research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 1-ethyl-3-(2-oxo-1,3-di­thiol-4-yl)quinoxalin-2(1H)-one

CROSSMARK_Color_square_no_text.svg

aInstitut für Biochemie, Ernst-Moritz-Arndt-Universität Greifswald, 4 Felix-Hausdorff-Strasse, 17487 Greifswald, Germany
*Correspondence e-mail: carola.schulzke@uni-greifswald.de

Edited by V. Khrustalev, Russian Academy of Sciences, Russia (Received 2 May 2018; accepted 28 May 2018; online 8 June 2018)

The title compound I, C13H10N2O2S2, crystallizes in the monoclinic space group C2/c with eight mol­ecules in the unit cell. Excluding for the ethyl substituent, the mol­ecule of I adopts a nearly coplanar conformation (r.m.s. deviations is 0.058 Å), which is supported by the intra­molecular C—H⋯O hydrogen-bonding inter­action between the two ring systems [C⋯O = 2.859 (3) Å]. In the crystal, the mol­ecules form dimeric associates via two bifurcated C—H⋯O hydrogen-bonding inter­actions between an ene hydrogen atom and a carbonyl functional group of an adjacent mol­ecule [C⋯O = 3.133 (3) Å] and vice versa. The crystal structure is further stabilized by a three-dimensional network of weak hydrogen bonds between one mol­ecule and six adjacent mol­ecules as well as offset ππ stacking. The combination of the quinoxaline 2(1H)-one moiety with the di­thio­carbonate moiety extends the aromaticity of the quinoxaline scaffold towards the substituent as well as influencing the π-system of the quinoxaline. The title compound is the direct precursor for a di­thiol­ene ligand mimicking the natural cofactor ligand molybdopterin.

1. Chemical context

Non-innocent di­thiol­enes and their role as inter­esting ligand systems were discovered in the early 1960s. As a result of their unusual redox and structural characteristics and those of their metal complexes, they immediately attracted considerable scientific inter­est (Schrauzer & Mayweg, 1962[Schrauzer, G. N. & Mayweg, V. (1962). J. Am. Chem. Soc. 84, 3221-3221.]). Initially, di­thiol­ene systems were studied predominantly in the context of electronic and photonic conductors (Wudl et al., 1972[Wudl, F., Wobschall, D. & Hufnagel, E. J. (1972). J. Am. Chem. Soc. 94, 670-672.]; Ferraris et al., 1973[Ferraris, J., Cowan, D. O., Walatka, V. & Perlstein, J. H. (1973). J. Am. Chem. Soc. 95, 948-949.]). Later, metal di­thiol­ene complexes found application in the purification and separation of olefins (Wang & Stiefel, 2001[Wang, K. & Stiefel, E. I. (2001). Science, 291, 106-109.]). In the early 1980s Rajagopalan and co-workers discovered and characterized the natural molybdopterin ligand (mpt) in the active sites of enzymes. Mpt is present in nearly all molybdenum enzymes and all tungsten enzymes and binds the respective central metal by a di­thiol­ene moiety. As these enzymes are ubiquitous to all kingdoms of life, this brought di­thiol­ene chemistry again to the focus of scientific attention (Johnson et al., 1980[Johnson, J. L., Hainline, B. E. & Rajagopalan, K. V. (1980). J. Biol. Chem. 255, 1783-1786.]; Johnson & Rajagopalan, 1982[Johnson, J. L. & Rajagopalan, K. V. (1982). Proc. Natl Acad. Sci. USA, 79, 6856-6860.]; Kramer et al., 1987[Kramer, S. P., Johnson, J. L., Ribeiro, A. A., Millington, D. S. & Rajagopalan, K. V. (1987). J. Biol. Chem. 262, 16357-16363.]). Quinoxaline constitutes a widely exploited platform in the development of pharmaceuticals (Shi et al., 2018[Shi, L. L., Hu, W., Wu, J. F., Zhou, H. Y., Zhou, H. & Li, X. (2018). Mini Rev. Med. Chem. 18, 392-413.]). The title compound is a di­thiol­ene ligand precursor, which can be used for the synthesis of molybdo­pterin cofactor model complexes bearing quinoxaline substit­uents. The target di­thiol­ene ligand replicates the pyrazine moiety of mpt in its half-reduced form and in addition contains an oxofunction in the position of the pyran ring of the natural product. By itself it is an inter­esting example of an extended π-system involving (by resonance) three different heteroatoms (N, O and S).

[Scheme 1]

2. Structural commentary

The title mol­ecule I crystallizes in the monoclinic space group C2/c with Z = 8. The quinoxaline ring system [C4–C11, N1, N2; largest deviation from plane = 0.041 (2) Å for C5] and the di­thiol­ene ring [C1–C3, S1, S2; largest deviation from plane = 0.012 (1) Å for C3)], which are connected by the C3—C4 bond [length = 1.465 (3) Å], are essentially coplanar, with an angle of only 4.89 (12)° between the two planes (Fig. 1[link]). This planitarity is supported by intra­molecular hydrogen bonding between the di­thiol­ene hydrogen atom and the quinoxaline carbonyl oxygen atom [C2—H2⋯O2 with DA = 2.859 (3) Å; Table 1[link]]. Only the alkyl substituent C12—C13 subtends out of the planar geometry with an N1—C12—C13 torsion angle of 112.78 (18)°. While the N1—C12 bond [amine nitro­gen and ethyl substituent; 1.475 (3) Å] is of explicit single-bond character, all other N—C distances are decidedly shorter, ranging from 1.296 (3) Å for the, according to the chemical structure, double bond of imine nitro­gen (N2=C4) to 1.392 (3) Å for the amine nitro­gen-to-benzene ring formal single bond (N1—C6). The longest C—C bond of the benzene ring is the one that is shared with the N-heterocycle [C6—C11, 1.411 (3) Å]. This, together with the adjacent N—C bonds [N1—C6, 1.392 (3) Å and C11—N2, 1.374 (3) Å] being significantly shorter than single bonds indicates resonance throughout the entire quinoxaline substituent. The C=O bond [1.212 (3) Å] of the carbonodi­thio­ate moiety is slightly shorter than the carbonyl C=O bond [1.232 (3) Å] of the quinoxaline substituent, suggesting that the latter might be involved to a small extent in resonance effects of the π-system, whereas the former is not. The C2=C3 double bond of the ene-di­thio­carbonate moiety is at 1.341 (3) Å slightly longer than the average value for C=C double bonds of 1.331 (9) Å (Allen et al., 1995[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G., Taylor, R. & Wilson, A. J. C. (1995). International Tables for Crystallography, Vol. C. Boston: Kluwer Academic Publishers.]), which again may be due to participation in resonance effects throughout the entire mol­ecule. The deviation from the average value of 1.751 (17) Å for S—Csp2 bonds (Allen et al., 1995[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G., Taylor, R. & Wilson, A. J. C. (1995). International Tables for Crystallography, Vol. C. Boston: Kluwer Academic Publishers.]) of the S1—C2 bond [1.724 (2) Å] is substantial enough to suggest that the resonance effects extend up to this bond to which partial double-bond character can be assigned. All other C—S bonds concur with typical single bonds.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O2 0.95 (2) 2.30 (3) 2.859 (3) 117.2 (19)
C2—H2⋯O2i 0.95 (2) 2.44 (2) 3.133 (3) 129 (2)
C7—H7⋯O1ii 0.95 2.51 3.272 (3) 138
C9—H9⋯S2iii 0.95 2.99 3.652 (3) 128
C12—H12A⋯O2iv 0.99 2.69 3.367 (3) 126
Symmetry codes: (i) -x, -y+2, -z+1; (ii) [x, -y+1, z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iv) x, y-1, z.
[Figure 1]
Figure 1
The mol­ecular structure of 1-ethyl-3-(2-oxo-1,3-di­thiol-4yl-)quinoxalin-2(1H)-one showing the atom labelling, 50% probability displacement ellipsoids and the intra­molecular non-classical hydrogen bond (dashed line).

By bidirectional inter­molecular hydrogen bonding, the title compound crystallizes as dimeric associate with the same donor and acceptor roles for both monomers [C2—H2⋯O2(−x, −y + 2, −z + 1) and O2⋯H2—C2(−x, −y + 2, −z + 1); DA = 3.133 (3) Å]. Here, the exact same atoms are involved as in the intra­molecular hydrogen bond mentioned above. The respective hydrogen atom H2 is therefore bound to the ene carbon atom C2 and hydrogen bonded to the carbonyl oxygen (O2) of the quinoxaline moiety of the same mol­ecule as well as that of the adjacent mol­ecule (Fig. 2[link], left). There are only two crystal sructures of very closely related systems reported in the literature. In one (A), the quinoxalin substituent of the present mol­ecule is replaced by a coumarine (Ghosh et al., 2016[Ghosh, A. C., Weisz, K. & Schulzke, C. (2016). Eur. J. Inorg. Chem. pp. 208-218.]). In the other (B), the ene-di­thio­carbonate is replaced by an amino­thia­zole (Mamedov et al., 2005[Mamedov, V. A., Kalinin, A. A., Gubaidullin, A. T., Isaikina, O. G. & Litvinov, I. A. (2005). Russ. J. Org. Chem. 41, 599-606.]). The metrical parameters in both structures are, as far as comparable, very similar to the ones observed here. Notable differences comprise (i) a slightly stronger resonance involvement of the thia­zole in B compared to the ene-di­thio­carbonate while the quinoxalin carbonyl and amine functions are embraced to a lesser extent and (ii) an overall weaker resonance in A, in which the benzene ring C—C distances are all very similar (i.e. strongly resonant) whereas all other distances are of more pronounced single- and double-bond character and of less aromatic character.

[Figure 2]
Figure 2
Crystal packing and intra- and inter­molecular hydrogen-bonding inter­actions yielding the dimeric associates viewed along b (left) and hydrogen bonding contacts of an individual mol­ecule to six adjacent mol­ecules (right) (Mercury; Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).

3. Supra­molecular features

In the crystal, the associated dimers are linked by (partly rather weak) C—H⋯O and C—H⋯S hydrogen-bonding inter­actions, forming a three-dimensional network (Fig. 2[link], Table 1[link]). In the three-dimensional network, each mol­ecule forms hydrogen-bonding inter­actions to six surrounding mol­ecules. These are donor inter­actions involving C2 [C2—H2⋯O2(−x, −y + 2, −z + 1); DA = 3.133 (3) Å], C7 [C7—H7⋯O1(x, −y + 1, z + [{1\over 2}]); DA = 3.272 (3) Å], C9 [C9—H9⋯S2(−x + [{1\over 2}], −y + [{1\over 2}], −z + 1); DA = 3.652 (3) Å], C12 [C12—H12A⋯O2(x, y − 1, z); DA = 3.367 (3) Å] and acceptor inter­actions involving S2 [S2⋯H9—C9(−x + [{1\over 2}], −y + [{1\over 2}], −z + 1)], O2 [O2⋯H2—C2(−x, −y + 2, −z + 1), O2⋯H12A—C12(x, y–1, z)] and O1 [O1⋯H7—C7(x, −y + 1, z − [{1\over 2}])]. Even though there are coplanar alignments of layers, only offset ππ stacking was observed with centroid–centroid distances of 3.587 (3) Å between the benzene ring of one mol­ecule and the pyrazine ring of a mol­ecule in the layer above or below.

4. Synthesis and crystallization

The title compound, 1-ethyl-3-(2-oxo-1,3-di­thiol-4yl-)quinoxalin-2(1H)-one was synthesized based on a reported literature procedure (Mamedov et al., 2005[Mamedov, V. A., Kalinin, A. A., Gubaidullin, A. T., Isaikina, O. G. & Litvinov, I. A. (2005). Russ. J. Org. Chem. 41, 599-606.]). The compound was synthesized in five steps starting from o-phenyl­enedi­amine. The last step in the synthetical pathway was carried out via an acid-catalysed Tchugaeff ring closure reaction, which led to the formation of the di­thiol­ene ring.

Synthesis of 1-ethyl-3-(2-oxo-1,3-di­thiol-4yl-)quinoxalin-2(1H)-one: To a solution of S-2-(4-ethyl-3-oxo-4-di­hydro­quinoxalin-2-yl)-2-oxo-ethyl o-isopropyl carbonodi­thio­ate (11.180 g, 31.9 mmol) in 250 ml DCM/Et2O 1:1 at ambient temperature, H2SO4 (25.50 ml) was added. The reaction mixture was stirred at room temperature for 2h. After that, the reaction was quenched by addition of 250 ml of ice and the mixture was stirred for 30 min. The organic phase was washed with brine and water 3 × 250 ml. The solvent was reduced to 10 ml in vacuo and the greenish precipitate was filtered off and washed on the filter with cold acetone 3 × 50 ml. The title compound was obtained as a greenish-white powder. Single crystals suitable for X-ray analysis were obtained by slow diffusion of solvents with chloro­form and Et2O Yield: 1.85g (20%).

1H NMR (300MHz, CD3Cl) δ 8.79 ppm (s, 1H), 7.87 ppm (m, 1H), 7.61 ppm (m, 1H), 7.4 ppm (m, 1H), 4.39 ppm (q, J = 7.2Hz, 2H), 1.42 ppm (t, J = 7.3Hz, 3H). 13C NMR (300MHz, CD3Cl) δ 152.54 ppm, 144.75 ppm, 133.25 ppm, 132.58 ppm, 131.14 ppm, 130.32 ppm, 126.98 ppm, 124.00 ppm, 113.47 ppm, 37.47 ppm, 12.20 ppm. IR (KBr pellet): (ν cm−1) = 3495 (br), 1734 (w), 1646 (sst), 1601 (st), 1579 (st), 1535 (st), 1463 (st), 1383 (w), 1280 (st), 1248 (w), 1216 (w), 1173 (st), 1128 (w), 1087 (w), 1045 (w), 950 (w), 892 (st), 868 (w), 825 (st), 785 (w), 758 (st), 631 (w), 554 (w), 529 (w), 467 (w), 432 (w). APCI–MS (m/s) = 291 (M+ + H+). Analysis calculated for C13H10N2O2S2: C, 53.78; H 3.47; N 9.65; S 22.09. Found: C, 53.41; H 3.25; N 9.86; S 22.32.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The hydrogen atom of the di­thiol­ene unit (H2) was refined freely without any constraints or restraints. All other C-bound hydrogen atoms were attached in calculated positions and treated as riding: C—H = 0.98 Å with Uiso(H) = 1.5Ueq(C) for the methyl group, C—H = 0.99 Å with Uiso(H) = 1.2Ueq(C) for the methyl­ene group and C—H = 0.95 Å with Uiso(H) = 1.2Ueq(C) for the aromatic atoms.

Table 2
Experimental details

Crystal data
Chemical formula C13H10N2O2S2
Mr 290.35
Crystal system, space group Monoclinic, C2/c
Temperature (K) 170
a, b, c (Å) 25.531 (6), 4.8522 (10), 20.861 (4)
β (°) 107.81 (3)
V3) 2460.4 (10)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.43
Crystal size (mm) 0.48 × 0.46 × 0.04
 
Data collection
Diffractometer Stoe IPDS 2T
Absorption correction Numerical (X-RED32 and X-SHAPE; Stoe & Cie, 2010[Stoe & Cie (2010). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.680, 0.887
No. of measured, independent and observed [I > 2σ(I)] reflections 10078, 2599, 2052
Rint 0.107
(sin θ/λ)max−1) 0.633
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.113, 1.03
No. of reflections 2599
No. of parameters 177
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.39, −0.44
Computer programs: X-AREA (Stoe & Cie, 2010[Stoe & Cie (2010). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]), SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]), SHELXL2016/6 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and CIFTAB (Sheldrick, 2013[Sheldrick, G. (2013). CIFTAB. University of Göttingen, Germany.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2010); cell refinement: X-AREA (Stoe & Cie, 2010); data reduction: X-AREA (Stoe & Cie, 2010); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: CIFTAB (Sheldrick, 2013) and Mercury (Macrae et al.,, 2006).

1-Ethyl-3-(2-oxo-1,3-dithiol-4-yl)quinoxalin-2(1H)-one top
Crystal data top
C13H10N2O2S2F(000) = 1200
Mr = 290.35Dx = 1.568 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 25.531 (6) ÅCell parameters from 10798 reflections
b = 4.8522 (10) Åθ = 3.4–53.5°
c = 20.861 (4) ŵ = 0.43 mm1
β = 107.81 (3)°T = 170 K
V = 2460.4 (10) Å3Platelet, green
Z = 80.48 × 0.46 × 0.04 mm
Data collection top
Stoe IPDS2T
diffractometer
2599 independent reflections
Radiation source: fine-focus sealed tube2052 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.107
ω scansθmax = 26.7°, θmin = 1.7°
Absorption correction: numerical
(X-Red32 and X-Shape; Stoe & Cie, 2010)
h = 3232
Tmin = 0.680, Tmax = 0.887k = 66
10078 measured reflectionsl = 2623
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0557P)2 + 1.3022P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2599 reflectionsΔρmax = 0.39 e Å3
177 parametersΔρmin = 0.44 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.06586 (2)1.17332 (13)0.38431 (3)0.02924 (17)
S20.16189 (2)0.80790 (12)0.43550 (3)0.02882 (17)
O10.14629 (7)1.1274 (4)0.32955 (8)0.0379 (4)
O20.04198 (6)0.7134 (3)0.56260 (8)0.0296 (4)
N10.09576 (7)0.3591 (4)0.61708 (9)0.0233 (4)
N20.16734 (7)0.4593 (4)0.54239 (9)0.0242 (4)
C10.12850 (9)1.0512 (5)0.37418 (11)0.0290 (5)
C20.06873 (9)0.9742 (5)0.45374 (11)0.0258 (5)
C30.11163 (9)0.8032 (5)0.47709 (11)0.0237 (4)
C40.12261 (8)0.6022 (5)0.53199 (10)0.0229 (4)
C50.08324 (8)0.5692 (5)0.57104 (10)0.0236 (4)
C60.14444 (8)0.2091 (5)0.63101 (11)0.0231 (4)
C70.15922 (9)0.0081 (5)0.68143 (11)0.0263 (5)
H70.1359720.0287240.7083260.032*
C80.20757 (9)0.1364 (5)0.69197 (11)0.0278 (5)
H80.2173200.2732230.7261470.033*
C90.24248 (9)0.0852 (5)0.65328 (12)0.0296 (5)
H90.2756220.1870170.6610990.036*
C100.22885 (9)0.1124 (5)0.60399 (11)0.0273 (5)
H100.2525950.1472490.5776260.033*
C110.17997 (9)0.2633 (5)0.59235 (11)0.0237 (4)
C120.05590 (9)0.2972 (5)0.65349 (12)0.0269 (5)
H12A0.0543690.0952090.6594460.032*
H12B0.0189050.3590790.6259950.032*
C130.07039 (10)0.4352 (6)0.72202 (12)0.0353 (6)
H13A0.1087380.3943490.7473260.053*
H13B0.0461760.3653850.7468320.053*
H13C0.0656000.6349740.7161450.053*
H20.0387 (10)0.987 (5)0.4716 (12)0.028 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0263 (3)0.0320 (3)0.0296 (3)0.0039 (2)0.0086 (2)0.0057 (2)
S20.0273 (3)0.0336 (3)0.0300 (3)0.0057 (2)0.0152 (2)0.0046 (2)
O10.0404 (9)0.0485 (11)0.0299 (9)0.0037 (8)0.0181 (7)0.0084 (8)
O20.0251 (8)0.0323 (9)0.0348 (9)0.0061 (7)0.0143 (6)0.0034 (7)
N10.0206 (8)0.0250 (9)0.0262 (9)0.0011 (7)0.0099 (7)0.0010 (8)
N20.0206 (8)0.0252 (9)0.0282 (9)0.0001 (7)0.0096 (7)0.0013 (8)
C10.0287 (11)0.0313 (12)0.0272 (11)0.0004 (10)0.0089 (9)0.0011 (10)
C20.0228 (10)0.0296 (12)0.0260 (10)0.0002 (9)0.0087 (8)0.0003 (10)
C30.0221 (10)0.0253 (11)0.0245 (10)0.0006 (8)0.0085 (8)0.0029 (9)
C40.0220 (10)0.0239 (10)0.0237 (10)0.0003 (8)0.0083 (8)0.0029 (9)
C50.0202 (10)0.0262 (11)0.0251 (10)0.0015 (9)0.0081 (8)0.0037 (9)
C60.0200 (10)0.0228 (10)0.0260 (10)0.0005 (8)0.0065 (8)0.0038 (9)
C70.0268 (10)0.0262 (11)0.0269 (11)0.0030 (9)0.0096 (8)0.0009 (9)
C80.0293 (11)0.0238 (11)0.0277 (11)0.0007 (9)0.0048 (9)0.0018 (9)
C90.0255 (11)0.0278 (12)0.0340 (12)0.0065 (9)0.0067 (9)0.0016 (10)
C100.0223 (10)0.0315 (12)0.0287 (11)0.0016 (9)0.0088 (8)0.0022 (10)
C110.0226 (10)0.0243 (10)0.0247 (10)0.0009 (8)0.0077 (8)0.0021 (9)
C120.0226 (10)0.0282 (11)0.0357 (12)0.0010 (9)0.0173 (9)0.0010 (10)
C130.0362 (12)0.0401 (14)0.0366 (13)0.0039 (11)0.0215 (10)0.0032 (11)
Geometric parameters (Å, º) top
S1—C21.724 (2)C6—C111.411 (3)
S1—C11.778 (2)C7—C81.378 (3)
S2—C31.755 (2)C7—H70.9500
S2—C11.758 (2)C8—C91.395 (3)
O1—C11.212 (3)C8—H80.9500
O2—C51.232 (3)C9—C101.371 (3)
N1—C51.370 (3)C9—H90.9500
N1—C61.392 (3)C10—C111.403 (3)
N1—C121.475 (3)C10—H100.9500
N2—C41.296 (3)C12—C131.519 (3)
N2—C111.374 (3)C12—H12A0.9900
C2—C31.341 (3)C12—H12B0.9900
C2—H20.95 (2)C13—H13A0.9800
C3—C41.465 (3)C13—H13B0.9800
C4—C51.483 (3)C13—H13C0.9800
C6—C71.399 (3)
C2—S1—C196.00 (11)C6—C7—H7120.1
C3—S2—C195.93 (11)C7—C8—C9121.1 (2)
C5—N1—C6122.51 (18)C7—C8—H8119.4
C5—N1—C12117.57 (17)C9—C8—H8119.4
C6—N1—C12119.91 (18)C10—C9—C8119.9 (2)
C4—N2—C11119.18 (18)C10—C9—H9120.1
O1—C1—S2123.50 (19)C8—C9—H9120.1
O1—C1—S1123.48 (19)C9—C10—C11120.2 (2)
S2—C1—S1113.02 (13)C9—C10—H10119.9
C3—C2—S1118.16 (17)C11—C10—H10119.9
C3—C2—H2124.3 (15)N2—C11—C10118.85 (19)
S1—C2—H2117.4 (15)N2—C11—C6121.32 (19)
C2—C3—C4129.5 (2)C10—C11—C6119.8 (2)
C2—C3—S2116.86 (17)N1—C12—C13112.79 (18)
C4—C3—S2113.64 (15)N1—C12—H12A109.0
N2—C4—C3115.80 (19)C13—C12—H12A109.0
N2—C4—C5124.1 (2)N1—C12—H12B109.0
C3—C4—C5120.11 (19)C13—C12—H12B109.0
O2—C5—N1121.94 (19)H12A—C12—H12B107.8
O2—C5—C4123.6 (2)C12—C13—H13A109.5
N1—C5—C4114.42 (18)C12—C13—H13B109.5
N1—C6—C7122.65 (19)H13A—C13—H13B109.5
N1—C6—C11118.2 (2)C12—C13—H13C109.5
C7—C6—C11119.16 (19)H13A—C13—H13C109.5
C8—C7—C6119.8 (2)H13B—C13—H13C109.5
C8—C7—H7120.1
C3—S2—C1—O1178.3 (2)N2—C4—C5—N14.3 (3)
C3—S2—C1—S11.57 (15)C3—C4—C5—N1174.71 (18)
C2—S1—C1—O1179.1 (2)C5—N1—C6—C7175.2 (2)
C2—S1—C1—S20.82 (15)C12—N1—C6—C73.6 (3)
C1—S1—C2—C30.6 (2)C5—N1—C6—C114.9 (3)
S1—C2—C3—C4176.09 (18)C12—N1—C6—C11176.29 (19)
S1—C2—C3—S21.9 (3)N1—C6—C7—C8178.9 (2)
C1—S2—C3—C22.1 (2)C11—C6—C7—C80.9 (3)
C1—S2—C3—C4176.21 (16)C6—C7—C8—C90.3 (3)
C11—N2—C4—C3178.92 (19)C7—C8—C9—C100.2 (4)
C11—N2—C4—C50.1 (3)C8—C9—C10—C110.0 (3)
C2—C3—C4—N2178.4 (2)C4—N2—C11—C10179.0 (2)
S2—C3—C4—N20.4 (3)C4—N2—C11—C61.9 (3)
C2—C3—C4—C50.7 (4)C9—C10—C11—N2179.8 (2)
S2—C3—C4—C5178.67 (16)C9—C10—C11—C60.7 (3)
C6—N1—C5—O2174.7 (2)N1—C6—C11—N20.3 (3)
C12—N1—C5—O24.1 (3)C7—C6—C11—N2179.8 (2)
C6—N1—C5—C46.6 (3)N1—C6—C11—C10178.7 (2)
C12—N1—C5—C4174.59 (18)C7—C6—C11—C101.2 (3)
N2—C4—C5—O2177.0 (2)C5—N1—C12—C1396.3 (2)
C3—C4—C5—O24.0 (3)C6—N1—C12—C1382.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O20.95 (2)2.30 (3)2.859 (3)117.2 (19)
C2—H2···O2i0.95 (2)2.44 (2)3.133 (3)129 (2)
C7—H7···O1ii0.952.513.272 (3)138
C9—H9···S2iii0.952.993.652 (3)128
C12—H12A···O2iv0.992.693.367 (3)126
Symmetry codes: (i) x, y+2, z+1; (ii) x, y+1, z+1/2; (iii) x+1/2, y+1/2, z+1; (iv) x, y1, z.
 

Acknowledgements

Generous financial support from the European Research Council (project MocoModels) is gratefully acknowledged.

Funding information

Funding for this research was provided by: FP7 Ideas: European Research Council (grant No. 281257 to Carola Schulzke).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G., Taylor, R. & Wilson, A. J. C. (1995). International Tables for Crystallography, Vol. C. Boston: Kluwer Academic Publishers.  Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationFerraris, J., Cowan, D. O., Walatka, V. & Perlstein, J. H. (1973). J. Am. Chem. Soc. 95, 948–949.  CrossRef CAS Web of Science Google Scholar
First citationGhosh, A. C., Weisz, K. & Schulzke, C. (2016). Eur. J. Inorg. Chem. pp. 208–218.  Web of Science CrossRef Google Scholar
First citationJohnson, J. L., Hainline, B. E. & Rajagopalan, K. V. (1980). J. Biol. Chem. 255, 1783–1786.  Google Scholar
First citationJohnson, J. L. & Rajagopalan, K. V. (1982). Proc. Natl Acad. Sci. USA, 79, 6856–6860.  CrossRef Web of Science Google Scholar
First citationKramer, S. P., Johnson, J. L., Ribeiro, A. A., Millington, D. S. & Rajagopalan, K. V. (1987). J. Biol. Chem. 262, 16357–16363.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMamedov, V. A., Kalinin, A. A., Gubaidullin, A. T., Isaikina, O. G. & Litvinov, I. A. (2005). Russ. J. Org. Chem. 41, 599–606.  Web of Science CrossRef Google Scholar
First citationSchrauzer, G. N. & Mayweg, V. (1962). J. Am. Chem. Soc. 84, 3221–3221.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. (2013). CIFTAB. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShi, L. L., Hu, W., Wu, J. F., Zhou, H. Y., Zhou, H. & Li, X. (2018). Mini Rev. Med. Chem. 18, 392–413.  Web of Science CrossRef Google Scholar
First citationStoe & Cie (2010). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWang, K. & Stiefel, E. I. (2001). Science, 291, 106–109.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWudl, F., Wobschall, D. & Hufnagel, E. J. (1972). J. Am. Chem. Soc. 94, 670–672.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds