061 (13)
C260.0188 (13)0.0357 (18)0.0330 (15)0.0055 (13)0.0009 (11)0.0028 (12)
C270.0211 (13)0.0410 (19)0.0324 (15)0.0009 (13)0.0031 (12)0.0031 (13)
C280.0354 (17)0.068 (3)0.0267 (15)0.0023 (18)0.0078 (13)0.0063 (16)
C290.0213 (15)0.048 (2)0.048 (2)0.0043 (15)0.0091 (13)0.0041 (16)
Geometric parameters (Å, º) top
P1—C11.836 (3)C13—C171.507 (5)
P1—C111.841 (3)C14—C151.398 (5)
P1—C211.829 (3)C15—C161.390 (4)
O1—C41.396 (4)C15—C191.513 (4)
O1—C81.431 (5)C16—H160.9500
O2—C141.395 (4)C17—H17A0.9800
O2—C181.435 (4)C17—H17B0.9800
O3—C241.390 (4)C17—H17C0.9800
O3—C281.431 (4)C18—H18A0.9800
C1—C21.389 (4)C18—H18B0.9800
C1—C61.400 (4)C18—H18C0.9800
C2—H20.9500C19—H19A0.9800
C2—C31.393 (4)C19—H19B0.9800
C3—C41.400 (5)C19—H19C0.9800
C3—C71.500 (5)C21—C221.391 (4)
C4—C51.385 (5)C21—C261.403 (4)
C5—C61.401 (4)C22—H220.9500
C5—C91.513 (5)C22—C231.397 (4)
C6—H60.9500C23—C241.408 (4)
C7—H7A0.9800C23—C271.507 (5)
C7—H7B0.9800C24—C251.386 (5)
C7—H7C0.9800C25—C261.402 (4)
C8—H8A0.9800C25—C291.511 (4)
C8—H8B0.9800C26—H260.9500
C8—H8C0.9800C27—H27A0.9800
C9—H9A0.9800C27—H27B0.9800
C9—H9B0.9800C27—H27C0.9800
C9—H9C0.9800C28—H28A0.9800
C11—C121.386 (5)C28—H28B0.9800
C11—C161.403 (4)C28—H28C0.9800
C12—H120.9500C29—H29A0.9800
C12—C131.403 (4)C29—H29B0.9800
C13—C141.390 (4)C29—H29C0.9800
C1—P1—C11101.77 (13)C11—C16—H16119.3
C21—P1—C1101.66 (14)C15—C16—C11121.4 (3)
C21—P1—C11103.75 (14)C15—C16—H16119.3
C4—O1—C8112.3 (3)C13—C17—H17A109.5
C14—O2—C18113.3 (2)C13—C17—H17B109.5
C24—O3—C28112.6 (3)C13—C17—H17C109.5
C2—C1—P1123.5 (2)H17A—C17—H17B109.5
C2—C1—C6119.3 (3)H17A—C17—H17C109.5
C6—C1—P1117.2 (2)H17B—C17—H17C109.5
C1—C2—H2119.3O2—C18—H18A109.5
C1—C2—C3121.4 (3)O2—C18—H18B109.5
C3—C2—H2119.3O2—C18—H18C109.5
C2—C3—C4117.7 (3)H18A—C18—H18B109.5
C2—C3—C7121.3 (3)H18A—C18—H18C109.5
C4—C3—C7120.9 (3)H18B—C18—H18C109.5
O1—C4—C3118.4 (3)C15—C19—H19A109.5
C5—C4—O1118.8 (3)C15—C19—H19B109.5
C5—C4—C3122.6 (3)C15—C19—H19C109.5
C4—C5—C6118.0 (3)H19A—C19—H19B109.5
C4—C5—C9121.6 (3)H19A—C19—H19C109.5
C6—C5—C9120.4 (3)H19B—C19—H19C109.5
C1—C6—C5120.8 (3)C22—C21—P1124.3 (2)
C1—C6—H6119.6C22—C21—C26118.6 (3)
C5—C6—H6119.6C26—C21—P1116.8 (2)
C3—C7—H7A109.5C21—C22—H22119.0
C3—C7—H7B109.5C21—C22—C23121.9 (3)
C3—C7—H7C109.5C23—C22—H22119.0
H7A—C7—H7B109.5C22—C23—C24117.7 (3)
H7A—C7—H7C109.5C22—C23—C27121.2 (3)
H7B—C7—H7C109.5C24—C23—C27121.1 (3)
O1—C8—H8A109.5O3—C24—C23117.9 (3)
O1—C8—H8B109.5C25—C24—O3119.7 (3)
O1—C8—H8C109.5C25—C24—C23122.2 (3)
H8A—C8—H8B109.5C24—C25—C26118.2 (3)
H8A—C8—H8C109.5C24—C25—C29122.3 (3)
H8B—C8—H8C109.5C26—C25—C29119.4 (3)
C5—C9—H9A109.5C21—C26—H26119.3
C5—C9—H9B109.5C25—C26—C21121.3 (3)
C5—C9—H9C109.5C25—C26—H26119.3
H9A—C9—H9B109.5C23—C27—H27A109.5
H9A—C9—H9C109.5C23—C27—H27B109.5
H9B—C9—H9C109.5C23—C27—H27C109.5
C12—C11—P1125.4 (2)H27A—C27—H27B109.5
C12—C11—C16118.6 (3)H27A—C27—H27C109.5
C16—C11—P1115.9 (2)H27B—C27—H27C109.5
C11—C12—H12119.1O3—C28—H28A109.5
C11—C12—C13121.7 (3)O3—C28—H28B109.5
C13—C12—H12119.1O3—C28—H28C109.5
C12—C13—C17120.6 (3)H28A—C28—H28B109.5
C14—C13—C12117.8 (3)H28A—C28—H28C109.5
C14—C13—C17121.6 (3)H28B—C28—H28C109.5
O2—C14—C15118.1 (3)C25—C29—H29A109.5
C13—C14—O2119.5 (3)C25—C29—H29B109.5
C13—C14—C15122.3 (3)C25—C29—H29C109.5
C14—C15—C19121.0 (3)H29A—C29—H29B109.5
C16—C15—C14118.1 (3)H29A—C29—H29C109.5
C16—C15—C19120.9 (3)H29B—C29—H29C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C29—H29A···O3i0.982.583.524 (5)161
Symmetry code: (i) x+2, y1/2, z+3/2.
Tris(4-methoxy-3,5-dimethylphenyl(oxo)-λ5-phosphane (IV) top
Crystal data top
C27H33O4PDx = 1.230 Mg m3
Mr = 452.50Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, PbcaCell parameters from 16756 reflections
a = 11.28601 (11) Åθ = 4.6–80.0°
b = 11.90008 (11) ŵ = 1.24 mm1
c = 36.3801 (3) ÅT = 108 K
V = 4886.01 (8) Å3Plate, clear colourless
Z = 80.2 × 0.2 × 0.04 mm
F(000) = 1936
Data collection top
Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, Pilatus 200/300K
diffractometer
5325 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source4821 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.033
ω scansθmax = 80.3°, θmin = 4.6°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
h = 1413
Tmin = 0.755, Tmax = 1.000k = 1015
29719 measured reflectionsl = 3246
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.0444P)2 + 2.732P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.100(Δ/σ)max = 0.002
S = 1.05Δρmax = 0.35 e Å3
5325 reflectionsΔρmin = 0.40 e Å3
299 parametersExtinction correction: SHELXL2016 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00025 (5)
Primary atom site location: iterative
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.79578 (3)0.57887 (3)0.63306 (2)0.01782 (10)
O10.82216 (9)0.45664 (8)0.63566 (3)0.0241 (2)
O20.27342 (9)0.65494 (10)0.63075 (3)0.0305 (2)
O30.93140 (10)0.76996 (11)0.48735 (3)0.0350 (3)
O41.03456 (9)0.84000 (9)0.75134 (3)0.0258 (2)
C10.63848 (12)0.60698 (11)0.63380 (3)0.0186 (3)
C20.59134 (12)0.70862 (11)0.62114 (3)0.0194 (3)
H20.6431130.7664820.6130370.023*
C30.46935 (12)0.72582 (11)0.62030 (4)0.0209 (3)
C40.39523 (12)0.63846 (12)0.63188 (4)0.0220 (3)
C50.43964 (12)0.53723 (12)0.64567 (4)0.0239 (3)
C60.56272 (12)0.52309 (11)0.64628 (4)0.0209 (3)
H60.5951380.4548880.6553950.025*
C70.41966 (13)0.83624 (12)0.60764 (4)0.0275 (3)
H7A0.4831700.8923300.6067360.041*
H7B0.3581990.8611380.6248440.041*
H7C0.3851640.8273490.5830950.041*
C80.22242 (15)0.62574 (16)0.59606 (5)0.0385 (4)
H8A0.2609810.6690740.5765260.058*
H8B0.1374800.6428380.5963640.058*
H8C0.2338320.5452910.5915160.058*
C90.35923 (14)0.44588 (15)0.65990 (5)0.0372 (4)
H9A0.3756980.4327670.6859990.056*
H9B0.3732920.3765170.6460500.056*
H9C0.2764490.4689780.6569000.056*
C110.84536 (12)0.63908 (12)0.58997 (4)0.0207 (3)
C120.89015 (12)0.74785 (12)0.58695 (4)0.0233 (3)
H120.8996500.7921970.6084620.028*
C130.92131 (13)0.79276 (13)0.55278 (4)0.0267 (3)
C140.90563 (13)0.72557 (13)0.52171 (4)0.0267 (3)
C150.85914 (13)0.61662 (13)0.52372 (4)0.0267 (3)
C160.83036 (13)0.57450 (12)0.55830 (4)0.0241 (3)
H160.7999170.5003360.5603670.029*
C170.96890 (17)0.91105 (14)0.54979 (4)0.0359 (4)
H17A1.0556000.9088160.5484690.054*
H17B0.9445840.9544060.5714160.054*
H17C0.9374040.9466560.5275560.054*
C181.05371 (17)0.75999 (18)0.47752 (5)0.0439 (4)
H18A1.0695840.8056210.4556440.066*
H18B1.0721810.6811400.4722700.066*
H18C1.1031350.7863790.4979180.066*
C190.83794 (16)0.54874 (16)0.48934 (4)0.0367 (4)
H19A0.7897890.5925910.4721080.055*
H19B0.7961550.4792030.4956770.055*
H19C0.9140920.5303340.4778810.055*
C210.86395 (12)0.66018 (11)0.66909 (3)0.0192 (3)
C220.80829 (11)0.75201 (11)0.68533 (4)0.0198 (3)
H220.7314140.7733570.6773080.024*
C230.86343 (12)0.81313 (11)0.71315 (4)0.0210 (3)
C240.97618 (12)0.77906 (12)0.72445 (4)0.0213 (3)
C251.03682 (12)0.69022 (12)0.70769 (4)0.0218 (3)
C260.97866 (12)0.63058 (11)0.68014 (4)0.0214 (3)
H261.0173380.5689570.6686670.026*
C270.80642 (13)0.91664 (12)0.72900 (4)0.0259 (3)
H27A0.7659180.8972420.7519650.039*
H27B0.7488240.9467930.7114160.039*
H27C0.8673850.9733070.7339340.039*
C280.99864 (14)0.81185 (15)0.78793 (4)0.0311 (3)
H28A0.9134030.8251990.7906330.047*
H28B1.0420740.8586230.8055390.047*
H28C1.0158640.7324450.7926770.047*
C291.16351 (13)0.66525 (13)0.71787 (4)0.0280 (3)
H29A1.2155200.7223860.7071060.042*
H29B1.1856030.5909960.7084500.042*
H29C1.1718100.6661090.7446870.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.01791 (16)0.01810 (17)0.01746 (16)0.00087 (12)0.00009 (11)0.00058 (11)
O10.0246 (5)0.0209 (5)0.0269 (5)0.0024 (4)0.0006 (4)0.0009 (4)
O20.0181 (5)0.0398 (6)0.0336 (5)0.0018 (4)0.0010 (4)0.0048 (5)
O30.0380 (6)0.0477 (7)0.0194 (5)0.0067 (5)0.0043 (4)0.0048 (5)
O40.0252 (5)0.0319 (5)0.0203 (4)0.0070 (4)0.0027 (4)0.0028 (4)
C10.0198 (6)0.0206 (6)0.0154 (5)0.0004 (5)0.0007 (4)0.0015 (4)
C20.0209 (6)0.0199 (6)0.0172 (6)0.0008 (5)0.0004 (5)0.0003 (5)
C30.0229 (6)0.0226 (6)0.0173 (6)0.0022 (5)0.0008 (5)0.0008 (5)
C40.0175 (6)0.0290 (7)0.0196 (6)0.0011 (5)0.0015 (5)0.0007 (5)
C50.0228 (6)0.0258 (7)0.0233 (6)0.0038 (5)0.0025 (5)0.0017 (5)
C60.0224 (6)0.0200 (6)0.0205 (6)0.0003 (5)0.0038 (5)0.0007 (5)
C70.0237 (7)0.0268 (7)0.0321 (7)0.0050 (6)0.0006 (6)0.0037 (6)
C80.0268 (8)0.0465 (10)0.0423 (9)0.0063 (7)0.0138 (7)0.0080 (8)
C90.0240 (7)0.0357 (9)0.0518 (10)0.0061 (6)0.0033 (7)0.0145 (7)
C110.0179 (6)0.0248 (6)0.0194 (6)0.0018 (5)0.0004 (5)0.0009 (5)
C120.0246 (7)0.0262 (7)0.0192 (6)0.0005 (5)0.0023 (5)0.0021 (5)
C130.0257 (7)0.0298 (7)0.0245 (7)0.0006 (6)0.0032 (5)0.0007 (6)
C140.0251 (7)0.0379 (8)0.0171 (6)0.0003 (6)0.0027 (5)0.0025 (6)
C150.0239 (7)0.0362 (8)0.0200 (6)0.0006 (6)0.0000 (5)0.0033 (6)
C160.0225 (6)0.0281 (7)0.0215 (6)0.0009 (5)0.0003 (5)0.0027 (5)
C170.0473 (10)0.0324 (8)0.0279 (7)0.0073 (7)0.0089 (7)0.0018 (6)
C180.0421 (9)0.0629 (12)0.0269 (8)0.0124 (9)0.0125 (7)0.0025 (8)
C190.0417 (9)0.0469 (10)0.0216 (7)0.0088 (8)0.0017 (6)0.0075 (7)
C210.0203 (6)0.0204 (6)0.0168 (6)0.0011 (5)0.0002 (5)0.0019 (5)
C220.0186 (6)0.0224 (6)0.0182 (6)0.0008 (5)0.0005 (5)0.0015 (5)
C230.0222 (6)0.0229 (6)0.0178 (6)0.0020 (5)0.0017 (5)0.0016 (5)
C240.0233 (6)0.0231 (6)0.0175 (6)0.0060 (5)0.0008 (5)0.0013 (5)
C250.0206 (6)0.0240 (6)0.0210 (6)0.0016 (5)0.0017 (5)0.0048 (5)
C260.0215 (6)0.0217 (6)0.0210 (6)0.0016 (5)0.0005 (5)0.0014 (5)
C270.0244 (7)0.0282 (7)0.0250 (7)0.0010 (6)0.0022 (5)0.0057 (5)
C280.0300 (8)0.0436 (9)0.0198 (6)0.0032 (7)0.0021 (6)0.0019 (6)
C290.0236 (7)0.0293 (7)0.0311 (7)0.0011 (6)0.0073 (6)0.0023 (6)
Geometric parameters (Å, º) top
P1—O11.4878 (10)C13—C171.511 (2)
P1—C11.8066 (14)C14—C151.401 (2)
P1—C111.8121 (14)C15—C161.393 (2)
P1—C211.8018 (13)C15—C191.508 (2)
O2—C41.3893 (16)C16—H160.9500
O2—C81.430 (2)C17—H17A0.9800
O3—C141.3880 (17)C17—H17B0.9800
O3—C181.431 (2)C17—H17C0.9800
O4—C241.3844 (16)C18—H18A0.9800
O4—C281.4314 (17)C18—H18B0.9800
C1—C21.3993 (18)C18—H18C0.9800
C1—C61.3906 (19)C19—H19A0.9800
C2—H20.9500C19—H19B0.9800
C2—C31.3923 (19)C19—H19C0.9800
C3—C41.399 (2)C21—C221.3921 (18)
C3—C71.5010 (19)C21—C261.4006 (18)
C4—C51.398 (2)C22—H220.9500
C5—C61.3995 (19)C22—C231.3930 (19)
C5—C91.508 (2)C23—C241.3974 (19)
C6—H60.9500C23—C271.5046 (19)
C7—H7A0.9800C24—C251.399 (2)
C7—H7B0.9800C25—C261.3927 (19)
C7—H7C0.9800C25—C291.5066 (19)
C8—H8A0.9800C26—H260.9500
C8—H8B0.9800C27—H27A0.9800
C8—H8C0.9800C27—H27B0.9800
C9—H9A0.9800C27—H27C0.9800
C9—H9B0.9800C28—H28A0.9800
C9—H9C0.9800C28—H28B0.9800
C11—C121.394 (2)C28—H28C0.9800
C11—C161.3952 (19)C29—H29A0.9800
C12—H120.9500C29—H29B0.9800
C12—C131.398 (2)C29—H29C0.9800
C13—C141.396 (2)
O1—P1—C1112.13 (6)C16—C15—C19121.30 (14)
O1—P1—C11112.32 (6)C11—C16—H16119.4
O1—P1—C21113.16 (6)C15—C16—C11121.29 (14)
C1—P1—C11104.08 (6)C15—C16—H16119.4
C21—P1—C1108.02 (6)C13—C17—H17A109.5
C21—P1—C11106.57 (6)C13—C17—H17B109.5
C4—O2—C8112.96 (12)C13—C17—H17C109.5
C14—O3—C18113.31 (13)H17A—C17—H17B109.5
C24—O4—C28113.56 (11)H17A—C17—H17C109.5
C2—C1—P1121.92 (10)H17B—C17—H17C109.5
C6—C1—P1118.43 (10)O3—C18—H18A109.5
C6—C1—C2119.62 (12)O3—C18—H18B109.5
C1—C2—H2119.7O3—C18—H18C109.5
C3—C2—C1120.69 (12)H18A—C18—H18B109.5
C3—C2—H2119.7H18A—C18—H18C109.5
C2—C3—C4118.37 (12)H18B—C18—H18C109.5
C2—C3—C7120.33 (13)C15—C19—H19A109.5
C4—C3—C7121.29 (12)C15—C19—H19B109.5
O2—C4—C3118.53 (13)C15—C19—H19C109.5
O2—C4—C5119.15 (13)H19A—C19—H19B109.5
C5—C4—C3122.28 (13)H19A—C19—H19C109.5
C4—C5—C6117.72 (13)H19B—C19—H19C109.5
C4—C5—C9121.92 (13)C22—C21—P1122.53 (10)
C6—C5—C9120.35 (13)C22—C21—C26119.52 (12)
C1—C6—C5121.25 (13)C26—C21—P1117.93 (10)
C1—C6—H6119.4C21—C22—H22119.4
C5—C6—H6119.4C21—C22—C23121.11 (12)
C3—C7—H7A109.5C23—C22—H22119.4
C3—C7—H7B109.5C22—C23—C24117.98 (12)
C3—C7—H7C109.5C22—C23—C27120.98 (12)
H7A—C7—H7B109.5C24—C23—C27120.94 (12)
H7A—C7—H7C109.5O4—C24—C23119.30 (12)
H7B—C7—H7C109.5O4—C24—C25118.09 (12)
O2—C8—H8A109.5C23—C24—C25122.43 (12)
O2—C8—H8B109.5C24—C25—C29120.40 (13)
O2—C8—H8C109.5C26—C25—C24117.92 (12)
H8A—C8—H8B109.5C26—C25—C29121.58 (13)
H8A—C8—H8C109.5C21—C26—H26119.5
H8B—C8—H8C109.5C25—C26—C21120.94 (13)
C5—C9—H9A109.5C25—C26—H26119.5
C5—C9—H9B109.5C23—C27—H27A109.5
C5—C9—H9C109.5C23—C27—H27B109.5
H9A—C9—H9B109.5C23—C27—H27C109.5
H9A—C9—H9C109.5H27A—C27—H27B109.5
H9B—C9—H9C109.5H27A—C27—H27C109.5
C12—C11—P1123.18 (10)H27B—C27—H27C109.5
C12—C11—C16119.37 (13)O4—C28—H28A109.5
C16—C11—P1117.33 (11)O4—C28—H28B109.5
C11—C12—H12119.5O4—C28—H28C109.5
C11—C12—C13121.08 (13)H28A—C28—H28B109.5
C13—C12—H12119.5H28A—C28—H28C109.5
C12—C13—C17120.64 (13)H28B—C28—H28C109.5
C14—C13—C12117.98 (14)C25—C29—H29A109.5
C14—C13—C17121.38 (13)C25—C29—H29B109.5
O3—C14—C13119.00 (14)C25—C29—H29C109.5
O3—C14—C15118.55 (13)H29A—C29—H29B109.5
C13—C14—C15122.38 (13)H29A—C29—H29C109.5
C14—C15—C19120.79 (13)H29B—C29—H29C109.5
C16—C15—C14117.89 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.952.443.1533 (16)132
C7—H7A···O1i0.982.553.4033 (18)145
Symmetry code: (i) x+3/2, y+1/2, z.
 

Acknowledgements

We thank the University of Lethbridge and the Faculty of Arts & Science for funding the diffractometer.

Funding information

Funding for this research was provided by: Natural Sciences and Engineering Research Council of Canada.

References

First citationBlount, J. F., Camp, D., Hart, R. D., Healy, P. C., Skelton, B. W. & White, A. H. (1994). Aust. J. Chem. 47, 1631–1639.  CSD CrossRef CAS Web of Science Google Scholar
First citationBoeré, R. T., Bond, A. M., Cronin, S., Duffy, N. W., Hazendonk, P., Masuda, J. D., Pollard, K., Roemmele, T. L., Tran, P. & Zhang, Y. (2008). New J. Chem. 32, 214–231.  Google Scholar
First citationBoeré, R. T. & Zhang, Y. (2005). J. Organomet. Chem. 690, 2651–2657.  Google Scholar
First citationBoeré, R. T. & Zhang, Y. (2013). Acta Cryst. C69, 1051–1054.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationClarke, A. J., Ingleson, M. J., Kociok-Köhn, G., Mahon, M. F., Patmore, N. J., Rourke, J. P., Ruggiero, G. D. & Weller, A. S. (2004). J. Am. Chem. Soc. 126, 1503–1517.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCulcasi, M., Berchadsky, Y., Gronchi, G. & Tordo, P. (1991). J. Org. Chem. 56, 3537–3542.  CrossRef Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrisch, M. J., et al. (2016). Gaussian 16. Gaussian, Inc., Wallingford CT, USA.  Google Scholar
First citationFu, J., Moxey, G. J., Morshedi, M., Barlow, A., Randles, M. D., Simpson, P. V., Schwich, T., Cifuentes, M. P. & Humphrey, M. G. (2016). J. Organomet. Chem. 812, 135–144.  Web of Science CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGust, D. & Mislow, K. (1973). J. Am. Chem. Soc. 95, 1535–1547.  CrossRef Web of Science Google Scholar
First citationHengartner, U., Valentine, D. Jr, Johnson, K. K., Larscheid, M. E., Pigott, F., Scheidl, F., Scott, J. W., Sun, R. C. & Townsend, J. M. (1979). J. Org. Chem. 44, 3741–3747.  CrossRef Web of Science Google Scholar
First citationHenschke, J. P., Zanotti-Gerosa, A., Moran, P., Harrison, P., Mullen, B., Casy, G. & Lennon, I. C. (2003). Tetrahedron Lett. 44, 4379–4383.  Web of Science CrossRef Google Scholar
First citationJing, Q., Zhang, X., Sun, J. & Ding, K. (2005). Adv. Synth. Catal. 347, 1193–1197.  Web of Science CrossRef Google Scholar
First citationJover, J., Fey, N., Harvey, J. N., Lloyd-Jones, G. C., Orpen, A. G., Owen-Smith, G. J. J., Murray, P., Hose, D. R. J., Osborne, R. & Purdie, M. (2010). Organometallics, 29, 6245–6258.  Web of Science CrossRef Google Scholar
First citationKakizoe, D., Nishikawa, M., Fujii, Y. & Tsubomura, T. (2017). Dalton Trans. 46, 14804–14811.  Web of Science CrossRef Google Scholar
First citationKerrigan, N. J., Langan, I. J., Dalton, C. T., Daly, A. M., Bousquet, C. & Gilheany, D. G. (2002). Tetrahedron Lett. 43, 2107–2110.  Web of Science CrossRef Google Scholar
First citationLian, Z., Bhawal, B. N., Yu, P. & Morandi, B. (2017). Science, 356, 1059–1063.  Web of Science CrossRef Google Scholar
First citationNaruto, M. & Saito, S. (2015). Nat. Commun. 6, 8140p.  Web of Science CrossRef Google Scholar
First citationNishikawa, D., Hirano, K. & Miura, M. (2016). Org. Lett. 18, 4856–4859.  Web of Science CrossRef Google Scholar
First citationOgiwara, Y., Miyake, M., Kochi, T. & Kakiuchi, F. (2017). Organometallics, 36, 159–164.  Web of Science CrossRef Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationRomain, J. K., Ribblett, J. W., Byrn, R. W., Snyder, R. D., Storhoff, B. N. & Huffman, J. C. (2000). Organometallics, 19, 2047–2050.  Web of Science CrossRef Google Scholar
First citationSasaki, S., Sutoh, K., Murakami, M. & Yoshifuji, M. (2002). J. Am. Chem. Soc. 124, 14830–14831.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationUllrich, M., Lough, A. J. & Stephan, D. W. (2010). Organometallics, 29, 3647–3654.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, T. & Stephan, D. W. (2014). Chem. Commun. 50, 7007–7010.  Web of Science CrossRef Google Scholar
First citationWhited, M. T., Ruffer, E. J., Zhang, J., Rabaey, D. J. & Janzen, D. E. (2017). IUCrData, 2, x170042.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds