research communications
Crystal structures of the triple perovskites Ba2K2Te2O9 and Ba2KNaTe2O9, and redetermination of the double perovskite Ba2CaTeO6
aInstitute for Chemical Technologies and Analytics, Division of Structural Chemistry, TU Wien, Getreidemarkt 9/164-SC, A-1060 Vienna, Austria
*Correspondence e-mail: matthias.weil@tuwien.ac.at
Single crystals of Ba2K2Te2O9 (dibarium dipotassium nonaoxidoditellurate), (I), Ba2KNaTe2O9 (dibarium potassium sodium nonaoxidoditellurate), (II), and Ba2CaTeO6 (dibarium calcium hexaoxidotellurate), (III), were obtained from KNO3/KI or KNO3/NaNO3 syntheses in platinum crucibles for (I) and (II), or porcelain crucibles for (III). (I) and (II) are isotypic and are members of triple perovskites with general formula A2[12co]A′[12co]B2[6o]B′[6o]O9. They crystallize in the 6H-BaTiO3 structure family in space-group type P63/mmc, with the A, A′, B and B′ sites being occupied by K, Ba, Te and a second Ba in (I), and in (II) by mixed-occupied (Ba/K), Ba, Te and Na sites, respectively. (III) adopts the A2[12co]B′[6o]B′′[6o]O6 double perovskite structure in space-group type Fmm, with Ba, Ca and Te located on the A, B′ and B′′ sites, respectively. The current of (III) is based on single-crystal X-ray data. It confirms the previous from X-ray powder diffraction data [Fu et al. (2008). J. Solid State Chem. 181, 2523–2529], but with higher precision.
1. Chemical context
During a recent project on the 4TeO6], Ba[H2TeO5], Ba[Te2O6(OH)2] and Ba[TeO4] (Weil et al., 2016). Owing to the different water content that defines the thermal stability range of the respective phase, relatively mild temperatures < 600 K had to be adjusted for the three hydrous phases using either a diffusion method in aqueous solutions (room temperature) or hydrothermal methods (ca 470 K), whereas for the anhydrous phase higher temperatures could be employed. However, Ba[TeO4] decomposes into Ba[TeO3] with release of oxygen at temperatures above 1000 K, which prevents prolonged heating near this temperature. Although very small crystals of Ba[TeO4] with a rather poor quality could eventually be grown by heating Ba[H4TeO6] at 873 K for some days (Weil et al., 2016), alternative crystal-growth methods were tested with the intention of obtaining larger crystals with better quality. With the upper stability range of the target phase Ba[TeO4] in mind, KNO3/KI or KNO3/NaNO3 mixtures were used for crystal-growth experiments. Such salt mixtures have low eutectic melting points, e.g. 498 K for a 50:50 mol% mixture of NaNO3/KNO3 (Berg & Kerridge, 2004). At least for the latter eutectic mixture, crystal-growth experiments from the melt have already been applied successfully for another barium phase, viz. Ba2As2O7 (Weil, 2016). However, Ba[TeO4] did not form under the given conditions because K+ or mixtures of K+ and Na+ were incorporated instead, resulting in the formation of Ba2K2Te2O9 (I) or Ba2KNaTe2O9 (II) single crystals. In the case a porcelain crucible was employed, Ba2CaTeO6 (III) was obtained in form of very few single crystals.
of barium oxotellurates(VI), different preparation methods were applied for single-crystal growth of the phases Ba[H2. Structural commentary
The three title compounds belong to the vast family of perovskites (Tilley, 2016). The ideal cubic A[12co]B[6o]O3 perovskite structure comprises of corner-sharing [BO6] octahedra. In the centre of the resulting 3∞[BO6/2] network, the A-site cation occupies a 12-coordinate cuboctahedral site. The 2H hexagonal perovskite structure contains chains of face-sharing [BO6] octahedra that are separated by chains of A-site cations. In an alternative description, perovskite structures can be derived from closed-packed arrangements of the anions with different stacking sequences (Lufaso & zur Loye, 2005a; Stöger et al., 2010). For example, in the cubic perovskite an ABC stacking and in the hexagonal 2H perovskite an AB stacking is observed. More complex structures that are realized in double perovskites or triple perovskites can include both cubic (c) and hexagonal stacking sequences (h) and consequently structure motifs of corner-sharing and face-sharing [BO6] octahedra like in the triple perovskites discussed below.
Ba2K2Te2O9 (I) and Ba2KNaTe2O9 (II) are isotypic and members of the triple perovskite family with general formula A2[12co]A′[12co]B2[6o]B′[6o]O9. They crystallize in the 6H-BaTiO3 structure type in space-group type P63/mmc with Z = 2. In (I) the A, A′, B and B′ sites are occupied by K1, Ba1, Te1 and Ba2, and in (II) by mixed-occupied (Ba/K)1, Ba1, Te1 and Na2, respectively. The 6H-BaTiO3 structure type is sometimes also referred to as the BaFeO2+x structure type with possible values for Z = 2, 3 or 6, dependent on the overall formula sum of the compound. The stacking sequence for this structure type is (cch)2 (Tilley, 2016). About 240 entries of this structure family are compiled in the recent version of the Inorganic Database (ICSD, 2018), with hexagonal BaTiO3 being the first phase that has been structurally determined (Burbank & Evans, 1948). Only four Te-containing phases have been reported so far to adopt this structure type, viz. Ba3Fe2TeO9 (Harari et al., 1972), K3LaTe2O9 (Zhang et al., 2015), Ba3Cr1.94Te1.06O9 (Li et al., 2016) and the high-pressure phase Ba2NiTeO6 (Z = 3; Aoba et al., 2016). A review of this structure type and of perovskites in general was given recently by Tilley (2016). In both structures (I) and (II), Ba1 is situated on 2b (site symmetry m2), the K1 site in (I) and the mixed-occpied (Ba/K)1 site (occupancy ratio 1:1) in (II) on 4f (3m.), Ba2 in (I) and Na2 in (II) on 2a (m.), and in both structures Te1 4f (3m.), O1 on 6h (mm2) and O2 on 12k (.m.), respectively. Hence the smaller TeVI atoms occupy the face-sharing octahedral B site while the larger barium (Ba2 in (I)) or sodium cations (Na2 in (II)) occupy the corner-sharing octahedral B′ site. The inner angles of the two face-sharing [TeO6] octahedra in (I) and (II) (Table 1) are more similar than those in isotypic triple perovskites (Lufaso & zur Loye, 2005a), with center shifts of 0.076 Å in (I) and of 0.191 Å in (II). Representative for both (I) and (II), the of Ba2K2Te2O9 is given in Fig. 1. It should be noted that the A (= K1) position in (I) has only nine coordination partners, while in (II) twelve oxygen atoms surround the corresponding site that is statistically occupied by Ba2+ and K+ (= (Ba/K)1).
The current 2CaTeO6 (III) is based on single crystal X-ray data and confirms the previous from X-ray powder diffraction data, but with higher precision (reliability factors for the previous determination: Rwp = 0.159, Rp = 0.112; Fu et al., 2008). Ba2CaTeO6 (III) is a member of the double perovskite family with general formula A2[12co]B′[6o]B′′[6o]O6. Dependent on the cations present at the B′ and B′′ sites, double perovskites are functional oxide materials with interesting electronic and magnetic properties (Vasala & Karppinen, 2015). In the of (III), Ba, Ca and Te are located on the A, B′ and B′′ sites, respectively. The Wyckoff positions and site symmetries of the four sites present in the structure of (III) are: Ba on 8c (3m), Ca on 4a (mm), Te on 4b (mm), and O on 24e (4m.m). Since Ba2CaTeO6 represents the highest possible symmetry of a double perovskite structure (cubic elpasolite-type in type Fmm), tilting of the B′O6 or B′′O6 octahedra (Howard et al., 2003), like in the monoclinic structure of Sr2CaTeO6 (Prior et al., 2005), is not observed. The ordering of the CaO6 and TeO6 octahedra in a checkerboard arrangement in (III) is displayed in Fig. 2.
of BaWith the exception of the Na—O bond length, all other bond lengths (Table 1) are characteristic for their respective coordination polyhedra and in good agreement with mean values compiled recently for alkali and alkaline earth cations bonded to oxygen: K—O = 2.955 Å for (CN) 9, 3.095 Å for CN 12; Ca—O = 2.668 Å for CN 12; Ba—O = 2.689 Å for CN 6, 2.965 Å for CN 12 (Gagné & Hawthorne, 2016). The same is valid for the mean value of octahedrally coordinated TeVI with a mean Te—O bond length of 1.923 Å (Gagné & Hawthorne, 2018). As noted above, the Na—O bond length deviates from the mean value. At 2.3037 (16) Å it is considerably shorter than the mean of 2.441 Å for CN 6 (Gagné & Hawthorne, 2016). Such a compression has also been reported for other 6H-BaTiO3-type structures containing sodium. For example, the Na—O distance in K3NaOs2O9 has nearly the same value [2.313 (6) Å; Mogare et al., 2012] but is reported to be significantly shorter in Ba3NaRuIrO9 [2.058 (9) Å; Lufaso & zur Loye, 2005b].
3. Synthesis and crystallization
Ba[H4TeO6] was prepared according to a literature protocol (Engelbrecht & Sladky, 1965) and its purity checked by X-ray powder diffraction. One gram of dried Ba[H4TeO6] was mixed with five grams of a KNO3/KI mixture (stoichiometric ratio 2:1) for (I) or a KNO3/NaNO3 mixture (stoichiometric ratio 1:1) for (II). The mixtures were placed in platinum crucibles and heated within six h to 773 K, held at that temperature for four days and cooled to room temperature within 12 h. The solidified melts were leached out with water and the remaining solid filtered off, washed with water and ethanol. Colourless single crystals with a hexagonal form for both (I) and (II) were selected from the reaction products. In one case a porcelain crucible was used to reproduce the formation of (I). In this batch, very few colourless crystals of Ba2CaTeO6 (III) had formed as a minor by-product. The porcelain crucible is an adventitious source of calcium that is present in feldspars such as oligoclase used for manufacturing.
4. Refinement
Crystal data, data collection and structure . For refinements of (I) and (II) the coordinates of isotypic Ba3LaRuO9 (Doi et al., 2002) were used as starting parameters. In the structure of (II), the M1 position with 3m. of Wyckoff site 4f is statistically occupied by K+ and Ba2+ cations. For of (III), the starting parameters were taken from the previous sructure determination based on X-ray powder diffraction data (Fu et al., 2008). The type of element on the metal positions was checked by free of the respective site-occupation factors, which confirmed Ca and Ba, respectively.
details are summarized in Table 2
|
Supporting information
https://doi.org/10.1107/S2056989018009064/pj2054sup1.cif
contains datablocks I, II, III, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018009064/pj2054Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989018009064/pj2054IIsup3.hkl
Structure factors: contains datablock III. DOI: https://doi.org/10.1107/S2056989018009064/pj2054IIIsup4.hkl
For all structures, data collection: APEX2 (Bruker, 2015); cell
SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015). Program(s) used to solve structure: coordinates taken from an isotypic compound for (I), (II); coordinates taken from isotypic compound for (III). Program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015) for (I), (II); SHELXL2017 (Sheldrick, 2015) for (III). For all structures, molecular graphics: ATOMS for Windows (Dowty, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).Ba2K2Te2O9 | Dx = 4.786 Mg m−3 |
Mr = 752.08 | Mo Kα radiation, λ = 0.71073 Å |
Hexagonal, P63/mmc | Cell parameters from 9371 reflections |
a = 6.047 (3) Å | θ = 3.9–42.1° |
c = 16.479 (9) Å | µ = 13.80 mm−1 |
V = 521.8 (6) Å3 | T = 298 K |
Z = 2 | Plate, colourless |
F(000) = 652 | 0.09 × 0.09 × 0.01 mm |
Bruker APEXII CCD diffractometer | 676 reflections with I > 2σ(I) |
ω– and φ–scans | Rint = 0.041 |
Absorption correction: multi-scan (SADABS; Bruker, 2015) | θmax = 42.1°, θmin = 3.9° |
Tmin = 0.488, Tmax = 0.748 | h = −11→11 |
21821 measured reflections | k = −11→11 |
754 independent reflections | l = −31→30 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0151P)2 + 0.8791P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.015 | (Δ/σ)max < 0.001 |
wR(F2) = 0.036 | Δρmax = 2.90 e Å−3 |
S = 1.15 | Δρmin = −2.02 e Å−3 |
754 reflections | Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
22 parameters | Extinction coefficient: 0.0138 (4) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
K1 | 0.3333 | 0.6667 | 0.87422 (7) | 0.02257 (17) | |
Ba1 | 0.0000 | 0.0000 | 0.2500 | 0.00960 (5) | |
Te1 | 0.3333 | 0.6667 | 0.16206 (2) | 0.00664 (4) | |
Ba2 | 0.0000 | 0.0000 | 0.0000 | 0.00851 (5) | |
O1 | 0.47142 (19) | 0.9428 (4) | 0.2500 | 0.0117 (3) | |
O2 | 0.17636 (16) | 0.3527 (3) | 0.38974 (10) | 0.0198 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
K1 | 0.0158 (2) | 0.0158 (2) | 0.0360 (5) | 0.00792 (10) | 0.000 | 0.000 |
Ba1 | 0.00959 (6) | 0.00959 (6) | 0.00961 (9) | 0.00480 (3) | 0.000 | 0.000 |
Te1 | 0.00661 (5) | 0.00661 (5) | 0.00671 (7) | 0.00330 (3) | 0.000 | 0.000 |
Ba2 | 0.00995 (6) | 0.00995 (6) | 0.00562 (8) | 0.00498 (3) | 0.000 | 0.000 |
O1 | 0.0150 (6) | 0.0068 (7) | 0.0106 (7) | 0.0034 (3) | 0.000 | 0.000 |
O2 | 0.0264 (6) | 0.0116 (6) | 0.0165 (6) | 0.0058 (3) | 0.0037 (3) | 0.0075 (5) |
K1—O1i | 2.893 (2) | Ba1—O1xvii | 3.0382 (17) |
K1—O1ii | 2.893 (2) | Ba1—O1xviii | 3.0382 (17) |
K1—O1iii | 2.893 (2) | Ba1—O1xix | 3.0382 (17) |
K1—O2iv | 3.0359 (17) | Ba1—O1xx | 3.0382 (17) |
K1—O2v | 3.0359 (17) | Te1—O2xiii | 1.8524 (18) |
K1—O2vi | 3.0359 (17) | Te1—O2xxi | 1.8524 (18) |
K1—O2vii | 3.0359 (17) | Te1—O2xxii | 1.8525 (18) |
K1—O2viii | 3.0360 (17) | Te1—O1 | 2.0474 (16) |
K1—O2ix | 3.0360 (17) | Te1—O1xvii | 2.0474 (16) |
Ba1—O2x | 2.952 (2) | Te1—O1xv | 2.0474 (16) |
Ba1—O2xi | 2.952 (2) | Ba2—O2x | 2.5910 (18) |
Ba1—O2 | 2.952 (2) | Ba2—O2xxiii | 2.5910 (18) |
Ba1—O2xii | 2.952 (2) | Ba2—O2xiii | 2.5911 (18) |
Ba1—O2xiii | 2.952 (2) | Ba2—O2xxiv | 2.5911 (18) |
Ba1—O2xiv | 2.952 (2) | Ba2—O2xii | 2.5911 (18) |
Ba1—O1xv | 3.0382 (17) | Ba2—O2xxv | 2.5911 (18) |
Ba1—O1xvi | 3.0382 (17) | ||
O1i—K1—O1ii | 75.48 (6) | O1xvi—Ba1—O1xviii | 48.69 (7) |
O1i—K1—O1iii | 75.48 (6) | O1xvii—Ba1—O1xviii | 71.31 (7) |
O1ii—K1—O1iii | 75.48 (6) | O2x—Ba1—O1xix | 55.25 (3) |
O1i—K1—O2iv | 94.78 (4) | O2xi—Ba1—O1xix | 55.25 (3) |
O1ii—K1—O2iv | 55.82 (4) | O2—Ba1—O1xix | 120.56 (3) |
O1iii—K1—O2iv | 131.10 (5) | O2xii—Ba1—O1xix | 93.53 (2) |
O1i—K1—O2v | 55.82 (4) | O2xiii—Ba1—O1xix | 120.56 (3) |
O1ii—K1—O2v | 94.78 (4) | O2xiv—Ba1—O1xix | 93.53 (2) |
O1iii—K1—O2v | 131.10 (5) | O1xv—Ba1—O1xix | 120.0 |
O2iv—K1—O2v | 63.59 (6) | O1xvi—Ba1—O1xix | 71.31 (8) |
O1i—K1—O2vi | 131.10 (5) | O1xvii—Ba1—O1xix | 168.69 (8) |
O1ii—K1—O2vi | 55.82 (4) | O1xviii—Ba1—O1xix | 120.0 |
O1iii—K1—O2vi | 94.77 (4) | O2x—Ba1—O1xx | 55.25 (4) |
O2iv—K1—O2vi | 55.94 (7) | O2xi—Ba1—O1xx | 55.25 (3) |
O2v—K1—O2vi | 119.299 (12) | O2—Ba1—O1xx | 93.53 (2) |
O1i—K1—O2vii | 55.82 (4) | O2xii—Ba1—O1xx | 120.56 (3) |
O1ii—K1—O2vii | 131.10 (5) | O2xiii—Ba1—O1xx | 93.53 (2) |
O1iii—K1—O2vii | 94.78 (4) | O2xiv—Ba1—O1xx | 120.56 (3) |
O2iv—K1—O2vii | 119.299 (12) | O1xv—Ba1—O1xx | 71.31 (8) |
O2v—K1—O2vii | 55.94 (7) | O1xvi—Ba1—O1xx | 120.0 |
O2vi—K1—O2vii | 169.60 (8) | O1xvii—Ba1—O1xx | 120.0 |
O1i—K1—O2viii | 131.10 (5) | O1xviii—Ba1—O1xx | 168.69 (8) |
O1ii—K1—O2viii | 94.78 (4) | O1xix—Ba1—O1xx | 48.69 (8) |
O1iii—K1—O2viii | 55.82 (4) | O2xiii—Te1—O2xxi | 100.46 (7) |
O2iv—K1—O2viii | 119.298 (12) | O2xiii—Te1—O2xxii | 100.45 (7) |
O2v—K1—O2viii | 169.60 (8) | O2xxi—Te1—O2xxii | 100.45 (7) |
O2vi—K1—O2viii | 63.59 (6) | O2xiii—Te1—O1 | 162.38 (7) |
O2vii—K1—O2viii | 119.297 (12) | O2xxi—Te1—O1 | 90.73 (6) |
O1i—K1—O2ix | 94.78 (4) | O2xxii—Te1—O1 | 90.73 (6) |
O1ii—K1—O2ix | 131.10 (5) | O2xiii—Te1—O1xvii | 90.73 (6) |
O1iii—K1—O2ix | 55.82 (4) | O2xxi—Te1—O1xvii | 162.38 (7) |
O2iv—K1—O2ix | 169.60 (8) | O2xxii—Te1—O1xvii | 90.73 (6) |
O2v—K1—O2ix | 119.298 (12) | O1—Te1—O1xvii | 75.43 (7) |
O2vi—K1—O2ix | 119.297 (12) | O2xiii—Te1—O1xv | 90.73 (6) |
O2vii—K1—O2ix | 63.59 (6) | O2xxi—Te1—O1xv | 90.73 (6) |
O2viii—K1—O2ix | 55.93 (7) | O2xxii—Te1—O1xv | 162.38 (7) |
O2x—Ba1—O2xi | 102.53 (7) | O1—Te1—O1xv | 75.43 (7) |
O2x—Ba1—O2 | 143.54 (3) | O1xvii—Te1—O1xv | 75.43 (7) |
O2xi—Ba1—O2 | 65.62 (6) | O2x—Ba2—O2xxiii | 180.00 (5) |
O2x—Ba1—O2xii | 65.62 (6) | O2x—Ba2—O2xiii | 76.25 (7) |
O2xi—Ba1—O2xii | 143.54 (3) | O2xxiii—Ba2—O2xiii | 103.75 (7) |
O2—Ba1—O2xii | 143.54 (3) | O2x—Ba2—O2xxiv | 103.75 (7) |
O2x—Ba1—O2xiii | 65.62 (6) | O2xxiii—Ba2—O2xxiv | 76.25 (7) |
O2xi—Ba1—O2xiii | 143.54 (3) | O2xiii—Ba2—O2xxiv | 180.00 (8) |
O2—Ba1—O2xiii | 102.53 (7) | O2x—Ba2—O2xii | 76.25 (7) |
O2xii—Ba1—O2xiii | 65.62 (6) | O2xxiii—Ba2—O2xii | 103.75 (7) |
O2x—Ba1—O2xiv | 143.54 (3) | O2xiii—Ba2—O2xii | 76.25 (7) |
O2xi—Ba1—O2xiv | 65.62 (6) | O2xxiv—Ba2—O2xii | 103.75 (7) |
O2—Ba1—O2xiv | 65.62 (6) | O2x—Ba2—O2xxv | 103.75 (7) |
O2xii—Ba1—O2xiv | 102.53 (7) | O2xxiii—Ba2—O2xxv | 76.25 (7) |
O2xiii—Ba1—O2xiv | 143.54 (3) | O2xiii—Ba2—O2xxv | 103.75 (7) |
O2x—Ba1—O1xv | 93.53 (2) | O2xxiv—Ba2—O2xxv | 76.25 (7) |
O2xi—Ba1—O1xv | 93.53 (2) | O2xii—Ba2—O2xxv | 180.00 (5) |
O2—Ba1—O1xv | 55.25 (3) | Te1xiii—O1—Te1 | 90.11 (9) |
O2xii—Ba1—O1xv | 120.56 (3) | Te1xiii—O1—K1xxvi | 89.91 (5) |
O2xiii—Ba1—O1xv | 55.25 (4) | Te1—O1—K1xxvi | 179.97 (5) |
O2xiv—Ba1—O1xv | 120.56 (3) | Te1xiii—O1—K1ii | 179.97 (12) |
O2x—Ba1—O1xvi | 93.53 (2) | Te1—O1—K1ii | 89.91 (5) |
O2xi—Ba1—O1xvi | 93.53 (2) | K1xxvi—O1—K1ii | 90.06 (8) |
O2—Ba1—O1xvi | 120.56 (3) | Te1xiii—O1—Ba1xxvii | 93.99 (2) |
O2xii—Ba1—O1xvi | 55.25 (3) | Te1—O1—Ba1xxvii | 93.99 (2) |
O2xiii—Ba1—O1xvi | 120.56 (3) | K1xxvi—O1—Ba1xxvii | 86.01 (3) |
O2xiv—Ba1—O1xvi | 55.25 (3) | K1ii—O1—Ba1xxvii | 86.01 (3) |
O1xv—Ba1—O1xvi | 168.69 (7) | Te1xiii—O1—Ba1xxviii | 93.99 (2) |
O2x—Ba1—O1xvii | 120.56 (3) | Te1—O1—Ba1xxviii | 93.99 (2) |
O2xi—Ba1—O1xvii | 120.56 (3) | K1xxvi—O1—Ba1xxviii | 86.01 (3) |
O2—Ba1—O1xvii | 55.25 (3) | K1ii—O1—Ba1xxviii | 86.01 (3) |
O2xii—Ba1—O1xvii | 93.53 (2) | Ba1xxvii—O1—Ba1xxviii | 168.69 (7) |
O2xiii—Ba1—O1xvii | 55.24 (3) | Te1xiii—O2—Ba2xxix | 162.91 (9) |
O2xiv—Ba1—O1xvii | 93.53 (2) | Te1xiii—O2—Ba1 | 101.29 (8) |
O1xv—Ba1—O1xvii | 48.69 (8) | Ba2xxix—O2—Ba1 | 95.79 (7) |
O1xvi—Ba1—O1xvii | 120.0 | Te1xiii—O2—K1xxx | 89.48 (3) |
O2x—Ba1—O1xviii | 120.56 (3) | Ba2xxix—O2—K1xxx | 92.02 (3) |
O2xi—Ba1—O1xviii | 120.56 (3) | Ba1—O2—K1xxx | 85.03 (4) |
O2—Ba1—O1xviii | 93.53 (2) | Te1xiii—O2—K1xxxi | 89.48 (3) |
O2xii—Ba1—O1xviii | 55.24 (3) | Ba2xxix—O2—K1xxxi | 92.02 (3) |
O2xiii—Ba1—O1xviii | 93.53 (2) | Ba1—O2—K1xxxi | 85.03 (4) |
O2xiv—Ba1—O1xviii | 55.24 (3) | K1xxx—O2—K1xxxi | 169.60 (8) |
O1xv—Ba1—O1xviii | 120.0 |
Symmetry codes: (i) y−1, −x+y, −z+1; (ii) −x+1, −y+2, −z+1; (iii) x−y+1, x, −z+1; (iv) y, −x+y+1, z+1/2; (v) −x, −y+1, z+1/2; (vi) x−y+1, x+1, z+1/2; (vii) x−y, x, z+1/2; (viii) −x+1, −y+1, z+1/2; (ix) y, −x+y, z+1/2; (x) −x+y, −x, −z+1/2; (xi) −x+y, −x, z; (xii) −y, x−y, −z+1/2; (xiii) x, y, −z+1/2; (xiv) −y, x−y, z; (xv) −x+y, −x+1, z; (xvi) −x+y−1, −x, z; (xvii) −y+1, x−y+1, z; (xviii) x−1, y−1, z; (xix) −y+1, x−y, z; (xx) x, y−1, z; (xxi) −y+1, x−y+1, −z+1/2; (xxii) −x+y, −x+1, −z+1/2; (xxiii) x−y, x, z−1/2; (xxiv) −x, −y, z−1/2; (xxv) y, −x+y, z−1/2; (xxvi) −x+1, −y+2, z−1/2; (xxvii) x, y+1, z; (xxviii) x+1, y+1, z; (xxix) −x, −y, z+1/2; (xxx) −x+1, −y+1, z−1/2; (xxxi) −x, −y+1, z−1/2. |
Ba2KNaTe2O9 | Dx = 5.314 Mg m−3 |
Mr = 735.97 | Mo Kα radiation, λ = 0.71073 Å |
Hexagonal, P63/mmc | Cell parameters from 9985 reflections |
a = 5.9625 (3) Å | θ = 2.7–42.9° |
c = 14.9396 (8) Å | µ = 15.25 mm−1 |
V = 459.97 (5) Å3 | T = 293 K |
Z = 2 | Plate, colourless |
F(000) = 636 | 0.10 × 0.10 × 0.01 mm |
Bruker APEXII CCD diffractometer | 669 reflections with I > 2σ(I) |
ω– and φ–scans | Rint = 0.029 |
Absorption correction: multi-scan (SADABS; Bruker, 2015) | θmax = 43.1°, θmin = 2.7° |
Tmin = 0.540, Tmax = 0.749 | h = −11→11 |
11701 measured reflections | k = −11→8 |
702 independent reflections | l = −28→28 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0075P)2 + 0.5711P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.018 | (Δ/σ)max = 0.001 |
wR(F2) = 0.034 | Δρmax = 1.02 e Å−3 |
S = 1.49 | Δρmin = −1.63 e Å−3 |
702 reflections | Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
23 parameters | Extinction coefficient: 0.0409 (10) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
BaK1 | 0.3333 | 0.6667 | 0.91703 (2) | 0.01251 (6) | 0.5 |
KBA1 | 0.3333 | 0.6667 | 0.91703 (2) | 0.01251 (6) | 0.5 |
Ba1 | 0.0000 | 0.0000 | 0.2500 | 0.00953 (5) | |
Te1 | 0.3333 | 0.6667 | 0.15383 (2) | 0.00583 (5) | |
Na2 | 0.0000 | 0.0000 | 0.0000 | 0.0110 (3) | |
O1 | 0.47381 (18) | 0.9476 (4) | 0.2500 | 0.0101 (3) | |
O2 | 0.17638 (16) | 0.3528 (3) | 0.40559 (12) | 0.0195 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
BaK1 | 0.01060 (8) | 0.01060 (8) | 0.01631 (11) | 0.00530 (4) | 0.000 | 0.000 |
KBA1 | 0.01060 (8) | 0.01060 (8) | 0.01631 (11) | 0.00530 (4) | 0.000 | 0.000 |
Ba1 | 0.00874 (7) | 0.00874 (7) | 0.01112 (9) | 0.00437 (3) | 0.000 | 0.000 |
Te1 | 0.00573 (5) | 0.00573 (5) | 0.00603 (7) | 0.00287 (3) | 0.000 | 0.000 |
Na2 | 0.0118 (5) | 0.0118 (5) | 0.0094 (7) | 0.0059 (2) | 0.000 | 0.000 |
O1 | 0.0107 (5) | 0.0060 (6) | 0.0121 (6) | 0.0030 (3) | 0.000 | 0.000 |
O2 | 0.0235 (6) | 0.0120 (6) | 0.0192 (6) | 0.0060 (3) | 0.0045 (3) | 0.0089 (5) |
BaK1—O2i | 2.9878 (2) | Ba1—O1xviii | 2.9935 (14) |
BaK1—O2ii | 2.9878 (2) | Ba1—O1xix | 2.9935 (14) |
BaK1—O2iii | 2.9878 (2) | Ba1—O1xx | 2.9935 (14) |
BaK1—O2iv | 2.9878 (2) | Ba1—O1xxi | 2.9935 (14) |
BaK1—O2v | 2.9878 (2) | Ba1—O1xxii | 2.9935 (14) |
BaK1—O2vi | 2.9879 (2) | Ba1—O1xxiii | 2.9935 (14) |
BaK1—O2vii | 3.1064 (18) | Te1—O2xxiv | 1.8481 (16) |
BaK1—O2viii | 3.1064 (19) | Te1—O2xiv | 1.8481 (16) |
BaK1—O2ix | 3.1064 (19) | Te1—O2xxv | 1.8481 (16) |
BaK1—O1x | 3.1927 (12) | Te1—O1xx | 2.0418 (14) |
BaK1—O1xi | 3.1927 (12) | Te1—O1xviii | 2.0418 (14) |
BaK1—O1xii | 3.1927 (12) | Te1—O1 | 2.0418 (14) |
Ba1—O2xiii | 2.9532 (18) | Na2—O2xiv | 2.3037 (16) |
Ba1—O2xiv | 2.9532 (18) | Na2—O2xxvi | 2.3037 (16) |
Ba1—O2xv | 2.9532 (18) | Na2—O2xiii | 2.3037 (16) |
Ba1—O2 | 2.9532 (18) | Na2—O2xxvii | 2.3037 (16) |
Ba1—O2xvi | 2.9532 (18) | Na2—O2xvi | 2.3038 (16) |
Ba1—O2xvii | 2.9532 (18) | Na2—O2xxviii | 2.3038 (16) |
O2i—BaK1—O2ii | 56.05 (6) | O2xv—Ba1—O1xxii | 93.19 (2) |
O2i—BaK1—O2iii | 63.74 (7) | O2—Ba1—O1xxii | 120.27 (3) |
O2ii—BaK1—O2iii | 119.677 (7) | O2xvi—Ba1—O1xxii | 55.95 (3) |
O2i—BaK1—O2iv | 119.677 (7) | O2xvii—Ba1—O1xxii | 55.95 (3) |
O2ii—BaK1—O2iv | 63.74 (7) | O1xviii—Ba1—O1xxii | 120.0 |
O2iii—BaK1—O2iv | 172.40 (6) | O1xix—Ba1—O1xxii | 70.37 (7) |
O2i—BaK1—O2v | 119.676 (7) | O1xx—Ba1—O1xxii | 169.63 (7) |
O2ii—BaK1—O2v | 172.40 (6) | O1xxi—Ba1—O1xxii | 120.0 |
O2iii—BaK1—O2v | 56.04 (6) | O2xiii—Ba1—O1xxiii | 120.27 (3) |
O2iv—BaK1—O2v | 119.675 (7) | O2xiv—Ba1—O1xxiii | 93.19 (2) |
O2i—BaK1—O2vi | 172.40 (6) | O2xv—Ba1—O1xxiii | 120.27 (3) |
O2ii—BaK1—O2vi | 119.676 (7) | O2—Ba1—O1xxiii | 93.20 (2) |
O2iii—BaK1—O2vi | 119.675 (7) | O2xvi—Ba1—O1xxiii | 55.95 (3) |
O2iv—BaK1—O2vi | 56.04 (6) | O2xvii—Ba1—O1xxiii | 55.95 (3) |
O2v—BaK1—O2vi | 63.74 (6) | O1xviii—Ba1—O1xxiii | 70.37 (7) |
O2i—BaK1—O2vii | 120.56 (3) | O1xix—Ba1—O1xxiii | 120.0 |
O2ii—BaK1—O2vii | 120.56 (3) | O1xx—Ba1—O1xxiii | 120.0 |
O2iii—BaK1—O2vii | 91.79 (4) | O1xxi—Ba1—O1xxiii | 169.63 (7) |
O2iv—BaK1—O2vii | 91.79 (4) | O1xxii—Ba1—O1xxiii | 49.63 (7) |
O2v—BaK1—O2vii | 66.84 (5) | O2xxiv—Te1—O2xiv | 98.85 (7) |
O2vi—BaK1—O2vii | 66.84 (5) | O2xxiv—Te1—O2xxv | 98.85 (7) |
O2i—BaK1—O2viii | 91.79 (4) | O2xiv—Te1—O2xxv | 98.85 (7) |
O2ii—BaK1—O2viii | 66.84 (5) | O2xxiv—Te1—O1xx | 91.52 (5) |
O2iii—BaK1—O2viii | 120.56 (3) | O2xiv—Te1—O1xx | 91.51 (5) |
O2iv—BaK1—O2viii | 66.84 (5) | O2xxv—Te1—O1xx | 163.99 (7) |
O2v—BaK1—O2viii | 120.56 (3) | O2xxiv—Te1—O1xviii | 163.99 (7) |
O2vi—BaK1—O2viii | 91.79 (4) | O2xiv—Te1—O1xviii | 91.51 (5) |
O2vii—BaK1—O2viii | 53.73 (5) | O2xxv—Te1—O1xviii | 91.51 (5) |
O2i—BaK1—O2ix | 66.84 (5) | O1xx—Te1—O1xviii | 75.95 (6) |
O2ii—BaK1—O2ix | 91.79 (4) | O2xxiv—Te1—O1 | 91.51 (5) |
O2iii—BaK1—O2ix | 66.84 (5) | O2xiv—Te1—O1 | 163.99 (7) |
O2iv—BaK1—O2ix | 120.56 (3) | O2xxv—Te1—O1 | 91.52 (5) |
O2v—BaK1—O2ix | 91.79 (4) | O1xx—Te1—O1 | 75.95 (6) |
O2vi—BaK1—O2ix | 120.56 (3) | O1xviii—Te1—O1 | 75.95 (6) |
O2vii—BaK1—O2ix | 53.73 (5) | O2xiv—Na2—O2xxvi | 180.00 (9) |
O2viii—BaK1—O2ix | 53.73 (5) | O2xiv—Na2—O2xiii | 86.43 (7) |
O2i—BaK1—O1x | 88.64 (4) | O2xxvi—Na2—O2xiii | 93.57 (7) |
O2ii—BaK1—O1x | 118.94 (4) | O2xiv—Na2—O2xxvii | 93.57 (7) |
O2iii—BaK1—O1x | 53.54 (4) | O2xxvi—Na2—O2xxvii | 86.43 (7) |
O2iv—BaK1—O1x | 118.94 (4) | O2xiii—Na2—O2xxvii | 180.00 (9) |
O2v—BaK1—O1x | 53.54 (4) | O2xiv—Na2—O2xvi | 86.43 (7) |
O2vi—BaK1—O1x | 88.64 (4) | O2xxvi—Na2—O2xvi | 93.57 (7) |
O2vii—BaK1—O1x | 120.26 (3) | O2xiii—Na2—O2xvi | 86.43 (7) |
O2viii—BaK1—O1x | 172.86 (4) | O2xxvii—Na2—O2xvi | 93.57 (7) |
O2ix—BaK1—O1x | 120.26 (3) | O2xiv—Na2—O2xxviii | 93.57 (7) |
O2i—BaK1—O1xi | 118.94 (4) | O2xxvi—Na2—O2xxviii | 86.43 (7) |
O2ii—BaK1—O1xi | 88.64 (4) | O2xiii—Na2—O2xxviii | 93.57 (7) |
O2iii—BaK1—O1xi | 118.94 (4) | O2xxvii—Na2—O2xxviii | 86.43 (7) |
O2iv—BaK1—O1xi | 53.54 (4) | O2xvi—Na2—O2xxviii | 180.00 (7) |
O2v—BaK1—O1xi | 88.64 (4) | Te1xiv—O1—Te1 | 89.44 (8) |
O2vi—BaK1—O1xi | 53.54 (4) | Te1xiv—O1—Ba1xxix | 93.68 (2) |
O2vii—BaK1—O1xi | 120.26 (3) | Te1—O1—Ba1xxix | 93.68 (2) |
O2viii—BaK1—O1xi | 120.26 (3) | Te1xiv—O1—Ba1xxx | 93.68 (2) |
O2ix—BaK1—O1xi | 172.86 (4) | Te1—O1—Ba1xxx | 93.68 (2) |
O1x—BaK1—O1xi | 65.40 (4) | Ba1xxix—O1—Ba1xxx | 169.63 (7) |
O2i—BaK1—O1xii | 53.54 (4) | Te1xiv—O1—BaK1xxxi | 83.874 (13) |
O2ii—BaK1—O1xii | 53.54 (4) | Te1—O1—BaK1xxxi | 173.32 (6) |
O2iii—BaK1—O1xii | 88.64 (4) | Ba1xxix—O1—BaK1xxxi | 86.77 (2) |
O2iv—BaK1—O1xii | 88.64 (4) | Ba1xxx—O1—BaK1xxxi | 86.77 (2) |
O2v—BaK1—O1xii | 118.94 (4) | Te1xiv—O1—KBA1xxxi | 83.874 (13) |
O2vi—BaK1—O1xii | 118.94 (4) | Te1—O1—KBA1xxxi | 173.32 (6) |
O2vii—BaK1—O1xii | 172.86 (4) | Ba1xxix—O1—KBA1xxxi | 86.77 (2) |
O2viii—BaK1—O1xii | 120.26 (3) | Ba1xxx—O1—KBA1xxxi | 86.77 (2) |
O2ix—BaK1—O1xii | 120.26 (3) | BaK1xxxi—O1—KBA1xxxi | 0.000 (7) |
O1x—BaK1—O1xii | 65.40 (4) | Te1xiv—O1—BaK1xi | 173.32 (6) |
O1xi—BaK1—O1xii | 65.40 (4) | Te1—O1—BaK1xi | 83.874 (13) |
O2xiii—Ba1—O2xiv | 64.58 (5) | Ba1xxix—O1—BaK1xi | 86.77 (2) |
O2xiii—Ba1—O2xv | 103.83 (6) | Ba1xxx—O1—BaK1xi | 86.77 (2) |
O2xiv—Ba1—O2xv | 144.07 (2) | BaK1xxxi—O1—BaK1xi | 102.81 (5) |
O2xiii—Ba1—O2 | 144.07 (3) | KBA1xxxi—O1—BaK1xi | 102.8 |
O2xiv—Ba1—O2 | 103.83 (6) | Te1xiv—O1—KBA1xi | 173.32 (6) |
O2xv—Ba1—O2 | 64.58 (5) | Te1—O1—KBA1xi | 83.874 (13) |
O2xiii—Ba1—O2xvi | 64.58 (5) | Ba1xxix—O1—KBA1xi | 86.77 (2) |
O2xiv—Ba1—O2xvi | 64.58 (5) | Ba1xxx—O1—KBA1xi | 86.77 (2) |
O2xv—Ba1—O2xvi | 144.07 (2) | BaK1xxxi—O1—KBA1xi | 102.81 (5) |
O2—Ba1—O2xvi | 144.07 (2) | KBA1xxxi—O1—KBA1xi | 102.81 (5) |
O2xiii—Ba1—O2xvii | 144.07 (3) | BaK1xi—O1—KBA1xi | 0.000 (7) |
O2xiv—Ba1—O2xvii | 144.07 (3) | Te1xiv—O2—Na2xxxii | 170.96 (10) |
O2xv—Ba1—O2xvii | 64.58 (5) | Te1xiv—O2—Ba1 | 99.37 (7) |
O2—Ba1—O2xvii | 64.58 (5) | Na2xxxii—O2—Ba1 | 89.67 (6) |
O2xvi—Ba1—O2xvii | 103.83 (6) | Te1xiv—O2—BaK1xxxiii | 93.26 (3) |
O2xiii—Ba1—O1xviii | 120.27 (3) | Na2xxxii—O2—BaK1xxxiii | 86.47 (3) |
O2xiv—Ba1—O1xviii | 55.95 (3) | Ba1—O2—BaK1xxxiii | 91.39 (4) |
O2xv—Ba1—O1xviii | 120.27 (3) | Te1xiv—O2—KBA1xxxiii | 93.26 (3) |
O2—Ba1—O1xviii | 55.95 (3) | Na2xxxii—O2—KBA1xxxiii | 86.47 (3) |
O2xvi—Ba1—O1xviii | 93.20 (2) | Ba1—O2—KBA1xxxiii | 91.39 (4) |
O2xvii—Ba1—O1xviii | 93.19 (2) | BaK1xxxiii—O2—KBA1xxxiii | 0.000 (13) |
O2xiii—Ba1—O1xix | 55.95 (3) | Te1xiv—O2—BaK1xxxiv | 93.26 (3) |
O2xiv—Ba1—O1xix | 120.27 (3) | Na2xxxii—O2—BaK1xxxiv | 86.47 (3) |
O2xv—Ba1—O1xix | 55.95 (3) | Ba1—O2—BaK1xxxiv | 91.39 (4) |
O2—Ba1—O1xix | 120.27 (3) | BaK1xxxiii—O2—BaK1xxxiv | 172.40 (6) |
O2xvi—Ba1—O1xix | 93.20 (2) | KBA1xxxiii—O2—BaK1xxxiv | 172.4 |
O2xvii—Ba1—O1xix | 93.20 (2) | Te1xiv—O2—KBA1xxxiv | 93.26 (3) |
O1xviii—Ba1—O1xix | 169.63 (7) | Na2xxxii—O2—KBA1xxxiv | 86.47 (3) |
O2xiii—Ba1—O1xx | 93.20 (2) | Ba1—O2—KBA1xxxiv | 91.39 (4) |
O2xiv—Ba1—O1xx | 55.95 (3) | BaK1xxxiii—O2—KBA1xxxiv | 172.40 (6) |
O2xv—Ba1—O1xx | 93.20 (2) | KBA1xxxiii—O2—KBA1xxxiv | 172.40 (6) |
O2—Ba1—O1xx | 55.95 (3) | BaK1xxxiv—O2—KBA1xxxiv | 0.0 |
O2xvi—Ba1—O1xx | 120.27 (3) | Te1xiv—O2—KBA1ix | 87.26 (6) |
O2xvii—Ba1—O1xx | 120.27 (3) | Na2xxxii—O2—KBA1ix | 83.70 (5) |
O1xviii—Ba1—O1xx | 49.63 (7) | Ba1—O2—KBA1ix | 173.37 (6) |
O1xix—Ba1—O1xx | 120.0 | BaK1xxxiii—O2—KBA1ix | 88.21 (4) |
O2xiii—Ba1—O1xxi | 55.95 (3) | KBA1xxxiii—O2—KBA1ix | 88.21 (4) |
O2xiv—Ba1—O1xxi | 93.20 (2) | BaK1xxxiv—O2—KBA1ix | 88.21 (4) |
O2xv—Ba1—O1xxi | 55.95 (3) | KBA1xxxiv—O2—KBA1ix | 88.21 (4) |
O2—Ba1—O1xxi | 93.20 (2) | Te1xiv—O2—BaK1ix | 87.26 (6) |
O2xvi—Ba1—O1xxi | 120.27 (3) | Na2xxxii—O2—BaK1ix | 83.70 (5) |
O2xvii—Ba1—O1xxi | 120.27 (3) | Ba1—O2—BaK1ix | 173.37 (6) |
O1xviii—Ba1—O1xxi | 120.0 | BaK1xxxiii—O2—BaK1ix | 88.21 (4) |
O1xix—Ba1—O1xxi | 49.63 (7) | KBA1xxxiii—O2—BaK1ix | 88.2 |
O1xx—Ba1—O1xxi | 70.37 (7) | BaK1xxxiv—O2—BaK1ix | 88.21 (4) |
O2xiii—Ba1—O1xxii | 93.19 (2) | KBA1xxxiv—O2—BaK1ix | 88.2 |
O2xiv—Ba1—O1xxii | 120.27 (3) | KBA1ix—O2—BaK1ix | 0.0 |
Symmetry codes: (i) y, −x+y, z+1/2; (ii) −x+1, −y+1, z+1/2; (iii) x−y, x, z+1/2; (iv) x−y+1, x+1, z+1/2; (v) −x, −y+1, z+1/2; (vi) y, −x+y+1, z+1/2; (vii) −x+y, −x+1, −z+3/2; (viii) −y+1, x−y+1, −z+3/2; (ix) x, y, −z+3/2; (x) y−1, −x+y, −z+1; (xi) −x+1, −y+2, −z+1; (xii) x−y+1, x, −z+1; (xiii) −y, x−y, −z+1/2; (xiv) x, y, −z+1/2; (xv) −y, x−y, z; (xvi) −x+y, −x, −z+1/2; (xvii) −x+y, −x, z; (xviii) −x+y, −x+1, z; (xix) −x+y−1, −x, z; (xx) −y+1, x−y+1, z; (xxi) x−1, y−1, z; (xxii) −y+1, x−y, z; (xxiii) x, y−1, z; (xxiv) −x+y, −x+1, −z+1/2; (xxv) −y+1, x−y+1, −z+1/2; (xxvi) −x, −y, z−1/2; (xxvii) y, −x+y, z−1/2; (xxviii) x−y, x, z−1/2; (xxix) x+1, y+1, z; (xxx) x, y+1, z; (xxxi) −x+1, −y+2, z−1/2; (xxxii) −x, −y, z+1/2; (xxxiii) −x+1, −y+1, z−1/2; (xxxiv) −x, −y+1, z−1/2. |
Ba2CaTeO6 | Mo Kα radiation, λ = 0.71073 Å |
Mr = 538.36 | Cell parameters from 5256 reflections |
Cubic, Fm3m | θ = 4.2–40.4° |
a = 8.3536 (14) Å | µ = 19.18 mm−1 |
V = 582.9 (3) Å3 | T = 293 K |
Z = 4 | Octahedron, colourless |
F(000) = 928 | 0.08 × 0.08 × 0.08 mm |
Dx = 6.134 Mg m−3 |
Bruker APEXII CCD diffractometer | 131 reflections with I > 2σ(I) |
φ– and ω–scans | Rint = 0.139 |
Absorption correction: multi-scan (SADABS; Bruker, 2015) | θmax = 40.8°, θmin = 4.2° |
Tmin = 0.514, Tmax = 0.748 | h = −15→15 |
11194 measured reflections | k = −15→15 |
131 independent reflections | l = −15→15 |
Refinement on F2 | 7 parameters |
Least-squares matrix: full | 0 restraints |
R[F2 > 2σ(F2)] = 0.019 | w = 1/[σ2(Fo2) + (0.0237P)2 + 1.8403P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.049 | (Δ/σ)max < 0.001 |
S = 1.33 | Δρmax = 3.87 e Å−3 |
131 reflections | Δρmin = −1.68 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ba | 0.250000 | 0.250000 | 0.250000 | 0.00957 (13) | |
Ca | 0.000000 | 0.000000 | 0.000000 | 0.0066 (2) | |
Te | 0.500000 | 0.500000 | 0.500000 | 0.00602 (13) | |
O | 0.2690 (4) | 0.000000 | 0.000000 | 0.0203 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ba | 0.00957 (13) | 0.00957 (13) | 0.00957 (13) | 0.000 | 0.000 | 0.000 |
Ca | 0.0066 (2) | 0.0066 (2) | 0.0066 (2) | 0.000 | 0.000 | 0.000 |
Te | 0.00602 (13) | 0.00602 (13) | 0.00602 (13) | 0.000 | 0.000 | 0.000 |
O | 0.0201 (12) | 0.0203 (8) | 0.0203 (8) | 0.000 | 0.000 | 0.000 |
Ba—Oi | 2.9577 (5) | Ca—O | 2.247 (3) |
Ba—Oii | 2.9577 (5) | Ca—Oxii | 2.247 (3) |
Ba—O | 2.9577 (5) | Ca—Oiv | 2.247 (3) |
Ba—Oiii | 2.9577 (5) | Ca—Oxiii | 2.247 (3) |
Ba—Oiv | 2.9577 (5) | Ca—Ov | 2.247 (3) |
Ba—Ov | 2.9577 (5) | Ca—Oxiv | 2.247 (3) |
Ba—Ovi | 2.9577 (5) | Te—Oxv | 1.930 (3) |
Ba—Ovii | 2.9577 (5) | Te—Oiii | 1.930 (3) |
Ba—Oviii | 2.9577 (5) | Te—Oxvi | 1.930 (3) |
Ba—Oix | 2.9577 (5) | Te—Oi | 1.930 (3) |
Ba—Ox | 2.9577 (5) | Te—Oxvii | 1.930 (3) |
Ba—Oxi | 2.9577 (5) | Te—Oii | 1.930 (3) |
Oi—Ba—Oii | 54.95 (11) | Oii—Ba—Oxi | 90.165 (7) |
Oi—Ba—O | 119.905 (4) | O—Ba—Oxi | 90.165 (7) |
Oii—Ba—O | 173.85 (13) | Oiii—Ba—Oxi | 119.905 (4) |
Oi—Ba—Oiii | 54.95 (11) | Oiv—Ba—Oxi | 54.95 (11) |
Oii—Ba—Oiii | 54.95 (11) | Ov—Ba—Oxi | 119.905 (4) |
O—Ba—Oiii | 119.905 (4) | Ovi—Ba—Oxi | 64.99 (11) |
Oi—Ba—Oiv | 119.905 (4) | Ovii—Ba—Oxi | 119.905 (4) |
Oii—Ba—Oiv | 119.905 (4) | Oviii—Ba—Oxi | 119.905 (4) |
O—Ba—Oiv | 64.99 (11) | Oix—Ba—Oxi | 54.95 (11) |
Oiii—Ba—Oiv | 173.85 (13) | Ox—Ba—Oxi | 173.85 (13) |
Oi—Ba—Ov | 173.85 (13) | O—Ca—Oxii | 90.0 |
Oii—Ba—Ov | 119.905 (4) | O—Ca—Oiv | 90.0 |
O—Ba—Ov | 64.99 (11) | Oxii—Ca—Oiv | 180.0 |
Oiii—Ba—Ov | 119.905 (4) | O—Ca—Oxiii | 90.0 |
Oiv—Ba—Ov | 64.99 (11) | Oxii—Ca—Oxiii | 90.0 |
Oi—Ba—Ovi | 64.99 (11) | Oiv—Ca—Oxiii | 90.0 |
Oii—Ba—Ovi | 119.905 (4) | O—Ca—Ov | 90.0 |
O—Ba—Ovi | 54.95 (11) | Oxii—Ca—Ov | 90.0 |
Oiii—Ba—Ovi | 90.165 (7) | Oiv—Ca—Ov | 90.0 |
Oiv—Ba—Ovi | 90.165 (7) | Oxiii—Ca—Ov | 180.0 |
Ov—Ba—Ovi | 119.905 (4) | O—Ca—Oxiv | 180.0 |
Oi—Ba—Ovii | 119.905 (4) | Oxii—Ca—Oxiv | 90.0 |
Oii—Ba—Ovii | 64.99 (11) | Oiv—Ca—Oxiv | 90.0 |
O—Ba—Ovii | 119.905 (4) | Oxiii—Ca—Oxiv | 90.0 |
Oiii—Ba—Ovii | 90.165 (7) | Ov—Ca—Oxiv | 90.0 |
Oiv—Ba—Ovii | 90.165 (7) | Oxv—Te—Oiii | 180.0 |
Ov—Ba—Ovii | 54.95 (11) | Oxv—Te—Oxvi | 90.0 |
Ovi—Ba—Ovii | 173.85 (13) | Oiii—Te—Oxvi | 90.0 |
Oi—Ba—Oviii | 90.165 (7) | Oxv—Te—Oi | 90.0 |
Oii—Ba—Oviii | 119.905 (4) | Oiii—Te—Oi | 90.0 |
O—Ba—Oviii | 54.95 (11) | Oxvi—Te—Oi | 180.0 |
Oiii—Ba—Oviii | 64.99 (11) | Oxv—Te—Oxvii | 90.000 (1) |
Oiv—Ba—Oviii | 119.905 (4) | Oiii—Te—Oxvii | 90.0 |
Ov—Ba—Oviii | 90.165 (7) | Oxvi—Te—Oxvii | 90.000 (1) |
Ovi—Ba—Oviii | 54.95 (11) | Oi—Te—Oxvii | 90.0 |
Ovii—Ba—Oviii | 119.905 (4) | Oxv—Te—Oii | 90.0 |
Oi—Ba—Oix | 90.165 (7) | Oiii—Te—Oii | 90.000 (1) |
Oii—Ba—Oix | 64.99 (11) | Oxvi—Te—Oii | 90.0 |
O—Ba—Oix | 119.905 (4) | Oi—Te—Oii | 90.000 (1) |
Oiii—Ba—Oix | 119.905 (4) | Oxvii—Te—Oii | 180.0 |
Oiv—Ba—Oix | 54.95 (11) | Texviii—O—Ca | 180.0 |
Ov—Ba—Oix | 90.165 (7) | Texviii—O—Baxviii | 93.08 (7) |
Ovi—Ba—Oix | 119.905 (4) | Ca—O—Baxviii | 86.92 (7) |
Ovii—Ba—Oix | 64.99 (11) | Texviii—O—Ba | 93.08 (7) |
Oviii—Ba—Oix | 173.85 (13) | Ca—O—Ba | 86.92 (7) |
Oi—Ba—Ox | 119.905 (4) | Baxviii—O—Ba | 173.85 (13) |
Oii—Ba—Ox | 90.165 (7) | Texviii—O—Bax | 93.08 (7) |
O—Ba—Ox | 90.165 (7) | Ca—O—Bax | 86.92 (7) |
Oiii—Ba—Ox | 64.99 (11) | Baxviii—O—Bax | 89.835 (7) |
Oiv—Ba—Ox | 119.905 (4) | Ba—O—Bax | 89.835 (7) |
Ov—Ba—Ox | 54.95 (11) | Texviii—O—Baxi | 93.08 (7) |
Ovi—Ba—Ox | 119.905 (4) | Ca—O—Baxi | 86.92 (7) |
Ovii—Ba—Ox | 54.95 (11) | Baxviii—O—Baxi | 89.835 (7) |
Oviii—Ba—Ox | 64.99 (11) | Ba—O—Baxi | 89.835 (7) |
Oix—Ba—Ox | 119.905 (4) | Bax—O—Baxi | 173.85 (13) |
Oi—Ba—Oxi | 64.99 (11) |
Symmetry codes: (i) z+1/2, x, y+1/2; (ii) x, y+1/2, z+1/2; (iii) y+1/2, z+1/2, x; (iv) y, z, x; (v) z, x, y; (vi) −y+1/2, −z, −x+1/2; (vii) −y, −z+1/2, −x+1/2; (viii) −z+1/2, −x+1/2, −y; (ix) −z, −x+1/2, −y+1/2; (x) −x+1/2, −y+1/2, −z; (xi) −x+1/2, −y, −z+1/2; (xii) −y, −z, −x; (xiii) −z, −x, −y; (xiv) −x, −y, −z; (xv) −y+1/2, −z+1/2, −x+1; (xvi) −z+1/2, −x+1, −y+1/2; (xvii) −x+1, −y+1/2, −z+1/2; (xviii) x, y−1/2, z−1/2. |
(I) | (II) | (III) | |||
K1—O1 | 2.893 (2) [3×] | (Ba/K)1—O2 | 2.98780 (19) [6×] | Ba—O | 2.9577 (5) [12×] |
K1—O2 | 3.0359 (17) [6×] | (Ba/K)1—O2 | 3.1064 (19) [3×] | Ca—O | 2.247 (3) [6x] |
(Ba/K)1—O1 | 3.1927 (12) [3×] | Te—O | 1.930 (3) [6×] | ||
Ba1—O2 | 2.952 (2) [6×] | Ba1—O2 | 2.9532 (18) [6×] | ||
Ba1—O1 | 3.0382 (17) [6×] | Ba1—O1 | 2.9935 (14) [6×] | ||
Te1—O2 | 1.8524 (18) [3×] | Te1—O2 | 1.8481 (16) [3×] | ||
Te1—O1 | 2.0474 (16) [3×] | Te1—O1 | 2.0418 (14) [3×] | ||
Ba2—O2 | 2.5910 (18) [6×] | Na2—O2 | 2.3037 (16) [6×] | ||
O1—Te1—O1 | 75.43 (7) [3×] | O1—Te1—O1 | 75.95 (6) [3×] | ||
Δa | 0.076 | Δa | 0.191 | ||
Note: (a) Δ is the center shift (Å) of the Te atoms in the Te2O9 dimer. The center shift is defined as the distance between the Te atoms in the 4f Wyckoff position (z ≈ 1/6) of the actual crystal structure and the ideal high-symmetry 4f Te position (z =1/6) (Lufaso & zur Loye, 2005a). |
Funding information
The X-ray centre of TU Wien is acknowledged for financial support and for providing access to the single-crystal diffractometer.
References
Aoba, T., Tiittanen, T., Suematsu, H. & Karppinen, M. (2016). J. Solid State Chem. 233, 492–496. Web of Science CrossRef Google Scholar
Berg, R. W. & Kerridge, D. H. (2004). Dalton Trans. pp. 2224–2229. Web of Science CrossRef Google Scholar
Bruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burbank, R. D. & Evans, H. T. (1948). Acta Cryst. 1, 330–336. CrossRef CAS IUCr Journals Web of Science Google Scholar
Doi, Y., Matsuhira, K. & Hinatsu, Y. (2002). J. Solid State Chem. 165, 317–323. Web of Science CrossRef Google Scholar
Dowty, E. (2006). ATOMS for Windows. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA. Google Scholar
Engelbrecht, A. & Sladky, F. (1965). Monatshefte f?r Chemie, 96, 360–363. Google Scholar
Fu, W. T., Au, Y. S., Akerboom, S. & IJdo, D. J. W. (2008). J. Solid State Chem. 181, 2523–2529. Web of Science CrossRef Google Scholar
Gagné, O. C. & Hawthorne, F. C. (2016). Acta Cryst. B72, 602–625. Web of Science CrossRef IUCr Journals Google Scholar
Gagné, O. C. & Hawthorne, F. C. (2018). Acta Cryst. B74, 63–78. Web of Science CrossRef IUCr Journals Google Scholar
Harari, D., Bernier, J. C. & Poix, P. (1972). J. Solid State Chem. 5, 382–390. CrossRef Google Scholar
Howard, C. J., Kennedy, B. J. & Woodward, P. M. (2003). Acta Cryst. B59, 463–471. Web of Science CrossRef CAS IUCr Journals Google Scholar
ICSD (2018). The Inorganic Database. https://www. fiz-karlsruhe. de/icsd. html Google Scholar
Li, M.-R., Deng, Z., Lapidus, S. H., Stephens, P. W., Segre, C. U., Croft, M., Paria Sena, R., Hadermann, J., Walker, D. & Greenblatt, M. (2016). Inorg. Chem. 55, 10135–10142. Web of Science CrossRef Google Scholar
Lufaso, M. W. & zur Loye, H. C. (2005a). Inorg. Chem. 44, 9143–9153. Web of Science CrossRef Google Scholar
Lufaso, M. W. & zur Loye, H. C. (2005b). Inorg. Chem. 44, 9154–9161. Web of Science CrossRef Google Scholar
Mogare, K. M., Klein, W. & Jansen, M. (2012). J. Solid State Chem. 191, 153–157. Web of Science CrossRef Google Scholar
Prior, T. J., Couper, V. J. & Battle, P. D. (2005). J. Solid State Chem. 178, 153–157. Web of Science CrossRef Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Stöger, B., Weil, M. & Zobetz, E. (2010). Z. Kristallogr. 225, 125–138. Google Scholar
Tilley, R. J. D. (2016). Perovskites. Structure–Property Relationships. Chichester: John Wiley & Sons. Google Scholar
Vasala, S. & Karppinen, M. (2015). Prog. Solid State Chem. 43, 1–36. Web of Science CrossRef CAS Google Scholar
Weil, M. (2016). Cryst. Growth Des. 16, 908–921. Web of Science CSD CrossRef CAS Google Scholar
Weil, M., Stöger, B., Gierl-Mayer, C. & Libowitzky, E. (2016). J. Solid State Chem. 241, 187–197. Web of Science CrossRef Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhang, X.-Y., Yao, J.-Y., Jiang, X.-X., Fu, Y., Lin, Z.-H., Zhang, G.-C. & Wu, Y.-C. (2015). Dalton Trans. 44, 15576–15582. Web of Science CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.