research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of a pyridiniminium bromide salt: 1-[2-(adamantan-1-yl)-2-oxoeth­yl]pyridin-4-iminium bromide

CROSSMARK_Color_square_no_text.svg

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, cDepartment of Engineering Chemistry, Vidya Vikas Institute of Engineering & Technology, Visvesvaraya Technological University, Alanahalli, Mysuru 570028, Karnataka, India, and dDepartment of Chemistry, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
*Correspondence e-mail: chidankumar@gmail.com, arafath_sustche90@yahoo.com

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 4 June 2018; accepted 25 June 2018; online 28 June 2018)

In the cation of the title salt, C17H23N2O+·Br, the adamantyl moiety and the pyridiniminium ring are inclined to the ketone bridge by torsion angles of −78.1 (2) (C—C—C=O) and 58.3 (2)° (C—C—N—C), respectively, and the ketone bridge has a C—C—C—N torsion angle of 174.80 (15)°. In the crystal, the cations are connected into chains parallel to the c axis by C—H⋯O hydrogen bonds. The chains are further linked into layers parallel to the bc plane by N—H⋯Br and C—H⋯Br hydrogen bonds, C—H⋯π inter­actions and ππ stacking inter­actions [centroid-to-centroid distance = 3.5657 (11) Å]. A Hirshfeld surface analysis, which comprises the dnorm surface, electrostatic potential map and two-dimensional fingerprint plots, was carried out to verify the contribution of the various inter­molecular inter­actions.

1. Chemical context

Adamantane derivatives have been shown to exhibit various biological activities such as anti­viral (Zoidis et al., 2010[Zoidis, G., Kolocouris, N., Kelly, J. M., Prathalingam, S. R., Naesens, L. & De Clercq, E. (2010). Eur. J. Med. Chem. 45, 5022-5030.]), anti-diabetic (Zettl et al., 2010[Zettl, H., Schubert-Zsilavecz, M. & Steinhilber, D. (2010). ChemMedChem, 5, 179-185.]), anti­microbial (Piérard et al., 2009[Piérard, G. E., Piérard-Franchimont, C., Paquet, P. & Quatresooz, P. (2009). Expert Opin. Drug Metab. Toxicol. 5, 1565-1575.]), anti-inflammatory (Lamanna et al., 2012[Lamanna, G., Russier, J., Dumortier, H. & Bianco, A. (2012). Biomaterials, 33, 5610-5617.]), anti­oxidant (Priyanka et al., 2013[Priyanka, B., Anitha, K., Shirisha, S., Dipankar, B. & Rajesh, K. (2013). Int. Res. J. Pharm. App. Sci. 3, 93-101.]) and central nervous system activities (Reisberg et al., 2003[Reisberg, B., Doody, R., Stöffler, A., Schmitt, F., Ferris, S., & Möbius, H. J. (2003). N. Engl. J. Med. 348, 1333-1341.]). Besides, adamantane-based chemotherapeutics have been developed for treating viral infections, for example influenza A, herpes simplex and HIV (Liu et al., 2011[Liu, J., Obando, D., Liao, V., Lifa, T. & Codd, R. (2011). Eur. J. Med. Chem. 46, 1949-1963.]). There are a number of negatively charged enzymes and cofactors and many diseases, including cystic fibrosis, have been found to result from defects in the ion channel function (Ashcroft, 1999[Ashcroft, F. M. (1999). Ion channels and disease. New York: Academic Press.]). The anion–π non-covalent inter­action has been explored both theoretically and experimentally and selective anion receptors and channels have been designed (Ballester, 2008[Ballester, P. (2008). Recognition of anions. New York: Springer Science & Business Media.]; Schottel et al., 2008[Schottel, B. L., Chifotides, H. T. & Dunbar, K. R. (2008). Chem. Soc. Rev. 37, 68-83.]; Hay & Bryantsev, 2008[Hay, B. P. & Bryantsev, V. S. (2008). Chem. Commun. pp. 2417-2428.]; Frontera et al., 2011[Frontera, A., Gamez, P., Mascal, M., Mooibroek, T. J. & Reedijk, J. (2011). Angew. Chem. 123, 9736-9756.]).

Ionic liquids (ILs) have attracted a lot of inter­est over the past decade because of their unusual range of properties such as negligible vapour pressure, excellent thermal stability in a wide temperature range, no flammability and high ionic conductivity (Davis, 2004[Davis, J. H. Jr (2004). Chem. Lett. 33, 1072-1077.]). ILs are excellent alternatives to volatile organic compounds (VOCs). An ionic liquid has a strong solvation ability and can dissolve polar and non-polar species with efficient selectivity, which can be modified by changing the anion (Blanchard et al., 2001[Blanchard, L. A., Gu, Z. & Brennecke, J. F. (2001). J. Phys. Chem. B, 105, 2437-2444.]). ILs have been used successfully as solvents in several reactions such as isomerization, dimerization, hydrogenation, and Heck and Suzuki coupling reactions (Chauvin & Olivier-Bourbigou, 1995[Chauvin, Y. & Olivier-Bourbigou, H. (1995). Chemtech, 25, 26-30.]; Holbrey & Seddon, 1999[Holbrey, J. & Seddon, K. (1999). Clean Prod. Process. 1, 223-236.]). They have also performed well as solvents in bio-catalysed and homogeneous catalytic reactions, and can be used as lubricants to wet the surface of metals, polymers and inorganic materials (Crosthwaite et al., 2004[Crosthwaite, J. M., Aki, S. N., Maginn, E. J. & Brennecke, J. F. (2004). J. Phys. Chem. B, 108, 5113-5119.]).

[Scheme 1]

2. Structural commentary

Fig. 1[link] shows the asymmetric unt of the title salt, which consists of a 1-[2-(adamantan-1-yl)-2-oxoeth­yl]pyridin-4-iminium cation and a bromide anion. The cation is constructed from an adamantyl moiety (C1–C10) and a pyridiniminium ring (N1/C13–C17), which are connected by a ketone bridge [(C11=O1)—C12]. The bond angles formed by the quaternary carbon (C1) with the surrounding secondary carbons (C2, C6 and C7) are comparable with those reported for related structures which range from 107.40 (12) to 110.82 (13)° (Rouchal et al., 2011[Rouchal, M., Nečas, M. & Vícha, R. (2011). Acta Cryst. E67, o3198.]). Both the adamantyl and pyridiniminium rings are twisted away from the ketone bridge to reduce repulsion, as indicated by the torsion angles C6—C1—C11=O1 [−78.1 (2)°] and C11—C12—N1—C13 [58.3 (2)°]. The ketone bridge is in an anti­periplanar conformation [C1—C11—C12—N1 = 174.80 (15)°]. The dihedral angle formed by the pyrimidinium ring with the ketone bridge is 59.77 (14)°. Bond lengths and angles in the cation are within normal ranges (Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). However, the N2—C15 bond length [1.325 (2) Å] is shorter than expected for an NH2—Car single bond [1.38 (3) Å], indicating partial double-bond character. Similar bond lengths are found in related compounds with an N+=C double bond (Chidan Kumar et al., 2017[Chidan Kumar, C. S., Sim, A. J., Ng, W. Z., Chia, T. S., Loh, W.-S., Kwong, H. C., Quah, C. K., Naveen, S., Lokanath, N. K. & Warad, I. (2017). Acta Cryst. E73, 927-931.]; Sharmila et al., 2014[Sharmila, N., Sundar, T. V., Yasodha, A., Puratchikody, A. & Sridhar, B. (2014). Acta Cryst. E70, o1293-o1294.]; Yue et al., 2013[Yue, W. W., Li, H. J., Xiang, T., Qin, H., Sun, S. D. & Zhao, C. S. (2013). J. Membr. Sci. 446, 79-91.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title salt with displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, the cations are linked into chains along the c-axis direction via C17—H17A⋯O1 hydrogen bonds (Table 1[link], Fig. 2[link]). The chains inter­act through N—H⋯Br and C—H⋯Br hydrogen bonds to form layers parallel to the bc plane, which are further enforced by C—H⋯π and ππ inter­actions [centroid-to-centroid distance 3.5657 (11) Å].

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1/C13–C17 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯Br1i 0.84 (2) 2.73 (2) 3.499 (2) 153 (2)
N2—H2N2⋯Br1ii 0.85 (2) 2.56 (2) 3.393 (2) 169 (2)
C12—H12A⋯Br1iii 0.97 2.72 3.664 (2) 166
C17—H17A⋯O1iv 0.93 2.59 3.434 (2) 150
C14—H14ACg1i 0.93 2.94 3.608 (2) 130
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x, -y+1, -z+1; (iii) x, y-1, z; (iv) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Partial packing diagram of the the cations showing the C17—H17A⋯O1 hydrogen bonds (blue dashed lines) and the C14—H14Aπ inter­actions (green dashed lines).

4. Hirshfeld Surface Analysis

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) of the title salt was performed using CrystalExplorer3.1 (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer. University of Western Australia.]), and comprises dnorm surface plots, electrostatic potentials and two-dimensional fingerprint plots (Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]). The ball-and-stick model, dnorm surface and electrostatic potential plots of the title salt are shown in Fig. 3[link]. Those plots were generated in order to qu­antify and give visual confirmation of the inter­molecular inter­actions and to explain the observed crystal packing. The dark-red spots on the dnorm surface arise because of short inter­atomic contacts, while the other weak inter­molecular inter­actions appear as light-red spots. Furthermore, the negative electrostatic potential (red region) in the electrostatic potential map indicates hydrogen-acceptor potential, whereas the hydrogen donors are represented by positive electrostatic potential (blue region) (Spackman et al., 2008[Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377-388.]).

[Figure 3]
Figure 3
Hirshfeld surfaces mapped over dnorm and electrostatic potential to visualize the inter­molecular contacts in the title salt. The mol­ecule in the ball-and-stick model is in the same orientation shown in the Hirshfeld surface and electrostatic potential plots.

Dark-red spots that are close to atoms H1N2, H2N2, H12A and Br1 in the dnorm surface mapping are the result of the N2—H1N2⋯Br1, N2—H2N2⋯Br1 and C12—H12A⋯Br1 hydrogen bonds (Fig. 4[link]a). This observation is further confirmed by the respective electrostatic potential maps where Br1 shows negative electrostatic potential as a hydrogen acceptor (red region, Fig. 4[link]b). Beside those two short inter­molecular contacts, the C—H⋯O and C—H⋯π inter­actions are shown as light-red spots on the dnorm surface (Fig. 5[link]).

[Figure 4]
Figure 4
A visualization of the N—H⋯Br and C—H⋯Br inter­actions. (a) dnorm and (b) electrostatic potential mapped on Hirshfeld surfaces in order to visualize the N—H⋯Br and C—H⋯Br inter­actions (black dotted lines).
[Figure 5]
Figure 5
dnorm mapped on Hirshfeld surfaces in order to visualize (a) the C—H⋯Br hydrogen bond (black dashed line) and (b) the C—H⋯π inter­actions.

A qu­anti­tative analysis of the inter­molecular inter­actions can be made by studying the fingerprint plots (FP); characteristic pseudo-symmetry wings in the de and di diagonal axes can be seen in the overall two-dimensional FP (Fig. 6[link]). The most significant inter­molecular inter­actions are the H⋯H inter­actions (63.5%), which appear in the central region of the FP with de = di ≃ 2.2 Å (Fig. 6[link]b). The reciprocal H⋯Br/Br⋯H and H⋯O/O⋯H inter­actions with 15.9% and 7.6% contributions, respectively are present as sharp symmetrical spikes at de + di ≃ 2.4 and 2.5 Å, respectively (Fig. 6[link]c and 6e). The reciprocal H⋯C/C⋯H inter­actions appear as two symmetrical narrow wings at de + di ≃ 2.5 Å and contribute 7.8% to the Hirshfeld surface (Fig. 6[link]d). The reciprocal N⋯H/H⋯N interactions appear as a symmetrical V-shaped wing in the FP map with de + di ≃ 2.7 Å and contribute 2.7% to the Hirshfeld surface (Fig. 6[link]f). The percentage contributions for other inter­molecular contacts are less than 2.6%.

[Figure 6]
Figure 6
Fingerprint plots.

5. Synthesis and crystallization

A mixture of 1-adamantly bromo­methyl ketone (2.75 g, 10 mmol) and 4-amino­pyridine (0.11 g, 1 mmol) was dissolved in 10 ml of toluene at room temperature, followed by stirring at 358 K for 18 h. The completion of the reaction was marked by the amount of the separated solid from the initially clear and homogeneous mixture of the starting materials. The solid was filtered and washed by ethyl acetate. The final pyridiniminium salt was obtained after the solid had been dried under reduced pressure to remove all volatile organic compounds (Said et al., 2017[Said, M. A., Aouad, M. R., Hughes, D. L., Almehmadi, M. A. & Messali, M. (2017). Acta Cryst. E73, 1831-1834.]; Sheshadri et al., 2018[Sheshadri, S. N., Kwong, H. C., Chidan Kumar, C. S., Quah, C. K., Siddaraju, B. P., Veeraiah, M. K., Hamid, M. A. B. A. & Warad, I. (2018). Acta Cryst. E74, 752-756.]). Plate-like colourless crystals were obtained by slow evaporation of an acetone solution.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. C-bound H atoms were positioned geometrically [C—H = 0.93–0.98 Å] and refined using a riding model with Uiso(H) = 1.2Ueq(C). The N-bound H atoms were located in a difference-Fourier map and freely refined. One outlier (100) was omitted in the last cycles of refinement.

Table 2
Experimental details

Crystal data
Chemical formula C17H23N2O+·Br
Mr 351.28
Crystal system, space group Monoclinic, P21/c
Temperature (K) 294
a, b, c (Å) 18.758 (2), 7.1508 (8), 11.9909 (14)
β (°) 98.2117 (17)
V3) 1591.9 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.58
Crystal size (mm) 0.38 × 0.25 × 0.09
 
Data collection
Diffractometer Bruker APEXII DUO CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.320, 0.408
No. of measured, independent and observed [I > 2σ(I)] reflections 35418, 4897, 3392
Rint 0.051
(sin θ/λ)max−1) 0.716
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.080, 1.01
No. of reflections 4897
No. of parameters 198
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.39, −0.25
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: SHELXL2013 (Sheldrick, 2015) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2015) and PLATON (Spek, 2009).

1-[2-(Adamantan-1-yl)-2-oxoethyl]pyridin-4-iminium bromide top
Crystal data top
C17H23N2O+·BrF(000) = 728
Mr = 351.28Dx = 1.466 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 18.758 (2) ÅCell parameters from 7278 reflections
b = 7.1508 (8) Åθ = 3.1–25.2°
c = 11.9909 (14) ŵ = 2.58 mm1
β = 98.2117 (17)°T = 294 K
V = 1591.9 (3) Å3Plate, colourless
Z = 40.38 × 0.25 × 0.09 mm
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
4897 independent reflections
Radiation source: fine-focus sealed tube3392 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
φ and ω scansθmax = 30.6°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 2626
Tmin = 0.320, Tmax = 0.408k = 1010
35418 measured reflectionsl = 1717
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.0364P)2 + 0.3328P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
4897 reflectionsΔρmax = 0.39 e Å3
198 parametersΔρmin = 0.25 e Å3
Special details top

Experimental. The following wavelength and cell were deduced by SADABS from the direction cosines etc. They are given here for emergency use only: CELL 0.71078 12.009 7.162 18.799 89.983 98.202 90.025

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.18668 (2)0.58832 (3)0.43377 (2)0.04161 (8)
O10.16460 (7)0.2172 (2)0.22373 (11)0.0449 (3)
N10.09073 (8)0.11925 (19)0.39566 (12)0.0287 (3)
N20.12926 (9)0.1691 (3)0.35275 (16)0.0399 (4)
H1N20.1522 (14)0.122 (3)0.294 (2)0.060 (8)*
H2N20.1491 (11)0.232 (3)0.3994 (18)0.046 (6)*
C10.28202 (10)0.1231 (3)0.31057 (14)0.0334 (4)
C20.32236 (11)0.1050 (4)0.43067 (16)0.0487 (6)
H2A0.30140.00490.46990.058*
H2B0.31800.22040.47170.058*
C30.40229 (11)0.0632 (4)0.4260 (2)0.0617 (7)
H3A0.42780.05250.50290.074*
C40.40873 (13)0.1190 (4)0.3647 (2)0.0647 (7)
H4A0.38760.21930.40340.078*
H4B0.45910.14830.36360.078*
C50.37011 (12)0.1023 (4)0.2448 (2)0.0551 (6)
H5A0.37510.21980.20450.066*
C60.28984 (11)0.0621 (3)0.24763 (17)0.0433 (5)
H6A0.26870.16340.28550.052*
H6B0.26460.05330.17130.052*
C70.31564 (11)0.2816 (3)0.2499 (2)0.0513 (5)
H7A0.31110.39870.28910.062*
H7B0.29060.29410.17370.062*
C80.43485 (13)0.2227 (5)0.3659 (3)0.0765 (8)
H8A0.43060.33900.40600.092*
H8B0.48560.19880.36390.092*
C90.40260 (13)0.0572 (4)0.1841 (2)0.0672 (8)
H9A0.45310.03180.18080.081*
H9B0.37790.06760.10760.081*
C100.39530 (12)0.2385 (4)0.2467 (2)0.0653 (7)
H10A0.41660.34030.20770.078*
C110.20180 (10)0.1573 (3)0.30656 (14)0.0317 (4)
C120.16924 (9)0.0976 (3)0.40968 (15)0.0301 (4)
H12A0.18130.03240.42600.036*
H12B0.19050.17150.47380.036*
C130.04945 (10)0.0291 (3)0.31040 (15)0.0357 (4)
H13A0.07180.04460.26160.043*
C140.02299 (10)0.0429 (3)0.29395 (15)0.0353 (4)
H14A0.04980.01980.23410.042*
C150.05818 (10)0.1526 (3)0.36771 (14)0.0295 (4)
C160.01401 (9)0.2433 (2)0.45605 (14)0.0300 (4)
H16A0.03480.31640.50690.036*
C170.05879 (10)0.2251 (2)0.46772 (14)0.0297 (4)
H17A0.08720.28670.52640.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.05492 (14)0.03289 (11)0.03750 (11)0.00147 (9)0.00823 (8)0.00127 (8)
O10.0371 (8)0.0609 (10)0.0352 (7)0.0074 (7)0.0001 (6)0.0094 (7)
N10.0278 (8)0.0256 (8)0.0330 (7)0.0007 (6)0.0051 (6)0.0020 (6)
N20.0300 (9)0.0507 (11)0.0389 (9)0.0022 (8)0.0051 (8)0.0078 (8)
C10.0276 (9)0.0426 (11)0.0295 (8)0.0005 (8)0.0028 (7)0.0024 (7)
C20.0304 (10)0.0816 (17)0.0330 (9)0.0033 (11)0.0009 (8)0.0015 (10)
C30.0273 (11)0.109 (2)0.0454 (12)0.0014 (13)0.0049 (9)0.0035 (13)
C40.0344 (12)0.092 (2)0.0681 (16)0.0187 (13)0.0077 (11)0.0252 (14)
C50.0452 (13)0.0659 (16)0.0550 (13)0.0171 (11)0.0094 (10)0.0039 (11)
C60.0355 (11)0.0506 (13)0.0427 (10)0.0056 (9)0.0018 (8)0.0041 (9)
C70.0434 (12)0.0528 (14)0.0613 (13)0.0005 (10)0.0198 (10)0.0138 (11)
C80.0323 (13)0.102 (2)0.096 (2)0.0162 (14)0.0110 (13)0.0112 (18)
C90.0450 (14)0.105 (2)0.0562 (14)0.0200 (14)0.0234 (11)0.0144 (14)
C100.0453 (14)0.0729 (18)0.0839 (18)0.0032 (12)0.0307 (13)0.0217 (15)
C110.0312 (10)0.0329 (9)0.0309 (9)0.0004 (8)0.0035 (7)0.0012 (7)
C120.0248 (9)0.0298 (9)0.0357 (8)0.0041 (7)0.0042 (7)0.0028 (7)
C130.0352 (10)0.0347 (10)0.0380 (9)0.0021 (8)0.0076 (8)0.0130 (8)
C140.0345 (10)0.0373 (10)0.0342 (9)0.0045 (8)0.0052 (8)0.0107 (8)
C150.0307 (10)0.0277 (8)0.0308 (8)0.0011 (7)0.0067 (7)0.0031 (7)
C160.0336 (10)0.0288 (9)0.0290 (8)0.0024 (8)0.0089 (7)0.0017 (7)
C170.0362 (10)0.0256 (8)0.0275 (8)0.0022 (7)0.0053 (7)0.0013 (7)
Geometric parameters (Å, º) top
O1—C111.208 (2)C6—H6A0.9700
N1—C171.352 (2)C6—H6B0.9700
N1—C131.354 (2)C7—C101.531 (3)
N1—C121.466 (2)C7—H7A0.9700
N2—C151.325 (2)C7—H7B0.9700
N2—H1N20.85 (3)C8—C101.517 (4)
N2—H2N20.84 (2)C8—H8A0.9700
C1—C111.518 (3)C8—H8B0.9700
C1—C71.530 (3)C9—C101.514 (4)
C1—C21.534 (3)C9—H9A0.9700
C1—C61.542 (3)C9—H9B0.9700
C2—C31.538 (3)C10—H10A0.9800
C2—H2A0.9700C11—C121.517 (2)
C2—H2B0.9700C12—H12A0.9700
C3—C41.509 (4)C12—H12B0.9700
C3—C81.523 (4)C13—C141.348 (3)
C3—H3A0.9800C13—H13A0.9300
C4—C51.520 (3)C14—C151.414 (2)
C4—H4A0.9700C14—H14A0.9300
C4—H4B0.9700C15—C161.407 (2)
C5—C91.526 (4)C16—C171.359 (2)
C5—C61.538 (3)C16—H16A0.9300
C5—H5A0.9800C17—H17A0.9300
C17—N1—C13119.43 (15)C1—C7—H7B109.8
C17—N1—C12121.03 (15)C10—C7—H7B109.8
C13—N1—C12119.53 (15)H7A—C7—H7B108.2
C15—N2—H1N2117.3 (18)C10—C8—C3109.1 (2)
C15—N2—H2N2119.2 (14)C10—C8—H8A109.9
H1N2—N2—H2N2123 (2)C3—C8—H8A109.9
C11—C1—C7109.85 (16)C10—C8—H8B109.9
C11—C1—C2113.40 (15)C3—C8—H8B109.9
C7—C1—C2109.10 (17)H8A—C8—H8B108.3
C11—C1—C6106.61 (15)C10—C9—C5109.47 (19)
C7—C1—C6109.20 (16)C10—C9—H9A109.8
C2—C1—C6108.58 (17)C5—C9—H9A109.8
C1—C2—C3109.56 (16)C10—C9—H9B109.8
C1—C2—H2A109.8C5—C9—H9B109.8
C3—C2—H2A109.8H9A—C9—H9B108.2
C1—C2—H2B109.8C9—C10—C8109.7 (2)
C3—C2—H2B109.8C9—C10—C7110.0 (2)
H2A—C2—H2B108.2C8—C10—C7109.8 (2)
C4—C3—C8110.5 (2)C9—C10—H10A109.1
C4—C3—C2109.4 (2)C8—C10—H10A109.1
C8—C3—C2109.3 (2)C7—C10—H10A109.1
C4—C3—H3A109.2O1—C11—C12121.17 (16)
C8—C3—H3A109.2O1—C11—C1122.46 (16)
C2—C3—H3A109.2C12—C11—C1116.20 (15)
C3—C4—C5109.4 (2)N1—C12—C11113.06 (14)
C3—C4—H4A109.8N1—C12—H12A109.0
C5—C4—H4A109.8C11—C12—H12A109.0
C3—C4—H4B109.8N1—C12—H12B109.0
C5—C4—H4B109.8C11—C12—H12B109.0
H4A—C4—H4B108.2H12A—C12—H12B107.8
C4—C5—C9109.9 (2)C14—C13—N1122.10 (16)
C4—C5—C6109.24 (19)C14—C13—H13A119.0
C9—C5—C6109.26 (19)N1—C13—H13A119.0
C4—C5—H5A109.5C13—C14—C15119.97 (17)
C9—C5—H5A109.5C13—C14—H14A120.0
C6—C5—H5A109.5C15—C14—H14A120.0
C5—C6—C1109.47 (17)N2—C15—C16122.28 (17)
C5—C6—H6A109.8N2—C15—C14121.01 (17)
C1—C6—H6A109.8C16—C15—C14116.71 (16)
C5—C6—H6B109.8C17—C16—C15120.57 (16)
C1—C6—H6B109.8C17—C16—H16A119.7
H6A—C6—H6B108.2C15—C16—H16A119.7
C1—C7—C10109.44 (19)N1—C17—C16121.23 (16)
C1—C7—H7A109.8N1—C17—H17A119.4
C10—C7—H7A109.8C16—C17—H17A119.4
C11—C1—C2—C3177.81 (19)C3—C8—C10—C761.0 (3)
C7—C1—C2—C359.4 (2)C1—C7—C10—C960.2 (2)
C6—C1—C2—C359.5 (2)C1—C7—C10—C860.5 (3)
C1—C2—C3—C460.9 (3)C7—C1—C11—O140.2 (3)
C1—C2—C3—C860.3 (3)C2—C1—C11—O1162.52 (19)
C8—C3—C4—C559.1 (3)C6—C1—C11—O178.1 (2)
C2—C3—C4—C561.3 (3)C7—C1—C11—C12144.55 (17)
C3—C4—C5—C958.7 (2)C2—C1—C11—C1222.2 (2)
C3—C4—C5—C661.2 (3)C6—C1—C11—C1297.25 (18)
C4—C5—C6—C160.4 (2)C17—N1—C12—C11122.92 (17)
C9—C5—C6—C159.9 (2)C13—N1—C12—C1158.3 (2)
C11—C1—C6—C5178.04 (16)O1—C11—C12—N10.6 (3)
C7—C1—C6—C559.4 (2)C1—C11—C12—N1174.80 (15)
C2—C1—C6—C559.5 (2)C17—N1—C13—C140.7 (3)
C11—C1—C7—C10175.80 (19)C12—N1—C13—C14179.53 (17)
C2—C1—C7—C1059.3 (2)N1—C13—C14—C150.6 (3)
C6—C1—C7—C1059.2 (2)C13—C14—C15—N2179.56 (19)
C4—C3—C8—C1059.7 (3)C13—C14—C15—C160.1 (3)
C2—C3—C8—C1060.7 (3)N2—C15—C16—C17179.07 (18)
C4—C5—C9—C1059.4 (3)C14—C15—C16—C170.4 (3)
C6—C5—C9—C1060.4 (3)C13—N1—C17—C160.2 (3)
C5—C9—C10—C860.2 (3)C12—N1—C17—C16179.00 (16)
C5—C9—C10—C760.7 (3)C15—C16—C17—N10.4 (3)
C3—C8—C10—C959.9 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1/C13–C17 ring.
D—H···AD—HH···AD···AD—H···A
N2—H1N2···Br1i0.84 (2)2.73 (2)3.499 (2)153 (2)
N2—H2N2···Br1ii0.85 (2)2.56 (2)3.393 (2)169 (2)
C12—H12A···Br1iii0.972.723.664 (2)166
C17—H17A···O1iv0.932.593.434 (2)150
C14—H14A···Cg1i0.932.943.608 (2)130
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1, z+1; (iii) x, y1, z; (iv) x, y+1/2, z+1/2.
 

Funding information

HCK thanks the Malaysian Government for a MyBrain15 scholarship.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAshcroft, F. M. (1999). Ion channels and disease. New York: Academic Press.  Google Scholar
First citationBallester, P. (2008). Recognition of anions. New York: Springer Science & Business Media.  Google Scholar
First citationBlanchard, L. A., Gu, Z. & Brennecke, J. F. (2001). J. Phys. Chem. B, 105, 2437–2444.  CrossRef Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChauvin, Y. & Olivier-Bourbigou, H. (1995). Chemtech, 25, 26–30.  CAS Google Scholar
First citationChidan Kumar, C. S., Sim, A. J., Ng, W. Z., Chia, T. S., Loh, W.-S., Kwong, H. C., Quah, C. K., Naveen, S., Lokanath, N. K. & Warad, I. (2017). Acta Cryst. E73, 927–931.  Web of Science CrossRef IUCr Journals Google Scholar
First citationCrosthwaite, J. M., Aki, S. N., Maginn, E. J. & Brennecke, J. F. (2004). J. Phys. Chem. B, 108, 5113–5119.  CrossRef Google Scholar
First citationDavis, J. H. Jr (2004). Chem. Lett. 33, 1072–1077.  CAS Google Scholar
First citationFrontera, A., Gamez, P., Mascal, M., Mooibroek, T. J. & Reedijk, J. (2011). Angew. Chem. 123, 9736–9756.  CrossRef Google Scholar
First citationHay, B. P. & Bryantsev, V. S. (2008). Chem. Commun. pp. 2417–2428.  Web of Science CrossRef Google Scholar
First citationHolbrey, J. & Seddon, K. (1999). Clean Prod. Process. 1, 223–236.  Google Scholar
First citationLamanna, G., Russier, J., Dumortier, H. & Bianco, A. (2012). Biomaterials, 33, 5610–5617.  CrossRef Google Scholar
First citationLiu, J., Obando, D., Liao, V., Lifa, T. & Codd, R. (2011). Eur. J. Med. Chem. 46, 1949–1963.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPiérard, G. E., Piérard-Franchimont, C., Paquet, P. & Quatresooz, P. (2009). Expert Opin. Drug Metab. Toxicol. 5, 1565–1575.  Google Scholar
First citationPriyanka, B., Anitha, K., Shirisha, S., Dipankar, B. & Rajesh, K. (2013). Int. Res. J. Pharm. App. Sci. 3, 93–101.  Google Scholar
First citationReisberg, B., Doody, R., Stöffler, A., Schmitt, F., Ferris, S., & Möbius, H. J. (2003). N. Engl. J. Med. 348, 1333–1341.  CrossRef Google Scholar
First citationRouchal, M., Nečas, M. & Vícha, R. (2011). Acta Cryst. E67, o3198.  CrossRef IUCr Journals Google Scholar
First citationSaid, M. A., Aouad, M. R., Hughes, D. L., Almehmadi, M. A. & Messali, M. (2017). Acta Cryst. E73, 1831–1834.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSchottel, B. L., Chifotides, H. T. & Dunbar, K. R. (2008). Chem. Soc. Rev. 37, 68–83.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSharmila, N., Sundar, T. V., Yasodha, A., Puratchikody, A. & Sridhar, B. (2014). Acta Cryst. E70, o1293–o1294.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheshadri, S. N., Kwong, H. C., Chidan Kumar, C. S., Quah, C. K., Siddaraju, B. P., Veeraiah, M. K., Hamid, M. A. B. A. & Warad, I. (2018). Acta Cryst. E74, 752–756.  CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer. University of Western Australia.  Google Scholar
First citationYue, W. W., Li, H. J., Xiang, T., Qin, H., Sun, S. D. & Zhao, C. S. (2013). J. Membr. Sci. 446, 79–91.  CrossRef Google Scholar
First citationZettl, H., Schubert-Zsilavecz, M. & Steinhilber, D. (2010). ChemMedChem, 5, 179–185.  CrossRef Google Scholar
First citationZoidis, G., Kolocouris, N., Kelly, J. M., Prathalingam, S. R., Naesens, L. & De Clercq, E. (2010). Eur. J. Med. Chem. 45, 5022–5030.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds