research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of ethane-1,2-diaminium 3-[2-(1,3-dioxo-1,3-di­phenyl­propan-2-yl­­idene)hydrazin­yl]-5-nitro-2-oxido­benzene­sulfonate dihydrate

CROSSMARK_Color_square_no_text.svg

aİlke Education and Health Foundation, Cappadocia University, Cappadocia Vocational College, The Medical Imaging Techniques Program, 50420 Mustafapaşa, Ürgüp, Nevşehir, Turkey, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cDepartment of Chemistry, Faculty of Sciences, University of Douala, PO Box 24157, Douala, Republic of , Cameroon, dDepartment of Ecology and Soil Sciences, Baku State University, Z. Xalilov Str. 23, Az 1148 Baku, Azerbaijan, and eOrganic Chemistry Department, Baku State University, Z. Xalilov Str. 23, Az 1148 Baku, Azerbaijan
*Correspondence e-mail: toflavien@yahoo.fr

Edited by P. McArdle, National University of Ireland, Ireland (Received 21 June 2018; accepted 22 June 2018; online 28 June 2018)

In the anion of the title hydrated salt, C2H10N22+·C21H13N3O8S2−·2H2O, the planes of the phenyl rings and the benzene ring of the 5-nitro-2-oxido­benzene­sulfonate group are inclined to one another by 44.42 (11), 56.87 (11) and 77.70 (12)°. In the crystal, the anions are linked to the cations and the water mol­ecules by N—H⋯O and O—H⋯O hydrogen bonds, forming a three-dimensional network. Furthermore, there are face-to-face ππ stacking inter­actions between the centroids of one phenyl ring and the benzene ring of the 5-nitro-2-oxido­benzene­sulfonate group [centroid–centroid distance = 3.8382 (13) Å and slippage = 1.841 Å]. A Hirshfeld surface analysis was conducted to verify the contributions of the different inter­molecular inter­actions.

1. Chemical context

Aryl­hydrazones of β-diketones (AHBD) and their complexes have attracted much attention due to their synthetic potential for organic and inorganic chemistries and diverse useful properties (Gurbanov et al., 2017a[Gurbanov, A. V., Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C., Sutradhar, M., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017a). Dyes Pigm. 138, 107-111.],b[Gurbanov, A. V., Mahmudov, K. T., Sutradhar, M., Guedes da Silva, M. F. C., Mahmudov, T. A., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017b). J. Organomet. Chem. 834, 22-27.]; Jlassi et al., 2014[Jlassi, R., Ribeiro, A. P. C., Guedes da Silva, M. F. C., Mahmudov, K. T., Kopylovich, M. N., Anisimova, T. B., Naïli, H., Tiago, G. A. O. & Pombeiro, A. J. L. (2014). Eur. J. Inorg. Chem. pp. 4541-4550.], 2018[Jlassi, R., Ribeiro, A. P. C., Alegria, E. C. B. A., Naïli, H., Tiago, G. A. O., Rüffer, T., Lang, H., Zubkov, F. I., Pombeiro, A. J. L. & Rekik, W. (2018). Inorg. Chim. Acta, 471, 658-663.]; Ma et al., 2017a[Ma, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017a). J. Mol. Catal. A, 426, 526-533.],b[Ma, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017b). J. Mol. Catal. A, 428, 17-23.]; Mahmudov & Pombeiro, 2016[Mahmudov, K. T. & Pombeiro, A. J. L. (2016). Chem. Eur. J. 22, 16356-16398.]; Mahmudov et al., 2014[Mahmudov, K. T., Kopylovich, M. N., Sabbatini, A., Drew, M. G. B., Martins, L. M. D. R. S., Pettinari, C. & Pombeiro, A. J. L. (2014). Inorg. Chem. 53, 9946-9958.], 2017a[Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017a). Coord. Chem. Rev. 345, 54-72.],b[Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017b). Dalton Trans. 46, 10121-10138.]). Usually, AHBDs have strong intra­molecular resonance-assisted hydrogen bonding (RAHB), which has a more profound effect on their reactivity (Mahmudov et al., 2016[Mahmudov, K. T. & Pombeiro, A. J. L. (2016). Chem. Eur. J. 22, 16356-16398.]) than regular hydrogen bonding and other types of noncovalent inter­actions (Ledenyova et al., 2018[Ledenyova, I. V., Falaleev, A. V., Shikhaliev, Kh. S., Ryzhkova, E. A. & Zubkov, F. I. (2018). Russ. J. Gen. Chem. 88, 73-79.]; Mahmoudi et al., 2016[Mahmoudi, G., Bauza, A., Gurbanov, A. V., Zubkov, F. I., Maniukiewicz, W., Rodriguez-Dieguez, A., Lopez-Torres, E. & Frontera, A. (2016). CrystEngComm, 18, 9056-9066.], 2018[Mahmoudi, G., Zangrando, E., Mitoraj, M. P., Gurbanov, A. V., Zubkov, F. I., Moosavifar, M., Konyaeva, I. A., Kirillov, A. M. & Safin, D. A. (2018). New J. Chem. 42, 4959-4971.]; Nasirova et al., 2017[Nasirova, D. K., Malkova, A. V., Polyanskii, K. B., Yankina, K. Y., Amoyaw, P. N.-A., Kolesnik, I. A., Kletskov, A. V., Godovikov, I. A., Nikitina, E. V. & Zubkov, F. I. (2017). Tetrahedron Lett. 58, 4384-438.]; Politzer et al., 2017[Politzer, P., Murray, J. S., Clark, T. & Resnati, G. (2017). Phys. Chem. Chem. Phys. 19, 32166-32178.]; Scheiner, 2013[Scheiner, S. (2013). Acc. Chem. Res. 46, 280-288.]; Shixaliyev et al., 2018[Shixaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigm. 150, 377-381.]; Vandyshev et al., 2017[Vandyshev, D. Y., Shikhaliev, K. S., Potapov, A. Y., Krysin, M. Y., Zubkov, F. I. & Sapronova, L. V. (2017). Beilstein J. Org. Chem. 13, 2561-2568.]).

[Scheme 1]

Herein we found the strong RAHB and inter­molecular charge-assisted hydrogen bonding that was expected in the title hydrated salt ethane-1,2-diaminium 3-[2-(1,3-dioxo-1,3-di­phenyl­propan-2-yl­idene)hydrazin­yl]-5-nitro-2-oxido­benzene­sulfonate dihydrate.

2. Structural commentary

In the anion of the title salt (Fig. 1[link]), the planes of the phenyl rings (C9–C14 and C16–C21) and the benzene ring (C1–C6) of the 5-nitro-2-oxido­benzene­sulfonate group are inclined to one another by 44.42 (11), 56.87 (11) and 77.70 (12)°, respectively. The torsion angles O1—C2—C1—N1, C1—N1—N2—C7, N1—N2—C7—C8, N2—C7—C8—O7, N2—C7—C8—C9, N2—C7—C15—O8, N2—C7—C15—C16, C7—C15—C16—C17 and O8—C15—C16—C17 are 2.7 (3), −178.65 (19), −2.0 (3), −9.5 (3), 166.9 (2), 133.9 (2), −44.9 (3), −21.3 (3) and 159.9 (2)°, respectively. Therefore, the mol­ecular conformation of the title compound is not planar. The values of the geometric parameters of the title compound are within normal ranges (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms are shown as spheres of arbitrary radius.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal structure of the title compound, the anions are linked to the cations and two water mol­ecules by N—H⋯O and O—H⋯O hydrogen bonds, forming a three-dimensional network (Table 1[link] and Fig. 2[link]). Furthermore, there are face-to-face ππ stacking inter­actions between the centroids of one phenyl ring (atoms C1–C6, Cg1) and the benzene ring of the 5-nitro-2-oxido­benzene­sulfonate group (Cg2) [Cg1⋯Cg2a = 3.8382 (13) Å and slippage = 1.841 Å; symmetry code: (a) x + 1, −y + [{3\over 2}], z + [{1\over 2}]].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O10—H10A⋯O8i 0.85 2.10 2.928 (2) 165
O9—H9A⋯O4 0.85 1.99 2.827 (2) 169
O9—H9B⋯O2ii 0.85 2.03 2.866 (2) 170
O10—H10B⋯O4iii 0.85 2.36 3.139 (3) 152
N1—H1N⋯O7 0.90 1.92 2.568 (2) 127
N4—H4A⋯O1ii 0.90 1.94 2.826 (2) 167
N4—H4B⋯O6iv 0.90 2.30 2.960 (2) 130
N4—H4B⋯O7ii 0.90 2.24 2.797 (2) 119
N5—H5B⋯O1ii 0.90 2.01 2.864 (2) 158
N4—H4B⋯O6iv 0.90 2.30 2.960 (2) 130
N4—H4B⋯O7ii 0.90 2.24 2.797 (2) 119
N4—H4C⋯O3 0.90 1.86 2.756 (2) 177
N5—H5A⋯O10ii 0.90 1.98 2.775 (3) 146
N5—H5B⋯O3ii 0.90 2.32 2.778 (2) 112
N5—H5C⋯O9v 0.90 1.98 2.835 (3) 159
Symmetry codes: (i) [x+1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) x+1, y, z; (iii) -x+1, -y+2, -z+1; (iv) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (v) -x+2, -y+2, -z+1.
[Figure 2]
Figure 2
A view along the a axis of the packing and hydrogen bonding of the title compound.

The Hirshfeld surface mapped over dnorm (McKinnon et al., 2004[McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627-668.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) for the title compound is depicted in Fig. 3[link]. The red areas on the surface indicate short contacts as compared to the sum of the van der Waals radii, the blue areas indicate long contacts and the white areas indicate contacts with distances equal to the sum of the van der Waals radii. The highlighted red area shows the O—H⋯O hydrogen bonding, which is responsible for connecting anions and cations to each other.

[Figure 3]
Figure 3
The Hirshfeld surface of the title compound mapped with dnorm.

The overall two-dimensional fingerprint plot for the title compound and those delineated into O⋯H/H⋯O, H⋯H, C⋯H/H⋯C, C⋯C and C⋯O/O⋯C contacts are illustrated in Fig. 4[link]; the percentage contributions from the different inter­atomic contacts to the Hirshfeld surfaces are as follows: O⋯H/H⋯O (39.5%), H⋯H (33.8%), C⋯H/H⋯C (14.5%), C⋯C (4.3%) and C⋯O/O⋯C (2.4%). The contributions of the other weak inter­molecular contacts to the Hirshfeld surfaces are listed in Table 2[link]. The large number of O⋯H/H⋯O, H⋯H, C⋯H/H⋯C, C⋯C and C⋯O/O⋯C inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the greatest roles in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]). A view of the Hirshfeld surface of the title complex plotted over the shape index is given in Fig. 5[link].

Table 2
Percentage contributions of inter­atomic contacts to the Hirshfeld surface for the title compound

Contact Percentage contribution
O⋯H/H⋯H 39.5
H⋯H 33.8
C⋯H/H⋯C 14.5
C⋯C 4.3
C⋯O/O⋯C 2.4
N⋯O/O⋯N 1.8
C⋯N/N⋯C 1.5
N⋯H/H⋯N 1.1
O⋯O 1.1
[Figure 4]
Figure 4
The two-dimensional fingerprint plots of the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) O⋯H/H⋯O, (d) H⋯N/N⋯H, (e) C⋯O/O⋯C and (f) C⋯H/H⋯C inter­actions [de and di represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively].
[Figure 5]
Figure 5
View of the three-dimensional Hirshfeld surface of the title complex plotted over shape index.

4. Synthesis and crystallization

Synthesis of 3-[2-(1,3-dioxo-1,3-di­phenyl­propan-2-yl­idene)hydrazine­yl]-2-hy­droxy-5-nitrobenzene­sulfonic acid (H3L) and its characterization by elemental analysis, 1H/13C NMR and IR was reported in Kuznik et al. (2011[Kuznik, W., Kityk, I. V., Kopylovich, M. N., Mahmudov, K. T., Ozga, K., Lakshminarayana, G. & Pombeiro, A. J. L. (2011). Spectrochim. Acta Part A, 78, 1287-1294.]). 469 mg (1 mmol) of H3L was dissolved in 30 ml of methanol and 0.06 ml (1 mmol) of ethyl­enedi­amine was added, with stirring for 5 min at room temperature (rt). The reaction mixture was then kept in air at rt for slow evaporation. After ca 2–3 d, orange crystals of the title compound were formed (yield 84%, based on H3L). The final product was soluble in acetone, dimethyl sulfoxide (DMSO), ethanol and di­methyl­formamide (DMF), and insoluble in non-polar solvents. Elemental analysis for C23H27N5O10S, found (calculated) (%): C 48.79 (48.85), H 4.77 (4.81), N 12.27 (12.38). IR (KBr): 3470 ν(OH), 2989 ν(NH), 1667 ν(C=O), 1613 ν(C=O⋯H), 1576 ν(C=N) cm−1. 1H NMR (DMSO, inter­nal TMS): δ 3.86 (4H, 2CH2), 7.32–8.43 (12H, Ar—H), 10.13 (6H, 2NH3), 14.36 (s, 1H, N—H). 13C NMR (DMSO, inter­nal TMS): δ 41.18 (2CH2), 109.43 (2Ar—H), 123.01 (2Ar—H), 127.72 (2Ar—H), 128.28 (2Ar—H), 130.35 (Ar—H), 132.52 (Ar—H), 132.67 (Ar—H), 132.88 (Ar—H), 133.13 (Ar—H), 133.57 (Ar—CO), 133.80 (Ar—CO), 134.25 (C=N), 137.89 (Ar—SO3), 143.38 (Ar—NH—N), 146.15 (Ar-NO2), 160.72 (Ar—O), 191.37 (C=O), 191.89 (C=O).

5. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with O—H = 0.85 Å, N—H = 0.90 Å and C—H = 0.93–0.97 Å, and Uiso(H) = 1.5Ueq(O) and 1.2Ueq(C,N).

Table 3
Experimental details

Crystal data
Chemical formula C2H10N22+·C21H13N3O8S2−·2H2O
Mr 565.55
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 7.0590 (6), 23.851 (2), 15.3622 (13)
β (°) 93.337 (3)
V3) 2582.1 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.19
Crystal size (mm) 0.26 × 0.15 × 0.08
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.946, 0.975
No. of measured, independent and observed [I > 2σ(I)] reflections 41494, 4930, 3559
Rint 0.083
(sin θ/λ)max−1) 0.611
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.112, 1.02
No. of reflections 4930
No. of parameters 352
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.37, −0.34
Computer programs: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Ethane-1,2-diaminium 3-[2-(1,3-dioxo-1,3-diphenylpropan-2-ylidene)hydrazinyl]-5-nitro-2-oxidobenzenesulfonate dihydrate top
Crystal data top
C2H10N22+·C21H13N3O8S2·2H2OF(000) = 1184
Mr = 565.55Dx = 1.455 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.0590 (6) ÅCell parameters from 7684 reflections
b = 23.851 (2) Åθ = 2.7–25.0°
c = 15.3622 (13) ŵ = 0.19 mm1
β = 93.337 (3)°T = 296 K
V = 2582.1 (4) Å3Plate, orange
Z = 40.26 × 0.15 × 0.08 mm
Data collection top
Bruker APEXII CCD
diffractometer
3559 reflections with I > 2σ(I)
φ and ω scansRint = 0.083
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
θmax = 25.8°, θmin = 2.7°
Tmin = 0.946, Tmax = 0.975h = 88
41494 measured reflectionsk = 2929
4930 independent reflectionsl = 1817
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.053P)2 + 0.9465P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
4930 reflectionsΔρmax = 0.37 e Å3
352 parametersΔρmin = 0.34 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1741 (3)0.76729 (8)0.65426 (13)0.0333 (5)
C20.2217 (3)0.82248 (8)0.62626 (12)0.0288 (4)
C30.3962 (3)0.84445 (8)0.66401 (12)0.0299 (4)
C40.5152 (3)0.81269 (10)0.71878 (13)0.0375 (5)
H40.6302390.8272770.7409850.045*
C50.4612 (3)0.75882 (10)0.74031 (14)0.0411 (5)
C60.2903 (3)0.73575 (9)0.70886 (14)0.0408 (5)
H60.2558320.6996670.7245750.049*
C70.2184 (3)0.67860 (9)0.59205 (13)0.0364 (5)
C80.3471 (3)0.71352 (9)0.53687 (14)0.0374 (5)
C90.5092 (3)0.68929 (9)0.48251 (13)0.0369 (5)
C100.5022 (3)0.63658 (10)0.44507 (15)0.0451 (6)
H100.3974200.6135990.4568410.054*
C110.6522 (4)0.61810 (11)0.38988 (17)0.0572 (7)
H110.6462090.5830200.3637660.069*
C120.8086 (4)0.65112 (12)0.37366 (17)0.0595 (7)
H120.9096170.6381380.3376200.071*
C130.8166 (4)0.70340 (12)0.41054 (17)0.0566 (7)
H130.9234650.7257230.3997610.068*
C140.6665 (3)0.72290 (10)0.46357 (15)0.0450 (6)
H140.6707970.7588540.4867950.054*
C150.2678 (3)0.62089 (9)0.62050 (13)0.0379 (5)
C160.1207 (3)0.57670 (8)0.62333 (13)0.0365 (5)
C170.0414 (3)0.57992 (10)0.57562 (16)0.0489 (6)
H170.0607410.6111970.5410970.059*
C180.1726 (4)0.53723 (11)0.57924 (19)0.0602 (7)
H180.2780000.5392260.5457670.072*
C190.1484 (4)0.49156 (11)0.63225 (18)0.0587 (7)
H190.2393170.4632950.6359470.070*
C200.0099 (4)0.48781 (10)0.67960 (16)0.0499 (6)
H200.0257640.4569670.7154760.060*
C210.1450 (3)0.52920 (9)0.67446 (14)0.0414 (5)
H210.2537320.5255670.7053620.050*
C220.8316 (3)0.90536 (10)0.39177 (16)0.0473 (6)
H22A0.8245650.9441790.4101470.057*
H22B0.7402220.9000970.3428110.057*
C231.0255 (3)0.89378 (11)0.36299 (15)0.0492 (6)
H23A1.0443200.8535560.3598540.059*
H23B1.0368560.9090750.3050230.059*
N10.0004 (3)0.74786 (7)0.61817 (11)0.0383 (4)
H1N0.0648880.7724750.5833170.046*
N20.0546 (3)0.69610 (7)0.62829 (11)0.0385 (4)
N30.5811 (4)0.72606 (10)0.79974 (13)0.0586 (6)
N40.7806 (2)0.86879 (8)0.46401 (12)0.0400 (4)
H4A0.8770100.8650310.5045910.048*
H4B0.7408700.8357410.4413510.048*
H4C0.6843900.8837110.4921810.048*
N51.1737 (2)0.91827 (8)0.42271 (12)0.0439 (5)
H5A1.2858580.9202950.3978810.053*
H5B1.1859580.8996050.4736410.053*
H5C1.1495750.9545250.4339510.053*
O10.11362 (19)0.84871 (6)0.57058 (9)0.0358 (3)
O20.3021 (2)0.94939 (7)0.66294 (12)0.0558 (5)
O30.4796 (2)0.91527 (7)0.54483 (10)0.0464 (4)
O40.6324 (2)0.92621 (8)0.68812 (11)0.0623 (5)
O50.7429 (3)0.74247 (10)0.81985 (14)0.0839 (7)
O60.5162 (4)0.68241 (9)0.83004 (13)0.0827 (7)
O70.3171 (2)0.76438 (6)0.53110 (11)0.0495 (4)
O80.4290 (2)0.61161 (7)0.64236 (12)0.0555 (5)
O90.9258 (2)0.96664 (7)0.58733 (11)0.0505 (4)
H9A0.8464280.9501890.6181110.076*
H9B1.0312190.9590990.6143510.076*
O100.4185 (3)0.94367 (8)0.29341 (12)0.0612 (5)
H10A0.4410720.9254490.2475590.092*
H10B0.4326620.9785190.2841490.092*
S10.45667 (7)0.91402 (2)0.63830 (3)0.03736 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0437 (12)0.0288 (11)0.0265 (10)0.0023 (9)0.0048 (9)0.0007 (8)
C20.0316 (10)0.0282 (10)0.0261 (10)0.0006 (8)0.0018 (8)0.0003 (8)
C30.0301 (10)0.0344 (11)0.0249 (10)0.0002 (8)0.0014 (8)0.0032 (8)
C40.0336 (11)0.0518 (14)0.0264 (11)0.0056 (10)0.0044 (8)0.0058 (10)
C50.0521 (13)0.0422 (13)0.0278 (11)0.0167 (11)0.0074 (10)0.0016 (9)
C60.0630 (15)0.0269 (11)0.0314 (11)0.0034 (10)0.0058 (10)0.0037 (9)
C70.0476 (13)0.0301 (11)0.0315 (11)0.0094 (9)0.0016 (9)0.0021 (9)
C80.0470 (12)0.0313 (12)0.0343 (11)0.0081 (9)0.0062 (9)0.0000 (9)
C90.0461 (12)0.0358 (12)0.0292 (11)0.0096 (10)0.0061 (9)0.0004 (9)
C100.0550 (14)0.0399 (13)0.0403 (13)0.0071 (11)0.0027 (11)0.0053 (10)
C110.0754 (19)0.0482 (15)0.0479 (15)0.0201 (14)0.0010 (13)0.0089 (12)
C120.0593 (17)0.0687 (19)0.0493 (16)0.0245 (15)0.0060 (13)0.0022 (13)
C130.0438 (14)0.0718 (19)0.0539 (16)0.0033 (13)0.0015 (12)0.0090 (14)
C140.0511 (14)0.0435 (13)0.0409 (13)0.0033 (11)0.0062 (11)0.0002 (10)
C150.0503 (13)0.0337 (12)0.0297 (11)0.0117 (10)0.0021 (9)0.0032 (9)
C160.0492 (12)0.0280 (11)0.0319 (11)0.0118 (9)0.0014 (9)0.0005 (9)
C170.0588 (15)0.0391 (13)0.0495 (14)0.0103 (11)0.0094 (12)0.0042 (11)
C180.0558 (16)0.0540 (17)0.0721 (19)0.0030 (13)0.0160 (14)0.0007 (14)
C190.0655 (17)0.0432 (15)0.0666 (18)0.0051 (13)0.0044 (14)0.0056 (13)
C200.0708 (17)0.0320 (13)0.0455 (14)0.0066 (12)0.0066 (12)0.0025 (10)
C210.0564 (14)0.0310 (12)0.0366 (12)0.0124 (10)0.0018 (10)0.0020 (9)
C220.0426 (13)0.0460 (14)0.0513 (14)0.0101 (10)0.0159 (11)0.0175 (11)
C230.0549 (15)0.0589 (15)0.0330 (12)0.0100 (12)0.0057 (10)0.0049 (11)
N10.0505 (11)0.0254 (9)0.0376 (10)0.0106 (8)0.0093 (8)0.0062 (7)
N20.0524 (11)0.0290 (9)0.0339 (10)0.0095 (8)0.0003 (8)0.0043 (8)
N30.0747 (16)0.0610 (15)0.0377 (12)0.0342 (13)0.0185 (11)0.0060 (11)
N40.0350 (9)0.0419 (11)0.0417 (10)0.0091 (8)0.0088 (8)0.0025 (8)
N50.0325 (9)0.0538 (12)0.0448 (11)0.0005 (8)0.0036 (8)0.0119 (9)
O10.0338 (7)0.0317 (8)0.0402 (8)0.0044 (6)0.0130 (6)0.0089 (6)
O20.0625 (11)0.0325 (9)0.0735 (12)0.0020 (8)0.0133 (9)0.0145 (8)
O30.0416 (9)0.0621 (11)0.0353 (9)0.0095 (8)0.0007 (7)0.0085 (7)
O40.0527 (10)0.0841 (14)0.0479 (10)0.0380 (9)0.0151 (8)0.0087 (9)
O50.0624 (13)0.1168 (19)0.0691 (14)0.0341 (13)0.0251 (11)0.0068 (13)
O60.132 (2)0.0472 (12)0.0640 (13)0.0276 (12)0.0364 (13)0.0117 (10)
O70.0617 (10)0.0296 (9)0.0552 (10)0.0094 (7)0.0123 (8)0.0046 (7)
O80.0529 (11)0.0488 (10)0.0659 (12)0.0097 (8)0.0134 (9)0.0171 (9)
O90.0475 (9)0.0469 (10)0.0573 (10)0.0050 (7)0.0047 (8)0.0065 (8)
O100.0683 (12)0.0507 (11)0.0672 (12)0.0072 (9)0.0248 (9)0.0019 (9)
S10.0352 (3)0.0414 (3)0.0351 (3)0.0143 (2)0.0016 (2)0.0014 (2)
Geometric parameters (Å, º) top
C1—C61.365 (3)C17—H170.9300
C1—N11.400 (3)C18—C191.377 (4)
C1—C21.431 (3)C18—H180.9300
C2—O11.276 (2)C19—C201.371 (4)
C2—C31.430 (3)C19—H190.9300
C3—C41.380 (3)C20—C211.372 (3)
C3—S11.764 (2)C20—H200.9300
C4—C51.386 (3)C21—H210.9300
C4—H40.9300C22—N41.473 (3)
C5—C61.387 (3)C22—C231.489 (3)
C5—N31.439 (3)C22—H22A0.9700
C6—H60.9300C22—H22B0.9700
C7—N21.321 (3)C23—N51.472 (3)
C7—C81.466 (3)C23—H23A0.9700
C7—C151.492 (3)C23—H23B0.9700
C8—O71.236 (2)N1—N21.305 (2)
C8—C91.493 (3)N1—H1N0.8999
C9—C101.385 (3)N3—O51.230 (3)
C9—C141.387 (3)N3—O61.239 (3)
C10—C111.389 (3)N4—H4A0.9000
C10—H100.9300N4—H4B0.9000
C11—C121.367 (4)N4—H4C0.8999
C11—H110.9300N5—H5A0.8999
C12—C131.372 (4)N5—H5B0.9000
C12—H120.9300N5—H5C0.8999
C13—C141.379 (4)O2—S11.4468 (17)
C13—H130.9300O3—S11.4546 (16)
C14—H140.9300O4—S11.4484 (16)
C15—O81.225 (3)O9—H9A0.8500
C15—C161.479 (3)O9—H9B0.8498
C16—C211.395 (3)O10—H10A0.8505
C16—C171.396 (3)O10—H10B0.8502
C17—C181.376 (4)
C6—C1—N1123.00 (19)C17—C18—C19120.2 (3)
C6—C1—C2123.24 (19)C17—C18—H18119.9
N1—C1—C2113.73 (17)C19—C18—H18119.9
O1—C2—C3124.02 (18)C20—C19—C18119.9 (3)
O1—C2—C1120.68 (17)C20—C19—H19120.1
C3—C2—C1115.29 (17)C18—C19—H19120.1
C4—C3—C2121.70 (19)C19—C20—C21120.5 (2)
C4—C3—S1120.40 (16)C19—C20—H20119.7
C2—C3—S1117.90 (14)C21—C20—H20119.7
C3—C4—C5119.2 (2)C20—C21—C16120.6 (2)
C3—C4—H4120.4C20—C21—H21119.7
C5—C4—H4120.4C16—C21—H21119.7
C4—C5—C6122.05 (19)N4—C22—C23112.52 (19)
C4—C5—N3119.7 (2)N4—C22—H22A109.1
C6—C5—N3118.2 (2)C23—C22—H22A109.1
C1—C6—C5118.4 (2)N4—C22—H22B109.1
C1—C6—H6120.8C23—C22—H22B109.1
C5—C6—H6120.8H22A—C22—H22B107.8
N2—C7—C8124.18 (19)N5—C23—C22111.9 (2)
N2—C7—C15112.46 (19)N5—C23—H23A109.2
C8—C7—C15123.10 (19)C22—C23—H23A109.2
O7—C8—C7119.8 (2)N5—C23—H23B109.2
O7—C8—C9117.9 (2)C22—C23—H23B109.2
C7—C8—C9122.19 (19)H23A—C23—H23B107.9
C10—C9—C14119.0 (2)N2—N1—C1121.57 (18)
C10—C9—C8122.6 (2)N2—N1—H1N123.1
C14—C9—C8118.2 (2)C1—N1—H1N115.0
C9—C10—C11119.8 (2)N1—N2—C7120.29 (18)
C9—C10—H10120.1O5—N3—O6122.1 (2)
C11—C10—H10120.1O5—N3—C5119.4 (3)
C12—C11—C10120.5 (3)O6—N3—C5118.5 (2)
C12—C11—H11119.8C22—N4—H4A111.9
C10—C11—H11119.8C22—N4—H4B108.2
C11—C12—C13120.0 (2)H4A—N4—H4B112.8
C11—C12—H12120.0C22—N4—H4C110.6
C13—C12—H12120.0H4A—N4—H4C105.5
C12—C13—C14120.1 (3)H4B—N4—H4C107.8
C12—C13—H13120.0C23—N5—H5A111.6
C14—C13—H13120.0C23—N5—H5B112.0
C13—C14—C9120.5 (2)H5A—N5—H5B110.6
C13—C14—H14119.8C23—N5—H5C111.4
C9—C14—H14119.8H5A—N5—H5C102.2
O8—C15—C16121.69 (19)H5B—N5—H5C108.6
O8—C15—C7118.9 (2)H9A—O9—H9B102.6
C16—C15—C7119.36 (19)H10A—O10—H10B109.4
C21—C16—C17118.1 (2)O2—S1—O4112.35 (11)
C21—C16—C15119.1 (2)O2—S1—O3112.05 (11)
C17—C16—C15122.75 (19)O4—S1—O3112.11 (10)
C18—C17—C16120.6 (2)O2—S1—C3107.09 (10)
C18—C17—H17119.7O4—S1—C3106.34 (10)
C16—C17—H17119.7O3—S1—C3106.41 (9)
C6—C1—C2—O1175.3 (2)N2—C7—C15—O8133.9 (2)
N1—C1—C2—O12.7 (3)C8—C7—C15—O840.5 (3)
C6—C1—C2—C33.9 (3)N2—C7—C15—C1644.9 (3)
N1—C1—C2—C3178.05 (17)C8—C7—C15—C16140.7 (2)
O1—C2—C3—C4174.87 (19)O8—C15—C16—C2119.0 (3)
C1—C2—C3—C44.3 (3)C7—C15—C16—C21159.75 (19)
O1—C2—C3—S15.0 (3)O8—C15—C16—C17159.9 (2)
C1—C2—C3—S1175.82 (14)C7—C15—C16—C1721.3 (3)
C2—C3—C4—C52.4 (3)C21—C16—C17—C180.1 (3)
S1—C3—C4—C5177.78 (16)C15—C16—C17—C18178.8 (2)
C3—C4—C5—C60.3 (3)C16—C17—C18—C192.1 (4)
C3—C4—C5—N3177.87 (19)C17—C18—C19—C202.0 (4)
N1—C1—C6—C5179.35 (19)C18—C19—C20—C210.2 (4)
C2—C1—C6—C51.5 (3)C19—C20—C21—C162.2 (4)
C4—C5—C6—C10.8 (3)C17—C16—C21—C202.0 (3)
N3—C5—C6—C1178.33 (19)C15—C16—C21—C20179.0 (2)
N2—C7—C8—O79.5 (3)N4—C22—C23—N577.7 (3)
C15—C7—C8—O7164.2 (2)C6—C1—N1—N26.5 (3)
N2—C7—C8—C9166.9 (2)C2—C1—N1—N2171.52 (18)
C15—C7—C8—C919.4 (3)C1—N1—N2—C7178.65 (19)
O7—C8—C9—C10143.6 (2)C8—C7—N2—N12.0 (3)
C7—C8—C9—C1032.9 (3)C15—C7—N2—N1172.29 (18)
O7—C8—C9—C1431.3 (3)C4—C5—N3—O511.5 (3)
C7—C8—C9—C14152.3 (2)C6—C5—N3—O5170.9 (2)
C14—C9—C10—C110.4 (3)C4—C5—N3—O6167.5 (2)
C8—C9—C10—C11175.2 (2)C6—C5—N3—O610.2 (3)
C9—C10—C11—C121.4 (4)C4—C3—S1—O2123.34 (17)
C10—C11—C12—C131.4 (4)C2—C3—S1—O256.81 (18)
C11—C12—C13—C140.4 (4)C4—C3—S1—O43.0 (2)
C12—C13—C14—C92.2 (4)C2—C3—S1—O4177.11 (16)
C10—C9—C14—C132.1 (3)C4—C3—S1—O3116.66 (17)
C8—C9—C14—C13177.2 (2)C2—C3—S1—O363.19 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H10A···O8i0.852.102.928 (2)165
O9—H9A···O40.851.992.827 (2)169
O9—H9B···O2ii0.852.032.866 (2)170
O10—H10B···O4iii0.852.363.139 (3)152
N1—H1N···O70.901.922.568 (2)127
N4—H4A···O1ii0.901.942.826 (2)167
N4—H4B···O6iv0.902.302.960 (2)130
N4—H4B···O7ii0.902.242.797 (2)119
N5—H5B···O1ii0.902.012.864 (2)158
N4—H4B···O6iv0.902.302.960 (2)130
N4—H4B···O7ii0.902.242.797 (2)119
N4—H4C···O30.901.862.756 (2)177
N5—H5A···O10ii0.901.982.775 (3)146
N5—H5B···O3ii0.902.322.778 (2)112
N5—H5C···O9v0.901.982.835 (3)159
Symmetry codes: (i) x+1, y+3/2, z1/2; (ii) x+1, y, z; (iii) x+1, y+2, z+1; (iv) x, y+3/2, z1/2; (v) x+2, y+2, z+1.
Percentage contributions of interatomic contacts to the Hirshfeld surface for the title compound top
ContactPercentage contribution
O···H / H···H39.5
H···H33.8
C···H / H···C14.5
C···C4.3
C···O / O···C2.4
N···O / O···N1.8
C···N / N···C1.5
N···H / H···N1.1
O···O1.1
 

Acknowledgements

This work has been partially supported by Baku State University.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGurbanov, A. V., Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C., Sutradhar, M., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017a). Dyes Pigm. 138, 107–111.  CrossRef Google Scholar
First citationGurbanov, A. V., Mahmudov, K. T., Sutradhar, M., Guedes da Silva, M. F. C., Mahmudov, T. A., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017b). J. Organomet. Chem. 834, 22–27.  CrossRef Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationJlassi, R., Ribeiro, A. P. C., Alegria, E. C. B. A., Naïli, H., Tiago, G. A. O., Rüffer, T., Lang, H., Zubkov, F. I., Pombeiro, A. J. L. & Rekik, W. (2018). Inorg. Chim. Acta, 471, 658–663.  CrossRef Google Scholar
First citationJlassi, R., Ribeiro, A. P. C., Guedes da Silva, M. F. C., Mahmudov, K. T., Kopylovich, M. N., Anisimova, T. B., Naïli, H., Tiago, G. A. O. & Pombeiro, A. J. L. (2014). Eur. J. Inorg. Chem. pp. 4541–4550.  Web of Science CrossRef Google Scholar
First citationKuznik, W., Kityk, I. V., Kopylovich, M. N., Mahmudov, K. T., Ozga, K., Lakshminarayana, G. & Pombeiro, A. J. L. (2011). Spectrochim. Acta Part A, 78, 1287–1294.  CrossRef Google Scholar
First citationLedenyova, I. V., Falaleev, A. V., Shikhaliev, Kh. S., Ryzhkova, E. A. & Zubkov, F. I. (2018). Russ. J. Gen. Chem. 88, 73–79.  CrossRef Google Scholar
First citationMa, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017a). J. Mol. Catal. A, 426, 526–533.  CrossRef Google Scholar
First citationMa, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017b). J. Mol. Catal. A, 428, 17–23.  CrossRef Google Scholar
First citationMahmoudi, G., Bauza, A., Gurbanov, A. V., Zubkov, F. I., Maniukiewicz, W., Rodriguez-Dieguez, A., Lopez-Torres, E. & Frontera, A. (2016). CrystEngComm, 18, 9056–9066.  CrossRef Google Scholar
First citationMahmoudi, G., Zangrando, E., Mitoraj, M. P., Gurbanov, A. V., Zubkov, F. I., Moosavifar, M., Konyaeva, I. A., Kirillov, A. M. & Safin, D. A. (2018). New J. Chem. 42, 4959–4971.  CrossRef Google Scholar
First citationMahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017a). Coord. Chem. Rev. 345, 54–72.  CrossRef Google Scholar
First citationMahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017b). Dalton Trans. 46, 10121–10138.  CrossRef Google Scholar
First citationMahmudov, K. T., Kopylovich, M. N., Sabbatini, A., Drew, M. G. B., Martins, L. M. D. R. S., Pettinari, C. & Pombeiro, A. J. L. (2014). Inorg. Chem. 53, 9946–9958.  CrossRef Google Scholar
First citationMahmudov, K. T. & Pombeiro, A. J. L. (2016). Chem. Eur. J. 22, 16356–16398.  CrossRef Google Scholar
First citationMcKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNasirova, D. K., Malkova, A. V., Polyanskii, K. B., Yankina, K. Y., Amoyaw, P. N.-A., Kolesnik, I. A., Kletskov, A. V., Godovikov, I. A., Nikitina, E. V. & Zubkov, F. I. (2017). Tetrahedron Lett. 58, 4384–438.  CrossRef Google Scholar
First citationPolitzer, P., Murray, J. S., Clark, T. & Resnati, G. (2017). Phys. Chem. Chem. Phys. 19, 32166–32178.  CrossRef Google Scholar
First citationScheiner, S. (2013). Acc. Chem. Res. 46, 280–288.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShixaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigm. 150, 377–381.  Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVandyshev, D. Y., Shikhaliev, K. S., Potapov, A. Y., Krysin, M. Y., Zubkov, F. I. & Sapronova, L. V. (2017). Beilstein J. Org. Chem. 13, 2561–2568.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds