research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 3-octyl-4-oxo-2,6-bis­­(3,4,5-tri­meth­­oxy­phen­yl)piperidinium chloride

CROSSMARK_Color_square_no_text.svg

aDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi-75270, Pakistan, and bH. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
*Correspondence e-mail: dr.sammer.yousuf@gmail.com

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 17 May 2018; accepted 1 June 2018; online 8 June 2018)

The title compound, C31H46NO7+·Cl, was synthesized by a one-pot Mannich condensation reaction. In the mol­ecule, the piperidinone ring adopts a chair conformation, and the trimeth­oxy-substituted benzene rings and octyl chain are arranged equatorially. In the crystal, centrosymmetric dimers are linked into layers parallel to (011) by N—H⋯Cl and C—H⋯Cl hydrogen bonds. A Hirshfeld surface analysis indicates that the most important contributions for the crystal packing are O⋯H (20.5%) inter­actions followed by C⋯H (7.8%), Cl⋯H (5.5%), C⋯C (1.2%), C⋯O (0.5%) and Cl⋯O (0.4%) inter­actions.

1. Chemical context

Piperidine is a naturally occurring bioactive alkaloid (Hu et al., 2002[Hu, X. E., Kim, N. K. & Ledoussal, B. (2002). Org. Lett. 4, 4499-4502.]; Finke et al., 2001[Finke, P. E., Oates, B., Mills, S. G., MacCoss, M., Malkowitz, L., Springer, M. S., Gould, S. L., DeMartino, J. A., Carella, A., Carver, G., Holmes, K., Danzeisen, R., Hazuda, D., Kessler, J., Lineberger, J., Miller, M., Schleif, W. A. & Emini, E. A. (2001). Bioorg. Med. Chem. Lett. 11, 2475-2479.]; Taniguchi & Ogasawara, 2000[Taniguchi, T. & Ogasawara, K. (2000). Org. Lett. 2, 3193-3195.]) and the heterocyclic six-membered nitro­gen-containing piperidine ring is an essential structural part of many important drugs including paroxetine, raloxifene, haloperidol, droperidol and minoxidiln (Wagstaff et al., 2002[Wagstaff, A. J., Cheer, S. M., Matheson, A. J., Ormrod, D. & Goa, K. L. (2002). Drugs, 62, 655-703.]). 2,6-Diphenyl-substituted piperdine-4-one derivatives are important because of their potential biological activities such as anti­tumor, anti­microbial, analgesic, local anesthetic, anti­depressant and anti-inflammatory (Kálai et al., 2011[Kálai, T., Kuppusamy, M. L., Balog, M., Selvendiran, K., Rivera, B. K., Kuppusamy, P. & Hideg, K. (2011). J. Med. Chem. 54, 5414-5421.]; Leonova et al., 2010[Leonova, E., Makarov, M., Klemenkova, Z. & Odinets, I. (2010). Helv. Chim. Acta, 93, 1990-1999.]; El-Subbagh et al., 2000[El-Subbagh, H. I., Abu-Zaid, S. M., Mahran, M. A., Badria, F. A. & Al-Obaid, A. M. (2000). J. Med. Chem. 43, 2915-2921.]; Jerom & Spencer, 1988[Jerom, B. R. & Spencer, K. H. (1988). European Patent Application EP277794.]). This wide range of biological activities prompted us to synthesize novel 2,6-diphenyl piperdine-4-one derivatives with enhanced biological activities. In a continuation of this work, the title compound was synthesized using a one-pot Mannich condensation reaction as reported by Noller & Baliah (1948[Noller, C. R. & Baliah, V. (1948). J. Am. Chem. Soc. 70, 3853-3855.]). The adopted one-pot reaction is convenient, simple, easy way for separation of the product with possible high yield. A Hirshfield surface analysis of the title compound was carried out in order to study how different functionalities can affect the crystal packing.

[Scheme 1]

2. Structural commentary

In the mol­ecule of the title compound (Fig. 1[link]), the heterocyclic six-membered 4-piperidone ring (N1/C2–C6) adopts a chair conformation, with puckering parameters Q = 0.5750 (15) Å, θ = 13.60 (14)° and φ =5.55 (61)°. The octyl chain at C3, and the trimeth­oxy-substituted benzene rings attached at C2 and C6 are equatorially oriented. The trimeth­oxy benzene rings C7–C12 and C13–C18 form a dihedral angle of 73.91 (5)°, and are tilted with respect to the mean plane of the piperidone ring by 59.42 (4) and 78.54 (6)°, respectively. The C13—C2—C3—C22 and O4—C4—C3—C22 torsion angles are 56.36 (17) and −11.0 (2)°, respectively.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, centrosymmetrically-related mol­ecules are linked into dimers through pairs of N—H⋯O hydrogen bonds (Table 1[link]) forming rings with an R22(16) graph-set motif. The dimers are further connected by N—H⋯Cl and C—H⋯Cl hydrogen inter­actions, forming layers parallel to the (011) plane (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O6i 0.92 (2) 1.93 (2) 2.8500 (18) 175.9 (19)
N1—H2A⋯Cl1 0.92 (2) 2.18 (2) 3.0959 (15) 172.6 (19)
C6—H6⋯Cl1ii 1.00 2.74 3.6526 (17) 152
C2—H2⋯Cl1ii 1.00 2.57 3.5153 (16) 158
C12—H12⋯Cl1 0.95 2.83 3.6625 (18) 147
C14—H14⋯Cl1 0.95 2.82 3.6144 (16) 141
C28—H28B⋯O2iii 0.99 2.52 3.308 (3) 136
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Packing diagram of the title compound viewed approximately along the c axis. Turquoise lines indicate hydrogen bonds.

4. Hirshfeld surface analysis

A qu­anti­tative analysis of all type of inter­actions in the title compound was performed using Hirshfeld surface analysis. The Hirshfeld surface mapped over dnorm (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) is shown in Fig. 3[link] where the red areas on the surface indicate short contacts (as compared to the sum of the van der Waals radii), while the blue areas indicate longer contacts and white areas indicate contacts with distances equal to the sum of the van der Waals radii. Two-dimensional fingerprint plots are shown in Fig. 4[link] with a broad hump showing H⋯H contacts and intense spikes indicating a strong O⋯H inter­action, while the broadening in the wing of the C⋯H inter­action is due to the presence of a Cl⋯H inter­action·The largest contribution is from H⋯H inter­actions (64.1%), followed by O⋯H inter­actions, contributing 20.5%. Other weak inter­molecular inter­actions are: C⋯H (7.8%), Cl⋯H (5.5%), C⋯C(1.2%), C⋯O (0.5%) and Cl⋯O (0.4%).

[Figure 3]
Figure 3
Hirshfeld surface mapped ove dnorm showing the intermolecular contacts in the title compound.
[Figure 4]
Figure 4
Two-dimensional fingerprint plots for the title compound.

5. Database survey

A search of the Cambridge Crystallographic Database (CSD version 5.39, updates February 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed three examples of organic compounds having piperdine-4-one as the central unit, namely 1-acryloyl-3-methyl-2,6-bis­(3,4,5-tri­meth­oxy­phen­yl)piperidine-4-one (Gnanendra et al., 2009[Gnanendra, C. R., Lakshminarayana, B. N., Thippeswamy, G. B., Sridhar, M. A., Naik, N. & Prasad, J. S. (2009). Mol. Cryst. Liq. Cryst. 515, 179-189.]), N-nitroso-2,6-di(3,4,5-tri­meth­oxy­phen­yl)-3,5-di­methyl­piperidin-4-one (Kumaran, et al., 1999[Kumaran, D., Ponnuswamy, M. N., Shanmugam, G., Thenmozhiyal, J. C., Jeyaraman, R., Panneerselvam, K. & Soriano-Garcia, M. (1999). J. Chem. Cryst. 29, 769-775.]) and 1-(2-chloro­acet­yl)-3-methyl-2,6-bis­(3,4,5-tri­meth­oxy­phen­yl)pip­er­idine-4-one (Lakshminarayana et al., 2009[Lakshminarayana, B. N., Shashidhara Prasad, J., Gnanendra, C. R., Sridhar, M. A. & Chenne Gowda, D. (2009). Acta Cryst. E65, o1237.]). A study of the supra­molecular features of these compounds revealed that the crystal lattices are stabilized mainly by C—H⋯O inter­molecular inter­actions, forming two-dimensional networks.

6. Synthesis and crystallization

The title compound was synthesized according to the procedure given in literature (Noller & Baliah, 1948[Noller, C. R. & Baliah, V. (1948). J. Am. Chem. Soc. 70, 3853-3855.]). A mixture of 2-undeca­none, (0.206 ml, 1 mmol), 3,4,5-tri­meth­oxy­benzaldehyde (0.39 g, 2 mmol) and ammonium acetate (0.077 g, 1 mmol) in ethanol (50 ml) was allowed to reflux for three hours. The progress of reaction was monitored by TLC. After completion of the reaction, the mixture was acidified with dilute hydro­chloric acid (5 mL) and the resulting precipitate was collected, washed with an ethanol–ether mixture (1:4 v/v), dried and redissolved in ethanol. Crystals suitable for single-crystal X-ray diffraction analysis were obtained on slow evaporation of the solvent at room temperature.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms on methyl, methyl­ene and benzene were positioned geometrically with C—H = 0.95–1.00 Å and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms. A rotating model was used for the methyl groups. The N-bound hydrogen atoms were located in a difference-Fourier map and freely refined.

Table 2
Experimental details

Crystal data
Chemical formula C31H46NO7+·Cl
Mr 580.14
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 14.1073 (3), 16.0156 (3), 13.7785 (3)
β (°) 95.006 (1)
V3) 3101.20 (11)
Z 4
Radiation type Cu Kα
μ (mm−1) 1.47
Crystal size (mm) 0.20 × 0.13 × 0.06
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX3, SAINT and SADABS. Bruker ASX Inc., Madison, Wisconsin, USA])
Tmin, Tmax 0.758, 0.917
No. of measured, independent and observed [I > 2σ(I)] reflections 42615, 5681, 4654
Rint 0.070
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.094, 1.01
No. of reflections 5681
No. of parameters 376
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.30, −0.26
Computer programs: APEX3 and SAINT (Bruker, 2014[Bruker (2014). APEX3, SAINT and SADABS. Bruker ASX Inc., Madison, Wisconsin, USA]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

3-Octyl-4-oxo-2,6-bis(3,4,5-trimethoxyphenyl)piperidinium chloride top
Crystal data top
C31H46NO7+·ClF(000) = 1248
Mr = 580.14Dx = 1.243 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 14.1073 (3) ÅCell parameters from 9910 reflections
b = 16.0156 (3) Åθ = 4.2–68.1°
c = 13.7785 (3) ŵ = 1.47 mm1
β = 95.006 (1)°T = 100 K
V = 3101.20 (11) Å3Plate, colourless
Z = 40.20 × 0.13 × 0.06 mm
Data collection top
Bruker APEXII CCD
diffractometer
4654 reflections with I > 2σ(I)
φ and ω scansRint = 0.070
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
θmax = 68.2°, θmin = 3.1°
Tmin = 0.758, Tmax = 0.917h = 1616
42615 measured reflectionsk = 1919
5681 independent reflectionsl = 1616
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0429P)2 + 1.6956P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
5681 reflectionsΔρmax = 0.30 e Å3
376 parametersΔρmin = 0.25 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.47703 (3)0.27339 (3)0.21759 (3)0.01915 (11)
N10.45438 (9)0.26752 (8)0.43896 (10)0.0101 (3)
H1A0.4132 (15)0.3058 (13)0.4627 (15)0.027 (6)*
H2A0.4593 (14)0.2742 (12)0.3734 (16)0.022 (5)*
O10.10007 (8)0.06252 (7)0.49865 (9)0.0175 (3)
O20.02051 (8)0.16016 (8)0.35747 (9)0.0204 (3)
O30.12362 (9)0.26030 (8)0.25424 (9)0.0254 (3)
O40.63342 (9)0.06866 (7)0.46982 (10)0.0244 (3)
O50.62986 (8)0.55158 (7)0.64533 (8)0.0162 (3)
O60.67065 (8)0.61776 (7)0.47872 (8)0.0149 (3)
O70.66126 (9)0.52733 (7)0.31193 (8)0.0185 (3)
C120.27045 (12)0.22067 (10)0.34915 (12)0.0148 (3)
H120.3082430.2557420.3124480.018*
C110.17271 (12)0.21537 (11)0.32608 (12)0.0162 (4)
C100.11760 (11)0.16272 (11)0.37882 (12)0.0147 (3)
C90.16088 (12)0.11261 (10)0.45268 (12)0.0132 (3)
C80.25830 (12)0.11864 (10)0.47765 (12)0.0127 (3)
H80.2878310.0854630.5288660.015*
C70.31232 (11)0.17396 (10)0.42668 (11)0.0117 (3)
C60.41701 (11)0.18174 (10)0.45963 (12)0.0126 (3)
H60.4247110.1730240.5317570.015*
C50.47936 (12)0.11751 (10)0.41315 (12)0.0153 (4)
H5A0.4587260.0606230.4299370.018*
H5B0.4707580.1233740.3413950.018*
C40.58324 (12)0.12818 (10)0.44703 (12)0.0154 (4)
C30.62160 (11)0.21731 (10)0.44544 (12)0.0130 (3)
H30.6238030.2329320.3754060.016*
C20.55295 (11)0.27918 (10)0.48908 (11)0.0116 (3)
H20.5504610.2648360.5594440.014*
C130.58429 (11)0.36970 (10)0.48314 (12)0.0119 (3)
C140.60889 (11)0.40364 (10)0.39611 (11)0.0126 (3)
H140.6055370.3707230.3385500.015*
C150.63859 (11)0.48660 (10)0.39415 (12)0.0135 (3)
C160.64548 (11)0.53410 (10)0.47927 (12)0.0124 (3)
C170.62075 (11)0.49956 (10)0.56647 (11)0.0124 (3)
C180.58935 (11)0.41689 (10)0.56850 (12)0.0124 (3)
H180.5716240.3930670.6274220.015*
C190.67804 (13)0.47581 (11)0.23027 (12)0.0203 (4)
H19A0.6183760.4490910.2051600.031*
H19B0.7250410.4328180.2506940.031*
H19C0.7021840.5102530.1790430.031*
C200.76737 (14)0.63474 (12)0.45957 (17)0.0325 (5)
H20A0.7759770.6214270.3914730.049*
H20B0.8105790.6004350.5024960.049*
H20C0.7814640.6939380.4716810.049*
C210.60812 (13)0.51742 (11)0.73677 (12)0.0197 (4)
H21A0.5431040.4953070.7306570.030*
H21B0.6134720.5612520.7865770.030*
H21C0.6529130.4723110.7556890.030*
C220.72327 (12)0.22561 (11)0.49349 (12)0.0163 (4)
H22A0.7631830.1818570.4667390.020*
H22B0.7490190.2804450.4755520.020*
C230.73200 (13)0.21822 (12)0.60461 (13)0.0234 (4)
H23A0.7027080.1649770.6229490.028*
H23B0.6957600.2642790.6318770.028*
C240.83497 (14)0.22117 (12)0.65040 (15)0.0280 (4)
H24A0.8704260.1740450.6243410.034*
H24B0.8346890.2127550.7215570.034*
C250.88844 (13)0.30248 (12)0.63262 (15)0.0259 (4)
H25A0.9554290.2962230.6596020.031*
H25B0.8885010.3111980.5614970.031*
C260.84674 (14)0.37950 (12)0.67733 (16)0.0297 (5)
H26A0.8567370.3752780.7491760.036*
H26B0.7772710.3806920.6592650.036*
C270.89003 (16)0.46103 (13)0.64518 (17)0.0373 (5)
H27A0.8772720.4659990.5736150.045*
H27B0.8571500.5079280.6749040.045*
C280.99598 (17)0.47047 (15)0.67097 (19)0.0454 (6)
H28A1.0298990.4263390.6374800.055*
H28B1.0099640.4624960.7420320.055*
C291.0331 (2)0.55540 (16)0.6425 (2)0.0583 (8)
H29A1.0168270.5648010.5727830.087*
H29B1.1024270.5570250.6564950.087*
H29C1.0040920.5990830.6799670.087*
C320.14052 (13)0.00537 (11)0.55530 (14)0.0227 (4)
H32A0.1811500.0384650.5157840.034*
H32B0.0894820.0407050.5764540.034*
H32C0.1786990.0164860.6125400.034*
C310.02712 (14)0.21502 (13)0.41916 (16)0.0300 (5)
H31A0.0003020.2712890.4157750.045*
H31B0.0185510.1947560.4864630.045*
H31C0.0951360.2166190.3975070.045*
C300.17655 (14)0.31979 (13)0.20387 (14)0.0280 (5)
H30A0.2272130.2911270.1726340.042*
H30B0.2047070.3611350.2502550.042*
H30C0.1340830.3479570.1541310.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0236 (2)0.0237 (2)0.01052 (18)0.00088 (17)0.00375 (15)0.00094 (16)
N10.0100 (7)0.0096 (7)0.0109 (7)0.0013 (5)0.0021 (5)0.0001 (6)
O10.0126 (6)0.0157 (6)0.0245 (6)0.0022 (5)0.0034 (5)0.0052 (5)
O20.0103 (6)0.0270 (7)0.0234 (6)0.0016 (5)0.0009 (5)0.0015 (5)
O30.0176 (7)0.0345 (8)0.0227 (7)0.0059 (6)0.0058 (5)0.0145 (6)
O40.0168 (6)0.0122 (6)0.0437 (8)0.0025 (5)0.0005 (6)0.0020 (6)
O50.0217 (6)0.0146 (6)0.0129 (6)0.0038 (5)0.0037 (5)0.0035 (5)
O60.0157 (6)0.0084 (6)0.0217 (6)0.0021 (4)0.0071 (5)0.0009 (5)
O70.0306 (7)0.0125 (6)0.0134 (6)0.0001 (5)0.0084 (5)0.0019 (5)
C120.0153 (8)0.0159 (9)0.0136 (8)0.0045 (7)0.0030 (6)0.0009 (7)
C110.0174 (9)0.0193 (9)0.0114 (8)0.0014 (7)0.0013 (6)0.0006 (7)
C100.0110 (8)0.0177 (9)0.0153 (8)0.0033 (7)0.0003 (6)0.0039 (7)
C90.0150 (8)0.0110 (8)0.0141 (8)0.0027 (6)0.0038 (6)0.0033 (6)
C80.0148 (8)0.0103 (8)0.0131 (8)0.0002 (6)0.0019 (6)0.0014 (6)
C70.0125 (8)0.0104 (8)0.0123 (8)0.0001 (6)0.0020 (6)0.0049 (6)
C60.0143 (8)0.0103 (8)0.0132 (8)0.0025 (6)0.0018 (6)0.0011 (6)
C50.0159 (9)0.0111 (8)0.0186 (8)0.0012 (7)0.0006 (7)0.0022 (7)
C40.0144 (9)0.0132 (9)0.0187 (8)0.0001 (7)0.0022 (7)0.0016 (7)
C30.0119 (8)0.0116 (8)0.0154 (8)0.0005 (6)0.0010 (6)0.0008 (6)
C20.0108 (8)0.0126 (8)0.0112 (7)0.0016 (6)0.0011 (6)0.0013 (6)
C130.0075 (8)0.0119 (8)0.0160 (8)0.0013 (6)0.0007 (6)0.0019 (7)
C140.0139 (8)0.0118 (8)0.0121 (8)0.0008 (6)0.0006 (6)0.0020 (6)
C150.0126 (8)0.0141 (8)0.0139 (8)0.0008 (6)0.0019 (6)0.0023 (7)
C160.0101 (8)0.0086 (8)0.0185 (8)0.0004 (6)0.0015 (6)0.0004 (6)
C170.0097 (8)0.0139 (8)0.0134 (8)0.0012 (6)0.0005 (6)0.0022 (7)
C180.0104 (8)0.0145 (8)0.0124 (8)0.0005 (6)0.0013 (6)0.0010 (6)
C190.0282 (10)0.0210 (9)0.0129 (8)0.0044 (8)0.0076 (7)0.0021 (7)
C200.0233 (11)0.0205 (10)0.0565 (14)0.0085 (8)0.0189 (10)0.0066 (10)
C210.0267 (10)0.0194 (9)0.0133 (8)0.0008 (7)0.0027 (7)0.0015 (7)
C220.0115 (8)0.0132 (8)0.0239 (9)0.0013 (7)0.0002 (7)0.0014 (7)
C230.0207 (10)0.0235 (10)0.0248 (9)0.0045 (8)0.0049 (8)0.0077 (8)
C240.0238 (10)0.0252 (10)0.0327 (11)0.0006 (8)0.0094 (8)0.0039 (9)
C250.0148 (9)0.0276 (11)0.0337 (11)0.0007 (8)0.0067 (8)0.0037 (9)
C260.0226 (10)0.0281 (11)0.0372 (11)0.0016 (8)0.0052 (9)0.0043 (9)
C270.0430 (13)0.0247 (11)0.0427 (13)0.0052 (9)0.0047 (10)0.0040 (10)
C280.0458 (14)0.0326 (13)0.0557 (15)0.0129 (11)0.0076 (12)0.0090 (11)
C290.073 (2)0.0385 (15)0.0618 (17)0.0215 (13)0.0015 (15)0.0061 (13)
C320.0198 (10)0.0145 (9)0.0342 (10)0.0017 (7)0.0043 (8)0.0080 (8)
C310.0163 (10)0.0279 (11)0.0463 (12)0.0036 (8)0.0056 (9)0.0000 (9)
C300.0284 (11)0.0326 (11)0.0221 (9)0.0065 (9)0.0039 (8)0.0132 (9)
Geometric parameters (Å, º) top
N1—C61.507 (2)C18—H180.9500
N1—C21.5092 (19)C19—H19A0.9800
N1—H1A0.92 (2)C19—H19B0.9800
N1—H2A0.92 (2)C19—H19C0.9800
O1—C91.369 (2)C20—H20A0.9800
O1—C321.428 (2)C20—H20B0.9800
O2—C101.3762 (19)C20—H20C0.9800
O2—C311.430 (2)C21—H21A0.9800
O3—C111.363 (2)C21—H21B0.9800
O3—C301.427 (2)C21—H21C0.9800
O4—C41.212 (2)C22—C231.530 (2)
O5—C171.3664 (19)C22—H22A0.9900
O5—C211.431 (2)C22—H22B0.9900
O6—C161.3863 (19)C23—C241.533 (2)
O6—C201.438 (2)C23—H23A0.9900
O7—C151.3691 (19)C23—H23B0.9900
O7—C191.431 (2)C24—C251.535 (3)
C12—C111.390 (2)C24—H24A0.9900
C12—C71.393 (2)C24—H24B0.9900
C12—H120.9500C25—C261.520 (3)
C11—C101.394 (2)C25—H25A0.9900
C10—C91.394 (2)C25—H25B0.9900
C9—C81.391 (2)C26—C271.524 (3)
C8—C71.397 (2)C26—H26A0.9900
C8—H80.9500C26—H26B0.9900
C7—C61.512 (2)C27—C281.513 (3)
C6—C51.530 (2)C27—H27A0.9900
C6—H61.0000C27—H27B0.9900
C5—C41.508 (2)C28—C291.521 (3)
C5—H5A0.9900C28—H28A0.9900
C5—H5B0.9900C28—H28B0.9900
C4—C31.527 (2)C29—H29A0.9800
C3—C221.532 (2)C29—H29B0.9800
C3—C21.544 (2)C29—H29C0.9800
C3—H31.0000C32—H32A0.9800
C2—C131.520 (2)C32—H32B0.9800
C2—H21.0000C32—H32C0.9800
C13—C141.388 (2)C31—H31A0.9800
C13—C181.395 (2)C31—H31B0.9800
C14—C151.394 (2)C31—H31C0.9800
C14—H140.9500C30—H30A0.9800
C15—C161.394 (2)C30—H30B0.9800
C16—C171.395 (2)C30—H30C0.9800
C17—C181.397 (2)
C6—N1—C2110.48 (12)H19B—C19—H19C109.5
C6—N1—H1A107.3 (13)O6—C20—H20A109.5
C2—N1—H1A109.8 (13)O6—C20—H20B109.5
C6—N1—H2A110.5 (12)H20A—C20—H20B109.5
C2—N1—H2A106.8 (12)O6—C20—H20C109.5
H1A—N1—H2A111.9 (17)H20A—C20—H20C109.5
C9—O1—C32117.53 (13)H20B—C20—H20C109.5
C10—O2—C31111.41 (13)O5—C21—H21A109.5
C11—O3—C30116.83 (13)O5—C21—H21B109.5
C17—O5—C21117.03 (13)H21A—C21—H21B109.5
C16—O6—C20115.55 (13)O5—C21—H21C109.5
C15—O7—C19116.26 (13)H21A—C21—H21C109.5
C11—C12—C7119.23 (15)H21B—C21—H21C109.5
C11—C12—H12120.4C23—C22—C3114.61 (14)
C7—C12—H12120.4C23—C22—H22A108.6
O3—C11—C12124.38 (15)C3—C22—H22A108.6
O3—C11—C10115.27 (15)C23—C22—H22B108.6
C12—C11—C10120.33 (15)C3—C22—H22B108.6
O2—C10—C11119.78 (15)H22A—C22—H22B107.6
O2—C10—C9120.21 (15)C22—C23—C24113.59 (16)
C11—C10—C9120.01 (15)C22—C23—H23A108.8
O1—C9—C8124.86 (15)C24—C23—H23A108.8
O1—C9—C10115.01 (14)C22—C23—H23B108.8
C8—C9—C10120.07 (15)C24—C23—H23B108.8
C9—C8—C7119.35 (15)H23A—C23—H23B107.7
C9—C8—H8120.3C23—C24—C25114.93 (15)
C7—C8—H8120.3C23—C24—H24A108.5
C12—C7—C8120.85 (15)C25—C24—H24A108.5
C12—C7—C6121.59 (14)C23—C24—H24B108.5
C8—C7—C6117.56 (14)C25—C24—H24B108.5
N1—C6—C7111.53 (13)H24A—C24—H24B107.5
N1—C6—C5108.08 (13)C26—C25—C24114.25 (17)
C7—C6—C5113.65 (13)C26—C25—H25A108.7
N1—C6—H6107.8C24—C25—H25A108.7
C7—C6—H6107.8C26—C25—H25B108.7
C5—C6—H6107.8C24—C25—H25B108.7
C4—C5—C6111.89 (13)H25A—C25—H25B107.6
C4—C5—H5A109.2C25—C26—C27113.49 (18)
C6—C5—H5A109.2C25—C26—H26A108.9
C4—C5—H5B109.2C27—C26—H26A108.9
C6—C5—H5B109.2C25—C26—H26B108.9
H5A—C5—H5B107.9C27—C26—H26B108.9
O4—C4—C5121.38 (15)H26A—C26—H26B107.7
O4—C4—C3122.61 (15)C28—C27—C26115.47 (18)
C5—C4—C3115.93 (14)C28—C27—H27A108.4
C4—C3—C22113.23 (13)C26—C27—H27A108.4
C4—C3—C2111.05 (13)C28—C27—H27B108.4
C22—C3—C2111.81 (13)C26—C27—H27B108.4
C4—C3—H3106.8H27A—C27—H27B107.5
C22—C3—H3106.8C27—C28—C29112.6 (2)
C2—C3—H3106.8C27—C28—H28A109.1
N1—C2—C13110.75 (12)C29—C28—H28A109.1
N1—C2—C3109.06 (12)C27—C28—H28B109.1
C13—C2—C3113.33 (13)C29—C28—H28B109.1
N1—C2—H2107.8H28A—C28—H28B107.8
C13—C2—H2107.8C28—C29—H29A109.5
C3—C2—H2107.8C28—C29—H29B109.5
C14—C13—C18121.21 (15)H29A—C29—H29B109.5
C14—C13—C2121.05 (14)C28—C29—H29C109.5
C18—C13—C2117.72 (14)H29A—C29—H29C109.5
C13—C14—C15119.22 (15)H29B—C29—H29C109.5
C13—C14—H14120.4O1—C32—H32A109.5
C15—C14—H14120.4O1—C32—H32B109.5
O7—C15—C16115.59 (14)H32A—C32—H32B109.5
O7—C15—C14124.21 (14)O1—C32—H32C109.5
C16—C15—C14120.19 (15)H32A—C32—H32C109.5
O6—C16—C15121.46 (14)H32B—C32—H32C109.5
O6—C16—C17118.14 (14)O2—C31—H31A109.5
C15—C16—C17120.27 (15)O2—C31—H31B109.5
O5—C17—C16115.47 (14)H31A—C31—H31B109.5
O5—C17—C18124.74 (15)O2—C31—H31C109.5
C16—C17—C18119.79 (15)H31A—C31—H31C109.5
C13—C18—C17119.32 (15)H31B—C31—H31C109.5
C13—C18—H18120.3O3—C30—H30A109.5
C17—C18—H18120.3O3—C30—H30B109.5
O7—C19—H19A109.5H30A—C30—H30B109.5
O7—C19—H19B109.5O3—C30—H30C109.5
H19A—C19—H19B109.5H30A—C30—H30C109.5
O7—C19—H19C109.5H30B—C30—H30C109.5
H19A—C19—H19C109.5
C30—O3—C11—C123.7 (3)C4—C3—C2—N152.26 (17)
C30—O3—C11—C10175.14 (16)C22—C3—C2—N1179.79 (13)
C7—C12—C11—O3177.55 (16)C4—C3—C2—C13176.12 (13)
C7—C12—C11—C101.2 (2)C22—C3—C2—C1356.36 (17)
C31—O2—C10—C1194.91 (19)N1—C2—C13—C1472.60 (18)
C31—O2—C10—C985.34 (19)C3—C2—C13—C1450.34 (19)
O3—C11—C10—O21.1 (2)N1—C2—C13—C18108.71 (15)
C12—C11—C10—O2177.78 (15)C3—C2—C13—C18128.36 (15)
O3—C11—C10—C9178.68 (15)C18—C13—C14—C150.4 (2)
C12—C11—C10—C92.5 (3)C2—C13—C14—C15179.07 (14)
C32—O1—C9—C819.5 (2)C19—O7—C15—C16164.77 (14)
C32—O1—C9—C10163.47 (15)C19—O7—C15—C1416.2 (2)
O2—C10—C9—O10.7 (2)C13—C14—C15—O7177.57 (15)
C11—C10—C9—O1179.09 (14)C13—C14—C15—C161.5 (2)
O2—C10—C9—C8176.50 (14)C20—O6—C16—C1568.8 (2)
C11—C10—C9—C83.7 (2)C20—O6—C16—C17115.49 (17)
O1—C9—C8—C7178.21 (15)O7—C15—C16—O62.1 (2)
C10—C9—C8—C71.3 (2)C14—C15—C16—O6177.05 (14)
C11—C12—C7—C83.6 (2)O7—C15—C16—C17177.72 (14)
C11—C12—C7—C6175.63 (15)C14—C15—C16—C171.4 (2)
C9—C8—C7—C122.4 (2)C21—O5—C17—C16177.99 (14)
C9—C8—C7—C6176.93 (14)C21—O5—C17—C181.9 (2)
C2—N1—C6—C7169.23 (13)O6—C16—C17—O54.0 (2)
C2—N1—C6—C565.15 (16)C15—C16—C17—O5179.79 (14)
C12—C7—C6—N128.7 (2)O6—C16—C17—C18176.06 (14)
C8—C7—C6—N1150.55 (14)C15—C16—C17—C180.3 (2)
C12—C7—C6—C593.73 (18)C14—C13—C18—C170.7 (2)
C8—C7—C6—C586.98 (18)C2—C13—C18—C17178.00 (14)
N1—C6—C5—C454.93 (17)O5—C17—C18—C13179.16 (15)
C7—C6—C5—C4179.29 (14)C16—C17—C18—C130.8 (2)
C6—C5—C4—O4136.04 (17)C4—C3—C22—C2372.37 (19)
C6—C5—C4—C347.10 (19)C2—C3—C22—C2353.98 (19)
O4—C4—C3—C2211.0 (2)C3—C22—C23—C24176.33 (15)
C5—C4—C3—C22172.14 (14)C22—C23—C24—C2561.5 (2)
O4—C4—C3—C2137.80 (17)C23—C24—C25—C2663.6 (2)
C5—C4—C3—C245.39 (19)C24—C25—C26—C27170.44 (16)
C6—N1—C2—C13170.33 (13)C25—C26—C27—C2860.8 (3)
C6—N1—C2—C364.30 (16)C26—C27—C28—C29176.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O6i0.92 (2)1.93 (2)2.8500 (18)175.9 (19)
N1—H2A···Cl10.92 (2)2.18 (2)3.0959 (15)172.6 (19)
C6—H6···Cl1ii1.002.743.6526 (17)152
C2—H2···Cl1ii1.002.573.5153 (16)158
C12—H12···Cl10.952.833.6625 (18)147
C14—H14···Cl10.952.823.6144 (16)141
C28—H28B···O2iii0.992.523.308 (3)136
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z+1/2; (iii) x+1, y+1/2, z+1/2.
 

Funding information

The authors acknowledge the financial support of the Higher Education Commission of Pakistan (HEC) through research project No. 20–2830 under the National Research Program for Universities.

References

First citationBruker (2014). APEX3, SAINT and SADABS. Bruker ASX Inc., Madison, Wisconsin, USA  Google Scholar
First citationEl-Subbagh, H. I., Abu-Zaid, S. M., Mahran, M. A., Badria, F. A. & Al-Obaid, A. M. (2000). J. Med. Chem. 43, 2915–2921.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFinke, P. E., Oates, B., Mills, S. G., MacCoss, M., Malkowitz, L., Springer, M. S., Gould, S. L., DeMartino, J. A., Carella, A., Carver, G., Holmes, K., Danzeisen, R., Hazuda, D., Kessler, J., Lineberger, J., Miller, M., Schleif, W. A. & Emini, E. A. (2001). Bioorg. Med. Chem. Lett. 11, 2475–2479.  Web of Science CrossRef Google Scholar
First citationGnanendra, C. R., Lakshminarayana, B. N., Thippeswamy, G. B., Sridhar, M. A., Naik, N. & Prasad, J. S. (2009). Mol. Cryst. Liq. Cryst. 515, 179–189.  Web of Science CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHu, X. E., Kim, N. K. & Ledoussal, B. (2002). Org. Lett. 4, 4499–4502.  Web of Science CrossRef Google Scholar
First citationJerom, B. R. & Spencer, K. H. (1988). European Patent Application EP277794.  Google Scholar
First citationKálai, T., Kuppusamy, M. L., Balog, M., Selvendiran, K., Rivera, B. K., Kuppusamy, P. & Hideg, K. (2011). J. Med. Chem. 54, 5414–5421.  Google Scholar
First citationKumaran, D., Ponnuswamy, M. N., Shanmugam, G., Thenmozhiyal, J. C., Jeyaraman, R., Panneerselvam, K. & Soriano-Garcia, M. (1999). J. Chem. Cryst. 29, 769–775.  Web of Science CrossRef Google Scholar
First citationLakshminarayana, B. N., Shashidhara Prasad, J., Gnanendra, C. R., Sridhar, M. A. & Chenne Gowda, D. (2009). Acta Cryst. E65, o1237.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLeonova, E., Makarov, M., Klemenkova, Z. & Odinets, I. (2010). Helv. Chim. Acta, 93, 1990–1999.  Web of Science CrossRef Google Scholar
First citationNoller, C. R. & Baliah, V. (1948). J. Am. Chem. Soc. 70, 3853–3855.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationTaniguchi, T. & Ogasawara, K. (2000). Org. Lett. 2, 3193–3195.  Web of Science CrossRef Google Scholar
First citationWagstaff, A. J., Cheer, S. M., Matheson, A. J., Ormrod, D. & Goa, K. L. (2002). Drugs, 62, 655–703.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds