research communications
E)-2-(tert-butylamino)-4-(tert-butylimino)naphthalen-1(4H)-one
of (aEscuela de Química, Universidad de Costa Rica, 2060 San Pedro, San José, Costa Rica, bCentro de Investigación en Productos Naturales (CIPRONA), Universidad de Costa, Rica, 2060 San José, Costa Rica, and cCentro de Electroquímica y Energía Química (CELEQ), Universidad de Costa Rica, 2060 San José, Costa Rica
*Correspondence e-mail: guy.lamoureux@ucr.ac.cr
The title compound, C18H24N2O, is the first example of a naphthoquinone imine derivative isolated in the 4-imine/2-amine tautomeric form having bulky alkyl substituents at the N atoms. The molecular conformation is stabilized by an intramolecular hydrogen bond between the amine and a carbonyl group and by London attraction between the two tert-butyl groups. Only van der Waals interactions were identified in the crystal packing.
Keywords: crystal structure; N—H⋯O hydrogen bonding; intramolecular hydrogen bonding; naphthoquinone.
CCDC reference: 1842160
1. Chemical context
Naphthoquinones (naphthalenediones) form an important part of some pharmacophores in medicinal chemistry (López et al., 2015). During an exploration of antimalarial drugs, Fieser (Fieser & Fieser, 1935) indicated that aminoiminonaphthoquinones, although difficult to form, had interesting medicinal properties. Bullock et al. (1969) provided more efficient ways to synthesize a series of these compounds and further investigated their properties as antiprotozoal agents (Bullock et al., 1970).
Naturally occurring compounds with a similar structure to these aminoiminonaphthoquinones are known as hydrolytically stable pigments. Recently, several natural products containing a rigid aminoiminoquinone structure have been isolated and identified: macrophilone A (Zlotkowski et al., 2017), makaluvamines (Radisky et al., 1993), isobatzelline (Stierle & Faulkner, 1991), prianosin (Cheng et al., 1988), epinardin (D'Ambrosio et al., 1996), and discorhabdin (Harayama & Kita, 2005) families. These alkaloid from marine organisms were found to possess cytotoxic antitumor properties. It has been reported that the aminoiminoquinone system may contribute to the cytotoxic activity (LaBarbera & Skibo, 2013).
Although the 4-imine/2-amine structure was thought to be the most stable, there is evidence for multiple equilibria of these compounds in solution (see reaction scheme). For example, in the case of the methyl derivative (R = Me), NMR evidence at room temperature shows a mixture of tautomers (Bullock et al., 1969). This equilibrium, and in particular the possibility of tautomers, is important since the biological activity of these compounds depends on which tautomer is more stable (Hatfield et al., 2017).
As part of our work on the synthesis and properties of naphthoquinones (Lamoureux et al., 2008), we isolated the title compound as a minor product and predicted that the 4-imine/2-amine tautomeric form would not form because of the presence of bulky R groups. Much to our surprise, (E)-2-(tert-butylamino)-4-(tert-butylimino)naphthalen-1(4H)-one is the first compound isolated and structurally characterized of this type with a tertiary alkyl group.
2. Structural commentary
In the molecule of the title compound (Fig. 1), the imine C=N bond length at the 4-position [C8—N19 = 1.291 (3) Å] is shorter than the enamine C—N bond length at the 2-position [C10—N20 = 1.353 (3) Å], reflecting the greater double-bond character. The distance between the enamine N-atom and the t-butyl C-atom [N20—C11 = 1.476 (3) Å] is slightly shorter than the corresponding bond involving the imino group [N19—C15 = 1.485 (3) Å], possibly as a result of steric compression at the imine. However, the bond angles around the two nitrogen atoms [C8—N19—C15 = 124.1 (2)°; C10—N20—C11 = 129.2 (2)°] are similar because of the delocalization of π electrons between the two nitrogen atoms. This system can be considered to be a type of vinylogous amidine (Shriner & Neumann, 1944), both nitrogen atoms having a trigonal–planar geometry. The fused iminoquinone ring adopts a flattened with the flap atom C8 displaced by 0.112 (2) Å from the mean plane through C1/C2/C7/C9/C10, and with the C7—C8—C9 angle of 116.9 (2)° showing the largest deviation from the ideal value of 120°.
The title compound possesses an intramolecular hydrogen bond between the imine N—H and carbonyl groups (Table 1), forming a ring with S(5) graph-set motif. The distance between the donor H atom and the acceptor carbonyl oxygen atom of 2.20 Å is shorter than expected as a result of the bulkiness of the tert-butyl group (vide infra). These tert-butyl groups also shield the nitrogen atoms and provide a hydrophobic environment on the side of the naphthalen-1-one ring system. The shortest C⋯C separations between carbon atoms of the tert-butyl groups are in the range 4.228 (4)–4.825 (4) Å, bringing them within distance of London attraction (Wagner & Schreiner, 2015).
|
3. Supramolecular features
In the ), the tert-butyl groups are oriented toward the centre of the There are no intermolecular hydrogen bonds, as seen in a similar structure with n-butyl groups (see below); the tert-butyl groups are shielding the nitrogen atoms and preventing close approach of the supramolecular donors and acceptors. There are no π–π stacking interactions present, the aromatic rings being separated by more than 6 Å.
of the title compound (Fig. 24. Database survey
A search of the Cambridge Structural Database (Version 5.39, update February 2018; Groom et al., 2016) for the 2-(alkylamino)-4-(alkylimino)naphthalen-1(4H)-one yielded three hits. Two of the structures, ESOFID (Schweinfurth et al., 2016) and UDAZEF (Singh et al., 2007) have aromatic (aniline or substituted aniline) as the amine moiety. Only one structure, UDAZIJ (Singh et al., 2007), has an aliphatic primary amine (n-butylamine) at positions 2 and 4. The structure of UDAZIJ is noteworthy because the intramolecular N—H⋯O separation of 2.34 Å is much longer than that observed in the title compound, and because in the a dimeric assembly forms, held together by pairs of intermolecular hydrogen-bonding interactions between the N—H and carbonyl groups of centrosymmetrically -related molecules.
5. Synthesis and crystallization
The synthesis of the title compound was based on a new procedure (complete publication in progress). 192 mg (1.00 mmol) of 4-chloronaphthalene-1,2-dione and 211 µL (2.00 mmol, 2 equiv.) of tert-butylamine were dissolved in tert-amyl alcohol (3.0 mL). This solution was stirred at 383 K under a nitrogen atmosphere for 2 h. After being allowed to cool to room temperature, the green–brownish solution (originally yellow) was diluted with saline water (30 mL) and extracted with ethyl acetate (3 × 20 mL). The combined organic layers were dried over Na2SO4, filtered, and then concentrated under reduced pressure. The crude brown-dark solid material (249 mg) was separated by silica gel using ethyl acetate as to obtain the title compound as secondary product in the form of a dark-brown oily solid (119 mg). The compound was further purified by over silica gel with gradient solvent elution [100% dichloromethane (CH2Cl2) and then 100% methyl tert-butyl ether (C5H12O)], and the fractions were dried under vacuum to yield 14 mg of the pure product (5% yield) as a yellow oily solid. Part of the purified product was redissolved in methanol with a few drops of water and placed at room temperature for slow evaporation. After several days, yellow crystal plates suitable for X-ray analysis were obtained. M.p. 377–388 K using a Fisher–Johns melting-point apparatus with calibrated thermometer. 1H NMR (600 MHz, CDCl3) δ 8.46–8.48 (dd, J = 7.8, 1.3 Hz, 1 H), 8.09–8.12 (dd, J = 7.8, 1.3 Hz, 1 H), 7.61–7.64 (td, J = 7.8, 1.3 Hz, 1 H), 7.48–7.52 (td, J = 7.8, 1.2 Hz, 1 H), 6.36 (s, 1 H), 5.53 (br s, 1 H), 1.56 (s, 9 H), 1.47 (s, 9 H).
6. Refinement
Crystal data, data collection and structure . All hydrogen atoms are placed in calculated positions with N—H = 0.88 Å, C—H = 0.95–0.98 Å, and with U iso(H) = 1.2Ueq(C, N) or 1.5Ueq(C) for methyl H atoms. A rotating model was used for the methyl groups.
details are summarized in Table 2Supporting information
CCDC reference: 1842160
https://doi.org/10.1107/S2056989018008514/rz5237sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018008514/rz5237Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989018008514/rz5237Isup3.cml
Data collection: APEX3 (Bruker, 2015); cell
SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b).C18H24N2O | F(000) = 616 |
Mr = 284.39 | Dx = 1.173 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 14.2792 (18) Å | Cell parameters from 68 reflections |
b = 9.8936 (13) Å | θ = 8.7–51.9° |
c = 11.4978 (13) Å | µ = 0.07 mm−1 |
β = 97.539 (4)° | T = 100 K |
V = 1610.3 (3) Å3 | Plate, clear light yellow |
Z = 4 | 0.50 × 0.50 × 0.10 mm |
Bruker D8 Venture diffractometer | 3732 independent reflections |
Radiation source: Incoatec Microsource | 1927 reflections with I > 2σ(I) |
Mirrors monochromator | Rint = 0.213 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 27.6°, θmin = 2.5° |
ω scans | h = −18→18 |
Absorption correction: multi-scan (SADABS; Bruker, 2015) | k = −12→12 |
Tmin = 0.688, Tmax = 0.746 | l = −14→14 |
42010 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.079 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.143 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0503P)2 + 0.5846P] where P = (Fo2 + 2Fc2)/3 |
3732 reflections | (Δ/σ)max < 0.001 |
196 parameters | Δρmax = 0.27 e Å−3 |
0 restraints | Δρmin = −0.29 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O21 | 0.96284 (12) | 0.43511 (18) | 0.34929 (16) | 0.0228 (5) | |
N19 | 0.59245 (14) | 0.4688 (2) | 0.17726 (17) | 0.0128 (5) | |
N20 | 0.87654 (14) | 0.6571 (2) | 0.40230 (18) | 0.0158 (5) | |
H20 | 0.9346 | 0.6315 | 0.4279 | 0.019* | |
C1 | 0.88028 (17) | 0.4461 (3) | 0.3057 (2) | 0.0143 (6) | |
C2 | 0.83366 (17) | 0.3446 (2) | 0.2234 (2) | 0.0127 (6) | |
C3 | 0.88527 (18) | 0.2349 (3) | 0.1908 (2) | 0.0166 (6) | |
H3 | 0.9494 | 0.2242 | 0.224 | 0.02* | |
C4 | 0.84444 (18) | 0.1415 (3) | 0.1110 (2) | 0.0198 (7) | |
H4 | 0.8799 | 0.0664 | 0.0895 | 0.024* | |
C5 | 0.75077 (18) | 0.1583 (3) | 0.0622 (2) | 0.0189 (6) | |
H5 | 0.7226 | 0.0953 | 0.0058 | 0.023* | |
C6 | 0.69833 (18) | 0.2659 (3) | 0.0950 (2) | 0.0166 (6) | |
H6 | 0.6342 | 0.2755 | 0.0617 | 0.02* | |
C7 | 0.73876 (17) | 0.3605 (2) | 0.1764 (2) | 0.0116 (6) | |
C8 | 0.68184 (17) | 0.4750 (2) | 0.2136 (2) | 0.0114 (6) | |
C9 | 0.73246 (17) | 0.5786 (2) | 0.2858 (2) | 0.0126 (6) | |
H9 | 0.6993 | 0.6582 | 0.302 | 0.015* | |
C10 | 0.82484 (16) | 0.5677 (2) | 0.3316 (2) | 0.0116 (6) | |
C11 | 0.84947 (17) | 0.7914 (3) | 0.4426 (2) | 0.0152 (6) | |
C12 | 0.93401 (19) | 0.8415 (3) | 0.5258 (3) | 0.0283 (7) | |
H12A | 0.9899 | 0.8441 | 0.4845 | 0.042* | |
H12B | 0.9457 | 0.7801 | 0.593 | 0.042* | |
H12C | 0.921 | 0.9324 | 0.5533 | 0.042* | |
C13 | 0.83000 (19) | 0.8877 (3) | 0.3390 (2) | 0.0227 (7) | |
H13A | 0.8865 | 0.8949 | 0.2993 | 0.034* | |
H13B | 0.8137 | 0.9771 | 0.3671 | 0.034* | |
H13C | 0.7773 | 0.8531 | 0.2839 | 0.034* | |
C14 | 0.76476 (18) | 0.7821 (3) | 0.5099 (2) | 0.0232 (7) | |
H14A | 0.7087 | 0.7557 | 0.4562 | 0.035* | |
H14B | 0.7538 | 0.8703 | 0.5446 | 0.035* | |
H14C | 0.7772 | 0.7144 | 0.5722 | 0.035* | |
C15 | 0.52276 (17) | 0.5718 (3) | 0.2041 (2) | 0.0142 (6) | |
C16 | 0.52078 (18) | 0.5907 (3) | 0.3365 (2) | 0.0197 (6) | |
H16A | 0.4676 | 0.6492 | 0.3491 | 0.03* | |
H16B | 0.58 | 0.6326 | 0.3717 | 0.03* | |
H16C | 0.5135 | 0.5026 | 0.3731 | 0.03* | |
C17 | 0.53815 (18) | 0.7053 (3) | 0.1418 (2) | 0.0189 (6) | |
H17A | 0.5372 | 0.6887 | 0.0576 | 0.028* | |
H17B | 0.5994 | 0.7437 | 0.174 | 0.028* | |
H17C | 0.4877 | 0.7689 | 0.1539 | 0.028* | |
C18 | 0.42656 (17) | 0.5160 (3) | 0.1510 (2) | 0.0187 (6) | |
H18A | 0.4251 | 0.5067 | 0.0659 | 0.028* | |
H18B | 0.3766 | 0.5783 | 0.1677 | 0.028* | |
H18C | 0.4164 | 0.4274 | 0.1854 | 0.028* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O21 | 0.0141 (11) | 0.0190 (11) | 0.0329 (12) | 0.0019 (8) | −0.0057 (9) | −0.0047 (9) |
N19 | 0.0124 (12) | 0.0116 (11) | 0.0140 (12) | 0.0017 (9) | 0.0003 (9) | 0.0013 (10) |
N20 | 0.0111 (12) | 0.0129 (12) | 0.0215 (13) | 0.0013 (9) | −0.0049 (10) | −0.0031 (10) |
C1 | 0.0143 (15) | 0.0139 (15) | 0.0150 (14) | −0.0006 (11) | 0.0027 (12) | 0.0023 (12) |
C2 | 0.0155 (14) | 0.0113 (14) | 0.0118 (14) | 0.0002 (12) | 0.0036 (11) | 0.0007 (11) |
C3 | 0.0131 (14) | 0.0200 (15) | 0.0165 (15) | 0.0021 (12) | 0.0012 (11) | 0.0025 (13) |
C4 | 0.0247 (16) | 0.0149 (15) | 0.0204 (15) | 0.0039 (12) | 0.0052 (13) | −0.0018 (12) |
C5 | 0.0209 (16) | 0.0197 (16) | 0.0163 (15) | −0.0018 (13) | 0.0036 (12) | −0.0043 (12) |
C6 | 0.0151 (14) | 0.0183 (15) | 0.0168 (15) | −0.0018 (12) | 0.0029 (11) | −0.0007 (13) |
C7 | 0.0157 (14) | 0.0085 (14) | 0.0108 (14) | −0.0026 (11) | 0.0024 (11) | 0.0036 (11) |
C8 | 0.0130 (14) | 0.0102 (14) | 0.0112 (14) | 0.0002 (11) | 0.0029 (11) | 0.0045 (11) |
C9 | 0.0148 (14) | 0.0096 (13) | 0.0138 (14) | 0.0015 (11) | 0.0034 (11) | 0.0013 (11) |
C10 | 0.0123 (14) | 0.0119 (14) | 0.0106 (13) | −0.0013 (11) | 0.0017 (11) | 0.0039 (11) |
C11 | 0.0158 (14) | 0.0133 (14) | 0.0154 (15) | −0.0005 (12) | −0.0025 (11) | −0.0036 (11) |
C12 | 0.0288 (18) | 0.0173 (16) | 0.0353 (18) | 0.0003 (13) | −0.0085 (14) | −0.0080 (14) |
C13 | 0.0268 (16) | 0.0162 (15) | 0.0248 (16) | 0.0000 (13) | 0.0025 (13) | 0.0016 (13) |
C14 | 0.0277 (17) | 0.0252 (16) | 0.0169 (15) | 0.0006 (14) | 0.0033 (12) | −0.0065 (13) |
C15 | 0.0110 (13) | 0.0149 (14) | 0.0166 (14) | 0.0010 (11) | 0.0014 (11) | −0.0029 (12) |
C16 | 0.0134 (14) | 0.0232 (16) | 0.0227 (16) | 0.0018 (12) | 0.0032 (12) | −0.0034 (13) |
C17 | 0.0166 (15) | 0.0151 (15) | 0.0241 (15) | 0.0033 (12) | −0.0005 (12) | 0.0019 (13) |
C18 | 0.0133 (14) | 0.0191 (15) | 0.0228 (16) | 0.0015 (12) | −0.0013 (12) | −0.0016 (13) |
O21—C1 | 1.224 (3) | C11—C13 | 1.522 (4) |
N19—C8 | 1.291 (3) | C11—C14 | 1.522 (4) |
N19—C15 | 1.485 (3) | C12—H12A | 0.98 |
N20—C10 | 1.353 (3) | C12—H12B | 0.98 |
N20—C11 | 1.476 (3) | C12—H12C | 0.98 |
N20—H20 | 0.88 | C13—H13A | 0.98 |
C1—C2 | 1.477 (3) | C13—H13B | 0.98 |
C1—C10 | 1.491 (3) | C13—H13C | 0.98 |
C2—C3 | 1.391 (3) | C14—H14A | 0.98 |
C2—C7 | 1.400 (3) | C14—H14B | 0.98 |
C3—C4 | 1.376 (3) | C14—H14C | 0.98 |
C3—H3 | 0.95 | C15—C18 | 1.531 (3) |
C4—C5 | 1.391 (3) | C15—C17 | 1.533 (3) |
C4—H4 | 0.95 | C15—C16 | 1.537 (3) |
C5—C6 | 1.382 (3) | C16—H16A | 0.98 |
C5—H5 | 0.95 | C16—H16B | 0.98 |
C6—C7 | 1.394 (3) | C16—H16C | 0.98 |
C6—H6 | 0.95 | C17—H17A | 0.98 |
C7—C8 | 1.489 (3) | C17—H17B | 0.98 |
C8—C9 | 1.451 (3) | C17—H17C | 0.98 |
C9—C10 | 1.359 (3) | C18—H18A | 0.98 |
C9—H9 | 0.95 | C18—H18B | 0.98 |
C11—C12 | 1.521 (3) | C18—H18C | 0.98 |
C8—N19—C15 | 124.1 (2) | C11—C12—H12B | 109.5 |
C10—N20—C11 | 129.2 (2) | H12A—C12—H12B | 109.5 |
C10—N20—H20 | 115.4 | C11—C12—H12C | 109.5 |
C11—N20—H20 | 115.4 | H12A—C12—H12C | 109.5 |
O21—C1—C2 | 122.1 (2) | H12B—C12—H12C | 109.5 |
O21—C1—C10 | 119.9 (2) | C11—C13—H13A | 109.5 |
C2—C1—C10 | 118.0 (2) | C11—C13—H13B | 109.5 |
C3—C2—C7 | 120.2 (2) | H13A—C13—H13B | 109.5 |
C3—C2—C1 | 119.5 (2) | C11—C13—H13C | 109.5 |
C7—C2—C1 | 120.2 (2) | H13A—C13—H13C | 109.5 |
C4—C3—C2 | 120.7 (2) | H13B—C13—H13C | 109.5 |
C4—C3—H3 | 119.7 | C11—C14—H14A | 109.5 |
C2—C3—H3 | 119.7 | C11—C14—H14B | 109.5 |
C3—C4—C5 | 119.3 (2) | H14A—C14—H14B | 109.5 |
C3—C4—H4 | 120.3 | C11—C14—H14C | 109.5 |
C5—C4—H4 | 120.3 | H14A—C14—H14C | 109.5 |
C6—C5—C4 | 120.6 (3) | H14B—C14—H14C | 109.5 |
C6—C5—H5 | 119.7 | N19—C15—C18 | 105.09 (19) |
C4—C5—H5 | 119.7 | N19—C15—C17 | 110.7 (2) |
C5—C6—C7 | 120.6 (2) | C18—C15—C17 | 107.5 (2) |
C5—C6—H6 | 119.7 | N19—C15—C16 | 112.9 (2) |
C7—C6—H6 | 119.7 | C18—C15—C16 | 107.9 (2) |
C6—C7—C2 | 118.6 (2) | C17—C15—C16 | 112.3 (2) |
C6—C7—C8 | 120.6 (2) | C15—C16—H16A | 109.5 |
C2—C7—C8 | 120.8 (2) | C15—C16—H16B | 109.5 |
N19—C8—C9 | 128.0 (2) | H16A—C16—H16B | 109.5 |
N19—C8—C7 | 115.1 (2) | C15—C16—H16C | 109.5 |
C9—C8—C7 | 116.9 (2) | H16A—C16—H16C | 109.5 |
C10—C9—C8 | 123.4 (2) | H16B—C16—H16C | 109.5 |
C10—C9—H9 | 118.3 | C15—C17—H17A | 109.5 |
C8—C9—H9 | 118.3 | C15—C17—H17B | 109.5 |
N20—C10—C9 | 127.3 (2) | H17A—C17—H17B | 109.5 |
N20—C10—C1 | 112.7 (2) | C15—C17—H17C | 109.5 |
C9—C10—C1 | 120.0 (2) | H17A—C17—H17C | 109.5 |
N20—C11—C12 | 105.8 (2) | H17B—C17—H17C | 109.5 |
N20—C11—C13 | 110.3 (2) | C15—C18—H18A | 109.5 |
C12—C11—C13 | 109.7 (2) | C15—C18—H18B | 109.5 |
N20—C11—C14 | 111.3 (2) | H18A—C18—H18B | 109.5 |
C12—C11—C14 | 108.5 (2) | C15—C18—H18C | 109.5 |
C13—C11—C14 | 111.1 (2) | H18A—C18—H18C | 109.5 |
C11—C12—H12A | 109.5 | H18B—C18—H18C | 109.5 |
O21—C1—C2—C3 | −2.0 (4) | C6—C7—C8—C9 | −171.7 (2) |
C10—C1—C2—C3 | 175.5 (2) | C2—C7—C8—C9 | 9.0 (3) |
O21—C1—C2—C7 | 179.4 (2) | N19—C8—C9—C10 | 171.5 (2) |
C10—C1—C2—C7 | −3.1 (3) | C7—C8—C9—C10 | −8.2 (3) |
C7—C2—C3—C4 | 0.9 (4) | C11—N20—C10—C9 | −4.0 (4) |
C1—C2—C3—C4 | −177.7 (2) | C11—N20—C10—C1 | 176.4 (2) |
C2—C3—C4—C5 | 0.4 (4) | C8—C9—C10—N20 | −177.9 (2) |
C3—C4—C5—C6 | −1.3 (4) | C8—C9—C10—C1 | 1.7 (4) |
C4—C5—C6—C7 | 0.9 (4) | O21—C1—C10—N20 | 1.4 (3) |
C5—C6—C7—C2 | 0.5 (4) | C2—C1—C10—N20 | −176.2 (2) |
C5—C6—C7—C8 | −178.8 (2) | O21—C1—C10—C9 | −178.3 (2) |
C3—C2—C7—C6 | −1.4 (4) | C2—C1—C10—C9 | 4.1 (3) |
C1—C2—C7—C6 | 177.2 (2) | C10—N20—C11—C12 | 176.7 (2) |
C3—C2—C7—C8 | 177.9 (2) | C10—N20—C11—C13 | −64.8 (3) |
C1—C2—C7—C8 | −3.5 (3) | C10—N20—C11—C14 | 59.0 (3) |
C15—N19—C8—C9 | 0.2 (4) | C8—N19—C15—C18 | −175.8 (2) |
C15—N19—C8—C7 | 179.9 (2) | C8—N19—C15—C17 | 68.5 (3) |
C6—C7—C8—N19 | 8.6 (3) | C8—N19—C15—C16 | −58.5 (3) |
C2—C7—C8—N19 | −170.7 (2) |
Funding information
The Centro de Investigaciones en Productos Naturales (CIPRONA), the Centro de Electroquímica y Energía Química (CELEQ) and the Escuela de Química, Universidad de Costa Rica (UCR) provided support.
References
Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bullock, F. J., Tweedie, J. F. & McRitchie, D. D. (1969). J. Chem. Soc. C, pp. 1799–1803. Google Scholar
Bullock, F. J., Tweedie, J. F., McRitchie, D. D. & Tucker, M. A. (1970). J. Med. Chem. 13, 550–552. CrossRef Web of Science Google Scholar
Cheng, J. F., Ohizumi, Y., Walchli, M. R., Nakamura, H., Hirata, Y., Sasaki, T. & Kobayashi, J. (1988). J. Org. Chem. 53, 4621–4624. CrossRef Web of Science Google Scholar
D'Ambrosio, M., Guerriero, A., Chiasera, G., Pietra, F. & Tatò, M. (1996). Tetrahedron, 52, 8899–8906. Google Scholar
Fieser, L. F. & Fieser, M. (1935). J. Am. Chem. Soc. 57, 491–494. CrossRef Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Harayama, Y. & Kita, Y. (2005). Curr. Org. Chem. 9, 1567–1588. Web of Science CrossRef Google Scholar
Hatfield, M. J., Chen, J., Fratt, E. M., Chi, L., Bollinger, J. C., Binder, R. J., Bowling, J., Hyatt, J. L., Scarborough, J., Jeffries, C. & Potter, P. M. (2017). J. Med. Chem. 60, 1568–1579. Web of Science CrossRef Google Scholar
LaBarbera, D. V. & Skibo, E. B. (2013). J. Org. Chem. 78, 11887–11895. Web of Science CrossRef Google Scholar
Lamoureux, G., Perez, A. L., Araya, M. & Agüero, C. (2008). J. Phys. Org. Chem. 21, 1022–1028. Web of Science CrossRef Google Scholar
López, J., de la Cruz, F., Alcaraz, Y., Delgado, F. & Vázquez, M. A. (2015). Med. Chem. Res. 24, 3599–3620. Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Radisky, D. C., Radisky, E. S., Barrows, L. R., Copp, B. R., Kramer, R. A. & Ireland, C. M. (1993). J. Am. Chem. Soc. 115, 1632–1638. CrossRef Web of Science Google Scholar
Schweinfurth, D., Mazzolini, M., Neshchadin, D., Hoyer, C., Geier, R., Gatterer, K., Trapp, N., Gescheidt, G. & Diederich, F. (2016). Chem. Eur. J. 22, 7152–7157. Web of Science CrossRef Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shriner, R. L. & Neumann, F. W. (1944). Chem. Rev. 35, 351–425. CrossRef Google Scholar
Singh, M. W., Karmakar, A., Barooah, N. & Baruah, J. B. (2007). Beilstein J. Org. Chem. 3, No. 10. Google Scholar
Stierle, D. B. & Faulkner, D. J. (1991). J. Nat. Prod. 54, 1131–1133. CrossRef Web of Science Google Scholar
Wagner, J. P. & Schreiner, P. R. (2015). Angew. Chem. Int. Ed. 54, 12274–12296. Web of Science CrossRef CAS Google Scholar
Zlotkowski, K., Hewitt, W. M., Yan, P., Bokesch, H. R., Peach, M. L., Nicklaus, M. C., O'Keefe, B. R., McMahon, J. B., Gustafson, K. R. & Schneekloth, J. S. Jr (2017). Org. Lett. 19, 1726–1729. Web of Science CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.