research communications
and Hirshfeld surface analysis of a pyridiniminium bromide salt: 1-[2-(adamantan-1-yl)-2-oxoethyl]pyridin-4-iminium bromide
aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, cDepartment of Engineering Chemistry, Vidya Vikas Institute of Engineering & Technology, Visvesvaraya Technological University, Alanahalli, Mysuru 570028, Karnataka, India, and dDepartment of Chemistry, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
*Correspondence e-mail: chidankumar@gmail.com, arafath_sustche90@yahoo.com
In the cation of the title salt, C17H23N2O+·Br−, the adamantyl moiety and the pyridiniminium ring are inclined to the ketone bridge by torsion angles of −78.1 (2) (C—C—C=O) and 58.3 (2)° (C—C—N—C), respectively, and the ketone bridge has a C—C—C—N torsion angle of 174.80 (15)°. In the crystal, the cations are connected into chains parallel to the c axis by C—H⋯O hydrogen bonds. The chains are further linked into layers parallel to the bc plane by N—H⋯Br and C—H⋯Br hydrogen bonds, C—H⋯π interactions and π–π stacking interactions [centroid-to-centroid distance = 3.5657 (11) Å]. A Hirshfeld surface analysis, which comprises the dnorm surface, electrostatic potential map and two-dimensional fingerprint plots, was carried out to verify the contribution of the various intermolecular interactions.
CCDC reference: 1851334
1. Chemical context
Adamantane derivatives have been shown to exhibit various biological activities such as antiviral (Zoidis et al., 2010), anti-diabetic (Zettl et al., 2010), antimicrobial (Piérard et al., 2009), anti-inflammatory (Lamanna et al., 2012), antioxidant (Priyanka et al., 2013) and central nervous system activities (Reisberg et al., 2003). Besides, adamantane-based chemotherapeutics have been developed for treating viral infections, for example influenza A, herpes simplex and HIV (Liu et al., 2011). There are a number of negatively charged enzymes and cofactors and many diseases, including cystic fibrosis, have been found to result from defects in the ion channel function (Ashcroft, 1999). The anion–π non-covalent interaction has been explored both theoretically and experimentally and selective anion receptors and channels have been designed (Ballester, 2008; Schottel et al., 2008; Hay & Bryantsev, 2008; Frontera et al., 2011).
Ionic liquids (ILs) have attracted a lot of interest over the past decade because of their unusual range of properties such as negligible vapour pressure, excellent thermal stability in a wide temperature range, no flammability and high ). ILs are excellent alternatives to volatile organic compounds (VOCs). An ionic liquid has a strong solvation ability and can dissolve polar and non-polar species with efficient selectivity, which can be modified by changing the anion (Blanchard et al., 2001). ILs have been used successfully as solvents in several reactions such as isomerization, dimerization, hydrogenation, and Heck and Suzuki coupling reactions (Chauvin & Olivier-Bourbigou, 1995; Holbrey & Seddon, 1999). They have also performed well as solvents in bio-catalysed and homogeneous catalytic reactions, and can be used as lubricants to wet the surface of metals, polymers and inorganic materials (Crosthwaite et al., 2004).
(Davis, 20042. Structural commentary
Fig. 1 shows the asymmetric unt of the title salt, which consists of a 1-[2-(adamantan-1-yl)-2-oxoethyl]pyridin-4-iminium cation and a bromide anion. The cation is constructed from an adamantyl moiety (C1–C10) and a pyridiniminium ring (N1/C13–C17), which are connected by a ketone bridge [(C11=O1)—C12]. The bond angles formed by the quaternary carbon (C1) with the surrounding secondary carbons (C2, C6 and C7) are comparable with those reported for related structures which range from 107.40 (12) to 110.82 (13)° (Rouchal et al., 2011). Both the adamantyl and pyridiniminium rings are twisted away from the ketone bridge to reduce repulsion, as indicated by the torsion angles C6—C1—C11=O1 [−78.1 (2)°] and C11—C12—N1—C13 [58.3 (2)°]. The ketone bridge is in an antiperiplanar conformation [C1—C11—C12—N1 = 174.80 (15)°]. The dihedral angle formed by the pyrimidinium ring with the ketone bridge is 59.77 (14)°. Bond lengths and angles in the cation are within normal ranges (Allen, 2002). However, the N2—C15 bond length [1.325 (2) Å] is shorter than expected for an NH2—Car single bond [1.38 (3) Å], indicating partial double-bond character. Similar bond lengths are found in related compounds with an N+=C double bond (Chidan Kumar et al., 2017; Sharmila et al., 2014; Yue et al., 2013).
3. Supramolecular features
In the crystal, the cations are linked into chains along the c-axis direction via C17—H17A⋯O1 hydrogen bonds (Table 1, Fig. 2). The chains interact through N—H⋯Br and C—H⋯Br hydrogen bonds to form layers parallel to the bc plane, which are further enforced by C—H⋯π and π–π interactions [centroid-to-centroid distance 3.5657 (11) Å].
4. Hirshfeld Surface Analysis
The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) of the title salt was performed using CrystalExplorer3.1 (Wolff et al., 2012), and comprises dnorm surface plots, electrostatic potentials and two-dimensional fingerprint plots (Spackman & McKinnon, 2002). The ball-and-stick model, dnorm surface and electrostatic potential plots of the title salt are shown in Fig. 3. Those plots were generated in order to quantify and give visual confirmation of the intermolecular interactions and to explain the observed crystal packing. The dark-red spots on the dnorm surface arise because of short interatomic contacts, while the other weak intermolecular interactions appear as light-red spots. Furthermore, the negative electrostatic potential (red region) in the electrostatic potential map indicates hydrogen-acceptor potential, whereas the hydrogen donors are represented by positive electrostatic potential (blue region) (Spackman et al., 2008).
Dark-red spots that are close to atoms H1N2, H2N2, H12A and Br1 in the dnorm surface mapping are the result of the N2—H1N2⋯Br1, N2—H2N2⋯Br1 and C12—H12A⋯Br1 hydrogen bonds (Fig. 4a). This observation is further confirmed by the respective electrostatic potential maps where Br1 shows negative electrostatic potential as a hydrogen acceptor (red region, Fig. 4b). Beside those two short intermolecular contacts, the C—H⋯O and C—H⋯π interactions are shown as light-red spots on the dnorm surface (Fig. 5).
A quantitative analysis of the intermolecular interactions can be made by studying the fingerprint plots (FP); characteristic pseudo-symmetry wings in the de and di diagonal axes can be seen in the overall two-dimensional FP (Fig. 6). The most significant intermolecular interactions are the H⋯H interactions (63.5%), which appear in the central region of the FP with de = di ≃ 2.2 Å (Fig. 6b). The reciprocal H⋯Br/Br⋯H and H⋯O/O⋯H interactions with 15.9% and 7.6% contributions, respectively are present as sharp symmetrical spikes at de + di ≃ 2.4 and 2.5 Å, respectively (Fig. 6c and 6e). The reciprocal H⋯C/C⋯H interactions appear as two symmetrical narrow wings at de + di ≃ 2.5 Å and contribute 7.8% to the Hirshfeld surface (Fig. 6d). The reciprocal N⋯H/H⋯N interactions appear as a symmetrical V-shaped wing in the FP map with de + di ≃ 2.7 Å and contribute 2.7% to the Hirshfeld surface (Fig. 6f). The percentage contributions for other intermolecular contacts are less than 2.6%.
5. Synthesis and crystallization
A mixture of 1-adamantly bromomethyl ketone (2.75 g, 10 mmol) and 4-aminopyridine (0.11 g, 1 mmol) was dissolved in 10 ml of toluene at room temperature, followed by stirring at 358 K for 18 h. The completion of the reaction was marked by the amount of the separated solid from the initially clear and homogeneous mixture of the starting materials. The solid was filtered and washed by ethyl acetate. The final pyridiniminium salt was obtained after the solid had been dried under reduced pressure to remove all volatile organic compounds (Said et al., 2017; Sheshadri et al., 2018). Plate-like colourless crystals were obtained by slow evaporation of an acetone solution.
6. Refinement
Crystal data, data collection and structure . C-bound H atoms were positioned geometrically [C—H = 0.93–0.98 Å] and refined using a riding model with Uiso(H) = 1.2Ueq(C). The N-bound H atoms were located in a difference-Fourier map and freely refined. One outlier (100) was omitted in the last cycles of refinement.
details are summarized in Table 2
|
Supporting information
CCDC reference: 1851334
https://doi.org/10.1107/S2056989018009131/rz5239sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018009131/rz5239Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989018009131/rz5239Isup3.cml
Data collection: APEX2 (Bruker, 2012); cell
SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: SHELXL2013 (Sheldrick, 2015) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2015) and PLATON (Spek, 2009).C17H23N2O+·Br− | F(000) = 728 |
Mr = 351.28 | Dx = 1.466 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 18.758 (2) Å | Cell parameters from 7278 reflections |
b = 7.1508 (8) Å | θ = 3.1–25.2° |
c = 11.9909 (14) Å | µ = 2.58 mm−1 |
β = 98.2117 (17)° | T = 294 K |
V = 1591.9 (3) Å3 | Plate, colourless |
Z = 4 | 0.38 × 0.25 × 0.09 mm |
Bruker APEXII DUO CCD area-detector diffractometer | 4897 independent reflections |
Radiation source: fine-focus sealed tube | 3392 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.051 |
φ and ω scans | θmax = 30.6°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2012) | h = −26→26 |
Tmin = 0.320, Tmax = 0.408 | k = −10→10 |
35418 measured reflections | l = −17→17 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.035 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.080 | w = 1/[σ2(Fo2) + (0.0364P)2 + 0.3328P] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max = 0.001 |
4897 reflections | Δρmax = 0.39 e Å−3 |
198 parameters | Δρmin = −0.25 e Å−3 |
Experimental. The following wavelength and cell were deduced by SADABS from the direction cosines etc. They are given here for emergency use only: CELL 0.71078 12.009 7.162 18.799 89.983 98.202 90.025 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.18668 (2) | 0.58832 (3) | 0.43377 (2) | 0.04161 (8) | |
O1 | 0.16460 (7) | 0.2172 (2) | 0.22373 (11) | 0.0449 (3) | |
N1 | 0.09073 (8) | 0.11925 (19) | 0.39566 (12) | 0.0287 (3) | |
N2 | −0.12926 (9) | 0.1691 (3) | 0.35275 (16) | 0.0399 (4) | |
H1N2 | −0.1522 (14) | 0.122 (3) | 0.294 (2) | 0.060 (8)* | |
H2N2 | −0.1491 (11) | 0.232 (3) | 0.3994 (18) | 0.046 (6)* | |
C1 | 0.28202 (10) | 0.1231 (3) | 0.31057 (14) | 0.0334 (4) | |
C2 | 0.32236 (11) | 0.1050 (4) | 0.43067 (16) | 0.0487 (6) | |
H2A | 0.3014 | 0.0049 | 0.4699 | 0.058* | |
H2B | 0.3180 | 0.2204 | 0.4717 | 0.058* | |
C3 | 0.40229 (11) | 0.0632 (4) | 0.4260 (2) | 0.0617 (7) | |
H3A | 0.4278 | 0.0525 | 0.5029 | 0.074* | |
C4 | 0.40873 (13) | −0.1190 (4) | 0.3647 (2) | 0.0647 (7) | |
H4A | 0.3876 | −0.2193 | 0.4034 | 0.078* | |
H4B | 0.4591 | −0.1483 | 0.3636 | 0.078* | |
C5 | 0.37011 (12) | −0.1023 (4) | 0.2448 (2) | 0.0551 (6) | |
H5A | 0.3751 | −0.2198 | 0.2045 | 0.066* | |
C6 | 0.28984 (11) | −0.0621 (3) | 0.24763 (17) | 0.0433 (5) | |
H6A | 0.2687 | −0.1634 | 0.2855 | 0.052* | |
H6B | 0.2646 | −0.0533 | 0.1713 | 0.052* | |
C7 | 0.31564 (11) | 0.2816 (3) | 0.2499 (2) | 0.0513 (5) | |
H7A | 0.3111 | 0.3987 | 0.2891 | 0.062* | |
H7B | 0.2906 | 0.2941 | 0.1737 | 0.062* | |
C8 | 0.43485 (13) | 0.2227 (5) | 0.3659 (3) | 0.0765 (8) | |
H8A | 0.4306 | 0.3390 | 0.4060 | 0.092* | |
H8B | 0.4856 | 0.1988 | 0.3639 | 0.092* | |
C9 | 0.40260 (13) | 0.0572 (4) | 0.1841 (2) | 0.0672 (8) | |
H9A | 0.4531 | 0.0318 | 0.1808 | 0.081* | |
H9B | 0.3779 | 0.0676 | 0.1076 | 0.081* | |
C10 | 0.39530 (12) | 0.2385 (4) | 0.2467 (2) | 0.0653 (7) | |
H10A | 0.4166 | 0.3403 | 0.2077 | 0.078* | |
C11 | 0.20180 (10) | 0.1573 (3) | 0.30656 (14) | 0.0317 (4) | |
C12 | 0.16924 (9) | 0.0976 (3) | 0.40968 (15) | 0.0301 (4) | |
H12A | 0.1813 | −0.0324 | 0.4260 | 0.036* | |
H12B | 0.1905 | 0.1715 | 0.4738 | 0.036* | |
C13 | 0.04945 (10) | 0.0291 (3) | 0.31040 (15) | 0.0357 (4) | |
H13A | 0.0718 | −0.0446 | 0.2616 | 0.043* | |
C14 | −0.02299 (10) | 0.0429 (3) | 0.29395 (15) | 0.0353 (4) | |
H14A | −0.0498 | −0.0198 | 0.2341 | 0.042* | |
C15 | −0.05818 (10) | 0.1526 (3) | 0.36771 (14) | 0.0295 (4) | |
C16 | −0.01401 (9) | 0.2433 (2) | 0.45605 (14) | 0.0300 (4) | |
H16A | −0.0348 | 0.3164 | 0.5069 | 0.036* | |
C17 | 0.05879 (10) | 0.2251 (2) | 0.46772 (14) | 0.0297 (4) | |
H17A | 0.0872 | 0.2867 | 0.5264 | 0.036* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.05492 (14) | 0.03289 (11) | 0.03750 (11) | 0.00147 (9) | 0.00823 (8) | −0.00127 (8) |
O1 | 0.0371 (8) | 0.0609 (10) | 0.0352 (7) | 0.0074 (7) | 0.0001 (6) | 0.0094 (7) |
N1 | 0.0278 (8) | 0.0256 (8) | 0.0330 (7) | −0.0007 (6) | 0.0051 (6) | −0.0020 (6) |
N2 | 0.0300 (9) | 0.0507 (11) | 0.0389 (9) | 0.0022 (8) | 0.0051 (8) | −0.0078 (8) |
C1 | 0.0276 (9) | 0.0426 (11) | 0.0295 (8) | −0.0005 (8) | 0.0028 (7) | 0.0024 (7) |
C2 | 0.0304 (10) | 0.0816 (17) | 0.0330 (9) | −0.0033 (11) | 0.0009 (8) | −0.0015 (10) |
C3 | 0.0273 (11) | 0.109 (2) | 0.0454 (12) | 0.0014 (13) | −0.0049 (9) | 0.0035 (13) |
C4 | 0.0344 (12) | 0.092 (2) | 0.0681 (16) | 0.0187 (13) | 0.0077 (11) | 0.0252 (14) |
C5 | 0.0452 (13) | 0.0659 (16) | 0.0550 (13) | 0.0171 (11) | 0.0094 (10) | −0.0039 (11) |
C6 | 0.0355 (11) | 0.0506 (13) | 0.0427 (10) | 0.0056 (9) | 0.0018 (8) | −0.0041 (9) |
C7 | 0.0434 (12) | 0.0528 (14) | 0.0613 (13) | 0.0005 (10) | 0.0198 (10) | 0.0138 (11) |
C8 | 0.0323 (13) | 0.102 (2) | 0.096 (2) | −0.0162 (14) | 0.0110 (13) | −0.0112 (18) |
C9 | 0.0450 (14) | 0.105 (2) | 0.0562 (14) | 0.0200 (14) | 0.0234 (11) | 0.0144 (14) |
C10 | 0.0453 (14) | 0.0729 (18) | 0.0839 (18) | −0.0032 (12) | 0.0307 (13) | 0.0217 (15) |
C11 | 0.0312 (10) | 0.0329 (9) | 0.0309 (9) | −0.0004 (8) | 0.0035 (7) | −0.0012 (7) |
C12 | 0.0248 (9) | 0.0298 (9) | 0.0357 (8) | 0.0041 (7) | 0.0042 (7) | 0.0028 (7) |
C13 | 0.0352 (10) | 0.0347 (10) | 0.0380 (9) | −0.0021 (8) | 0.0076 (8) | −0.0130 (8) |
C14 | 0.0345 (10) | 0.0373 (10) | 0.0342 (9) | −0.0045 (8) | 0.0052 (8) | −0.0107 (8) |
C15 | 0.0307 (10) | 0.0277 (8) | 0.0308 (8) | 0.0011 (7) | 0.0067 (7) | 0.0031 (7) |
C16 | 0.0336 (10) | 0.0288 (9) | 0.0290 (8) | 0.0024 (8) | 0.0089 (7) | −0.0017 (7) |
C17 | 0.0362 (10) | 0.0256 (8) | 0.0275 (8) | −0.0022 (7) | 0.0053 (7) | −0.0013 (7) |
O1—C11 | 1.208 (2) | C6—H6A | 0.9700 |
N1—C17 | 1.352 (2) | C6—H6B | 0.9700 |
N1—C13 | 1.354 (2) | C7—C10 | 1.531 (3) |
N1—C12 | 1.466 (2) | C7—H7A | 0.9700 |
N2—C15 | 1.325 (2) | C7—H7B | 0.9700 |
N2—H1N2 | 0.85 (3) | C8—C10 | 1.517 (4) |
N2—H2N2 | 0.84 (2) | C8—H8A | 0.9700 |
C1—C11 | 1.518 (3) | C8—H8B | 0.9700 |
C1—C7 | 1.530 (3) | C9—C10 | 1.514 (4) |
C1—C2 | 1.534 (3) | C9—H9A | 0.9700 |
C1—C6 | 1.542 (3) | C9—H9B | 0.9700 |
C2—C3 | 1.538 (3) | C10—H10A | 0.9800 |
C2—H2A | 0.9700 | C11—C12 | 1.517 (2) |
C2—H2B | 0.9700 | C12—H12A | 0.9700 |
C3—C4 | 1.509 (4) | C12—H12B | 0.9700 |
C3—C8 | 1.523 (4) | C13—C14 | 1.348 (3) |
C3—H3A | 0.9800 | C13—H13A | 0.9300 |
C4—C5 | 1.520 (3) | C14—C15 | 1.414 (2) |
C4—H4A | 0.9700 | C14—H14A | 0.9300 |
C4—H4B | 0.9700 | C15—C16 | 1.407 (2) |
C5—C9 | 1.526 (4) | C16—C17 | 1.359 (2) |
C5—C6 | 1.538 (3) | C16—H16A | 0.9300 |
C5—H5A | 0.9800 | C17—H17A | 0.9300 |
C17—N1—C13 | 119.43 (15) | C1—C7—H7B | 109.8 |
C17—N1—C12 | 121.03 (15) | C10—C7—H7B | 109.8 |
C13—N1—C12 | 119.53 (15) | H7A—C7—H7B | 108.2 |
C15—N2—H1N2 | 117.3 (18) | C10—C8—C3 | 109.1 (2) |
C15—N2—H2N2 | 119.2 (14) | C10—C8—H8A | 109.9 |
H1N2—N2—H2N2 | 123 (2) | C3—C8—H8A | 109.9 |
C11—C1—C7 | 109.85 (16) | C10—C8—H8B | 109.9 |
C11—C1—C2 | 113.40 (15) | C3—C8—H8B | 109.9 |
C7—C1—C2 | 109.10 (17) | H8A—C8—H8B | 108.3 |
C11—C1—C6 | 106.61 (15) | C10—C9—C5 | 109.47 (19) |
C7—C1—C6 | 109.20 (16) | C10—C9—H9A | 109.8 |
C2—C1—C6 | 108.58 (17) | C5—C9—H9A | 109.8 |
C1—C2—C3 | 109.56 (16) | C10—C9—H9B | 109.8 |
C1—C2—H2A | 109.8 | C5—C9—H9B | 109.8 |
C3—C2—H2A | 109.8 | H9A—C9—H9B | 108.2 |
C1—C2—H2B | 109.8 | C9—C10—C8 | 109.7 (2) |
C3—C2—H2B | 109.8 | C9—C10—C7 | 110.0 (2) |
H2A—C2—H2B | 108.2 | C8—C10—C7 | 109.8 (2) |
C4—C3—C8 | 110.5 (2) | C9—C10—H10A | 109.1 |
C4—C3—C2 | 109.4 (2) | C8—C10—H10A | 109.1 |
C8—C3—C2 | 109.3 (2) | C7—C10—H10A | 109.1 |
C4—C3—H3A | 109.2 | O1—C11—C12 | 121.17 (16) |
C8—C3—H3A | 109.2 | O1—C11—C1 | 122.46 (16) |
C2—C3—H3A | 109.2 | C12—C11—C1 | 116.20 (15) |
C3—C4—C5 | 109.4 (2) | N1—C12—C11 | 113.06 (14) |
C3—C4—H4A | 109.8 | N1—C12—H12A | 109.0 |
C5—C4—H4A | 109.8 | C11—C12—H12A | 109.0 |
C3—C4—H4B | 109.8 | N1—C12—H12B | 109.0 |
C5—C4—H4B | 109.8 | C11—C12—H12B | 109.0 |
H4A—C4—H4B | 108.2 | H12A—C12—H12B | 107.8 |
C4—C5—C9 | 109.9 (2) | C14—C13—N1 | 122.10 (16) |
C4—C5—C6 | 109.24 (19) | C14—C13—H13A | 119.0 |
C9—C5—C6 | 109.26 (19) | N1—C13—H13A | 119.0 |
C4—C5—H5A | 109.5 | C13—C14—C15 | 119.97 (17) |
C9—C5—H5A | 109.5 | C13—C14—H14A | 120.0 |
C6—C5—H5A | 109.5 | C15—C14—H14A | 120.0 |
C5—C6—C1 | 109.47 (17) | N2—C15—C16 | 122.28 (17) |
C5—C6—H6A | 109.8 | N2—C15—C14 | 121.01 (17) |
C1—C6—H6A | 109.8 | C16—C15—C14 | 116.71 (16) |
C5—C6—H6B | 109.8 | C17—C16—C15 | 120.57 (16) |
C1—C6—H6B | 109.8 | C17—C16—H16A | 119.7 |
H6A—C6—H6B | 108.2 | C15—C16—H16A | 119.7 |
C1—C7—C10 | 109.44 (19) | N1—C17—C16 | 121.23 (16) |
C1—C7—H7A | 109.8 | N1—C17—H17A | 119.4 |
C10—C7—H7A | 109.8 | C16—C17—H17A | 119.4 |
C11—C1—C2—C3 | 177.81 (19) | C3—C8—C10—C7 | 61.0 (3) |
C7—C1—C2—C3 | −59.4 (2) | C1—C7—C10—C9 | 60.2 (2) |
C6—C1—C2—C3 | 59.5 (2) | C1—C7—C10—C8 | −60.5 (3) |
C1—C2—C3—C4 | −60.9 (3) | C7—C1—C11—O1 | 40.2 (3) |
C1—C2—C3—C8 | 60.3 (3) | C2—C1—C11—O1 | 162.52 (19) |
C8—C3—C4—C5 | −59.1 (3) | C6—C1—C11—O1 | −78.1 (2) |
C2—C3—C4—C5 | 61.3 (3) | C7—C1—C11—C12 | −144.55 (17) |
C3—C4—C5—C9 | 58.7 (2) | C2—C1—C11—C12 | −22.2 (2) |
C3—C4—C5—C6 | −61.2 (3) | C6—C1—C11—C12 | 97.25 (18) |
C4—C5—C6—C1 | 60.4 (2) | C17—N1—C12—C11 | −122.92 (17) |
C9—C5—C6—C1 | −59.9 (2) | C13—N1—C12—C11 | 58.3 (2) |
C11—C1—C6—C5 | 178.04 (16) | O1—C11—C12—N1 | 0.6 (3) |
C7—C1—C6—C5 | 59.4 (2) | C1—C11—C12—N1 | −174.80 (15) |
C2—C1—C6—C5 | −59.5 (2) | C17—N1—C13—C14 | 0.7 (3) |
C11—C1—C7—C10 | −175.80 (19) | C12—N1—C13—C14 | 179.53 (17) |
C2—C1—C7—C10 | 59.3 (2) | N1—C13—C14—C15 | −0.6 (3) |
C6—C1—C7—C10 | −59.2 (2) | C13—C14—C15—N2 | 179.56 (19) |
C4—C3—C8—C10 | 59.7 (3) | C13—C14—C15—C16 | 0.1 (3) |
C2—C3—C8—C10 | −60.7 (3) | N2—C15—C16—C17 | −179.07 (18) |
C4—C5—C9—C10 | −59.4 (3) | C14—C15—C16—C17 | 0.4 (3) |
C6—C5—C9—C10 | 60.4 (3) | C13—N1—C17—C16 | −0.2 (3) |
C5—C9—C10—C8 | 60.2 (3) | C12—N1—C17—C16 | −179.00 (16) |
C5—C9—C10—C7 | −60.7 (3) | C15—C16—C17—N1 | −0.4 (3) |
C3—C8—C10—C9 | −59.9 (3) |
Cg1 is the centroid of the N1/C13–C17 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H1N2···Br1i | 0.84 (2) | 2.73 (2) | 3.499 (2) | 153 (2) |
N2—H2N2···Br1ii | 0.85 (2) | 2.56 (2) | 3.393 (2) | 169 (2) |
C12—H12A···Br1iii | 0.97 | 2.72 | 3.664 (2) | 166 |
C17—H17A···O1iv | 0.93 | 2.59 | 3.434 (2) | 150 |
C14—H14A···Cg1i | 0.93 | 2.94 | 3.608 (2) | 130 |
Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) −x, −y+1, −z+1; (iii) x, y−1, z; (iv) x, −y+1/2, z+1/2. |
Funding information
HCK thanks the Malaysian Government for a MyBrain15 scholarship.
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Ashcroft, F. M. (1999). Ion channels and disease. New York: Academic Press. Google Scholar
Ballester, P. (2008). Recognition of anions. New York: Springer Science & Business Media. Google Scholar
Blanchard, L. A., Gu, Z. & Brennecke, J. F. (2001). J. Phys. Chem. B, 105, 2437–2444. CrossRef Google Scholar
Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chauvin, Y. & Olivier-Bourbigou, H. (1995). Chemtech, 25, 26–30. CAS Google Scholar
Chidan Kumar, C. S., Sim, A. J., Ng, W. Z., Chia, T. S., Loh, W.-S., Kwong, H. C., Quah, C. K., Naveen, S., Lokanath, N. K. & Warad, I. (2017). Acta Cryst. E73, 927–931. Web of Science CrossRef IUCr Journals Google Scholar
Crosthwaite, J. M., Aki, S. N., Maginn, E. J. & Brennecke, J. F. (2004). J. Phys. Chem. B, 108, 5113–5119. CrossRef Google Scholar
Davis, J. H. Jr (2004). Chem. Lett. 33, 1072–1077. CAS Google Scholar
Frontera, A., Gamez, P., Mascal, M., Mooibroek, T. J. & Reedijk, J. (2011). Angew. Chem. 123, 9736–9756. CrossRef Google Scholar
Hay, B. P. & Bryantsev, V. S. (2008). Chem. Commun. pp. 2417–2428. Web of Science CrossRef Google Scholar
Holbrey, J. & Seddon, K. (1999). Clean Prod. Process. 1, 223–236. Google Scholar
Lamanna, G., Russier, J., Dumortier, H. & Bianco, A. (2012). Biomaterials, 33, 5610–5617. CrossRef Google Scholar
Liu, J., Obando, D., Liao, V., Lifa, T. & Codd, R. (2011). Eur. J. Med. Chem. 46, 1949–1963. Web of Science CrossRef CAS PubMed Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Piérard, G. E., Piérard-Franchimont, C., Paquet, P. & Quatresooz, P. (2009). Expert Opin. Drug Metab. Toxicol. 5, 1565–1575. Google Scholar
Priyanka, B., Anitha, K., Shirisha, S., Dipankar, B. & Rajesh, K. (2013). Int. Res. J. Pharm. App. Sci. 3, 93–101. Google Scholar
Reisberg, B., Doody, R., Stöffler, A., Schmitt, F., Ferris, S., & Möbius, H. J. (2003). N. Engl. J. Med. 348, 1333–1341. CrossRef Google Scholar
Rouchal, M., Nečas, M. & Vícha, R. (2011). Acta Cryst. E67, o3198. CrossRef IUCr Journals Google Scholar
Said, M. A., Aouad, M. R., Hughes, D. L., Almehmadi, M. A. & Messali, M. (2017). Acta Cryst. E73, 1831–1834. Web of Science CrossRef IUCr Journals Google Scholar
Schottel, B. L., Chifotides, H. T. & Dunbar, K. R. (2008). Chem. Soc. Rev. 37, 68–83. Web of Science CrossRef PubMed CAS Google Scholar
Sharmila, N., Sundar, T. V., Yasodha, A., Puratchikody, A. & Sridhar, B. (2014). Acta Cryst. E70, o1293–o1294. CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheshadri, S. N., Kwong, H. C., Chidan Kumar, C. S., Quah, C. K., Siddaraju, B. P., Veeraiah, M. K., Hamid, M. A. B. A. & Warad, I. (2018). Acta Cryst. E74, 752–756. CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392. Web of Science CrossRef CAS Google Scholar
Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388. CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer. University of Western Australia. Google Scholar
Yue, W. W., Li, H. J., Xiang, T., Qin, H., Sun, S. D. & Zhao, C. S. (2013). J. Membr. Sci. 446, 79–91. CrossRef Google Scholar
Zettl, H., Schubert-Zsilavecz, M. & Steinhilber, D. (2010). ChemMedChem, 5, 179–185. CrossRef Google Scholar
Zoidis, G., Kolocouris, N., Kelly, J. M., Prathalingam, S. R., Naesens, L. & De Clercq, E. (2010). Eur. J. Med. Chem. 45, 5022–5030. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.