research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of the triple perovskites Ba2K2Te2O9 and Ba2KNaTe2O9, and redetermination of the double perovskite Ba2CaTeO6

CROSSMARK_Color_square_no_text.svg

aInstitute for Chemical Technologies and Analytics, Division of Structural Chemistry, TU Wien, Getreidemarkt 9/164-SC, A-1060 Vienna, Austria
*Correspondence e-mail: matthias.weil@tuwien.ac.at

Edited by T. J. Prior, University of Hull, England (Received 13 June 2018; accepted 21 June 2018; online 26 June 2018)

Single crystals of Ba2K2Te2O9 (dibarium dipotassium nona­oxidoditellurate), (I), Ba2KNaTe2O9 (dibarium potassium sodium nona­oxidoditellurate), (II), and Ba2CaTeO6 (dibarium calcium hexa­oxidotellurate), (III), were obtained from KNO3/KI or KNO3/NaNO3 flux syntheses in platinum crucibles for (I) and (II), or porcelain crucibles for (III). (I) and (II) are isotypic and are members of triple perovskites with general formula A2[12co]A[12co]B2[6o]B[6o]O9. They crystallize in the 6H-BaTiO3 structure family in space-group type P63/mmc, with the A, A′, B and B′ sites being occupied by K, Ba, Te and a second Ba in (I), and in (II) by mixed-occupied (Ba/K), Ba, Te and Na sites, respectively. (III) adopts the A2[12co]B′[6o]B′′[6o]O6 double perovskite structure in space-group type Fm[\overline{3}]m, with Ba, Ca and Te located on the A, B′ and B′′ sites, respectively. The current refinement of (III) is based on single-crystal X-ray data. It confirms the previous refinement from X-ray powder diffraction data [Fu et al. (2008). J. Solid State Chem. 181, 2523–2529], but with higher precision.

1. Chemical context

During a recent project on the structure determination of barium oxotellurates(VI), different preparation methods were applied for single-crystal growth of the phases Ba[H4TeO6], Ba[H2TeO5], Ba[Te2O6(OH)2] and Ba[TeO4] (Weil et al., 2016[Weil, M., Stöger, B., Gierl-Mayer, C. & Libowitzky, E. (2016). J. Solid State Chem. 241, 187-197.]). Owing to the different water content that defines the thermal stability range of the respective phase, relatively mild temperatures < 600 K had to be adjusted for the three hydrous phases using either a diffusion method in aqueous solutions (room temperature) or hydro­thermal methods (ca 470 K), whereas for the anhydrous phase higher temperatures could be employed. However, Ba[TeO4] decomposes into Ba[TeO3] with release of oxygen at temperatures above 1000 K, which prevents prolonged heating near this temperature. Although very small crystals of Ba[TeO4] with a rather poor quality could eventually be grown by heating Ba[H4TeO6] at 873 K for some days (Weil et al., 2016[Weil, M., Stöger, B., Gierl-Mayer, C. & Libowitzky, E. (2016). J. Solid State Chem. 241, 187-197.]), alternative crystal-growth methods were tested with the intention of obtaining larger crystals with better quality. With the upper stability range of the target phase Ba[TeO4] in mind, KNO3/KI or KNO3/NaNO3 mixtures were used for crystal-growth experiments. Such salt mixtures have low eutectic melting points, e.g. 498 K for a 50:50 mol% mixture of NaNO3/KNO3 (Berg & Kerridge, 2004[Berg, R. W. & Kerridge, D. H. (2004). Dalton Trans. pp. 2224-2229.]). At least for the latter eutectic mixture, crystal-growth experiments from the melt have already been applied successfully for another barium phase, viz. Ba2As2O7 (Weil, 2016[Weil, M. (2016). Cryst. Growth Des. 16, 908-921.]). However, Ba[TeO4] did not form under the given conditions because K+ or mixtures of K+ and Na+ were incorporated instead, resulting in the formation of Ba2K2Te2O9 (I) or Ba2KNaTe2O9 (II) single crystals. In the case a porcelain crucible was employed, Ba2CaTeO6 (III) was obtained in form of very few single crystals.

2. Structural commentary

The three title compounds belong to the vast family of perovskites (Tilley, 2016[Tilley, R. J. D. (2016). Perovskites. Structure-Property Relationships. Chichester: John Wiley & Sons.]). The ideal cubic A[12co]B[6o]O3 perovskite structure comprises of corner-sharing [BO6] octa­hedra. In the centre of the resulting 3[BO6/2] network, the A-site cation occupies a 12-coordinate cubocta­hedral site. The 2H hexa­gonal perovskite structure contains chains of face-sharing [BO6] octa­hedra that are separated by chains of A-site cations. In an alternative description, perovskite structures can be derived from closed-packed arrangements of the anions with different stacking sequences (Lufaso & zur Loye, 2005a[Lufaso, M. W. & zur Loye, H. C. (2005a). Inorg. Chem. 44, 9143-9153.]; Stöger et al., 2010[Stöger, B., Weil, M. & Zobetz, E. (2010). Z. Kristallogr. 225, 125-138.]). For example, in the cubic perovskite an ABC stacking and in the hexa­gonal 2H perovskite an AB stacking is observed. More complex structures that are realized in double perovskites or triple perovskites can include both cubic (c) and hexa­gonal stacking sequences (h) and consequently structure motifs of corner-sharing and face-sharing [BO6] octa­hedra like in the triple perovskites discussed below.

Ba2K2Te2O9 (I) and Ba2KNaTe2O9 (II) are isotypic and members of the triple perovskite family with general formula A2[12co]A[12co]B2[6o]B[6o]O9. They crystallize in the 6H-BaTiO3 structure type in space-group type P63/mmc with Z = 2. In (I) the A, A′, B and B′ sites are occupied by K1, Ba1, Te1 and Ba2, and in (II) by mixed-occupied (Ba/K)1, Ba1, Te1 and Na2, respectively. The 6H-BaTiO3 structure type is sometimes also referred to as the BaFeO2+x structure type with possible values for Z = 2, 3 or 6, dependent on the overall formula sum of the compound. The stacking sequence for this structure type is (cch)2 (Tilley, 2016[Tilley, R. J. D. (2016). Perovskites. Structure-Property Relationships. Chichester: John Wiley & Sons.]). About 240 entries of this structure family are compiled in the recent version of the Inorganic Crystal Structure Database (ICSD, 2018[ICSD (2018). The Inorganic Crystal Structure Database. https://www. fiz-karlsruhe. de/icsd. html]), with hexa­gonal BaTiO3 being the first phase that has been structurally determined (Burbank & Evans, 1948[Burbank, R. D. & Evans, H. T. (1948). Acta Cryst. 1, 330-336.]). Only four Te-containing phases have been reported so far to adopt this structure type, viz. Ba3Fe2TeO9 (Harari et al., 1972[Harari, D., Bernier, J. C. & Poix, P. (1972). J. Solid State Chem. 5, 382-390.]), K3LaTe2O9 (Zhang et al., 2015[Zhang, X.-Y., Yao, J.-Y., Jiang, X.-X., Fu, Y., Lin, Z.-H., Zhang, G.-C. & Wu, Y.-C. (2015). Dalton Trans. 44, 15576-15582.]), Ba3Cr1.94Te1.06O9 (Li et al., 2016[Li, M.-R., Deng, Z., Lapidus, S. H., Stephens, P. W., Segre, C. U., Croft, M., Paria Sena, R., Hadermann, J., Walker, D. & Greenblatt, M. (2016). Inorg. Chem. 55, 10135-10142.]) and the high-pressure phase Ba2NiTeO6 (Z = 3; Aoba et al., 2016[Aoba, T., Tiittanen, T., Suematsu, H. & Karppinen, M. (2016). J. Solid State Chem. 233, 492-496.]). A review of this structure type and of perovskites in general was given recently by Tilley (2016[Tilley, R. J. D. (2016). Perovskites. Structure-Property Relationships. Chichester: John Wiley & Sons.]). In both structures (I) and (II), Ba1 is situated on Wyckoff position 2b (site symmetry [\overline{6}]m2), the K1 site in (I) and the mixed-occpied (Ba/K)1 site (occupancy ratio 1:1) in (II) on 4f (3m.), Ba2 in (I) and Na2 in (II) on 2a ([\overline{3}]m.), and in both structures Te1 4f (3m.), O1 on 6h (mm2) and O2 on 12k (.m.), respectively. Hence the smaller TeVI atoms occupy the face-sharing octa­hedral B site while the larger barium (Ba2 in (I)) or sodium cations (Na2 in (II)) occupy the corner-sharing octa­hedral B′ site. The inner angles of the two face-sharing [TeO6] octa­hedra in (I) and (II) (Table 1[link]) are more similar than those in isotypic triple perovskites (Lufaso & zur Loye, 2005a[Lufaso, M. W. & zur Loye, H. C. (2005a). Inorg. Chem. 44, 9143-9153.]), with center shifts of 0.076 Å in (I) and of 0.191 Å in (II). Representative for both (I) and (II), the crystal structure of Ba2K2Te2O9 is given in Fig. 1[link]. It should be noted that the A (= K1) position in (I) has only nine coordination partners, while in (II) twelve oxygen atoms surround the corresponding site that is statistically occupied by Ba2+ and K+ (= (Ba/K)1).

Table 1
Selected bond lengths (Å) and angles (°) in the structures (I)–(III)

(I)   (II)   (III)  
K1—O1 2.893 (2) [3×] (Ba/K)1—O2 2.98780 (19) [6×] Ba—O 2.9577 (5) [12×]
K1—O2 3.0359 (17) [6×] (Ba/K)1—O2 3.1064 (19) [3×] Ca—O 2.247 (3) [6x]
    (Ba/K)1—O1 3.1927 (12) [3×] Te—O 1.930 (3) [6×]
Ba1—O2 2.952 (2) [6×] Ba1—O2 2.9532 (18) [6×]    
Ba1—O1 3.0382 (17) [6×] Ba1—O1 2.9935 (14) [6×]    
Te1—O2 1.8524 (18) [3×] Te1—O2 1.8481 (16) [3×]    
Te1—O1 2.0474 (16) [3×] Te1—O1 2.0418 (14) [3×]    
Ba2—O2 2.5910 (18) [6×] Na2—O2 2.3037 (16) [6×]    
           
O1—Te1—O1 75.43 (7) [3×] O1—Te1—O1 75.95 (6) [3×]    
Δa 0.076 Δa 0.191    
           
Note: (a) Δ is the center shift (Å) of the Te atoms in the Te2O9 dimer. The center shift is defined as the distance between the Te atoms in the 4f Wyckoff position (z ≃ 1/6) of the actual crystal structure and the ideal high-symmetry 4f Te position (z = 1/6) (Lufaso & zur Loye, 2005a[Lufaso, M. W. & zur Loye, H. C. (2005a). Inorg. Chem. 44, 9143-9153.]).
[Figure 1]
Figure 1
Projection of the crystal structure of Ba2K2Te2O9 (I) along [[\overline{1}]00]. [Ba2O6] octa­hedra are green, [TeO6] octa­hedra are red, potassium sites are blue, Ba1 sites turquoise and O sites shaded pale grey. Displacement ellipsoids are drawn at the 97% probability level.

The current refinement of Ba2CaTeO6 (III) is based on single crystal X-ray data and confirms the previous structure determination from X-ray powder diffraction data, but with higher precision (reliability factors for the previous deter­min­ation: Rwp = 0.159, Rp = 0.112; Fu et al., 2008[Fu, W. T., Au, Y. S., Akerboom, S. & IJdo, D. J. W. (2008). J. Solid State Chem. 181, 2523-2529.]). Ba2CaTeO6 (III) is a member of the double perovskite family with general formula A2[12co]B′[6o]B′′[6o]O6. Dependent on the cations present at the B′ and B′′ sites, double perovskites are functional oxide materials with inter­esting electronic and magnetic properties (Vasala & Karppinen, 2015[Vasala, S. & Karppinen, M. (2015). Prog. Solid State Chem. 43, 1-36.]). In the crystal structure of (III), Ba, Ca and Te are located on the A, B′ and B′′ sites, respectively. The Wyckoff positions and site symmetries of the four sites present in the structure of (III) are: Ba on 8c ([\overline{4}]3m), Ca on 4a (m[\overline{3}]m), Te on 4b (m[\overline{3}]m), and O on 24e (4m.m). Since Ba2CaTeO6 represents the highest possible symmetry of a double perovskite structure (cubic elpasolite-type in space group type Fm[\overline{3}]m), tilting of the B′O6 or B′′O6 octa­hedra (Howard et al., 2003[Howard, C. J., Kennedy, B. J. & Woodward, P. M. (2003). Acta Cryst. B59, 463-471.]), like in the monoclinic structure of Sr2CaTeO6 (Prior et al., 2005[Prior, T. J., Couper, V. J. & Battle, P. D. (2005). J. Solid State Chem. 178, 153-157.]), is not observed. The ordering of the CaO6 and TeO6 octa­hedra in a checkerboard arrangement in (III) is displayed in Fig. 2[link].

[Figure 2]
Figure 2
Projection of the crystal structure of Ba2CaTeO6 (III) along [[\overline{1}]00]. [CaO6] octa­hedra are turquoise, [TeO6] octa­hedra are red, Ba sites blue and O sites pale grey. Displacement ellipsoids are drawn at the 97% probability level.

With the exception of the Na—O bond length, all other bond lengths (Table 1[link]) are characteristic for their respective coordination polyhedra and in good agreement with mean values compiled recently for alkali and alkaline earth cations bonded to oxygen: K—O = 2.955 Å for coordination number (CN) 9, 3.095 Å for CN 12; Ca—O = 2.668 Å for CN 12; Ba—O = 2.689 Å for CN 6, 2.965 Å for CN 12 (Gagné & Hawthorne, 2016[Gagné, O. C. & Hawthorne, F. C. (2016). Acta Cryst. B72, 602-625.]). The same is valid for the mean value of octa­hedrally coordinated TeVI with a mean Te—O bond length of 1.923 Å (Gagné & Hawthorne, 2018[Gagné, O. C. & Hawthorne, F. C. (2018). Acta Cryst. B74, 63-78.]). As noted above, the Na—O bond length deviates from the mean value. At 2.3037 (16) Å it is considerably shorter than the mean of 2.441 Å for CN 6 (Gagné & Hawthorne, 2016[Gagné, O. C. & Hawthorne, F. C. (2016). Acta Cryst. B72, 602-625.]). Such a compression has also been reported for other 6H-BaTiO3-type structures containing sodium. For example, the Na—O distance in K3NaOs2O9 has nearly the same value [2.313 (6) Å; Mogare et al., 2012[Mogare, K. M., Klein, W. & Jansen, M. (2012). J. Solid State Chem. 191, 153-157.]] but is reported to be significantly shorter in Ba3NaRuIrO9 [2.058 (9) Å; Lufaso & zur Loye, 2005b[Lufaso, M. W. & zur Loye, H. C. (2005b). Inorg. Chem. 44, 9154-9161.]].

3. Synthesis and crystallization

Ba[H4TeO6] was prepared according to a literature protocol (Engelbrecht & Sladky, 1965[Engelbrecht, A. & Sladky, F. (1965). Monatshefte f?r Chemie, 96, 360-363.]) and its purity checked by X-ray powder diffraction. One gram of dried Ba[H4TeO6] was mixed with five grams of a KNO3/KI mixture (stoichiometric ratio 2:1) for (I) or a KNO3/NaNO3 mixture (stoichiometric ratio 1:1) for (II). The mixtures were placed in platinum crucibles and heated within six h to 773 K, held at that temperature for four days and cooled to room temperature within 12 h. The solidified melts were leached out with water and the remaining solid filtered off, washed with water and ethanol. Colourless single crystals with a hexa­gonal form for both (I) and (II) were selected from the reaction products. In one case a porcelain crucible was used to reproduce the formation of (I). In this batch, very few colourless crystals of Ba2CaTeO6 (III) had formed as a minor by-product. The porcelain crucible is an adventitious source of calcium that is present in feldspars such as oligoclase used for manufacturing.

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. For refinements of (I) and (II) the coordinates of isotypic Ba3LaRuO9 (Doi et al., 2002[Doi, Y., Matsuhira, K. & Hinatsu, Y. (2002). J. Solid State Chem. 165, 317-323.]) were used as starting parameters. In the structure of (II), the M1 position with site symmetry 3m. of Wyckoff site 4f is stat­istically occupied by K+ and Ba2+ cations. For refinement of (III), the starting parameters were taken from the previous sructure determination based on X-ray powder diffraction data (Fu et al., 2008[Fu, W. T., Au, Y. S., Akerboom, S. & IJdo, D. J. W. (2008). J. Solid State Chem. 181, 2523-2529.]). The type of element on the metal positions was checked by free refinement of the respective site-occupation factors, which confirmed Ca and Ba, respectively.

Table 2
Experimental details

  (I) (II) (III)
Crystal data
Chemical formula Ba2K2Te2O9 Ba2KNaTe2O9 Ba2CaTeO6
Mr 752.08 735.97 538.36
Crystal system, space group Hexagonal, P63/mmc Hexagonal, P63/mmc Cubic, Fm[\overline{3}]m
Temperature (K) 298 293 293
a, b, c (Å) 6.047 (3), 6.047 (3), 16.479 (9) 5.9625 (3), 5.9625 (3), 14.9396 (8) 8.3536 (14), 8.3536 (14), 8.3536 (14)
α, β, γ (°) 90, 90, 120 90, 90, 120 90, 90, 90
V3) 521.8 (6) 459.97 (5) 582.9 (3)
Z 2 2 4
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 13.80 15.25 19.18
Crystal size (mm) 0.09 × 0.09 × 0.01 0.10 × 0.10 × 0.01 0.08 × 0.08 × 0.08
 
Data collection
Diffractometer Bruker APEXII CCD Bruker APEXII CCD Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2015) Multi-scan (SADABS; Bruker, 2015) Multi-scan (SADABS; Bruker, 2015)
Tmin, Tmax 0.488, 0.748 0.540, 0.749 0.514, 0.748
No. of measured, independent and observed [I > 2σ(I)] reflections 21821, 754, 676 11701, 702, 669 11194, 131, 131
Rint 0.041 0.029 0.139
(sin θ/λ)max−1) 0.943 0.961 0.919
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.015, 0.036, 1.15 0.018, 0.034, 1.49 0.019, 0.049, 1.33
No. of reflections 754 702 131
No. of parameters 22 23 7
Δρmax, Δρmin (e Å−3) 2.90, −2.02 1.02, −1.63 3.87, −1.68
Computer programs: APEX2 and SAINT (Bruker, 2015[Bruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXL2017 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]), ATOMS for Windows (Dowty, 2006[Dowty, E. (2006). ATOMS for Windows. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For all structures, data collection: APEX2 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015). Program(s) used to solve structure: coordinates taken from an isotypic compound for (I), (II); coordinates taken from isotypic compound for (III). Program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015) for (I), (II); SHELXL2017 (Sheldrick, 2015) for (III). For all structures, molecular graphics: ATOMS for Windows (Dowty, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Dibarium dipotassium nonaoxidoditellurate (I) top
Crystal data top
Ba2K2Te2O9Dx = 4.786 Mg m3
Mr = 752.08Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P63/mmcCell parameters from 9371 reflections
a = 6.047 (3) Åθ = 3.9–42.1°
c = 16.479 (9) ŵ = 13.80 mm1
V = 521.8 (6) Å3T = 298 K
Z = 2Plate, colourless
F(000) = 6520.09 × 0.09 × 0.01 mm
Data collection top
Bruker APEXII CCD
diffractometer
676 reflections with I > 2σ(I)
ω– and φ–scansRint = 0.041
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
θmax = 42.1°, θmin = 3.9°
Tmin = 0.488, Tmax = 0.748h = 1111
21821 measured reflectionsk = 1111
754 independent reflectionsl = 3130
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0151P)2 + 0.8791P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.015(Δ/σ)max < 0.001
wR(F2) = 0.036Δρmax = 2.90 e Å3
S = 1.15Δρmin = 2.02 e Å3
754 reflectionsExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
22 parametersExtinction coefficient: 0.0138 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K10.33330.66670.87422 (7)0.02257 (17)
Ba10.00000.00000.25000.00960 (5)
Te10.33330.66670.16206 (2)0.00664 (4)
Ba20.00000.00000.00000.00851 (5)
O10.47142 (19)0.9428 (4)0.25000.0117 (3)
O20.17636 (16)0.3527 (3)0.38974 (10)0.0198 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.0158 (2)0.0158 (2)0.0360 (5)0.00792 (10)0.0000.000
Ba10.00959 (6)0.00959 (6)0.00961 (9)0.00480 (3)0.0000.000
Te10.00661 (5)0.00661 (5)0.00671 (7)0.00330 (3)0.0000.000
Ba20.00995 (6)0.00995 (6)0.00562 (8)0.00498 (3)0.0000.000
O10.0150 (6)0.0068 (7)0.0106 (7)0.0034 (3)0.0000.000
O20.0264 (6)0.0116 (6)0.0165 (6)0.0058 (3)0.0037 (3)0.0075 (5)
Geometric parameters (Å, º) top
K1—O1i2.893 (2)Ba1—O1xvii3.0382 (17)
K1—O1ii2.893 (2)Ba1—O1xviii3.0382 (17)
K1—O1iii2.893 (2)Ba1—O1xix3.0382 (17)
K1—O2iv3.0359 (17)Ba1—O1xx3.0382 (17)
K1—O2v3.0359 (17)Te1—O2xiii1.8524 (18)
K1—O2vi3.0359 (17)Te1—O2xxi1.8524 (18)
K1—O2vii3.0359 (17)Te1—O2xxii1.8525 (18)
K1—O2viii3.0360 (17)Te1—O12.0474 (16)
K1—O2ix3.0360 (17)Te1—O1xvii2.0474 (16)
Ba1—O2x2.952 (2)Te1—O1xv2.0474 (16)
Ba1—O2xi2.952 (2)Ba2—O2x2.5910 (18)
Ba1—O22.952 (2)Ba2—O2xxiii2.5910 (18)
Ba1—O2xii2.952 (2)Ba2—O2xiii2.5911 (18)
Ba1—O2xiii2.952 (2)Ba2—O2xxiv2.5911 (18)
Ba1—O2xiv2.952 (2)Ba2—O2xii2.5911 (18)
Ba1—O1xv3.0382 (17)Ba2—O2xxv2.5911 (18)
Ba1—O1xvi3.0382 (17)
O1i—K1—O1ii75.48 (6)O1xvi—Ba1—O1xviii48.69 (7)
O1i—K1—O1iii75.48 (6)O1xvii—Ba1—O1xviii71.31 (7)
O1ii—K1—O1iii75.48 (6)O2x—Ba1—O1xix55.25 (3)
O1i—K1—O2iv94.78 (4)O2xi—Ba1—O1xix55.25 (3)
O1ii—K1—O2iv55.82 (4)O2—Ba1—O1xix120.56 (3)
O1iii—K1—O2iv131.10 (5)O2xii—Ba1—O1xix93.53 (2)
O1i—K1—O2v55.82 (4)O2xiii—Ba1—O1xix120.56 (3)
O1ii—K1—O2v94.78 (4)O2xiv—Ba1—O1xix93.53 (2)
O1iii—K1—O2v131.10 (5)O1xv—Ba1—O1xix120.0
O2iv—K1—O2v63.59 (6)O1xvi—Ba1—O1xix71.31 (8)
O1i—K1—O2vi131.10 (5)O1xvii—Ba1—O1xix168.69 (8)
O1ii—K1—O2vi55.82 (4)O1xviii—Ba1—O1xix120.0
O1iii—K1—O2vi94.77 (4)O2x—Ba1—O1xx55.25 (4)
O2iv—K1—O2vi55.94 (7)O2xi—Ba1—O1xx55.25 (3)
O2v—K1—O2vi119.299 (12)O2—Ba1—O1xx93.53 (2)
O1i—K1—O2vii55.82 (4)O2xii—Ba1—O1xx120.56 (3)
O1ii—K1—O2vii131.10 (5)O2xiii—Ba1—O1xx93.53 (2)
O1iii—K1—O2vii94.78 (4)O2xiv—Ba1—O1xx120.56 (3)
O2iv—K1—O2vii119.299 (12)O1xv—Ba1—O1xx71.31 (8)
O2v—K1—O2vii55.94 (7)O1xvi—Ba1—O1xx120.0
O2vi—K1—O2vii169.60 (8)O1xvii—Ba1—O1xx120.0
O1i—K1—O2viii131.10 (5)O1xviii—Ba1—O1xx168.69 (8)
O1ii—K1—O2viii94.78 (4)O1xix—Ba1—O1xx48.69 (8)
O1iii—K1—O2viii55.82 (4)O2xiii—Te1—O2xxi100.46 (7)
O2iv—K1—O2viii119.298 (12)O2xiii—Te1—O2xxii100.45 (7)
O2v—K1—O2viii169.60 (8)O2xxi—Te1—O2xxii100.45 (7)
O2vi—K1—O2viii63.59 (6)O2xiii—Te1—O1162.38 (7)
O2vii—K1—O2viii119.297 (12)O2xxi—Te1—O190.73 (6)
O1i—K1—O2ix94.78 (4)O2xxii—Te1—O190.73 (6)
O1ii—K1—O2ix131.10 (5)O2xiii—Te1—O1xvii90.73 (6)
O1iii—K1—O2ix55.82 (4)O2xxi—Te1—O1xvii162.38 (7)
O2iv—K1—O2ix169.60 (8)O2xxii—Te1—O1xvii90.73 (6)
O2v—K1—O2ix119.298 (12)O1—Te1—O1xvii75.43 (7)
O2vi—K1—O2ix119.297 (12)O2xiii—Te1—O1xv90.73 (6)
O2vii—K1—O2ix63.59 (6)O2xxi—Te1—O1xv90.73 (6)
O2viii—K1—O2ix55.93 (7)O2xxii—Te1—O1xv162.38 (7)
O2x—Ba1—O2xi102.53 (7)O1—Te1—O1xv75.43 (7)
O2x—Ba1—O2143.54 (3)O1xvii—Te1—O1xv75.43 (7)
O2xi—Ba1—O265.62 (6)O2x—Ba2—O2xxiii180.00 (5)
O2x—Ba1—O2xii65.62 (6)O2x—Ba2—O2xiii76.25 (7)
O2xi—Ba1—O2xii143.54 (3)O2xxiii—Ba2—O2xiii103.75 (7)
O2—Ba1—O2xii143.54 (3)O2x—Ba2—O2xxiv103.75 (7)
O2x—Ba1—O2xiii65.62 (6)O2xxiii—Ba2—O2xxiv76.25 (7)
O2xi—Ba1—O2xiii143.54 (3)O2xiii—Ba2—O2xxiv180.00 (8)
O2—Ba1—O2xiii102.53 (7)O2x—Ba2—O2xii76.25 (7)
O2xii—Ba1—O2xiii65.62 (6)O2xxiii—Ba2—O2xii103.75 (7)
O2x—Ba1—O2xiv143.54 (3)O2xiii—Ba2—O2xii76.25 (7)
O2xi—Ba1—O2xiv65.62 (6)O2xxiv—Ba2—O2xii103.75 (7)
O2—Ba1—O2xiv65.62 (6)O2x—Ba2—O2xxv103.75 (7)
O2xii—Ba1—O2xiv102.53 (7)O2xxiii—Ba2—O2xxv76.25 (7)
O2xiii—Ba1—O2xiv143.54 (3)O2xiii—Ba2—O2xxv103.75 (7)
O2x—Ba1—O1xv93.53 (2)O2xxiv—Ba2—O2xxv76.25 (7)
O2xi—Ba1—O1xv93.53 (2)O2xii—Ba2—O2xxv180.00 (5)
O2—Ba1—O1xv55.25 (3)Te1xiii—O1—Te190.11 (9)
O2xii—Ba1—O1xv120.56 (3)Te1xiii—O1—K1xxvi89.91 (5)
O2xiii—Ba1—O1xv55.25 (4)Te1—O1—K1xxvi179.97 (5)
O2xiv—Ba1—O1xv120.56 (3)Te1xiii—O1—K1ii179.97 (12)
O2x—Ba1—O1xvi93.53 (2)Te1—O1—K1ii89.91 (5)
O2xi—Ba1—O1xvi93.53 (2)K1xxvi—O1—K1ii90.06 (8)
O2—Ba1—O1xvi120.56 (3)Te1xiii—O1—Ba1xxvii93.99 (2)
O2xii—Ba1—O1xvi55.25 (3)Te1—O1—Ba1xxvii93.99 (2)
O2xiii—Ba1—O1xvi120.56 (3)K1xxvi—O1—Ba1xxvii86.01 (3)
O2xiv—Ba1—O1xvi55.25 (3)K1ii—O1—Ba1xxvii86.01 (3)
O1xv—Ba1—O1xvi168.69 (7)Te1xiii—O1—Ba1xxviii93.99 (2)
O2x—Ba1—O1xvii120.56 (3)Te1—O1—Ba1xxviii93.99 (2)
O2xi—Ba1—O1xvii120.56 (3)K1xxvi—O1—Ba1xxviii86.01 (3)
O2—Ba1—O1xvii55.25 (3)K1ii—O1—Ba1xxviii86.01 (3)
O2xii—Ba1—O1xvii93.53 (2)Ba1xxvii—O1—Ba1xxviii168.69 (7)
O2xiii—Ba1—O1xvii55.24 (3)Te1xiii—O2—Ba2xxix162.91 (9)
O2xiv—Ba1—O1xvii93.53 (2)Te1xiii—O2—Ba1101.29 (8)
O1xv—Ba1—O1xvii48.69 (8)Ba2xxix—O2—Ba195.79 (7)
O1xvi—Ba1—O1xvii120.0Te1xiii—O2—K1xxx89.48 (3)
O2x—Ba1—O1xviii120.56 (3)Ba2xxix—O2—K1xxx92.02 (3)
O2xi—Ba1—O1xviii120.56 (3)Ba1—O2—K1xxx85.03 (4)
O2—Ba1—O1xviii93.53 (2)Te1xiii—O2—K1xxxi89.48 (3)
O2xii—Ba1—O1xviii55.24 (3)Ba2xxix—O2—K1xxxi92.02 (3)
O2xiii—Ba1—O1xviii93.53 (2)Ba1—O2—K1xxxi85.03 (4)
O2xiv—Ba1—O1xviii55.24 (3)K1xxx—O2—K1xxxi169.60 (8)
O1xv—Ba1—O1xviii120.0
Symmetry codes: (i) y1, x+y, z+1; (ii) x+1, y+2, z+1; (iii) xy+1, x, z+1; (iv) y, x+y+1, z+1/2; (v) x, y+1, z+1/2; (vi) xy+1, x+1, z+1/2; (vii) xy, x, z+1/2; (viii) x+1, y+1, z+1/2; (ix) y, x+y, z+1/2; (x) x+y, x, z+1/2; (xi) x+y, x, z; (xii) y, xy, z+1/2; (xiii) x, y, z+1/2; (xiv) y, xy, z; (xv) x+y, x+1, z; (xvi) x+y1, x, z; (xvii) y+1, xy+1, z; (xviii) x1, y1, z; (xix) y+1, xy, z; (xx) x, y1, z; (xxi) y+1, xy+1, z+1/2; (xxii) x+y, x+1, z+1/2; (xxiii) xy, x, z1/2; (xxiv) x, y, z1/2; (xxv) y, x+y, z1/2; (xxvi) x+1, y+2, z1/2; (xxvii) x, y+1, z; (xxviii) x+1, y+1, z; (xxix) x, y, z+1/2; (xxx) x+1, y+1, z1/2; (xxxi) x, y+1, z1/2.
Dibarium potassium sodium nonaoxidoditellurate (II) top
Crystal data top
Ba2KNaTe2O9Dx = 5.314 Mg m3
Mr = 735.97Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P63/mmcCell parameters from 9985 reflections
a = 5.9625 (3) Åθ = 2.7–42.9°
c = 14.9396 (8) ŵ = 15.25 mm1
V = 459.97 (5) Å3T = 293 K
Z = 2Plate, colourless
F(000) = 6360.10 × 0.10 × 0.01 mm
Data collection top
Bruker APEXII CCD
diffractometer
669 reflections with I > 2σ(I)
ω– and φ–scansRint = 0.029
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
θmax = 43.1°, θmin = 2.7°
Tmin = 0.540, Tmax = 0.749h = 1111
11701 measured reflectionsk = 118
702 independent reflectionsl = 2828
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0075P)2 + 0.5711P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.018(Δ/σ)max = 0.001
wR(F2) = 0.034Δρmax = 1.02 e Å3
S = 1.49Δρmin = 1.63 e Å3
702 reflectionsExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
23 parametersExtinction coefficient: 0.0409 (10)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
BaK10.33330.66670.91703 (2)0.01251 (6)0.5
KBA10.33330.66670.91703 (2)0.01251 (6)0.5
Ba10.00000.00000.25000.00953 (5)
Te10.33330.66670.15383 (2)0.00583 (5)
Na20.00000.00000.00000.0110 (3)
O10.47381 (18)0.9476 (4)0.25000.0101 (3)
O20.17638 (16)0.3528 (3)0.40559 (12)0.0195 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
BaK10.01060 (8)0.01060 (8)0.01631 (11)0.00530 (4)0.0000.000
KBA10.01060 (8)0.01060 (8)0.01631 (11)0.00530 (4)0.0000.000
Ba10.00874 (7)0.00874 (7)0.01112 (9)0.00437 (3)0.0000.000
Te10.00573 (5)0.00573 (5)0.00603 (7)0.00287 (3)0.0000.000
Na20.0118 (5)0.0118 (5)0.0094 (7)0.0059 (2)0.0000.000
O10.0107 (5)0.0060 (6)0.0121 (6)0.0030 (3)0.0000.000
O20.0235 (6)0.0120 (6)0.0192 (6)0.0060 (3)0.0045 (3)0.0089 (5)
Geometric parameters (Å, º) top
BaK1—O2i2.9878 (2)Ba1—O1xviii2.9935 (14)
BaK1—O2ii2.9878 (2)Ba1—O1xix2.9935 (14)
BaK1—O2iii2.9878 (2)Ba1—O1xx2.9935 (14)
BaK1—O2iv2.9878 (2)Ba1—O1xxi2.9935 (14)
BaK1—O2v2.9878 (2)Ba1—O1xxii2.9935 (14)
BaK1—O2vi2.9879 (2)Ba1—O1xxiii2.9935 (14)
BaK1—O2vii3.1064 (18)Te1—O2xxiv1.8481 (16)
BaK1—O2viii3.1064 (19)Te1—O2xiv1.8481 (16)
BaK1—O2ix3.1064 (19)Te1—O2xxv1.8481 (16)
BaK1—O1x3.1927 (12)Te1—O1xx2.0418 (14)
BaK1—O1xi3.1927 (12)Te1—O1xviii2.0418 (14)
BaK1—O1xii3.1927 (12)Te1—O12.0418 (14)
Ba1—O2xiii2.9532 (18)Na2—O2xiv2.3037 (16)
Ba1—O2xiv2.9532 (18)Na2—O2xxvi2.3037 (16)
Ba1—O2xv2.9532 (18)Na2—O2xiii2.3037 (16)
Ba1—O22.9532 (18)Na2—O2xxvii2.3037 (16)
Ba1—O2xvi2.9532 (18)Na2—O2xvi2.3038 (16)
Ba1—O2xvii2.9532 (18)Na2—O2xxviii2.3038 (16)
O2i—BaK1—O2ii56.05 (6)O2xv—Ba1—O1xxii93.19 (2)
O2i—BaK1—O2iii63.74 (7)O2—Ba1—O1xxii120.27 (3)
O2ii—BaK1—O2iii119.677 (7)O2xvi—Ba1—O1xxii55.95 (3)
O2i—BaK1—O2iv119.677 (7)O2xvii—Ba1—O1xxii55.95 (3)
O2ii—BaK1—O2iv63.74 (7)O1xviii—Ba1—O1xxii120.0
O2iii—BaK1—O2iv172.40 (6)O1xix—Ba1—O1xxii70.37 (7)
O2i—BaK1—O2v119.676 (7)O1xx—Ba1—O1xxii169.63 (7)
O2ii—BaK1—O2v172.40 (6)O1xxi—Ba1—O1xxii120.0
O2iii—BaK1—O2v56.04 (6)O2xiii—Ba1—O1xxiii120.27 (3)
O2iv—BaK1—O2v119.675 (7)O2xiv—Ba1—O1xxiii93.19 (2)
O2i—BaK1—O2vi172.40 (6)O2xv—Ba1—O1xxiii120.27 (3)
O2ii—BaK1—O2vi119.676 (7)O2—Ba1—O1xxiii93.20 (2)
O2iii—BaK1—O2vi119.675 (7)O2xvi—Ba1—O1xxiii55.95 (3)
O2iv—BaK1—O2vi56.04 (6)O2xvii—Ba1—O1xxiii55.95 (3)
O2v—BaK1—O2vi63.74 (6)O1xviii—Ba1—O1xxiii70.37 (7)
O2i—BaK1—O2vii120.56 (3)O1xix—Ba1—O1xxiii120.0
O2ii—BaK1—O2vii120.56 (3)O1xx—Ba1—O1xxiii120.0
O2iii—BaK1—O2vii91.79 (4)O1xxi—Ba1—O1xxiii169.63 (7)
O2iv—BaK1—O2vii91.79 (4)O1xxii—Ba1—O1xxiii49.63 (7)
O2v—BaK1—O2vii66.84 (5)O2xxiv—Te1—O2xiv98.85 (7)
O2vi—BaK1—O2vii66.84 (5)O2xxiv—Te1—O2xxv98.85 (7)
O2i—BaK1—O2viii91.79 (4)O2xiv—Te1—O2xxv98.85 (7)
O2ii—BaK1—O2viii66.84 (5)O2xxiv—Te1—O1xx91.52 (5)
O2iii—BaK1—O2viii120.56 (3)O2xiv—Te1—O1xx91.51 (5)
O2iv—BaK1—O2viii66.84 (5)O2xxv—Te1—O1xx163.99 (7)
O2v—BaK1—O2viii120.56 (3)O2xxiv—Te1—O1xviii163.99 (7)
O2vi—BaK1—O2viii91.79 (4)O2xiv—Te1—O1xviii91.51 (5)
O2vii—BaK1—O2viii53.73 (5)O2xxv—Te1—O1xviii91.51 (5)
O2i—BaK1—O2ix66.84 (5)O1xx—Te1—O1xviii75.95 (6)
O2ii—BaK1—O2ix91.79 (4)O2xxiv—Te1—O191.51 (5)
O2iii—BaK1—O2ix66.84 (5)O2xiv—Te1—O1163.99 (7)
O2iv—BaK1—O2ix120.56 (3)O2xxv—Te1—O191.52 (5)
O2v—BaK1—O2ix91.79 (4)O1xx—Te1—O175.95 (6)
O2vi—BaK1—O2ix120.56 (3)O1xviii—Te1—O175.95 (6)
O2vii—BaK1—O2ix53.73 (5)O2xiv—Na2—O2xxvi180.00 (9)
O2viii—BaK1—O2ix53.73 (5)O2xiv—Na2—O2xiii86.43 (7)
O2i—BaK1—O1x88.64 (4)O2xxvi—Na2—O2xiii93.57 (7)
O2ii—BaK1—O1x118.94 (4)O2xiv—Na2—O2xxvii93.57 (7)
O2iii—BaK1—O1x53.54 (4)O2xxvi—Na2—O2xxvii86.43 (7)
O2iv—BaK1—O1x118.94 (4)O2xiii—Na2—O2xxvii180.00 (9)
O2v—BaK1—O1x53.54 (4)O2xiv—Na2—O2xvi86.43 (7)
O2vi—BaK1—O1x88.64 (4)O2xxvi—Na2—O2xvi93.57 (7)
O2vii—BaK1—O1x120.26 (3)O2xiii—Na2—O2xvi86.43 (7)
O2viii—BaK1—O1x172.86 (4)O2xxvii—Na2—O2xvi93.57 (7)
O2ix—BaK1—O1x120.26 (3)O2xiv—Na2—O2xxviii93.57 (7)
O2i—BaK1—O1xi118.94 (4)O2xxvi—Na2—O2xxviii86.43 (7)
O2ii—BaK1—O1xi88.64 (4)O2xiii—Na2—O2xxviii93.57 (7)
O2iii—BaK1—O1xi118.94 (4)O2xxvii—Na2—O2xxviii86.43 (7)
O2iv—BaK1—O1xi53.54 (4)O2xvi—Na2—O2xxviii180.00 (7)
O2v—BaK1—O1xi88.64 (4)Te1xiv—O1—Te189.44 (8)
O2vi—BaK1—O1xi53.54 (4)Te1xiv—O1—Ba1xxix93.68 (2)
O2vii—BaK1—O1xi120.26 (3)Te1—O1—Ba1xxix93.68 (2)
O2viii—BaK1—O1xi120.26 (3)Te1xiv—O1—Ba1xxx93.68 (2)
O2ix—BaK1—O1xi172.86 (4)Te1—O1—Ba1xxx93.68 (2)
O1x—BaK1—O1xi65.40 (4)Ba1xxix—O1—Ba1xxx169.63 (7)
O2i—BaK1—O1xii53.54 (4)Te1xiv—O1—BaK1xxxi83.874 (13)
O2ii—BaK1—O1xii53.54 (4)Te1—O1—BaK1xxxi173.32 (6)
O2iii—BaK1—O1xii88.64 (4)Ba1xxix—O1—BaK1xxxi86.77 (2)
O2iv—BaK1—O1xii88.64 (4)Ba1xxx—O1—BaK1xxxi86.77 (2)
O2v—BaK1—O1xii118.94 (4)Te1xiv—O1—KBA1xxxi83.874 (13)
O2vi—BaK1—O1xii118.94 (4)Te1—O1—KBA1xxxi173.32 (6)
O2vii—BaK1—O1xii172.86 (4)Ba1xxix—O1—KBA1xxxi86.77 (2)
O2viii—BaK1—O1xii120.26 (3)Ba1xxx—O1—KBA1xxxi86.77 (2)
O2ix—BaK1—O1xii120.26 (3)BaK1xxxi—O1—KBA1xxxi0.000 (7)
O1x—BaK1—O1xii65.40 (4)Te1xiv—O1—BaK1xi173.32 (6)
O1xi—BaK1—O1xii65.40 (4)Te1—O1—BaK1xi83.874 (13)
O2xiii—Ba1—O2xiv64.58 (5)Ba1xxix—O1—BaK1xi86.77 (2)
O2xiii—Ba1—O2xv103.83 (6)Ba1xxx—O1—BaK1xi86.77 (2)
O2xiv—Ba1—O2xv144.07 (2)BaK1xxxi—O1—BaK1xi102.81 (5)
O2xiii—Ba1—O2144.07 (3)KBA1xxxi—O1—BaK1xi102.8
O2xiv—Ba1—O2103.83 (6)Te1xiv—O1—KBA1xi173.32 (6)
O2xv—Ba1—O264.58 (5)Te1—O1—KBA1xi83.874 (13)
O2xiii—Ba1—O2xvi64.58 (5)Ba1xxix—O1—KBA1xi86.77 (2)
O2xiv—Ba1—O2xvi64.58 (5)Ba1xxx—O1—KBA1xi86.77 (2)
O2xv—Ba1—O2xvi144.07 (2)BaK1xxxi—O1—KBA1xi102.81 (5)
O2—Ba1—O2xvi144.07 (2)KBA1xxxi—O1—KBA1xi102.81 (5)
O2xiii—Ba1—O2xvii144.07 (3)BaK1xi—O1—KBA1xi0.000 (7)
O2xiv—Ba1—O2xvii144.07 (3)Te1xiv—O2—Na2xxxii170.96 (10)
O2xv—Ba1—O2xvii64.58 (5)Te1xiv—O2—Ba199.37 (7)
O2—Ba1—O2xvii64.58 (5)Na2xxxii—O2—Ba189.67 (6)
O2xvi—Ba1—O2xvii103.83 (6)Te1xiv—O2—BaK1xxxiii93.26 (3)
O2xiii—Ba1—O1xviii120.27 (3)Na2xxxii—O2—BaK1xxxiii86.47 (3)
O2xiv—Ba1—O1xviii55.95 (3)Ba1—O2—BaK1xxxiii91.39 (4)
O2xv—Ba1—O1xviii120.27 (3)Te1xiv—O2—KBA1xxxiii93.26 (3)
O2—Ba1—O1xviii55.95 (3)Na2xxxii—O2—KBA1xxxiii86.47 (3)
O2xvi—Ba1—O1xviii93.20 (2)Ba1—O2—KBA1xxxiii91.39 (4)
O2xvii—Ba1—O1xviii93.19 (2)BaK1xxxiii—O2—KBA1xxxiii0.000 (13)
O2xiii—Ba1—O1xix55.95 (3)Te1xiv—O2—BaK1xxxiv93.26 (3)
O2xiv—Ba1—O1xix120.27 (3)Na2xxxii—O2—BaK1xxxiv86.47 (3)
O2xv—Ba1—O1xix55.95 (3)Ba1—O2—BaK1xxxiv91.39 (4)
O2—Ba1—O1xix120.27 (3)BaK1xxxiii—O2—BaK1xxxiv172.40 (6)
O2xvi—Ba1—O1xix93.20 (2)KBA1xxxiii—O2—BaK1xxxiv172.4
O2xvii—Ba1—O1xix93.20 (2)Te1xiv—O2—KBA1xxxiv93.26 (3)
O1xviii—Ba1—O1xix169.63 (7)Na2xxxii—O2—KBA1xxxiv86.47 (3)
O2xiii—Ba1—O1xx93.20 (2)Ba1—O2—KBA1xxxiv91.39 (4)
O2xiv—Ba1—O1xx55.95 (3)BaK1xxxiii—O2—KBA1xxxiv172.40 (6)
O2xv—Ba1—O1xx93.20 (2)KBA1xxxiii—O2—KBA1xxxiv172.40 (6)
O2—Ba1—O1xx55.95 (3)BaK1xxxiv—O2—KBA1xxxiv0.0
O2xvi—Ba1—O1xx120.27 (3)Te1xiv—O2—KBA1ix87.26 (6)
O2xvii—Ba1—O1xx120.27 (3)Na2xxxii—O2—KBA1ix83.70 (5)
O1xviii—Ba1—O1xx49.63 (7)Ba1—O2—KBA1ix173.37 (6)
O1xix—Ba1—O1xx120.0BaK1xxxiii—O2—KBA1ix88.21 (4)
O2xiii—Ba1—O1xxi55.95 (3)KBA1xxxiii—O2—KBA1ix88.21 (4)
O2xiv—Ba1—O1xxi93.20 (2)BaK1xxxiv—O2—KBA1ix88.21 (4)
O2xv—Ba1—O1xxi55.95 (3)KBA1xxxiv—O2—KBA1ix88.21 (4)
O2—Ba1—O1xxi93.20 (2)Te1xiv—O2—BaK1ix87.26 (6)
O2xvi—Ba1—O1xxi120.27 (3)Na2xxxii—O2—BaK1ix83.70 (5)
O2xvii—Ba1—O1xxi120.27 (3)Ba1—O2—BaK1ix173.37 (6)
O1xviii—Ba1—O1xxi120.0BaK1xxxiii—O2—BaK1ix88.21 (4)
O1xix—Ba1—O1xxi49.63 (7)KBA1xxxiii—O2—BaK1ix88.2
O1xx—Ba1—O1xxi70.37 (7)BaK1xxxiv—O2—BaK1ix88.21 (4)
O2xiii—Ba1—O1xxii93.19 (2)KBA1xxxiv—O2—BaK1ix88.2
O2xiv—Ba1—O1xxii120.27 (3)KBA1ix—O2—BaK1ix0.0
Symmetry codes: (i) y, x+y, z+1/2; (ii) x+1, y+1, z+1/2; (iii) xy, x, z+1/2; (iv) xy+1, x+1, z+1/2; (v) x, y+1, z+1/2; (vi) y, x+y+1, z+1/2; (vii) x+y, x+1, z+3/2; (viii) y+1, xy+1, z+3/2; (ix) x, y, z+3/2; (x) y1, x+y, z+1; (xi) x+1, y+2, z+1; (xii) xy+1, x, z+1; (xiii) y, xy, z+1/2; (xiv) x, y, z+1/2; (xv) y, xy, z; (xvi) x+y, x, z+1/2; (xvii) x+y, x, z; (xviii) x+y, x+1, z; (xix) x+y1, x, z; (xx) y+1, xy+1, z; (xxi) x1, y1, z; (xxii) y+1, xy, z; (xxiii) x, y1, z; (xxiv) x+y, x+1, z+1/2; (xxv) y+1, xy+1, z+1/2; (xxvi) x, y, z1/2; (xxvii) y, x+y, z1/2; (xxviii) xy, x, z1/2; (xxix) x+1, y+1, z; (xxx) x, y+1, z; (xxxi) x+1, y+2, z1/2; (xxxii) x, y, z+1/2; (xxxiii) x+1, y+1, z1/2; (xxxiv) x, y+1, z1/2.
Dibarium calcium hexaoxidotellurate (III) top
Crystal data top
Ba2CaTeO6Mo Kα radiation, λ = 0.71073 Å
Mr = 538.36Cell parameters from 5256 reflections
Cubic, Fm3mθ = 4.2–40.4°
a = 8.3536 (14) ŵ = 19.18 mm1
V = 582.9 (3) Å3T = 293 K
Z = 4Octahedron, colourless
F(000) = 9280.08 × 0.08 × 0.08 mm
Dx = 6.134 Mg m3
Data collection top
Bruker APEXII CCD
diffractometer
131 reflections with I > 2σ(I)
φ– and ω–scansRint = 0.139
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
θmax = 40.8°, θmin = 4.2°
Tmin = 0.514, Tmax = 0.748h = 1515
11194 measured reflectionsk = 1515
131 independent reflectionsl = 1515
Refinement top
Refinement on F27 parameters
Least-squares matrix: full0 restraints
R[F2 > 2σ(F2)] = 0.019 w = 1/[σ2(Fo2) + (0.0237P)2 + 1.8403P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.049(Δ/σ)max < 0.001
S = 1.33Δρmax = 3.87 e Å3
131 reflectionsΔρmin = 1.68 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ba0.2500000.2500000.2500000.00957 (13)
Ca0.0000000.0000000.0000000.0066 (2)
Te0.5000000.5000000.5000000.00602 (13)
O0.2690 (4)0.0000000.0000000.0203 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba0.00957 (13)0.00957 (13)0.00957 (13)0.0000.0000.000
Ca0.0066 (2)0.0066 (2)0.0066 (2)0.0000.0000.000
Te0.00602 (13)0.00602 (13)0.00602 (13)0.0000.0000.000
O0.0201 (12)0.0203 (8)0.0203 (8)0.0000.0000.000
Geometric parameters (Å, º) top
Ba—Oi2.9577 (5)Ca—O2.247 (3)
Ba—Oii2.9577 (5)Ca—Oxii2.247 (3)
Ba—O2.9577 (5)Ca—Oiv2.247 (3)
Ba—Oiii2.9577 (5)Ca—Oxiii2.247 (3)
Ba—Oiv2.9577 (5)Ca—Ov2.247 (3)
Ba—Ov2.9577 (5)Ca—Oxiv2.247 (3)
Ba—Ovi2.9577 (5)Te—Oxv1.930 (3)
Ba—Ovii2.9577 (5)Te—Oiii1.930 (3)
Ba—Oviii2.9577 (5)Te—Oxvi1.930 (3)
Ba—Oix2.9577 (5)Te—Oi1.930 (3)
Ba—Ox2.9577 (5)Te—Oxvii1.930 (3)
Ba—Oxi2.9577 (5)Te—Oii1.930 (3)
Oi—Ba—Oii54.95 (11)Oii—Ba—Oxi90.165 (7)
Oi—Ba—O119.905 (4)O—Ba—Oxi90.165 (7)
Oii—Ba—O173.85 (13)Oiii—Ba—Oxi119.905 (4)
Oi—Ba—Oiii54.95 (11)Oiv—Ba—Oxi54.95 (11)
Oii—Ba—Oiii54.95 (11)Ov—Ba—Oxi119.905 (4)
O—Ba—Oiii119.905 (4)Ovi—Ba—Oxi64.99 (11)
Oi—Ba—Oiv119.905 (4)Ovii—Ba—Oxi119.905 (4)
Oii—Ba—Oiv119.905 (4)Oviii—Ba—Oxi119.905 (4)
O—Ba—Oiv64.99 (11)Oix—Ba—Oxi54.95 (11)
Oiii—Ba—Oiv173.85 (13)Ox—Ba—Oxi173.85 (13)
Oi—Ba—Ov173.85 (13)O—Ca—Oxii90.0
Oii—Ba—Ov119.905 (4)O—Ca—Oiv90.0
O—Ba—Ov64.99 (11)Oxii—Ca—Oiv180.0
Oiii—Ba—Ov119.905 (4)O—Ca—Oxiii90.0
Oiv—Ba—Ov64.99 (11)Oxii—Ca—Oxiii90.0
Oi—Ba—Ovi64.99 (11)Oiv—Ca—Oxiii90.0
Oii—Ba—Ovi119.905 (4)O—Ca—Ov90.0
O—Ba—Ovi54.95 (11)Oxii—Ca—Ov90.0
Oiii—Ba—Ovi90.165 (7)Oiv—Ca—Ov90.0
Oiv—Ba—Ovi90.165 (7)Oxiii—Ca—Ov180.0
Ov—Ba—Ovi119.905 (4)O—Ca—Oxiv180.0
Oi—Ba—Ovii119.905 (4)Oxii—Ca—Oxiv90.0
Oii—Ba—Ovii64.99 (11)Oiv—Ca—Oxiv90.0
O—Ba—Ovii119.905 (4)Oxiii—Ca—Oxiv90.0
Oiii—Ba—Ovii90.165 (7)Ov—Ca—Oxiv90.0
Oiv—Ba—Ovii90.165 (7)Oxv—Te—Oiii180.0
Ov—Ba—Ovii54.95 (11)Oxv—Te—Oxvi90.0
Ovi—Ba—Ovii173.85 (13)Oiii—Te—Oxvi90.0
Oi—Ba—Oviii90.165 (7)Oxv—Te—Oi90.0
Oii—Ba—Oviii119.905 (4)Oiii—Te—Oi90.0
O—Ba—Oviii54.95 (11)Oxvi—Te—Oi180.0
Oiii—Ba—Oviii64.99 (11)Oxv—Te—Oxvii90.000 (1)
Oiv—Ba—Oviii119.905 (4)Oiii—Te—Oxvii90.0
Ov—Ba—Oviii90.165 (7)Oxvi—Te—Oxvii90.000 (1)
Ovi—Ba—Oviii54.95 (11)Oi—Te—Oxvii90.0
Ovii—Ba—Oviii119.905 (4)Oxv—Te—Oii90.0
Oi—Ba—Oix90.165 (7)Oiii—Te—Oii90.000 (1)
Oii—Ba—Oix64.99 (11)Oxvi—Te—Oii90.0
O—Ba—Oix119.905 (4)Oi—Te—Oii90.000 (1)
Oiii—Ba—Oix119.905 (4)Oxvii—Te—Oii180.0
Oiv—Ba—Oix54.95 (11)Texviii—O—Ca180.0
Ov—Ba—Oix90.165 (7)Texviii—O—Baxviii93.08 (7)
Ovi—Ba—Oix119.905 (4)Ca—O—Baxviii86.92 (7)
Ovii—Ba—Oix64.99 (11)Texviii—O—Ba93.08 (7)
Oviii—Ba—Oix173.85 (13)Ca—O—Ba86.92 (7)
Oi—Ba—Ox119.905 (4)Baxviii—O—Ba173.85 (13)
Oii—Ba—Ox90.165 (7)Texviii—O—Bax93.08 (7)
O—Ba—Ox90.165 (7)Ca—O—Bax86.92 (7)
Oiii—Ba—Ox64.99 (11)Baxviii—O—Bax89.835 (7)
Oiv—Ba—Ox119.905 (4)Ba—O—Bax89.835 (7)
Ov—Ba—Ox54.95 (11)Texviii—O—Baxi93.08 (7)
Ovi—Ba—Ox119.905 (4)Ca—O—Baxi86.92 (7)
Ovii—Ba—Ox54.95 (11)Baxviii—O—Baxi89.835 (7)
Oviii—Ba—Ox64.99 (11)Ba—O—Baxi89.835 (7)
Oix—Ba—Ox119.905 (4)Bax—O—Baxi173.85 (13)
Oi—Ba—Oxi64.99 (11)
Symmetry codes: (i) z+1/2, x, y+1/2; (ii) x, y+1/2, z+1/2; (iii) y+1/2, z+1/2, x; (iv) y, z, x; (v) z, x, y; (vi) y+1/2, z, x+1/2; (vii) y, z+1/2, x+1/2; (viii) z+1/2, x+1/2, y; (ix) z, x+1/2, y+1/2; (x) x+1/2, y+1/2, z; (xi) x+1/2, y, z+1/2; (xii) y, z, x; (xiii) z, x, y; (xiv) x, y, z; (xv) y+1/2, z+1/2, x+1; (xvi) z+1/2, x+1, y+1/2; (xvii) x+1, y+1/2, z+1/2; (xviii) x, y1/2, z1/2.
Selected bond lengths (Å) and angles (°) in the structures (I)–(III) top
(I)(II)(III)
K1—O12.893 (2) [3×](Ba/K)1—O22.98780 (19) [6×]Ba—O2.9577 (5) [12×]
K1—O23.0359 (17) [6×](Ba/K)1—O23.1064 (19) [3×]Ca—O2.247 (3) [6x]
(Ba/K)1—O13.1927 (12) [3×]Te—O1.930 (3) [6×]
Ba1—O22.952 (2) [6×]Ba1—O22.9532 (18) [6×]
Ba1—O13.0382 (17) [6×]Ba1—O12.9935 (14) [6×]
Te1—O21.8524 (18) [3×]Te1—O21.8481 (16) [3×]
Te1—O12.0474 (16) [3×]Te1—O12.0418 (14) [3×]
Ba2—O22.5910 (18) [6×]Na2—O22.3037 (16) [6×]
O1—Te1—O175.43 (7) [3×]O1—Te1—O175.95 (6) [3×]
Δa0.076Δa0.191
Note: (a) Δ is the center shift (Å) of the Te atoms in the Te2O9 dimer. The center shift is defined as the distance between the Te atoms in the 4f Wyckoff position (z 1/6) of the actual crystal structure and the ideal high-symmetry 4f Te position (z =1/6) (Lufaso & zur Loye, 2005a).
 

Funding information

The X-ray centre of TU Wien is acknowledged for financial support and for providing access to the single-crystal diffractometer.

References

First citationAoba, T., Tiittanen, T., Suematsu, H. & Karppinen, M. (2016). J. Solid State Chem. 233, 492–496.  Web of Science CrossRef Google Scholar
First citationBerg, R. W. & Kerridge, D. H. (2004). Dalton Trans. pp. 2224–2229.  Web of Science CrossRef Google Scholar
First citationBruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurbank, R. D. & Evans, H. T. (1948). Acta Cryst. 1, 330–336.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationDoi, Y., Matsuhira, K. & Hinatsu, Y. (2002). J. Solid State Chem. 165, 317–323.  Web of Science CrossRef Google Scholar
First citationDowty, E. (2006). ATOMS for Windows. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.  Google Scholar
First citationEngelbrecht, A. & Sladky, F. (1965). Monatshefte f?r Chemie, 96, 360–363.  Google Scholar
First citationFu, W. T., Au, Y. S., Akerboom, S. & IJdo, D. J. W. (2008). J. Solid State Chem. 181, 2523–2529.  Web of Science CrossRef Google Scholar
First citationGagné, O. C. & Hawthorne, F. C. (2016). Acta Cryst. B72, 602–625.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGagné, O. C. & Hawthorne, F. C. (2018). Acta Cryst. B74, 63–78.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHarari, D., Bernier, J. C. & Poix, P. (1972). J. Solid State Chem. 5, 382–390.  CrossRef Google Scholar
First citationHoward, C. J., Kennedy, B. J. & Woodward, P. M. (2003). Acta Cryst. B59, 463–471.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationICSD (2018). The Inorganic Crystal Structure Database. https://www. fiz-karlsruhe. de/icsd. html  Google Scholar
First citationLi, M.-R., Deng, Z., Lapidus, S. H., Stephens, P. W., Segre, C. U., Croft, M., Paria Sena, R., Hadermann, J., Walker, D. & Greenblatt, M. (2016). Inorg. Chem. 55, 10135–10142.  Web of Science CrossRef Google Scholar
First citationLufaso, M. W. & zur Loye, H. C. (2005a). Inorg. Chem. 44, 9143–9153.  Web of Science CrossRef Google Scholar
First citationLufaso, M. W. & zur Loye, H. C. (2005b). Inorg. Chem. 44, 9154–9161.  Web of Science CrossRef Google Scholar
First citationMogare, K. M., Klein, W. & Jansen, M. (2012). J. Solid State Chem. 191, 153–157.  Web of Science CrossRef Google Scholar
First citationPrior, T. J., Couper, V. J. & Battle, P. D. (2005). J. Solid State Chem. 178, 153–157.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStöger, B., Weil, M. & Zobetz, E. (2010). Z. Kristallogr. 225, 125–138.  Google Scholar
First citationTilley, R. J. D. (2016). Perovskites. Structure–Property Relationships. Chichester: John Wiley & Sons.  Google Scholar
First citationVasala, S. & Karppinen, M. (2015). Prog. Solid State Chem. 43, 1–36.  Web of Science CrossRef CAS Google Scholar
First citationWeil, M. (2016). Cryst. Growth Des. 16, 908–921.  Web of Science CSD CrossRef CAS Google Scholar
First citationWeil, M., Stöger, B., Gierl-Mayer, C. & Libowitzky, E. (2016). J. Solid State Chem. 241, 187–197.  Web of Science CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, X.-Y., Yao, J.-Y., Jiang, X.-X., Fu, Y., Lin, Z.-H., Zhang, G.-C. & Wu, Y.-C. (2015). Dalton Trans. 44, 15576–15582.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds