research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of di­ethyl {2,2,2-tri­chloro-1-[2-(1,3-dioxo-2,3-di­hydro-1H-isoindol-2-yl)-4-methyl­pentanamido]­eth­yl}phospho­nate

CROSSMARK_Color_square_no_text.svg

aInstitute of Bioorganic Chemistry and Petrochemistry, National Academy of, Sciences of Ukraine, 1 Murmanska St., Kyiv 02660, Ukraine, bInstitute of Organic Chemistry, National Academy of Sciences of Ukraine, 5, Murmanska St., Kyiv 02660, Ukraine, and cDepartment of Chemistry, Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska Street, Kyiv 01601, Ukraine
*Correspondence e-mail: rusanova.j@gmail.com

Edited by A. J. Lough, University of Toronto, Canada (Received 7 May 2018; accepted 4 June 2018; online 8 June 2018)

In the title phospho­rylated compound, C20H26Cl3N2O6P, the phthalimide unit is essentially planar (r.m.s. deviation = 0.0129 Å) and the O atoms of this unit deviate from the mean plane by 0.080 (3) and 0.041 (3) Å. In the crystal, pairs of mol­ecules are linked by N—H⋯O and weak C—H⋯O hydrogen bonds involving the same acceptor atom, forming inversion dimers. In addition, ππ stacking inter­actions between the phthalimide groups, with a centroid–centroid distance of 3.7736 (13) Å, and further weak C—H⋯O hydrogen bonds connect the inversion dimers into columns along [0[\overline{1}]1].

1. Chemical context

In early 1950, J. W. Cornforth noted that oxazole derivatives rarely occur in nature and were therefore not promising as new biologically active substances. Studies performed mostly during recent decades have shown that the oxazole ring occurs in a multitude of natural products and it has been widely employed as a component of biologically active compounds in medicinal chemistry (Jin et al., 2006[Jin, Z. (2006). Nat. Prod. Rep. 23, 464-496.]). Various bacteria and marine organisms produce numerous anti­biotics belonging to the oxazole series (Chamberlin et al., 1977[Chamberlin, J. W. & Chen, S. J. (1977). J. Antibiot. 30, 197-201.]; Bertram et al., 2001[Bertram, A. & Pattenden, G. (2001). Synlett, pp. 1873-1874.]; Jansen et al.,1992[Jansen, R., Kunze, B., Reichenbach, H., Jurkiewicz, E., Hunsmann, G. & Höfle, G. (1992). Liebigs Ann. Chem. pp. 357-359.]; Moody & Bagley, 1998[Moody, C. J. & Bagley, M. C. (1998). J. Chem. Soc. Perkin Trans. 1, pp. 601-608.]). Today, numerous oxazole-based synthetic bioregulators with strong anti­microbial, cytostatic, immune stimulating, neuroleptic, analgesic, and other kinds of biological activity are known (Turchi et al., 1986[Turchi, I. J. (1986). Editor. Oxazoles. New York: Wiley.]; Palmer et al., 2003[Palmer, D. C. (2003). Oxazoles: Synthesis, Reactions, and Spectroscopy, Ed., Hoboken: Wiley, part A, p. 255.]). In particular, 5-amino-1,3-oxazole and its derivatives are well recognized for their potent and diverse bioregulation activity. Here we present the crystal structure of the title compound, which is an inter­mediate product of synthesis of phospho­rylated 5-amino-1,3-oxazol-4-yl­phospho­nic acid derivatives.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is illustrated in Fig. 1[link]. The phthalimide unit (N1/C1–C8) is essentially planar with an r.m.s. deviation of 0.0129 Å. The oxygen atoms O4 and O5 deviate from the mean plane by 0.080 (3) and 0.041 (3) Å, respectively. In the five-membered 3-pyrroline ring, the C—C bond lengths are equivalent [C1—C8 = 1.487 (3) and C2—C3 = 1.486 (3) Å] and the C—N bond lengths differ slightly [N1—C1 = 1.417 (3) and N1—C2 = 1.398 (3) Å], while the corresponding bond angles are not equal [C1—N1—C9 = 127.97 (18) and C2—N1—C9 = 120.53 (17)°] possibly due to the steric influence of the isobutyl group. The mean C—C bond length in the C3–C8 phenyl ring is 1.387 Å. All bond lengths and angles are within normal ranges (Ng, 1992[Ng, S. W. (1992). Acta Cryst. C48, 1694-1695.]; Feeder & Jones, 1996[Feeder, N. & Jones, W. (1996). Acta Cryst. C52, 1516-1520.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

In the acetamide moiety, the lone pair of atom N2 is conjugated with the π-system of the C=O group. Thus, the sum of nitro­gen valency angles is 359.3° and the C14—N2 bond length of 1.356 (3) Å is inter­mediate between that for a double and a single bond (1.28 and 1.45 Å, respectively; Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). The C15—N2 bond has a typical value for a single bond at 1.442 (3) Å.

The P—O distances in the phospho­nate group show typical values for double [P1=O3 1.4616 (15) Å] and single (with bridging O1 and O2) bonds. The P1—O1 and P1—O2 bonds are equivalent within experimental error with values of 1.5670 (15) and 1.5664 (16) Å, respectively. The C15—P1—O1 and C15—P1—O2 bond angles are equivalent [103.45 (9) and 102.73 (9)°, respectively], while angles O1—P1—O3 and O2—P1—O3 are not [109.82 (9) and 116.77 (9)°], which is probably due to mol­ecular packing effects.

The CCl3 group has typical values for the C—Cl distances (the mean C—Cl bond lengths is 1.773 Å). In general, all bonding parameters and the dimensions of the angles in the title complex are in good agreement with those encountered in related complexes (Bhatti et al., 2010[Bhatti, M. H., Yunus, U., Imtiaz-ud-Din, Shams-ul-Islam, S. & Wong, W.-Y. (2010). Acta Cryst. E66, o2969.]).

3. Supra­molecular features

In the crystal, pairs of mol­ecules are linked by N2—H1⋯O3i and C9—H9⋯O3i hydrogen bonds (Table 1[link], Fig. 2[link]) involving the same acceptor atom, forming inversion dimers. In addition, ππ stacking inter­actions between the C3–C8 benzene rings of the phthalimide units connect the dimers into columns along [0[\overline{1}]1] with a centroid–centroid distance of 3.7736 (13) Å for CgCg(2 − x, −y, 2 − z). Further weak C—H⋯O hydrogen bonds occur within these columns (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1⋯O3i 0.76 (2) 2.09 (2) 2.846 (3) 170 (2)
C9—H9⋯O3i 1.00 2.47 3.265 (3) 136
C7—H7⋯O6ii 0.95 2.46 3.393 (3) 169
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y, -z+2.
[Figure 2]
Figure 2
An inversion pair of the title compound, showing the inter­molecular N—H⋯O and C—H⋯O hydrogen bonds [symmetry code: (A) 1 − x, 1 − y, 1 − z].
[Figure 3]
Figure 3
The crystal packing of the title compound viewed along the a axis. Inter­molecular N—H⋯O and C—H⋯O hydrogen bonds are shown as dashed lines. Only selected H atoms are shown.

4. Database survey

A search of the Cambridge Structural Database (Version 5.38; last update November 2016; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for related compounds with a phthalimide fragment gave 77 hits including the closely related structures of the 2-[2-(1,3-dioxoisoindolin-2-yl)-acetamido]­acetic acid, (S)-4-fluoro-N-methyl-2-(1,3-dioxoisoindolin-2-yl)pent-4-enamide di­chloro­methane solvate and (S)-4-carbamoyl-4-(1,3-dioxoisoindolin-2-yl)butanoic acid (Bhatti et al., 2010[Bhatti, M. H., Yunus, U., Imtiaz-ud-Din, Shams-ul-Islam, S. & Wong, W.-Y. (2010). Acta Cryst. E66, o2969.]; Shendage et al., 2004[Shendage, D. M., Fröhlich, R. & Haufe, G. (2004). Org. Lett. 6, 3675-3678.]; Otogawa et al., 2015[Otogawa, K., Ishikawa, K., Shiro, M. & Asahi, T. (2015). Acta Cryst. E71, 107-109.]). All bond lengths and angles in these related compounds are similar to those in the title compound. Differences in the values of the O—P—O bond angles in the phospho­nate group and C—N—C angles around the pthalimide nitro­gen appear to be due to mol­ecular packing and steric effects.

5. Synthesis and crystallization

The general procedure for the preparation of the title compound was previously described by Lukashuk et al. (2015[Lukashuk, O. I., Abdurakhmanova, E. R., Kondratyuk, K. M., Golovchenko, O. V., Khokhlov, K. V., Brovarets, V. S. & Kukhar, V. P. (2015). RSC Adv. 5, 11198-11206.]). A mixture of 2-(1,3-dioxo-2,3-di­hydro-1H-isoindol-2-yl)-3-methyl-N-(1,2,2,2-tetra­chlo­roeth­yl)butanamide (0.14 mol), triethyl phosphite (30 mL, 0.17 mol), and dry dioxane (150 mL) was refluxed for 3 h. Colourless crystals suitable for single-crystal X-ray analysis were formed after slowly cooling to room temperature. The analytically pure title compound was obtained by solvent evaporation under reduced pressure to dryness (yield 58.84 g, 80% as a yellow oil). Analysis calculated for C19H26Cl3N2O6P: C, 44.42; H, 4.71; Cl, 20.70; N, 5.45; P, 6.03%; found: C, 44.55; H, 4.86; Cl, 20.82; N, 5.53; P, 6.19%.

The NMR spectra [1H (500 MHz), 31P (202 MHz), 13C (125 MHz); s, singlet; br, broad; d, doublet; m, multiplet] were obtained on a Bruker Avance DRX-500 instrument in a solution of DMSO-d6, relative to inter­nal TMS or external 85% pho­spho­ric acid. 1H NMR: 9.32 (½H, d, J = 9.3 Hz, NH), 9.22 (½H, d, J = 9.3 Hz, NH), 7.92–7.88 (4H, m, aromatic), 5.29–5.21 (1H, m, CHP), 4.68–4.61 (1H, m, CH), 4.10–4.00 (4H, m, 2OCH2CH3), 2.97–2.90 (1H, m, CH), 1.22–1.15 (6H, m, 2OCH2CH3), 1.11–1.05 (3H, m, CH3), 0.88–0.79 (3H, m, CH3). 13C NMR: 168.61 (d, J = 4.5 Hz, C=O), 167.41 (d, J = 4.5 Hz, C=O), 134.41, 134.36, 130.55, 130.53, 122.85, 122.80 (aromatic), 96.21 (d, J = 14.5 Hz, CCl3), 96.06 (d, J = 14.5 Hz, CCl3), 62.30 (d, J = 6.5 Hz, OCH2CH3), 62.07 (d, J = 6.5 Hz, OCH2CH3), 60.31 (d, J = 158.8 Hz, CP), 60.26 (d, J = 158.6 Hz, CP), 59.31, 59.22 (CH), 25.92, 25.84 (CH), 18.55, 18.50 (CH3), 18.49, 18.36 (CH3), 14.97 (d, J = 6.0 Hz, OCH2CH3), 14.86 (d, J = 6.0 Hz, OCH2CH3). 31P NMR: 14.4. 14.2.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All C—H hydrogen atoms were placed in calculated positions (C—H = 0.98–1.00Å) and refined in the riding-model approximation with Uiso(H) = 1.2–1.5Ueq(H). The H atom bonded to atom N2 was located in a difference-Fourier map and refined isotropically.

Table 2
Experimental details

Crystal data
Chemical formula C20H26Cl3N2O6P
Mr 527.75
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 173
a, b, c (Å) 8.4601 (2), 10.9425 (3), 13.5321 (4)
α, β, γ (°) 78.188 (2), 88.644 (2), 75.442 (2)
V3) 1186.32 (6)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.49
Crystal size (mm) 0.24 × 0.19 × 0.08
 
Data collection
Diffractometer Bruker SMART APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.87, 0.96
No. of measured, independent and observed [I > 2σ(I)] reflections 16619, 4423, 3306
Rint 0.052
(sin θ/λ)max−1) 0.606
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.090, 1.08
No. of reflections 4423
No. of parameters 293
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.37, −0.44
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Diethyl {2,2,2-trichloro-1-[2-(1,3-dioxo-2,3-dihydro-1H-isoindol-2-yl)-4-methylpentanamido]ethyl}phosphonate top
Crystal data top
C20H26Cl3N2O6PZ = 2
Mr = 527.75F(000) = 548
Triclinic, P1Dx = 1.477 Mg m3
a = 8.4601 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.9425 (3) ÅCell parameters from 2780 reflections
c = 13.5321 (4) Åθ = 3.4–45.8°
α = 78.188 (2)°µ = 0.49 mm1
β = 88.644 (2)°T = 173 K
γ = 75.442 (2)°Plate, colourless
V = 1186.32 (6) Å30.24 × 0.19 × 0.08 mm
Data collection top
Bruker SMART APEXII
diffractometer
4423 independent reflections
Radiation source: sealed tube3306 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
φ and ω scansθmax = 25.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 109
Tmin = 0.87, Tmax = 0.96k = 1313
16619 measured reflectionsl = 1616
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.0373P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.007
4423 reflectionsΔρmax = 0.37 e Å3
293 parametersΔρmin = 0.44 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.38432 (7)0.33488 (6)0.45621 (4)0.01836 (15)
CL10.79937 (8)0.30683 (7)0.43532 (5)0.0447 (2)
CL20.85600 (7)0.07099 (6)0.58507 (4)0.03428 (18)
CL30.69011 (8)0.09144 (7)0.39715 (5)0.0491 (2)
O10.24551 (17)0.37482 (14)0.53081 (11)0.0219 (4)
O20.33202 (19)0.24320 (15)0.39667 (11)0.0267 (4)
O30.42397 (18)0.45000 (14)0.39643 (11)0.0247 (4)
O40.44032 (19)0.15069 (15)0.97521 (11)0.0257 (4)
O50.86366 (19)0.32359 (16)0.85338 (12)0.0310 (4)
O60.54932 (19)0.11923 (15)0.74528 (11)0.0262 (4)
N10.6311 (2)0.25003 (17)0.88866 (13)0.0187 (4)
N20.5722 (2)0.2870 (2)0.62148 (13)0.0182 (4)
C10.5759 (3)0.1669 (2)0.96882 (16)0.0203 (5)
C20.7905 (3)0.2556 (2)0.90771 (16)0.0215 (5)
C30.8451 (3)0.1656 (2)1.00570 (15)0.0194 (5)
C40.9935 (3)0.1328 (2)1.05637 (16)0.0232 (5)
H41.0801140.1700251.0307000.028*
C51.0114 (3)0.0426 (2)1.14710 (17)0.0275 (6)
H51.1121120.0171871.1844240.033*
C60.8833 (3)0.0105 (2)1.18346 (17)0.0275 (6)
H60.8986320.0716691.2455610.033*
C70.7331 (3)0.0230 (2)1.13198 (16)0.0248 (6)
H70.6459300.0134981.1575080.030*
C80.7172 (3)0.1123 (2)1.04154 (15)0.0184 (5)
C90.5453 (3)0.3201 (2)0.79368 (15)0.0188 (5)
H90.5999300.3897700.7638160.023*
C100.3643 (3)0.3834 (2)0.80426 (16)0.0219 (5)
H10A0.3200620.4364840.7377460.026*
H10B0.3055810.3145220.8219810.026*
C110.3267 (3)0.4684 (2)0.88262 (17)0.0252 (6)
H110.3610310.4123800.9506730.030*
C120.4201 (3)0.5725 (2)0.86449 (19)0.0360 (7)
H12A0.5375360.5322290.8649700.054*
H12B0.3860460.6300240.7988510.054*
H12C0.3968860.6223020.9179670.054*
C130.1436 (3)0.5270 (3)0.8824 (2)0.0418 (7)
H13A0.0863900.4580130.8942460.063*
H13B0.1186190.5765310.9360240.063*
H13C0.1077790.5842530.8169080.063*
C140.5585 (3)0.2307 (2)0.71927 (15)0.0180 (5)
C150.5510 (3)0.2253 (2)0.54002 (15)0.0178 (5)
H150.5123420.1470680.5705480.021*
C160.7154 (3)0.1776 (2)0.49071 (16)0.0269 (6)
C170.1635 (3)0.2852 (2)0.59219 (18)0.0275 (6)
H17A0.2386700.2266290.6465350.033*
H17B0.1277080.2324920.5500830.033*
C180.0190 (3)0.3634 (2)0.63664 (18)0.0342 (6)
H18A0.0391380.3056050.6786120.051*
H18B0.0559670.4149750.6782340.051*
H18C0.0545380.4208140.5821810.051*
C190.2312 (3)0.2932 (3)0.30282 (19)0.0380 (7)
H19A0.2275780.3854150.2776410.046*
H19B0.1181850.2854060.3159250.046*
C200.3037 (3)0.2176 (3)0.22655 (19)0.0418 (7)
H20A0.2376770.2499700.1637080.063*
H20B0.4152640.2262440.2136260.063*
H20C0.3062070.1265420.2517930.063*
H10.577 (3)0.357 (2)0.6099 (17)0.017 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0179 (3)0.0187 (3)0.0166 (3)0.0024 (3)0.0006 (2)0.0022 (2)
CL10.0242 (4)0.0651 (5)0.0359 (4)0.0130 (3)0.0039 (3)0.0116 (3)
CL20.0240 (3)0.0416 (4)0.0269 (3)0.0092 (3)0.0043 (2)0.0045 (3)
CL30.0398 (4)0.0655 (5)0.0372 (4)0.0148 (4)0.0066 (3)0.0338 (4)
O10.0190 (8)0.0186 (9)0.0250 (8)0.0024 (7)0.0047 (7)0.0012 (7)
O20.0290 (9)0.0254 (9)0.0255 (9)0.0042 (8)0.0092 (7)0.0071 (7)
O30.0270 (9)0.0225 (9)0.0217 (8)0.0073 (8)0.0016 (7)0.0035 (7)
O40.0248 (10)0.0273 (10)0.0250 (9)0.0107 (8)0.0007 (7)0.0001 (7)
O50.0290 (10)0.0377 (11)0.0250 (9)0.0150 (9)0.0010 (7)0.0046 (8)
O60.0407 (11)0.0176 (9)0.0199 (8)0.0081 (8)0.0048 (7)0.0024 (7)
N10.0197 (10)0.0210 (11)0.0146 (9)0.0060 (9)0.0013 (7)0.0007 (8)
N20.0240 (11)0.0159 (12)0.0146 (10)0.0062 (10)0.0001 (8)0.0015 (8)
C10.0270 (14)0.0144 (12)0.0200 (12)0.0052 (11)0.0004 (10)0.0044 (10)
C20.0240 (13)0.0225 (13)0.0191 (12)0.0061 (11)0.0027 (10)0.0061 (10)
C30.0249 (13)0.0168 (12)0.0172 (11)0.0051 (11)0.0020 (9)0.0057 (9)
C40.0241 (13)0.0225 (13)0.0246 (13)0.0064 (11)0.0021 (10)0.0072 (10)
C50.0293 (14)0.0254 (14)0.0262 (13)0.0015 (12)0.0088 (11)0.0070 (11)
C60.0384 (15)0.0223 (14)0.0179 (12)0.0038 (12)0.0045 (11)0.0003 (10)
C70.0318 (14)0.0239 (14)0.0199 (12)0.0100 (11)0.0031 (10)0.0041 (10)
C80.0237 (13)0.0161 (12)0.0154 (11)0.0045 (10)0.0007 (9)0.0036 (9)
C90.0248 (13)0.0175 (12)0.0128 (11)0.0055 (10)0.0022 (9)0.0008 (9)
C100.0226 (13)0.0207 (13)0.0210 (12)0.0023 (10)0.0027 (9)0.0042 (10)
C110.0324 (14)0.0224 (14)0.0197 (12)0.0042 (12)0.0003 (10)0.0054 (10)
C120.0431 (17)0.0289 (15)0.0406 (16)0.0090 (13)0.0021 (13)0.0177 (12)
C130.0337 (16)0.0431 (17)0.0513 (18)0.0047 (14)0.0105 (13)0.0228 (14)
C140.0166 (12)0.0189 (13)0.0170 (11)0.0032 (10)0.0007 (9)0.0016 (10)
C150.0194 (12)0.0176 (12)0.0158 (11)0.0036 (10)0.0005 (9)0.0037 (9)
C160.0218 (13)0.0369 (15)0.0180 (12)0.0002 (11)0.0011 (10)0.0056 (11)
C170.0210 (13)0.0277 (14)0.0289 (13)0.0060 (11)0.0038 (10)0.0046 (11)
C180.0225 (14)0.0422 (17)0.0309 (14)0.0018 (12)0.0076 (11)0.0004 (12)
C190.0327 (15)0.0481 (18)0.0337 (15)0.0071 (13)0.0117 (12)0.0123 (13)
C200.0566 (19)0.0424 (18)0.0311 (15)0.0186 (15)0.0055 (13)0.0096 (13)
Geometric parameters (Å, º) top
P1—O31.4616 (15)C9—C141.526 (3)
P1—O21.5564 (16)C9—C101.531 (3)
P1—O11.5670 (15)C9—H91.0000
P1—C151.839 (2)C10—C111.526 (3)
CL1—C161.764 (3)C10—H10A0.9900
CL2—C161.780 (2)C10—H10B0.9900
CL3—C161.772 (2)C11—C121.520 (3)
O1—C171.454 (3)C11—C131.520 (3)
O2—C191.474 (3)C11—H111.0000
O4—C11.202 (3)C12—H12A0.9800
O5—C21.209 (3)C12—H12B0.9800
O6—C141.220 (2)C12—H12C0.9800
N1—C21.398 (3)C13—H13A0.9800
N1—C11.417 (3)C13—H13B0.9800
N1—C91.459 (2)C13—H13C0.9800
N2—C141.356 (3)C15—C161.545 (3)
N2—C151.442 (3)C15—H151.0000
N2—H10.76 (2)C17—C181.496 (3)
C1—C81.487 (3)C17—H17A0.9900
C2—C31.486 (3)C17—H17B0.9900
C3—C41.374 (3)C18—H18A0.9800
C3—C81.387 (3)C18—H18B0.9800
C4—C51.394 (3)C18—H18C0.9800
C4—H40.9500C19—C201.480 (4)
C5—C61.389 (3)C19—H19A0.9900
C5—H50.9500C19—H19B0.9900
C6—C71.392 (3)C20—H20A0.9800
C6—H60.9500C20—H20B0.9800
C7—C81.387 (3)C20—H20C0.9800
C7—H70.9500
O3—P1—O2116.77 (9)C13—C11—H11108.1
O3—P1—O1109.82 (9)C10—C11—H11108.1
O2—P1—O1107.96 (9)C11—C12—H12A109.5
O3—P1—C15115.02 (10)C11—C12—H12B109.5
O2—P1—C15102.73 (9)H12A—C12—H12B109.5
O1—P1—C15103.45 (9)C11—C12—H12C109.5
C17—O1—P1123.88 (14)H12A—C12—H12C109.5
C19—O2—P1121.74 (15)H12B—C12—H12C109.5
C2—N1—C1111.45 (18)C11—C13—H13A109.5
C2—N1—C9120.53 (17)C11—C13—H13B109.5
C1—N1—C9127.97 (18)H13A—C13—H13B109.5
C14—N2—C15121.5 (2)C11—C13—H13C109.5
C14—N2—H1118.0 (17)H13A—C13—H13C109.5
C15—N2—H1119.8 (17)H13B—C13—H13C109.5
O4—C1—N1125.4 (2)O6—C14—N2122.8 (2)
O4—C1—C8129.3 (2)O6—C14—C9122.46 (19)
N1—C1—C8105.22 (18)N2—C14—C9114.63 (19)
O5—C2—N1124.7 (2)N2—C15—C16111.14 (18)
O5—C2—C3128.9 (2)N2—C15—P1107.70 (14)
N1—C2—C3106.43 (19)C16—C15—P1116.87 (14)
C4—C3—C8122.5 (2)N2—C15—H15106.9
C4—C3—C2129.6 (2)C16—C15—H15106.9
C8—C3—C2107.91 (19)P1—C15—H15106.9
C3—C4—C5117.0 (2)C15—C16—CL1111.57 (16)
C3—C4—H4121.5C15—C16—CL3110.61 (16)
C5—C4—H4121.5CL1—C16—CL3109.04 (12)
C6—C5—C4120.6 (2)C15—C16—CL2108.95 (14)
C6—C5—H5119.7CL1—C16—CL2108.53 (13)
C4—C5—H5119.7CL3—C16—CL2108.04 (13)
C5—C6—C7122.2 (2)O1—C17—C18107.44 (19)
C5—C6—H6118.9O1—C17—H17A110.2
C7—C6—H6118.9C18—C17—H17A110.2
C8—C7—C6116.6 (2)O1—C17—H17B110.2
C8—C7—H7121.7C18—C17—H17B110.2
C6—C7—H7121.7H17A—C17—H17B108.5
C7—C8—C3121.0 (2)C17—C18—H18A109.5
C7—C8—C1130.0 (2)C17—C18—H18B109.5
C3—C8—C1108.93 (18)H18A—C18—H18B109.5
N1—C9—C14110.41 (17)C17—C18—H18C109.5
N1—C9—C10114.38 (17)H18A—C18—H18C109.5
C14—C9—C10108.24 (17)H18B—C18—H18C109.5
N1—C9—H9107.9O2—C19—C20108.7 (2)
C14—C9—H9107.9O2—C19—H19A109.9
C10—C9—H9107.9C20—C19—H19A109.9
C11—C10—C9115.53 (18)O2—C19—H19B109.9
C11—C10—H10A108.4C20—C19—H19B109.9
C9—C10—H10A108.4H19A—C19—H19B108.3
C11—C10—H10B108.4C19—C20—H20A109.5
C9—C10—H10B108.4C19—C20—H20B109.5
H10A—C10—H10B107.5H20A—C20—H20B109.5
C12—C11—C13111.1 (2)C19—C20—H20C109.5
C12—C11—C10111.88 (19)H20A—C20—H20C109.5
C13—C11—C10109.45 (19)H20B—C20—H20C109.5
C12—C11—H11108.1
O3—P1—O1—C17172.13 (16)N1—C1—C8—C31.9 (2)
O2—P1—O1—C1743.80 (18)C2—N1—C9—C1497.2 (2)
C15—P1—O1—C1764.61 (18)C1—N1—C9—C1479.8 (3)
O3—P1—O2—C1937.1 (2)C2—N1—C9—C10140.4 (2)
O1—P1—O2—C1987.18 (18)C1—N1—C9—C1042.6 (3)
C15—P1—O2—C19163.92 (17)N1—C9—C10—C1151.7 (3)
C2—N1—C1—O4174.9 (2)C14—C9—C10—C11175.29 (19)
C9—N1—C1—O47.8 (4)C9—C10—C11—C1254.9 (3)
C2—N1—C1—C82.6 (2)C9—C10—C11—C13178.5 (2)
C9—N1—C1—C8174.64 (19)C15—N2—C14—O69.9 (3)
C1—N1—C2—O5176.7 (2)C15—N2—C14—C9166.63 (18)
C9—N1—C2—O55.8 (3)N1—C9—C14—O639.6 (3)
C1—N1—C2—C32.2 (2)C10—C9—C14—O686.3 (2)
C9—N1—C2—C3175.22 (17)N1—C9—C14—N2143.88 (19)
O5—C2—C3—C43.4 (4)C10—C9—C14—N290.2 (2)
N1—C2—C3—C4177.7 (2)C14—N2—C15—C16108.9 (2)
O5—C2—C3—C8178.0 (2)C14—N2—C15—P1121.90 (19)
N1—C2—C3—C80.9 (2)O3—P1—C15—N271.35 (17)
C8—C3—C4—C50.2 (3)O2—P1—C15—N2160.69 (14)
C2—C3—C4—C5178.7 (2)O1—P1—C15—N248.41 (16)
C3—C4—C5—C60.1 (3)O3—P1—C15—C1654.52 (19)
C4—C5—C6—C70.1 (4)O2—P1—C15—C1673.43 (18)
C5—C6—C7—C80.3 (3)O1—P1—C15—C16174.29 (16)
C6—C7—C8—C30.6 (3)N2—C15—C16—CL162.8 (2)
C6—C7—C8—C1179.4 (2)P1—C15—C16—CL161.4 (2)
C4—C3—C8—C70.6 (3)N2—C15—C16—CL3175.64 (15)
C2—C3—C8—C7179.4 (2)P1—C15—C16—CL360.2 (2)
C4—C3—C8—C1179.39 (19)N2—C15—C16—CL257.0 (2)
C2—C3—C8—C10.6 (2)P1—C15—C16—CL2178.83 (11)
O4—C1—C8—C74.5 (4)P1—O1—C17—C18169.00 (15)
N1—C1—C8—C7178.1 (2)P1—O2—C19—C20133.89 (19)
O4—C1—C8—C3175.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···O3i0.76 (2)2.09 (2)2.846 (3)170 (2)
C9—H9···O3i1.002.473.265 (3)136
C7—H7···O6ii0.952.463.393 (3)169
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+2.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CSD CrossRef Web of Science Google Scholar
First citationBertram, A. & Pattenden, G. (2001). Synlett, pp. 1873–1874.  CrossRef Google Scholar
First citationBhatti, M. H., Yunus, U., Imtiaz-ud-Din, Shams-ul-Islam, S. & Wong, W.-Y. (2010). Acta Cryst. E66, o2969.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChamberlin, J. W. & Chen, S. J. (1977). J. Antibiot. 30, 197–201.  CrossRef Web of Science Google Scholar
First citationFeeder, N. & Jones, W. (1996). Acta Cryst. C52, 1516–1520.  CrossRef Web of Science IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJansen, R., Kunze, B., Reichenbach, H., Jurkiewicz, E., Hunsmann, G. & Höfle, G. (1992). Liebigs Ann. Chem. pp. 357–359.  CrossRef Google Scholar
First citationJin, Z. (2006). Nat. Prod. Rep. 23, 464–496.  Web of Science CrossRef Google Scholar
First citationLukashuk, O. I., Abdurakhmanova, E. R., Kondratyuk, K. M., Golovchenko, O. V., Khokhlov, K. V., Brovarets, V. S. & Kukhar, V. P. (2015). RSC Adv. 5, 11198–11206.  Web of Science CrossRef Google Scholar
First citationMoody, C. J. & Bagley, M. C. (1998). J. Chem. Soc. Perkin Trans. 1, pp. 601–608.  Web of Science CrossRef Google Scholar
First citationNg, S. W. (1992). Acta Cryst. C48, 1694–1695.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOtogawa, K., Ishikawa, K., Shiro, M. & Asahi, T. (2015). Acta Cryst. E71, 107–109.  Web of Science CrossRef IUCr Journals Google Scholar
First citationPalmer, D. C. (2003). Oxazoles: Synthesis, Reactions, and Spectroscopy, Ed., Hoboken: Wiley, part A, p. 255.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShendage, D. M., Fröhlich, R. & Haufe, G. (2004). Org. Lett. 6, 3675–3678.  Web of Science CrossRef Google Scholar
First citationTurchi, I. J. (1986). Editor. Oxazoles. New York: Wiley.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds