research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of the tetra­meth­yl(pheneth­yl)cyclo­penta­dienylmolybdenumtri­carbonyl dimer

CROSSMARK_Color_square_no_text.svg

aVirginia Tech, Dept. of Chemistry 0212, Blacksburg, VA, 24060, USA
*Correspondence e-mail: jmerola@vt.edu

Edited by T. J. Prior, University of Hull, England (Received 13 June 2018; accepted 17 June 2018; online 26 June 2018)

The structure of the dimer bis­{tricarbon­yl[η5-tetra­meth­yl(pheneth­yl)cyclo­penta­dien­yl]molybdenum}(MoMo), [Mo2(C17H21)2(CO)6], at 102 K has triclinic (P[\overline{1}]) symmetry. The reaction between tetra­meth­yl(pheneth­yl)cyclo­penta­diene and molybdenum hexa­carbonyl in refluxing xylenes for 18 h led to a 56% yield of the dimer as a red solid. The asymmetric unit of the structure is the tetra­meth­yl(pheneth­yl)cyclo­penta­dienylmolybdenumtricarbonyl moiety and the entire dimeric mol­ecule is generated by inversion symmetry. The Mo—Mo bond length is 3.2773 (3) Å, a value slightly above the mean value for all [CpMo(CO)3]2 compounds listed in the CSD and slightly below the mean for [Cp*Mo(CO)3]2 complexes.

1. Chemical context

Following the discovery of ferrocene in 1951 (Werner, 2012[Werner, H. (2012). Angew. Chem. Int. Ed. 51, 6052-6058.]), the cyclo­penta­dienyl (Cp) ligand became ubiquitous in studies of sandwich and half-sandwich compounds. As a result of the high reactivity of the C—H bond in the cyclo­penta­dienyl ligand in some circumstances, penta­methyl­cyclo­penta­dienyl (Cp*) soon became a common replacement for Cp. In recent years, researchers have begun investigating Cp-type ligands with mixed substitution of the ring. The cyclo­penta­dienyl ligand ranges from unsubstituted, Cp, monomethyl substituted, Cp', other non-fully substituted, CpR, and fully methyl­ated, Cp*. The most systematically studied ring substitution is the tetra­meth­yl(R)cyclo­penta­dienyl (Cp*R) ligand where R represents any group other than methyl.

[Scheme 1]

Our group (DuChane et al., 2018[DuChane, C. M., Brown, L. C., Dozier, V. S. & Merola, J. S. (2018). Organometallics, 37, 530-538.]; Brown et al.,2016[Brown, L. C., Ressegue, E. & Merola, J. S. (2016). Organometallics, 35, 4014-4022.]) and others (Piou et al., 2017[Piou, T., Romanov-Michailidis, F., Romanova-Michaelides, M., Jackson, K. E., Semakul, N., Taggart, T. D., Newell, B. S., Rithner, C. D., Paton, R. S. & Rovis, T. (2017). J. Am. Chem. Soc. 139, 1296-1310.]) have examined various Cp*R ligands in rhodium and iridium chemistry. Perhaps one of the more intriguing of the metal systems studied with Cp, CpR, Cp*, and Cp*R ligands is that of molybdenum hexa­carbonyl. Reaction between Cp ligands and Mo(CO)6 leads to the formation of the dinuclear [CpMo(CO)3] types of complexes. Reaction between Cp*R ligands and Mo(CO)6 has been studied systematically in various laboratories, including reports on the structures of a variety of [Cp*RMo(CO)3]2 compounds. In this report, we add to the structural descriptions of the range of [Cp*RMo(CO)3]2 compounds with the addition of the complex with R = phenethyl (Fig. 1[link]).

[Figure 1]
Figure 1
The asymmetric unit of the title compound, showing the labeling scheme. The displacement ellipsoids are shown at the 70% probability level.

2. Structural commentary

The η5-tetra­methy(pheneth­yl)lcylo­penta­dienylmolyb­denum­tricarbonyl dimer (Fig. 2[link]) crystallizes in space group P[\overline{1}] with the η5-tetra­meth­yl(pheneth­yl)cyclo­penta­dienylmolybdenum­tri­carb­onyl moiety being the asymmetric unit and with the entire dimer being generated by an inversion center. The Cp*R ligands are in a transoid arrangement about the Mo—Mo bond with that bond being 3.2773 (3) Å in length. The disposition of the phenethyl groups on the Cp*R rings can best be described by measuring the torsion angle made by the two Mo atoms, the C atom on the ring to which the phenethyl group is attached and the attaching C atom of the phenethyl group (Mo1i—Mo1—C5—C10). For the title compound, this angle is 119.59 (10)°.

[Figure 2]
Figure 2
The complete mol­ecular unit of the title compound. The displacement ellipsoids are shown at the 70% probability level. Hydrogen atoms are omitted for clarity. Symmetry code: (i) 2 − x, 1 − y, 1 − z.

Other structural features of note are the Mo—C—O angles. Two of the CO ligands of the dimer point away from the Mo—Mo bond and are close to linearity with an Mo—C2—O2 (Mo′—C2′—O2′) angle of 176.27 (14)°. The four CO ligands that point over the Mo—Mo bond have angles of 167.87 (14)° and 171.42 (14)°. Further commentary on these values can be found in the Database survey section.

3. Database survey

There are a number of molybdenum tricarbonyl dimers in the CSD database (Version 5.39, last update May 2018: Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) with cyclo­penta­dienyl and substituted cyclo­penta­dienyl ligands. The database was searched using the program Conquest (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]) and the data was analyzed with the program Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]). The structure of the completely methyl­ated [Cp*Mo(CO)3]2 complex was first determined by Clegg and co-workers (GAVKUJ; Clegg et al., 1988[Clegg, W., Compton, N. A., Errington, R. J. & Norman, N. C. (1988). Acta Cryst. C44, 568-570.]). Examining all types of cyclo­penta­dienyl ligands (Cp, CpR, Cp* and Cp*R, along with other unique substitution patterns), the mean Mo—Mo distance is 3.252 Å, ranging from a low of 3.211 to a high of 3.307 Å. The low end of the scale is comprised of unsubstituted or singly substituted Cp ligands and the high end of Cp* and Cp*R ligands. For this latter group, the Mo—Mo distances range from a minimum of 3.256 Å to a maximum of 3.307 Å with a mean distance of 3.286 Å. Within this range, the title compound is at the lower end, slightly below the average. The most extensive series of [Cp*RMo(CO)3]2 compounds were made and structurally characterized in the laboratories of Lin and co-workers. These include R = ethyl, propyl, butyl and cyclo­hexyl (LEXROX, GEVBAM, LALNAP, LEXFUR; Ma et al., 2013[Ma, Z., Wang, N., Guo, K., Zheng, X. & Lin, J. (2013). Inorg. Chim. Acta, 399, 126-130.], 2010[Ma, Z.-H., Zhao, M.-X., Lin, L.-Z., Han, Z.-H. & Lin, J. (2010). Chin. J. Inorg. Chem. 26, 1908-1911.]) as well as aryl and substituted-aryl substituents R = p-bromo­phenyl, p-tolyl and p-meth­oxy­phenyl (DUFKEW, HENKUZ, HENDIO; Dong et al., 2015[Dong, F., Zhi-Hong, M., Su-Zhen, L., Zhan-Gang, H., Zheng, X.-Z. & Lin, J. (2015). Chin. J. Inorg. Chem. 31, 198-204.]; Ma et al., 2013[Ma, Z., Wang, N., Guo, K., Zheng, X. & Lin, J. (2013). Inorg. Chim. Acta, 399, 126-130.]) Complexes with the benzyl (TULLAO; Ma et al., 2009[Ma, Z.-H., Zhao, M.-X., Li, F., Liu, X.-H. & Lin, J. (2009). Chin. J. Inorg. Chem. 25, 1699-1702.]) and with the 2-pyridyl­methyl side chain (OGIHAP; Ma et al. 2015[Ma, Z.-H., Wang, H., Han, Z.-G., Zheng, X.-Z. & Lin, J. (2015). Chin. J. Struct. Chem. 34, 931-937.]) were also structurally characterized.

Nearly all of the relevant structures in the database have the transoid arrangement of the Cp rings across the Mo—Mo bond. An exception was found in the work of Gould, Barker and co-workers in which they found the cisoid isomer of [CpMo(CO)3]2 (CYPMOC01) as a minor product in their attempt to prepare a different Mo compound (Gould et al., 1988[Gould, R. O., Barker, J. & Kilner, M. (1988). Acta Cryst. C44, 461-463.]).

The Mo—C—O angles for all of the compounds in the database show the same pattern as for the title compound with the carbonyl ligands lying over the Mo—Mo bond, bent back from linearity by between 9 and 15°.

4. Supra­molecular features

The nature of the weak hydrogen bond, especially C—H⋯X hydrogen bonds, has garnered considerable inter­est over the last two decades given the cumulative influence that many such weak bonds can have on a crystal structure (Desiraju, 2002[Desiraju, G. R. (2002). Acc. Chem. Res. 35, 565-573.]). The distinction between C—H⋯O hydrogen bonds and simple van der Waals inter­actions, a matter (not an insignificant one) of analyzing bond distances and angles, will not be discussed here. However, there are quite a few short C—H⋯O inter­actions in the crystal of the title compound (Table 1[link]). The shortest ones are intramolecular interactions between H12C and O3i (H12Ci and O3) and between H10A and O2i (H10Ai and O2) viz. 2.47 and 2.54 Å, respectively). These are on the short end of H—O distances found in the literature, but deviate considerably from linearity. These inter­actions involve the oxygen atoms on the carbonyl ligands that point over the Mo—Mo bond. More importantly in terms of supra­molecular features, the short inter­molecular C—H⋯O distances are found between O1, the oxygen atom on the carbonyl ligand that points up and away from the Mo—Mo bond, and H12B on a neighboring mol­ecule at a distance of 2.62 Å (C—H⋯O angle 141°). The inter­action between the aromatic ring and a bound CO may be more important as it is closer to linear: C20—H20⋯O3iii (2.65 Å and 167°). These inter­molecular C—H⋯O inter­actions and others knit the dimers into bilayers that extend in the ab plane. The C—H⋯O inter­actions are confined to the middle of the bilayer; only van der Waals inter­action exist between the bilayers. Based on the literature, both the intermolecular and intramolecular C—H⋯O inter­actions appear to be on the stronger end of weak inter­actions. (Steiner & Desiraju, 1998[Steiner, T. & Desiraju, G. R. (1998). Chem. Commun. pp. 891-892.]; Taylor, 2016[Taylor, R. (2016). Cryst. Growth Des. 16, 4165-4168.]). Their classification as `hydrogen bonds' awaits more complete analysis of all compounds of this type.

Table 1
C—H⋯O interactions (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10A⋯O2i 0.98 2.54 3.277 (2) 132
C12—H12B⋯O1ii 0.98 2.62 3.432 (2) 141
C12—H12C⋯O3i 0.98 2.47 3.127 (2) 124
C20—H20⋯O3iii 0.95 2.65 3.579 (2) 167
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x, y-1, z; (iii) x-1, y-1, z.

5. Synthesis and crystallization

Under an atmosphere of pre-purified nitro­gen, 0.5892 g (2.60 mmol) of [2-(2,3,4,5-tetra­methyl­cyclo­penta-2,3-dien-l -yl)eth­yl]benzene and 0.6852 g (2.60 mmol) of molybdenum hexa­carbonyl were dissolved in 10 ml of xylenes and refluxed for 18 h. At the end of 18 h, xylenes were removed under reduced pressure and purified on a column of alumina using a 1:1 di­chloro­methane:hexa­nes solvent system. Following removal of solvents, 0.6096 g of the [Cp*RMo(CO)3]2, R = phenethyl, (55.8% yield) was isolated. The bulk material was shown to be the desired compound based on: NMR, 1H, 400 MHz, C6D6): δ 1.82 (s, 12H, 4 sets of CH3), 1.90 (s, 12H, 4 sets of CH3), 2.58–2.72 (m, SH, 4 sets of CH2), 7.04–7.26 (m, 10H, phen­yl) p.p.m. IR in CH2Cl2: υ = 1914 (st), 1898 (st) and 1856 (st) cm·1.

A portion of the product was dissolved in CH2Cl2 and the solvent was allowed to evaporate slowly, yielding crystals suitable for X-ray crystallography.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were included in calculated positions and treated as riding: C—H = 0.95–0.99 Å with Uiso(H) = 1.5Ueq(C-methyl) and 1.5Ueq(C) for other H atoms.

Table 2
Experimental details

Crystal data
Chemical formula [Mo2(C17H21)2(CO)6]
Mr 810.61
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 102
a, b, c (Å) 8.2123 (3), 8.7728 (3), 13.4788 (3)
α, β, γ (°) 91.005 (2), 96.975 (2), 115.515 (3)
V3) 867.24 (5)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.77
Crystal size (mm) 0.38 × 0.21 × 0.08
 
Data collection
Diffractometer Rigaku OD Xcalibur Eos Gemini ultra
Absorption correction Analytical [CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, UK.]), based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])]
Tmin, Tmax 0.680, 0.890
No. of measured, independent and observed [I > 2σ(I)] reflections 27828, 5873, 5362
Rint 0.044
(sin θ/λ)max−1) 0.754
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.058, 1.06
No. of reflections 5873
No. of parameters 221
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.53, −0.44
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, UK.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Bis{tricarbonyl[η5-tetramethyl(phenethyl)cyclopentadienyl]molybdenum}(MoMo) top
Crystal data top
[Mo2(C17H21)2(CO)6]Z = 1
Mr = 810.61F(000) = 414
Triclinic, P1Dx = 1.552 Mg m3
a = 8.2123 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.7728 (3) ÅCell parameters from 13703 reflections
c = 13.4788 (3) Åθ = 3.8–32.0°
α = 91.005 (2)°µ = 0.77 mm1
β = 96.975 (2)°T = 102 K
γ = 115.515 (3)°Irregular, red
V = 867.24 (5) Å30.38 × 0.21 × 0.08 mm
Data collection top
Rigaku OD Xcalibur Eos Gemini ultra
diffractometer
5873 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source5362 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
Detector resolution: 8.0061 pixels mm-1θmax = 32.4°, θmin = 3.8°
ω scansh = 1212
Absorption correction: analytical
[CrysAlis PRO (Rigaku OD, 2018), based on expressions derived by Clark & Reid (1995)]
k = 1212
Tmin = 0.680, Tmax = 0.890l = 2020
27828 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.058 w = 1/[σ2(Fo2) + (0.022P)2 + 0.3543P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
5873 reflectionsΔρmax = 0.53 e Å3
221 parametersΔρmin = 0.44 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.93816 (2)0.48286 (2)0.61194 (2)0.00956 (4)
O10.78895 (17)0.71295 (16)0.70709 (9)0.0220 (3)
O20.56781 (16)0.37365 (16)0.46973 (9)0.0222 (3)
O31.24069 (16)0.85014 (15)0.60601 (9)0.0204 (2)
C10.8417 (2)0.6281 (2)0.66857 (12)0.0147 (3)
C20.7106 (2)0.4198 (2)0.51564 (12)0.0151 (3)
C31.1275 (2)0.7122 (2)0.59670 (12)0.0145 (3)
C40.8288 (2)0.30540 (19)0.73685 (11)0.0130 (3)
C51.0051 (2)0.43723 (19)0.77681 (11)0.0130 (3)
C61.1381 (2)0.41714 (19)0.72621 (11)0.0118 (3)
C71.0452 (2)0.27264 (19)0.65532 (11)0.0126 (3)
C80.8539 (2)0.20336 (19)0.66167 (11)0.0124 (3)
C91.0464 (2)0.5607 (2)0.86552 (12)0.0190 (3)
H9A1.1454900.6696690.8548800.028*
H9B1.0831600.5165470.9261300.028*
H9C0.9372990.5762640.8734190.028*
C101.3404 (2)0.5136 (2)0.75498 (12)0.0177 (3)
H10A1.4018890.5011610.6995940.027*
H10B1.3794160.4689970.8147060.027*
H10C1.3721320.6337370.7694400.027*
C111.1345 (2)0.1950 (2)0.59372 (12)0.0171 (3)
H11A1.0612700.1534980.5275060.026*
H11B1.1438100.1004090.6273830.026*
H11C1.2567430.2804890.5860170.026*
C120.7090 (2)0.0385 (2)0.61166 (13)0.0189 (3)
H12A0.5960770.0499410.5922180.028*
H12B0.6871550.0504670.6582560.028*
H12C0.7491020.0084810.5518190.028*
C130.6516 (2)0.2734 (2)0.77284 (12)0.0170 (3)
H13A0.5522470.2236310.7156200.020*
H13B0.6565720.3833590.7957690.020*
C140.6044 (2)0.1545 (2)0.85895 (13)0.0202 (3)
H14A0.5808240.0387890.8344670.024*
H14B0.7080000.1956600.9141580.024*
C150.4371 (2)0.1511 (2)0.89656 (12)0.0163 (3)
C160.4522 (2)0.2522 (2)0.98076 (13)0.0224 (4)
H160.5682290.3144131.0197720.027*
C170.3000 (2)0.2640 (2)1.00913 (14)0.0246 (4)
H170.3124720.3328421.0673950.029*
C180.1313 (2)0.1754 (2)0.95232 (14)0.0216 (3)
H180.0277150.1851430.9705060.026*
C190.1133 (2)0.0722 (2)0.86855 (13)0.0213 (3)
H190.0030180.0101510.8297420.026*
C200.2644 (2)0.0593 (2)0.84142 (12)0.0189 (3)
H200.2505090.0129510.7845180.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.00936 (6)0.01083 (6)0.00941 (6)0.00498 (4)0.00246 (4)0.00076 (4)
O10.0232 (6)0.0229 (6)0.0247 (6)0.0143 (5)0.0046 (5)0.0032 (5)
O20.0170 (6)0.0279 (7)0.0217 (6)0.0112 (5)0.0018 (5)0.0027 (5)
O30.0196 (6)0.0162 (6)0.0231 (6)0.0047 (5)0.0070 (5)0.0009 (5)
C10.0126 (7)0.0154 (7)0.0149 (7)0.0048 (6)0.0024 (5)0.0018 (6)
C20.0181 (7)0.0167 (7)0.0131 (7)0.0096 (6)0.0046 (6)0.0004 (6)
C30.0151 (7)0.0170 (7)0.0141 (7)0.0092 (6)0.0043 (5)0.0009 (6)
C40.0124 (7)0.0152 (7)0.0124 (7)0.0061 (6)0.0040 (5)0.0049 (5)
C50.0150 (7)0.0156 (7)0.0097 (6)0.0075 (6)0.0027 (5)0.0027 (5)
C60.0117 (6)0.0137 (7)0.0105 (6)0.0062 (5)0.0007 (5)0.0014 (5)
C70.0145 (7)0.0132 (7)0.0129 (7)0.0086 (6)0.0021 (5)0.0021 (5)
C80.0121 (7)0.0119 (6)0.0137 (7)0.0053 (5)0.0024 (5)0.0027 (5)
C90.0236 (8)0.0224 (8)0.0125 (7)0.0117 (7)0.0020 (6)0.0015 (6)
C100.0118 (7)0.0219 (8)0.0171 (7)0.0057 (6)0.0004 (6)0.0016 (6)
C110.0186 (7)0.0183 (7)0.0187 (8)0.0118 (6)0.0041 (6)0.0002 (6)
C120.0181 (8)0.0137 (7)0.0212 (8)0.0038 (6)0.0011 (6)0.0006 (6)
C130.0139 (7)0.0222 (8)0.0175 (7)0.0088 (6)0.0075 (6)0.0074 (6)
C140.0195 (8)0.0265 (9)0.0203 (8)0.0132 (7)0.0098 (6)0.0097 (7)
C150.0147 (7)0.0190 (7)0.0163 (7)0.0066 (6)0.0080 (6)0.0075 (6)
C160.0143 (7)0.0288 (9)0.0185 (8)0.0041 (7)0.0030 (6)0.0016 (7)
C170.0239 (9)0.0284 (9)0.0189 (8)0.0083 (7)0.0072 (7)0.0040 (7)
C180.0167 (8)0.0251 (9)0.0256 (9)0.0092 (7)0.0104 (7)0.0073 (7)
C190.0146 (7)0.0224 (8)0.0208 (8)0.0023 (6)0.0025 (6)0.0042 (7)
C200.0212 (8)0.0174 (8)0.0158 (7)0.0055 (6)0.0059 (6)0.0000 (6)
Geometric parameters (Å, º) top
Mo1—Mo1i3.2773 (3)C10—H10B0.9800
Mo1—C11.9536 (16)C10—H10C0.9800
Mo1—C21.9943 (16)C11—H11A0.9800
Mo1—C31.9764 (16)C11—H11B0.9800
Mo1—C42.3065 (15)C11—H11C0.9800
Mo1—C52.3076 (14)C12—H12A0.9800
Mo1—C62.3737 (14)C12—H12B0.9800
Mo1—C72.4135 (14)C12—H12C0.9800
Mo1—C82.3767 (15)C13—H13A0.9900
O1—C11.1532 (19)C13—H13B0.9900
O2—C21.1526 (19)C13—C141.546 (2)
O3—C31.1579 (19)C14—H14A0.9900
C4—C51.439 (2)C14—H14B0.9900
C4—C81.431 (2)C14—C151.510 (2)
C4—C131.502 (2)C15—C161.387 (2)
C5—C61.425 (2)C15—C201.397 (2)
C5—C91.502 (2)C16—H160.9500
C6—C71.432 (2)C16—C171.395 (3)
C6—C101.499 (2)C17—H170.9500
C7—C81.434 (2)C17—C181.380 (3)
C7—C111.500 (2)C18—H180.9500
C8—C121.500 (2)C18—C191.388 (3)
C9—H9A0.9800C19—H190.9500
C9—H9B0.9800C19—C201.384 (2)
C9—H9C0.9800C20—H200.9500
C10—H10A0.9800
C1—Mo1—Mo1i123.14 (5)C11—C7—Mo1128.87 (10)
C1—Mo1—C279.57 (6)C4—C8—Mo169.55 (8)
C1—Mo1—C377.69 (6)C4—C8—C7107.68 (13)
C1—Mo1—C487.41 (6)C4—C8—C12125.14 (14)
C1—Mo1—C584.52 (6)C7—C8—Mo173.99 (8)
C1—Mo1—C6115.39 (6)C7—C8—C12126.49 (14)
C1—Mo1—C7142.19 (6)C12—C8—Mo1129.29 (10)
C1—Mo1—C8120.77 (6)C5—C9—H9A109.5
C2—Mo1—Mo1i74.11 (5)C5—C9—H9B109.5
C2—Mo1—C4101.17 (6)C5—C9—H9C109.5
C2—Mo1—C5135.42 (6)H9A—C9—H9B109.5
C2—Mo1—C6152.82 (6)H9A—C9—H9C109.5
C2—Mo1—C7120.20 (6)H9B—C9—H9C109.5
C2—Mo1—C894.42 (6)C6—C10—H10A109.5
C3—Mo1—Mo1i68.01 (5)C6—C10—H10B109.5
C3—Mo1—C2112.68 (6)C6—C10—H10C109.5
C3—Mo1—C4139.37 (6)H10A—C10—H10B109.5
C3—Mo1—C5103.97 (6)H10A—C10—H10C109.5
C3—Mo1—C693.26 (6)H10B—C10—H10C109.5
C3—Mo1—C7116.21 (6)C7—C11—H11A109.5
C3—Mo1—C8150.35 (6)C7—C11—H11B109.5
C4—Mo1—Mo1i146.34 (4)C7—C11—H11C109.5
C4—Mo1—C536.34 (5)H11A—C11—H11B109.5
C4—Mo1—C659.42 (5)H11A—C11—H11C109.5
C4—Mo1—C758.65 (5)H11B—C11—H11C109.5
C4—Mo1—C835.55 (5)C8—C12—H12A109.5
C5—Mo1—Mo1i145.99 (4)C8—C12—H12B109.5
C5—Mo1—C635.42 (5)C8—C12—H12C109.5
C5—Mo1—C758.51 (5)H12A—C12—H12B109.5
C5—Mo1—C859.37 (5)H12A—C12—H12C109.5
C6—Mo1—Mo1i110.63 (4)H12B—C12—H12C109.5
C6—Mo1—C734.79 (5)C4—C13—H13A108.6
C6—Mo1—C858.58 (5)C4—C13—H13B108.6
C7—Mo1—Mo1i94.24 (4)C4—C13—C14114.48 (13)
C8—Mo1—Mo1i110.83 (4)H13A—C13—H13B107.6
C8—Mo1—C734.83 (5)C14—C13—H13A108.6
O1—C1—Mo1176.27 (14)C14—C13—H13B108.6
O2—C2—Mo1171.42 (14)C13—C14—H14A109.9
O3—C3—Mo1167.87 (14)C13—C14—H14B109.9
C5—C4—Mo171.87 (8)H14A—C14—H14B108.3
C5—C4—C13125.92 (14)C15—C14—C13108.93 (13)
C8—C4—Mo174.90 (9)C15—C14—H14A109.9
C8—C4—C5107.90 (13)C15—C14—H14B109.9
C8—C4—C13126.06 (14)C16—C15—C14121.01 (15)
C13—C4—Mo1122.25 (10)C16—C15—C20118.16 (15)
C4—C5—Mo171.79 (8)C20—C15—C14120.50 (15)
C4—C5—C9126.16 (14)C15—C16—H16119.4
C6—C5—Mo174.82 (8)C15—C16—C17121.15 (16)
C6—C5—C4108.20 (13)C17—C16—H16119.4
C6—C5—C9125.19 (14)C16—C17—H17120.1
C9—C5—Mo1125.37 (11)C18—C17—C16119.82 (17)
C5—C6—Mo169.76 (8)C18—C17—H17120.1
C5—C6—C7107.84 (13)C17—C18—H18120.1
C5—C6—C10125.02 (14)C17—C18—C19119.80 (16)
C7—C6—Mo174.13 (8)C19—C18—H18120.1
C7—C6—C10126.43 (14)C18—C19—H19119.9
C10—C6—Mo1129.10 (11)C20—C19—C18120.13 (16)
C6—C7—Mo171.08 (8)C20—C19—H19119.9
C6—C7—C8108.39 (13)C15—C20—H20119.5
C6—C7—C11125.66 (14)C19—C20—C15120.92 (16)
C8—C7—Mo171.18 (8)C19—C20—H20119.5
C8—C7—C11125.60 (14)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···O2i0.982.543.277 (2)132
C12—H12B···O1ii0.982.623.432 (2)141
C12—H12C···O3i0.982.473.127 (2)124
C20—H20···O3iii0.952.653.579 (2)167
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y1, z; (iii) x1, y1, z.
 

Acknowledgements

DM and CS synthesized the title compound as part of their capstone experience for the BSc degree in Chemistry from Virginia Tech, May 2018.

Funding information

The open-access fee was provided by the Virginia Tech Open Access Subvention Fund.

References

First citationBrown, L. C., Ressegue, E. & Merola, J. S. (2016). Organometallics, 35, 4014–4022.  Web of Science CrossRef Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationClegg, W., Compton, N. A., Errington, R. J. & Norman, N. C. (1988). Acta Cryst. C44, 568–570.  CrossRef Web of Science IUCr Journals Google Scholar
First citationDesiraju, G. R. (2002). Acc. Chem. Res. 35, 565–573.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDong, F., Zhi-Hong, M., Su-Zhen, L., Zhan-Gang, H., Zheng, X.-Z. & Lin, J. (2015). Chin. J. Inorg. Chem. 31, 198–204.  Google Scholar
First citationDuChane, C. M., Brown, L. C., Dozier, V. S. & Merola, J. S. (2018). Organometallics, 37, 530–538.  Web of Science CrossRef Google Scholar
First citationGould, R. O., Barker, J. & Kilner, M. (1988). Acta Cryst. C44, 461–463.  CrossRef Web of Science IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMa, Z., Wang, N., Guo, K., Zheng, X. & Lin, J. (2013). Inorg. Chim. Acta, 399, 126–130.  Web of Science CrossRef Google Scholar
First citationMa, Z.-H., Wang, H., Han, Z.-G., Zheng, X.-Z. & Lin, J. (2015). Chin. J. Struct. Chem. 34, 931–937.  Google Scholar
First citationMa, Z.-H., Zhao, M.-X., Li, F., Liu, X.-H. & Lin, J. (2009). Chin. J. Inorg. Chem. 25, 1699–1702.  Google Scholar
First citationMa, Z.-H., Zhao, M.-X., Lin, L.-Z., Han, Z.-H. & Lin, J. (2010). Chin. J. Inorg. Chem. 26, 1908–1911.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPiou, T., Romanov-Michailidis, F., Romanova-Michaelides, M., Jackson, K. E., Semakul, N., Taggart, T. D., Newell, B. S., Rithner, C. D., Paton, R. S. & Rovis, T. (2017). J. Am. Chem. Soc. 139, 1296–1310.  Web of Science CrossRef Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, UK.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSteiner, T. & Desiraju, G. R. (1998). Chem. Commun. pp. 891–892.  Web of Science CrossRef Google Scholar
First citationTaylor, R. (2016). Cryst. Growth Des. 16, 4165–4168.  Web of Science CSD CrossRef CAS Google Scholar
First citationWerner, H. (2012). Angew. Chem. Int. Ed. 51, 6052–6058.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds