research communications
E)-1-[4-hydroxy-3-(morpholin-4-ylmethyl)phenyl]-3-(thiophen-2-yl)prop-2-en-1-one
and theoretical study of (2aDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Atatürk University, 25240 Erzurum, Turkey, bDepartment of Mathematics and Science Education, Faculty of Education, Kastamonu University, 37200 Kastamonu, Turkey, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and dDepartment of Physics, Faculty of Arts and Sciences, Aksaray University, 68100 Aksaray, Turkey
*Correspondence e-mail: aaydin@kastamonu.edu.tr
In the title compound, C18H19NO3S, the morpholine ring adopts a chair conformation. The thiophene ring forms dihedral angles of 26.04 (9) and 74.07 (10)° with the benzene ring and the mean plane of the morpholine ring, respectively. The molecular conformation is stabilized by an O—H⋯N hydrogen bond. In the crystal, molecules are connected through C—H⋯O hydrogen bonds, forming wave-like layers parallel to the ab plane, which are further linked into a three-dimensional network by C—H⋯π interactions involving the benzene rings and the methylene H atoms of the morpholine rings.
Keywords: crystal structure; theoretical study; quantum-chemical calculation; chalcones; Mannich bases; HOMO; LUMO.
CCDC reference: 1848116
1. Chemical context
viz 1,3-diaryl-2-propene-1-ones, are major component of many natural products as well as important precursors for many synthetic manipulations (Das et al., 2006; Yerdelen et al., 2015; Gul et al., 2009). and their synthetic analogues display a wide range of biological activities such as anticancer, antimalarial, antibacterial, anti-inflammatory, antifungal, antioxidant, anti-HIV, antiprotozoal, and carbonic anhydrase inhibiting activities (Das et al., 2006; Yerdelen et al., 2015; Gul et al., 2007, 2009; Bilginer et al., 2013, 2014; Yamali et al., 2016; Singh et al., 2014).
Mannich bases are an important class of compounds in medicinal chemistry. The Mannich reaction can be considered as a α,β-unsaturated ketone moieties (Roman, 2015). The title compound was designed with the expectation of observing an increased bioactivity or cytotoxicity in a molecule including both chalcone and Mannich base pharmakophores.
of a suitable compound in which one or more aminomethylation processes happen, depending on the nature of the reactants. The biological activities of Mannich bases may result from their chemical structures or from the production of2. Structural commentary
In the title compound (Fig. 1), the morpholine ring (N1/O3/C15–C18) adopts a chair conformation with puckering parameters QT = 0.5776 (18) Å, θ = 0.00 (19)°, φ = 308 (12)°. The benzene ring (C8–C13) forms dihedral angles of 26.04 (9) and 79.95 (8)° with the thiophene ring (S1/C1–C4) and the mean plane of the morpholine ring, respectively. The values of all bond lengths and angles in the title compound are unexceptional. The molecular conformation is enforced by an intramolecular O—H⋯N hydrogen bond (Table 1).
3. Supramolecular features
In the crystal, molecules are linked by intermolecular C—H⋯O hydrogen bonds, forming wave-like layers parallel to the ab plane (Table 1, Fig. 2). C—H⋯π interactions are observed between the benzene rings and the methylene hydrogen atoms of the morpholine rings in adjacent layers, forming a three-dimensional network.
4. Database survey
A search of the Cambridge Structural Database (Version 5.39, update May 2018; Groom et al., 2016) for the 2-(morpholinomethyl)phenol yielded two hits, namely BOPMEY (Fun et al., 1999) and IHUBIW (Xie et al., 2003). In both compounds, the amine N atoms of the morpholine rings and the hydroxy groups of the phenol fragments are engaged in intramolecular hydrogen bonds.
5. Theoretical calculations
A quantum-chemical calculation was performed using the CNDO (Complete Neglect of Differential Overlap; Pople & Beveridge, 1970) approximation. A view of the calculated molecule is shown in Fig. 3. The charges at atoms S1, O1, O2, O3 and N1 are −0.049, −0.336, −0.271, −0.224 and −0.145 e−, respectively. The calculated of the title molecule is ca 2.881 Debye. The HOMO and LUMO energy levels are −10.3681 and 1.4009 eV, respectively.
In addition, the geometrical optimization calculations of the title compound were performed using the PM3 (Parameterized Model number 3) method (Stewart, 1989a,b) in WinMopac7.2. A view of the molecule calculated with PM3 is shown in Fig. 4. The net charges at atoms S1, O1, O2, O3 and N1 are 0.321, −0.230, −0.260, −0.321 and −0.070 e−, respectively. The calculated of the title molecule is ca 1.176 Debye. The HOMO and LUMO energy levels are −0.1724 and 0.0829 eV, respectively. These calculations were performed assuming the molecule to be isolated and in an absolute vacuum. A comparison between experimental and calculated bond lengths (r.m.s. deviations of 0.029 and 0.016 Å for CNDO and PM3, respectively) and angles (r.m.s. deviations of 1.601 and 1.915° for CNDO and PM3, respectively) is given in Table 2. The PM3 method gave the lowest values for HOMO, LUMO and dipole moments.
|
6. Synthesis and crystallization
A mixture of paraformaldehyde (0.13 g, 4.3 mmol) and morpholine (0.37 g, 4.3 mmol) in acetonitrile (5 ml) was refluxed at 353 K for 30 min. A solution of a suitable chalcone in acetonitrile (25 ml), [1-(4-hydroxyphenyl)-3-(thiophene-2-yl)-2-propene-1-one (1 g, 4.3 mmol)], was added into the reaction flask under continuous heating. The reaction progress was monitored by TLC. The reaction stopped after 8 h when the chalcone compound was consumed in the reaction medium, and the solvent was removed under vacuum. The residue was purified by column chromotography (SiO2; CHCl3: MeOH 9:1 v/v). Yield 32%, m.p. 424–426 K. Crystals suitable for X-ray analysis were obtained by slow evaporation of a methanol solution.
7. details
Crystal data, data collection and structure . C-bound H atoms were placed in calculated positions with C—H = 0.93–0.97 Å and refined using a riding model with Uiso(H) = 1.2Ueq(C). The hydroxy H atom was found in a difference-Fourier map and refined with Uiso(H) = 1.5Ueq(O). 15 outliers (5 4 6, 14 1, 5 3 2, 3 4 2, 3 1, 16 4, 11 1, 7 9, 11 1, 2 2 10, 0 5 12, 13 1, 13 3, 0 15 4, 17 4) were omitted in the final cycles of refinement.
details are summarized in Table 3
|
Supporting information
CCDC reference: 1848116
https://doi.org/10.1107/S2056989018008459/rz5238sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018008459/rz5238Isup4.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989018008459/rz5238Isup3.cml
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).C18H19NO3S | F(000) = 696 |
Mr = 329.40 | Dx = 1.316 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 9.4939 (5) Å | Cell parameters from 9868 reflections |
b = 18.5548 (10) Å | θ = 2.2–28.4° |
c = 9.5068 (5) Å | µ = 0.21 mm−1 |
β = 96.788 (3)° | T = 293 K |
V = 1662.95 (15) Å3 | Prism, colourless |
Z = 4 | 0.81 × 0.50 × 0.48 mm |
Bruker APEXII CCD diffractometer | 4168 independent reflections |
Radiation source: sealed tube | 3373 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.033 |
φ and ω scans | θmax = 28.5°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | h = −12→12 |
Tmin = 0.882, Tmax = 0.905 | k = −24→24 |
33902 measured reflections | l = −12→12 |
Refinement on F2 | 1 restraint |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.050 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.138 | w = 1/[σ2(Fo2) + (0.0679P)2 + 0.4859P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
4168 reflections | Δρmax = 0.32 e Å−3 |
211 parameters | Δρmin = −0.25 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.3316 (2) | −0.02309 (12) | 0.2121 (3) | 0.0720 (6) | |
H1 | 0.235465 | −0.019863 | 0.221873 | 0.086* | |
C2 | 0.3860 (2) | −0.06817 (11) | 0.1231 (2) | 0.0623 (5) | |
H2 | 0.331381 | −0.099790 | 0.063433 | 0.075* | |
C3 | 0.53423 (18) | −0.06285 (9) | 0.12897 (19) | 0.0522 (4) | |
H3 | 0.587701 | −0.090438 | 0.073164 | 0.063* | |
C4 | 0.59198 (16) | −0.01301 (8) | 0.22504 (17) | 0.0441 (3) | |
C5 | 0.74016 (16) | 0.00373 (8) | 0.25820 (17) | 0.0447 (3) | |
H5 | 0.802258 | −0.022598 | 0.209531 | 0.054* | |
C6 | 0.79903 (17) | 0.05204 (9) | 0.34953 (18) | 0.0465 (4) | |
H6 | 0.741687 | 0.080254 | 0.400249 | 0.056* | |
C7 | 0.95402 (16) | 0.06168 (8) | 0.37183 (17) | 0.0433 (3) | |
C8 | 1.01520 (15) | 0.12698 (8) | 0.44638 (15) | 0.0398 (3) | |
C9 | 0.93436 (16) | 0.18710 (8) | 0.47309 (16) | 0.0435 (3) | |
H9 | 0.836671 | 0.186378 | 0.448048 | 0.052* | |
C10 | 0.99807 (17) | 0.24766 (8) | 0.53638 (17) | 0.0456 (3) | |
H10 | 0.943157 | 0.287658 | 0.552522 | 0.055* | |
C11 | 1.14360 (16) | 0.24932 (8) | 0.57615 (15) | 0.0410 (3) | |
C12 | 1.22777 (15) | 0.18990 (8) | 0.54966 (15) | 0.0390 (3) | |
C13 | 1.16227 (15) | 0.13017 (8) | 0.48509 (15) | 0.0397 (3) | |
H13 | 1.217489 | 0.090658 | 0.466589 | 0.048* | |
C14 | 1.38542 (17) | 0.19118 (9) | 0.59817 (18) | 0.0473 (4) | |
H14A | 1.401057 | 0.181264 | 0.698985 | 0.057* | |
H14B | 1.431423 | 0.153440 | 0.549728 | 0.057* | |
C15 | 1.45567 (19) | 0.27260 (10) | 0.41787 (17) | 0.0533 (4) | |
H15A | 1.360309 | 0.272216 | 0.368303 | 0.064* | |
H15B | 1.508851 | 0.233930 | 0.380183 | 0.064* | |
C16 | 1.5255 (2) | 0.34382 (12) | 0.3944 (2) | 0.0645 (5) | |
H16A | 1.529884 | 0.350654 | 0.293866 | 0.077* | |
H16B | 1.468902 | 0.382512 | 0.427116 | 0.077* | |
C17 | 1.65806 (19) | 0.33755 (12) | 0.6150 (2) | 0.0603 (5) | |
H17A | 1.601485 | 0.375827 | 0.649325 | 0.072* | |
H17B | 1.752902 | 0.340669 | 0.665265 | 0.072* | |
C18 | 1.59421 (16) | 0.26603 (10) | 0.64480 (18) | 0.0507 (4) | |
H18A | 1.652343 | 0.227514 | 0.613763 | 0.061* | |
H18B | 1.591062 | 0.260745 | 0.745894 | 0.061* | |
N1 | 1.45003 (13) | 0.26102 (7) | 0.56999 (13) | 0.0425 (3) | |
O1 | 1.03248 (13) | 0.01683 (7) | 0.32762 (15) | 0.0605 (3) | |
O2 | 1.20139 (14) | 0.30917 (7) | 0.64087 (14) | 0.0548 (3) | |
O3 | 1.66467 (14) | 0.34704 (8) | 0.46745 (15) | 0.0686 (4) | |
S1 | 0.45988 (5) | 0.02779 (3) | 0.30547 (7) | 0.0781 (2) | |
H1O | 1.2875 (19) | 0.3090 (18) | 0.633 (3) | 0.117* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0407 (9) | 0.0815 (14) | 0.0932 (15) | 0.0020 (9) | 0.0062 (9) | −0.0139 (12) |
C2 | 0.0505 (10) | 0.0600 (11) | 0.0743 (13) | −0.0078 (8) | −0.0017 (9) | −0.0083 (9) |
C3 | 0.0508 (9) | 0.0475 (9) | 0.0585 (10) | 0.0007 (7) | 0.0072 (7) | −0.0053 (7) |
C4 | 0.0416 (8) | 0.0406 (8) | 0.0499 (8) | 0.0049 (6) | 0.0046 (6) | 0.0006 (6) |
C5 | 0.0417 (8) | 0.0414 (7) | 0.0515 (8) | 0.0031 (6) | 0.0073 (6) | 0.0028 (6) |
C6 | 0.0419 (8) | 0.0443 (8) | 0.0538 (9) | 0.0012 (6) | 0.0084 (7) | −0.0019 (7) |
C7 | 0.0426 (8) | 0.0413 (8) | 0.0470 (8) | −0.0013 (6) | 0.0094 (6) | 0.0031 (6) |
C8 | 0.0394 (7) | 0.0408 (7) | 0.0405 (7) | −0.0009 (6) | 0.0098 (6) | 0.0044 (6) |
C9 | 0.0370 (7) | 0.0476 (8) | 0.0472 (8) | 0.0017 (6) | 0.0102 (6) | 0.0029 (6) |
C10 | 0.0451 (8) | 0.0430 (8) | 0.0505 (9) | 0.0060 (6) | 0.0132 (7) | −0.0018 (6) |
C11 | 0.0468 (8) | 0.0414 (7) | 0.0359 (7) | −0.0002 (6) | 0.0086 (6) | 0.0015 (6) |
C12 | 0.0388 (7) | 0.0417 (7) | 0.0367 (7) | 0.0007 (6) | 0.0052 (6) | 0.0066 (6) |
C13 | 0.0401 (7) | 0.0372 (7) | 0.0427 (7) | 0.0034 (6) | 0.0090 (6) | 0.0049 (6) |
C14 | 0.0427 (8) | 0.0468 (8) | 0.0509 (9) | 0.0011 (6) | −0.0012 (6) | 0.0040 (7) |
C15 | 0.0532 (9) | 0.0672 (11) | 0.0389 (8) | −0.0119 (8) | 0.0035 (7) | −0.0032 (7) |
C16 | 0.0651 (11) | 0.0769 (13) | 0.0532 (10) | −0.0191 (10) | 0.0138 (8) | 0.0029 (9) |
C17 | 0.0433 (9) | 0.0802 (13) | 0.0587 (10) | −0.0145 (8) | 0.0114 (7) | −0.0211 (9) |
C18 | 0.0379 (8) | 0.0673 (11) | 0.0461 (8) | 0.0016 (7) | 0.0016 (6) | −0.0121 (7) |
N1 | 0.0376 (6) | 0.0507 (7) | 0.0388 (6) | −0.0043 (5) | 0.0032 (5) | −0.0020 (5) |
O1 | 0.0456 (6) | 0.0539 (7) | 0.0837 (9) | 0.0002 (5) | 0.0151 (6) | −0.0174 (6) |
O2 | 0.0554 (7) | 0.0482 (6) | 0.0605 (7) | −0.0024 (5) | 0.0059 (6) | −0.0127 (5) |
O3 | 0.0540 (7) | 0.0911 (10) | 0.0646 (8) | −0.0251 (7) | 0.0234 (6) | −0.0133 (7) |
S1 | 0.0495 (3) | 0.0889 (4) | 0.0965 (4) | 0.0074 (2) | 0.0111 (3) | −0.0427 (3) |
C1—C2 | 1.336 (3) | C11—C12 | 1.402 (2) |
C1—S1 | 1.705 (2) | C12—C13 | 1.379 (2) |
C1—H1 | 0.9300 | C12—C14 | 1.513 (2) |
C2—C3 | 1.406 (2) | C13—H13 | 0.9300 |
C2—H2 | 0.9300 | C14—N1 | 1.472 (2) |
C3—C4 | 1.368 (2) | C14—H14A | 0.9700 |
C3—H3 | 0.9300 | C14—H14B | 0.9700 |
C4—C5 | 1.439 (2) | C15—N1 | 1.469 (2) |
C4—S1 | 1.7197 (16) | C15—C16 | 1.507 (3) |
C5—C6 | 1.325 (2) | C15—H15A | 0.9700 |
C5—H5 | 0.9300 | C15—H15B | 0.9700 |
C6—C7 | 1.473 (2) | C16—O3 | 1.419 (2) |
C6—H6 | 0.9300 | C16—H16A | 0.9700 |
C7—O1 | 1.2239 (19) | C16—H16B | 0.9700 |
C7—C8 | 1.487 (2) | C17—O3 | 1.422 (2) |
C8—C9 | 1.394 (2) | C17—C18 | 1.500 (3) |
C8—C13 | 1.403 (2) | C17—H17A | 0.9700 |
C9—C10 | 1.380 (2) | C17—H17B | 0.9700 |
C9—H9 | 0.9300 | C18—N1 | 1.4691 (19) |
C10—C11 | 1.389 (2) | C18—H18A | 0.9700 |
C10—H10 | 0.9300 | C18—H18B | 0.9700 |
C11—O2 | 1.3538 (19) | O2—H1O | 0.830 (18) |
C2—C1—S1 | 111.75 (15) | C8—C13—H13 | 118.9 |
C2—C1—H1 | 124.1 | N1—C14—C12 | 112.14 (12) |
S1—C1—H1 | 124.1 | N1—C14—H14A | 109.2 |
C1—C2—C3 | 113.02 (18) | C12—C14—H14A | 109.2 |
C1—C2—H2 | 123.5 | N1—C14—H14B | 109.2 |
C3—C2—H2 | 123.5 | C12—C14—H14B | 109.2 |
C4—C3—C2 | 113.24 (16) | H14A—C14—H14B | 107.9 |
C4—C3—H3 | 123.4 | N1—C15—C16 | 109.98 (14) |
C2—C3—H3 | 123.4 | N1—C15—H15A | 109.7 |
C3—C4—C5 | 126.63 (15) | C16—C15—H15A | 109.7 |
C3—C4—S1 | 109.79 (12) | N1—C15—H15B | 109.7 |
C5—C4—S1 | 123.58 (12) | C16—C15—H15B | 109.7 |
C6—C5—C4 | 127.99 (15) | H15A—C15—H15B | 108.2 |
C6—C5—H5 | 116.0 | O3—C16—C15 | 111.42 (17) |
C4—C5—H5 | 116.0 | O3—C16—H16A | 109.3 |
C5—C6—C7 | 120.90 (15) | C15—C16—H16A | 109.3 |
C5—C6—H6 | 119.6 | O3—C16—H16B | 109.3 |
C7—C6—H6 | 119.6 | C15—C16—H16B | 109.3 |
O1—C7—C6 | 120.42 (14) | H16A—C16—H16B | 108.0 |
O1—C7—C8 | 119.90 (14) | O3—C17—C18 | 111.22 (14) |
C6—C7—C8 | 119.67 (13) | O3—C17—H17A | 109.4 |
C9—C8—C13 | 118.09 (14) | C18—C17—H17A | 109.4 |
C9—C8—C7 | 123.12 (14) | O3—C17—H17B | 109.4 |
C13—C8—C7 | 118.69 (13) | C18—C17—H17B | 109.4 |
C10—C9—C8 | 120.57 (14) | H17A—C17—H17B | 108.0 |
C10—C9—H9 | 119.7 | N1—C18—C17 | 109.80 (15) |
C8—C9—H9 | 119.7 | N1—C18—H18A | 109.7 |
C9—C10—C11 | 120.48 (14) | C17—C18—H18A | 109.7 |
C9—C10—H10 | 119.8 | N1—C18—H18B | 109.7 |
C11—C10—H10 | 119.8 | C17—C18—H18B | 109.7 |
O2—C11—C10 | 118.59 (14) | H18A—C18—H18B | 108.2 |
O2—C11—C12 | 121.18 (14) | C18—N1—C15 | 109.09 (13) |
C10—C11—C12 | 120.23 (14) | C18—N1—C14 | 110.61 (13) |
C13—C12—C11 | 118.39 (13) | C15—N1—C14 | 111.86 (13) |
C13—C12—C14 | 121.74 (13) | C11—O2—H1O | 108 (2) |
C11—C12—C14 | 119.80 (13) | C16—O3—C17 | 109.29 (13) |
C12—C13—C8 | 122.22 (13) | C1—S1—C4 | 92.20 (9) |
C12—C13—H13 | 118.9 | ||
S1—C1—C2—C3 | 0.3 (3) | C10—C11—C12—C14 | −177.78 (14) |
C1—C2—C3—C4 | 0.4 (3) | C11—C12—C13—C8 | −0.4 (2) |
C2—C3—C4—C5 | 178.40 (16) | C14—C12—C13—C8 | 176.60 (13) |
C2—C3—C4—S1 | −0.9 (2) | C9—C8—C13—C12 | 0.9 (2) |
C3—C4—C5—C6 | 179.33 (18) | C7—C8—C13—C12 | 177.50 (13) |
S1—C4—C5—C6 | −1.5 (3) | C13—C12—C14—N1 | 140.07 (14) |
C4—C5—C6—C7 | 179.26 (15) | C11—C12—C14—N1 | −42.94 (19) |
C5—C6—C7—O1 | −13.9 (3) | N1—C15—C16—O3 | 58.3 (2) |
C5—C6—C7—C8 | 165.08 (15) | O3—C17—C18—N1 | −59.52 (19) |
O1—C7—C8—C9 | 166.04 (15) | C17—C18—N1—C15 | 56.66 (17) |
C6—C7—C8—C9 | −12.9 (2) | C17—C18—N1—C14 | −179.90 (13) |
O1—C7—C8—C13 | −10.4 (2) | C16—C15—N1—C18 | −55.98 (19) |
C6—C7—C8—C13 | 170.68 (14) | C16—C15—N1—C14 | −178.68 (15) |
C13—C8—C9—C10 | −0.3 (2) | C12—C14—N1—C18 | 167.76 (13) |
C7—C8—C9—C10 | −176.70 (14) | C12—C14—N1—C15 | −70.41 (17) |
C8—C9—C10—C11 | −0.8 (2) | C15—C16—O3—C17 | −59.5 (2) |
C9—C10—C11—O2 | −178.50 (14) | C18—C17—O3—C16 | 60.1 (2) |
C9—C10—C11—C12 | 1.3 (2) | C2—C1—S1—C4 | −0.7 (2) |
O2—C11—C12—C13 | 179.13 (13) | C3—C4—S1—C1 | 0.90 (15) |
C10—C11—C12—C13 | −0.7 (2) | C5—C4—S1—C1 | −178.40 (16) |
O2—C11—C12—C14 | 2.0 (2) |
Cg1 is the centroid of the C8–C13 benzene ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H1O···N1 | 0.83 (2) | 1.94 (2) | 2.6834 (18) | 149 (3) |
C1—H1···O1i | 0.93 | 2.38 | 3.249 (2) | 156 |
C2—H2···O2ii | 0.93 | 2.57 | 3.417 (2) | 152 |
C5—H5···O1 | 0.93 | 2.45 | 2.786 (2) | 101 |
C16—H16A···Cg1iii | 0.97 | 2.88 | 3.789 (2) | 157 |
C18—H18B···Cg1iv | 0.97 | 2.70 | 3.6010 (18) | 154 |
Symmetry codes: (i) x−1, y, z; (ii) −x+3/2, y−1/2, −z+1/2; (iii) x+1/2, −y+1/2, z−1/2; (iv) x+1/2, −y+1/2, z+1/2. |
Bond | X-ray | CNDO | PM3 |
S1—C1 | 1.705 (2) | 1.7663 | 1.7194 |
S1—C4 | 1.720 (2) | 1.7758 | 1.7449 |
O1—C7 | 1.224 (2) | 1.2143 | 1.2196 |
O2—C11 | 1.354 (2) | 1.3565 | 1.3663 |
O3—C16 | 1.419 (2) | 1.4208 | 1.4149 |
O3—C17 | 1.422 (2) | 1.4209 | 1.4153 |
N1—C14 | 1.472 (2) | 1.4606 | 1.4916 |
N1—C15 | 1.469 (2) | 1.4573 | 1.4914 |
N1—C18 | 1.469 (2) | 1.4567 | 1.4906 |
Bond Angle | |||
C1—S1—C4 | 92.20 (9) | 88.91 | 91.38 |
C16—O3—C17 | 109.29 (13) | 110.44 | 112.79 |
C14—N1—C15 | 111.86 (13) | 111.15 | 112.06 |
C14—N1—C18 | 110.61 (13) | 111.92 | 112.86 |
C15—N1—C18 | 109.09 (13) | 109.64 | 111.62 |
S1—C1—C2 | 111.75 (15) | 111.11 | 112.58 |
S1—C4—C5 | 123.58 (12) | 126.03 | 125.76 |
S1—C4—C3 | 109.79 (12) | 109.88 | 111.11 |
O1—C7—C6 | 120.42 (14) | 119.03 | 122.82 |
O1—C7—C8 | 119.90 (14) | 123.49 | 121.52 |
O2—C11—C10 | 118.59 (14) | 119.87 | 115.22 |
O2—C11—C12 | 121.18 (14) | 122.06 | 123.98 |
N1—C14—C12 | 112.14 (12) | 112.35 | 111.21 |
N1—C15—C16 | 109.98 (14) | 110.79 | 109.89 |
O3—C16—C15 | 111.42 (17) | 109.89 | 112.44 |
O3—C17—C18 | 111.22 (14) | 110.05 | 112.30 |
N1—C18—C17 | 109.80 (15) | 110.73 | 110.02 |
Acknowledgements
The authors acknowledge the Aksaray University, Science and Technology Application and Research Center, Aksaray, Turkey, for the use of the Bruker SMART BREEZE CCD diffractometer (purchased under grant No. 2010K120480 of the State of Planning Organization)
References
Bilginer, S., Gul, H. I., Mete, E., Das, U., Sakagami, H., Umemura, N. & Dimmock, J. R. (2013). J. Enzyme Inhib. Med. Chem. 28, 974–980. Web of Science CrossRef CAS PubMed Google Scholar
Bilginer, S., Unluer, E., Gul, H. I., Mete, E., Isik, S., Vullo, D., Ozensoy-Guler, O., Beyaztas, S., Capasso, C. & Supuran, C. T. (2014). J. Enzyme Inhib. Med. Chem. 29, 495–499. Web of Science CrossRef Google Scholar
Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Das, U., Gul, H. I., Alcorn, J., Shrivastav, A., George, T., Sharma, R. K., Nienaber, K. H., De Clercq, E., Balzarini, J., Kawase, M., Kan, N., Tanaka, T., Tani, S., Werbovetz, K. A., Yakovich, A. J., Manavathu, E. K., Stables, J. P. & Dimmock, J. R. (2006). Eur. J. Med. Chem. 41, 577–585. Web of Science CrossRef Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fun, H.-K., Shanmuga Sundara Raj, S., Chinnakali, K., Tian, J.-Z., Shen, Z., Zhang, J.-Q. & You, X.-Z. (1999). Acta Cryst. C55, 1843–1845. Web of Science CrossRef IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gul, H. I., Cizmecioglu, M., Zencir, S., Gul, M., Canturk, P., Atalay, M. & Topcu, Z. (2009). J. Enzyme Inhib. Med. Chem. 24, 804–807. Web of Science CrossRef PubMed CAS Google Scholar
Gul, H. I., Yerdelen, K. O., Gul, M., Das, U., Pandit, B., Li, P.-K., Secen, H. & Sahin, F. (2007). Arch. Pharm. Chem. Life Sci. 340, 195–201. Web of Science CrossRef Google Scholar
Pople, J. A. & Beveridge, D. L. (1970). Approximate Molecular Orbital Theory. New York: McGraw-Hill. Google Scholar
Roman, G. (2015). Eur. J. Med. Chem. 89, 743–816. Web of Science CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Singh, P., Anand, A. & Kumar, V. (2014). Eur. J. Med. Chem. 85, 758–777. Web of Science CrossRef CAS PubMed Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stewart, J. J. P. (1989a). J. Comput. Chem. 10, 209–220. CrossRef CAS Web of Science Google Scholar
Stewart, J. J. P. (1989b). J. Comput. Chem. 10, 221–264. CrossRef CAS Web of Science Google Scholar
Xie, Y., Jiang, H., Du, C., Zhu, Y., Xu, X. & Liu, Q. (2003). Struct. Chem. 14, 295–298. Web of Science CrossRef Google Scholar
Yamali, C., Tugrak, M., Gul, H. I., Tanc, M. & Supuran, C. T. (2016). J. Enzyme Inhib. Med. Chem. 31, 1678–1681. Web of Science CrossRef Google Scholar
Yerdelen, K. O., Gul, H. I., Sakagami, H., Umemura, N. & Sukuroglu, M. (2015). Lett. Drug. Des. Discov. 12, 643–649. Web of Science CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.