research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (E)-N'-[1-(4-amino­phen­yl)ethyl­­idene]-2-hy­dr­oxy-5-iodo­benzohydrazide methanol monosolvate

CROSSMARK_Color_square_no_text.svg

aFaculty of Chemistry, Ho Chi Minh City University of Education, 280 An Duong Vuong Street, District No. 5, Ho Chi Minh City, Vietnam, bSchool of Natural Sciences Education, Vinh University, 182 Le Duan St., Vinh City, Vietnam, cFaculty of Chemistry, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam, dFaculty of Foundation Science, College of Printing Industry, Phuc Dien, Bac Tu Liem, Hanoi, Vietnam, eDepartment of Chemistry, Hanoi University of Science, 19 Le Thanh Tong Street, Hai Ba Trung District, Hanoi, Vietnam, and fDepartment of Chemistry, KU Leuven, Biomolecular Architecture, Celestijnenlaan 200F, Leuven (Heverlee), B-3001, Belgium
*Correspondence e-mail: luc.vanmeervelt@kuleuven.be

Edited by J. Simpson, University of Otago, New Zealand (Received 30 May 2018; accepted 4 June 2018; online 8 June 2018)

In the title compound, C15H14IN3O2·CH3OH, two aromatic rings are linked by an N-substituted hydrazide function. The dihedral angle between the aromatic rings is 10.53 (8)°. The stereochemistry about the imine function is E. The methanol mol­ecule forms an O—H⋯O hydrogen bond to the hydrazide O atom. In the crystal, chains of mol­ecules running along the c-axis direction are formed by O—H⋯O hydrogen bonds. Adjacent chains are linked through N—H⋯O hydrogen bonds and ππ stacking inter­actions. The inter­molecular inter­actions in the crystal packing were investigated using Hirshfeld surface analysis, which indicated that the most significant contacts are H⋯H (38.2%), followed by C⋯H/H⋯C (20.6%), O⋯H/H⋯O (11.1%) and I⋯H/H⋯I (9.7%).

1. Chemical context

N-substituted hydrazides have been attracted much attention for their structures, coordination ability, biological activities and transformations to heterocyclic compounds (Majumdar et al., 2014[Majumdar, P., Pati, A., Patra, M., Behera, R. K. & Behera, A. K. (2014). Chem. Rev. 114, 2942-2977.]; Asif & Husain, 2013[Asif, M. & Husain, A. (2013). J. Appl. Chem. Article ID, 247203.]; Khan et al., 2017[Khan, M. S., Siddiqui, S. P. & Tarannum, N. (2017). Hygeia. J. D. Med. 9, 61-79.]). Derivatives of salicylic acid act as anti­bacterial (Kumar et al., 2012[Kumar, N. S., Amandoron, E. A., Cherkasov, A., Finlay, B. B., Gong, H., Jackson, L., Kaur, S., Lian, T., Moreau, A., Labrière, C., Reiner, N. E., See, R. H., Strynadka, N. C., Thorson, L., Wong, E. W., Worrall, L., Zoraghi, R. & Young, R. N. (2012). Bioorg. Med. Chem. 20, 7069-7082.]; Cui et al., 2014[Cui, Z., Ito, J., Dohi, H., Amemiya, Y. & Nishida, Y. (2014). PLoS One, 9, e108338.]; Sarshira et al., 2016[Sarshira, E. M., Hamada, N. M., Moghazi, Y. M. & Abdelrahman, M. M. (2016). J. Heterocycl. Chem. 53, 1970-1982.]), anti­fungal (Wodnicka et al., 2017[Wodnicka, A., Huzar, E., Krawczyk, M. & Kwiecień, H. (2017). Pol. J. Chem. Technol. 19, 143-148.]; Abbas et al., 2017[Abbas, D., Matter, A.-M., Sanaa, Q. B., Sattar, J. A. A.-S. & Ihsan, A. M. A.-A. (2017). World J. Pharm. Sci. 5, 25-28.]) and anti­tumor (Murty et al., 2014[Murty, M. S. R., Penthala, R., Nath, L. R. & Anto, R. J. (2014). Lett. Drug. Des. Discov. 11, 1133-1142.]) agents. In addition, some salicylhydrazones exhibit significant anti­trypanosomal activity with IC50 ranging from 1 to 34 µM. N-substituted hydrazides containing the typical –C(O)—NH—N=C< functional group can be prepared by a condensation reaction between a hydrazide and a carbonyl compound (an aldehyde or a ketone).

[Scheme 1]

As a continuation of our research work to synthesize derivatives of 5-iodo­salicylohydrazide (Nguyen et al., 2012[Nguyen, T. C., Nguyen, Q. T., Nguyen, T. M. N. & Nguyen, T. C. (2012). Vietnam J. Chem. 50, 12-15.]), the new compound (E)-N'-[1-(4-amino­phen­yl)ethyl­idene]-2-hy­droxy-5-iodo­benzohydrazide methanol monosolvate was synthesized. The structure of the compound was determined by IR, 1H NMR, 13C NMR and HR–MS spectroscopy as well as X-ray diffraction and the crystal structure is reported herein.

2. Structural commentary

The title compound (Fig. 1[link]) crystallizes as a methanol monosolvate in the monoclinic space group P21/c with one hydrazide mol­ecule and a methanol solvate mol­ecule in the asymmetric unit. The OH group of methanol is hydrogen bonded to the hydrazide oxygen atom O4 (Fig. 1[link], Table 1[link]). The dihedral angle between the aromatic rings is 10.53 (8)°. This relatively planar character of the mol­ecule is caused by an intra­molecular hydrogen bond, N2—H2⋯O11 (Table 1[link]), and the presence of the hydrazide functional group and the C13=N1 double bond. The r.m.s. deviation from a plane through all 21 non-Hatoms is 0.291 Å [with a maximum deviation of 0.838 (1) Å observed for atom O4]. The torsion angles about the bonds of the hydrazide link between the two aromatic rings are: C15—C13=N1—N2 = −175.48 (15)°, C13=N1—N2—C3 = 178.71 (16)° and N1—N2—C3—C5 = −172.18 (15)°. The stereochemistry about the imine function C13=N1 is E. The planar character causes short contacts for the H atoms of methyl group C14 with the H atoms on atoms N2 and C20. As a consequence, this methyl group displays rotational disorder with occupancies of 0.66 (2) and 0.34 (2).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O23—H23⋯O4 0.80 (2) 1.97 (2) 2.7561 (18) 170 (3)
N2—H2⋯O11 0.82 (3) 2.02 (2) 2.665 (2) 134.4 (19)
O11—H11⋯O23i 0.76 (3) 1.88 (3) 2.6323 (18) 172 (2)
N21—H21A⋯O4ii 0.85 (2) 2.14 (2) 2.961 (2) 164 (2)
Symmetry codes: (i) x, y, z-1; (ii) -x+1, -y+1, -z+2.
[Figure 1]
Figure 1
View of the asymmetric unit of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as small circles of arbitrary radii. Intra- and inter­molecular hydrogen bonds are shown as dashed lines.

3. Supra­molecular features

In the crystal, chains of mol­ecules are formed along the c-axis direction by alternating O11—H11⋯O23i and O23—H23⋯O4 hydrogen bonds (Table 1[link] and Fig. 2[link]). The inter­action of adjacent chains through N21—H21A⋯O4ii hydrogen bonds results in the formation of dimers with graph set R22(22) (Table 1[link] and Fig. 3[link]). Both aromatic rings are involved in ππ stacking inter­actions [Cg1⋯Cg1i = 3.9769 (10) Å, slippage 2.042 Å and Cg1⋯Cg2ii = 3.8635 (11) Å, slippage 1.596 Å; Cg1 and Cg2 are the centroids of rings C5–C10 and C15–C20, respectively; Fig. 4[link]]. The crystal packing contains no voids.

[Figure 2]
Figure 2
Part of the crystal packing of the title compound, showing the chain along the c-axis direction formed by O—H⋯O hydrogen-bonding inter­actions [see Table 1[link]; symmetry code: (i) x, y, z − 1]. Only the major component of the disordered methyl group C14 is shown.
[Figure 3]
Figure 3
Ring of graph-set motif R22(22) formed by N—H⋯O hydrogen-bonding inter­actions [see Table 1[link]; symmetry code: (i) x − 1, y − 1, z − 2].
[Figure 4]
Figure 4
Part of the crystal packing of the title compound, showing the ππ stacking inter­actions between the amino­phenyl (blue) and iodo­phenyl (yellow) rings [symmetry codes: (i) −x + 1, −y + 1, −z + 1; (ii) −x, −y + 1, −z + 1].

Additional insight into the crystal packing forces was obtained from a Hirshfeld surface analysis using CrystalExplorer (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]). The largest bright-red spots on the Hirshfeld surface mapped over dnorm correspond to the (N,O)—H⋯O hydrogen-bonding contacts (Fig. 5[link]). The pale-red spots are the weaker C⋯H (C18⋯H20), H⋯H (H14F⋯H22B), I⋯H (I12⋯H21B) and I⋯O (I12⋯O23) inter­actions. The most important 2D fingerprint plots, decomposed to highlight particular close contacts of atom pairs and their contribution, are given in Fig. 6[link]. The relative contributions of the different inter­molecular inter­actions to the Hirshfeld surface area in descending order are: H⋯H (38.2%), C⋯H/H⋯C (20.6%), O⋯H/H⋯O (11.1%), I⋯H/H⋯I (9.7%), N⋯H/H⋯N (7.2%) and C⋯C (5.7%). Contributions from the inter­molecular non- or low-polar inter­actions are much greater than the contributions from the O⋯H contacts. The weak I⋯H inter­actions contribute significantly to the crystal packing.

[Figure 5]
Figure 5
Views of the Hirshfeld surface for the title compound mapped over dnorm over the range −0.740 to 1.296 a.u. showing the closest methanol mol­ecules.
[Figure 6]
Figure 6
Two-dimensional fingerprint plots delineated into different contact types (a)–(d) for the title compound. Each blue dot represents a 0.01 Å bin of points on the Hirshfeld surface, with coordinates corresponding to distances (Å) from the points to the nearest inter­ior (di) and exterior (de) nuclei. Increasing intensity of overlapping points is shown by a colour coding from blue to cyan. The grey background contours correspond to the plot integrated for all contact types.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.39, last update November 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the central N-substituted hydrazide moiety (Fig. 7[link]a) resulted in 461 hits. The histograms of the torsion angles show the distribution for torsion angles tor1 (Fig. 7[link]b) and tor3 (Fig. 7[link]d) as expected for a planar conjugated system. However, the histogram of torsion angle tor2 (Fig. 7[link]c) shows the presence of three non-planar entries with torsion angle values of −72.1 (refcode XIJTAN; Buzykin et al., 2012[Buzykin, B. I., Nabiullin, V. N., Mironova, E. V., Kostin, A. A., Tatarinov, D. A., Mironov, V. F. & Litvinov, I. A. (2012). Russ. J. Gen. Chem. 82, 1629-1645.]), −67.9 (refcode NIZTUM; Muniz-Miranda et al., 2008[Muniz-Miranda, M., Pagliai, M., Cardini, G., Messori, L., Bruni, B., Casini, A., Di Vaira, M. & Schettino, V. (2008). CrystEngComm, 10, 416-422.]) and +68.6° (XIJTAN; Buzykin et al., 2012[Buzykin, B. I., Nabiullin, V. N., Mironova, E. V., Kostin, A. A., Tatarinov, D. A., Mironov, V. F. & Litvinov, I. A. (2012). Russ. J. Gen. Chem. 82, 1629-1645.]).

[Figure 7]
Figure 7
(a) The N-substituted hydrazide fragment used for a search in the CSD (a refers to acyclic). (b)–(d) Histograms of torsion angles tor1, tor2 and tor3, respectively.

5. Synthesis and crystallization

The reaction scheme used to synthesize the title compound, 5, is shown in Fig. 8[link]. Methyl salicylate, methyl 2-hy­droxy-5-iodo­benzoate and 2-hy­droxy-5-iodo­benzohydrazide were prepared from salicylic acid according to the method described in our earlier work (Nguyen et al., 2012[Nguyen, T. C., Nguyen, Q. T., Nguyen, T. M. N. & Nguyen, T. C. (2012). Vietnam J. Chem. 50, 12-15.]).

[Figure 8]
Figure 8
Reaction scheme for the title compound.

Methyl salicylate, 2: liquid; b.p. 494-495 K, yield 73%.

Methyl 2-hy­droxy-5-iodo­benzoate (methyl 5-iodo­salicylate), 3: white needles, m.p. 347–348 K, yield 85%; IR (ν, cm−1): 3156, 3080, 2949, 1676, 1604, 527.

2-Hy­droxy-5-iodo­benzohydrazide, 4: white needles, m.p. 451 K, yield 79%; IR (ν, cm−1): 3405, 3322, 1626, 1574, 529; 1H NMR (δ, ppm): 12.41 (1H, br, OH), 10.12 (1H, br, NH), 8.12 (1H, d, 4J = 2.0, ArH), 7.65 (1H, dd, 3J = 9.0 Hz, 4J = 2.0 Hz, ArH), 6.75 (1H, d, 3J = 9.0 Hz, ArH), 4.80 (2H, br, NH2); 13C NMR: 166.1 (CO), 158.9, 141.3, 135.5, 119.9, 117.4, 80.5.

(E)-N'-[1-(4-amino­phen­yl)ethyl­idene]-2-hy­droxy-5-iodo­benzohydrazide, 5: A solution of 2-hy­droxy-5-iodo­benzohydrazide 4 and 4′-amino­aceto­phenone was refluxed for 2 h. The reaction mixture was cooled down to room temperature and the precipitate obtained was filtered off and crystallized from methanol to give 5 as yellow crystals in 78% yield. M.p. 515–516 K. IR (ν, cm−1): 3440, 3298, 3201 (OH, N—H), 2932 (Csp3—H), 1634, 1577 (C=O, C=N); 1H NMR (δ, ppm and J, Hz): 11.11 (1H, s, NH), 8.23 (1H, s, ArH), 7.70 (1H, d, 3J = 8.5, ArH), 7.59 (2H, d, 3J = 8.5, ArH), 6.86 (1H, d, 3J = 8.5, ArH), 6.59 (2H, d, 3J = 8.5, ArH), 5.55 (2H, br, NH2), 2.22 (3H, s, –CH3); 13C NMR (δ, ppm): 161.1 (C=O), 157.0, 154.8, 150.9, 141.6, 138.7, 128.3, 125.2, 121.0, 120.1, 113.7, 82.0, 14.1; MS: m/z 396.0069 (M+H)+, calculated for C15H15IN3O2: 396.0209.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The H atoms attached to atoms N2, N21, O11 and O23 were found in a difference-Fourier map and refined freely. The other H atoms were placed at calculated positions and refined in riding mode, with C—H distances of 0.95 (aromatic) and 0.98 Å (CH3), and isotropic displacement parameters equal to 1.2Ueq of the parent atoms (1.5Ueq for CH3). The difference-Fourier map indicated disorder for the H atoms of methyl group C14. The final occupancy factors for the two sets of H atoms are 0.66 (2) and 0.34 (2). In the final cycles of refinement, two reflections showing very poor agreement were omitted as outliers.

Table 2
Experimental details

Crystal data
Chemical formula C15H14IN3O2·CH4O
Mr 427.23
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 12.9877 (10), 14.8982 (10), 8.5593 (6)
β (°) 91.806 (2)
V3) 1655.3 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.95
Crystal size (mm) 0.41 × 0.27 × 0.22
 
Data collection
Diffractometer Bruker D8 Quest CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.613, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 45415, 3394, 3086
Rint 0.044
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.017, 0.041, 1.06
No. of reflections 3394
No. of parameters 231
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.61, −0.24
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

(E)-N'-[1-(4-Aminophenyl)ethylidene]-2-hydroxy-5-iodobenzohydrazide methanol monosolvate top
Crystal data top
C15H14IN3O2·CH4OF(000) = 848
Mr = 427.23Dx = 1.714 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.9877 (10) ÅCell parameters from 9842 reflections
b = 14.8982 (10) Åθ = 3.1–30.5°
c = 8.5593 (6) ŵ = 1.95 mm1
β = 91.806 (2)°T = 100 K
V = 1655.3 (2) Å3Block, yellow
Z = 40.41 × 0.27 × 0.22 mm
Data collection top
Bruker D8 Quest CMOS
diffractometer
3086 reflections with I > 2σ(I)
φ and ω scansRint = 0.044
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
θmax = 26.4°, θmin = 3.1°
Tmin = 0.613, Tmax = 0.746h = 1616
45415 measured reflectionsk = 1818
3394 independent reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.017H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.041 w = 1/[σ2(Fo2) + (0.0145P)2 + 1.4435P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
3394 reflectionsΔρmax = 0.61 e Å3
231 parametersΔρmin = 0.24 e Å3
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.40946 (11)0.57600 (10)0.63743 (17)0.0163 (3)
N20.33272 (11)0.55807 (10)0.52645 (18)0.0161 (3)
H20.3379 (16)0.5699 (15)0.433 (3)0.023 (6)*
C30.24587 (13)0.51777 (11)0.5728 (2)0.0148 (3)
O40.22915 (10)0.50292 (9)0.71249 (14)0.0199 (3)
C50.17050 (13)0.48847 (12)0.4474 (2)0.0140 (3)
C60.16570 (13)0.52242 (11)0.2943 (2)0.0145 (3)
C70.08776 (14)0.49318 (12)0.1909 (2)0.0170 (4)
H70.0810250.5196410.0901100.020*
C80.01991 (14)0.42619 (12)0.2326 (2)0.0172 (4)
H80.0319280.4057940.1602280.021*
C90.02861 (13)0.38912 (12)0.3817 (2)0.0150 (3)
C100.10096 (13)0.42151 (12)0.48894 (19)0.0147 (3)
H100.1035750.3980690.5922100.018*
O110.23620 (10)0.58419 (9)0.25082 (15)0.0182 (3)
H110.233 (2)0.5920 (18)0.163 (3)0.042 (8)*
I120.06829 (2)0.28322 (2)0.44470 (2)0.01876 (5)
C130.49324 (13)0.61305 (12)0.5921 (2)0.0151 (3)
C140.51380 (15)0.64301 (14)0.4276 (2)0.0217 (4)
H14A0.4541350.6286940.3591790.033*0.66 (2)
H14B0.5747510.6118720.3901920.033*0.66 (2)
H14C0.5258710.7079400.4266040.033*0.66 (2)
H14D0.5069280.5916660.3564730.033*0.34 (2)
H14E0.5837850.6673200.4236350.033*0.34 (2)
H14F0.4640450.6895200.3958660.033*0.34 (2)
C150.57516 (13)0.62386 (12)0.7151 (2)0.0151 (3)
C160.56846 (14)0.57802 (13)0.8582 (2)0.0187 (4)
H160.5103940.5409340.8753860.022*
C170.64415 (14)0.58565 (12)0.9740 (2)0.0183 (4)
H170.6371980.5543541.0698450.022*
C180.73134 (13)0.63918 (12)0.9518 (2)0.0156 (3)
C190.73773 (14)0.68645 (12)0.8117 (2)0.0176 (4)
H190.7950060.7246300.7954970.021*
C200.66115 (14)0.67820 (12)0.6957 (2)0.0175 (4)
H200.6675300.7104100.6007360.021*
N210.80719 (13)0.64660 (12)1.06816 (19)0.0195 (3)
H21A0.8080 (17)0.6075 (16)1.140 (3)0.025 (6)*
H21B0.8644 (19)0.6701 (16)1.040 (3)0.028 (6)*
C220.31350 (17)0.69396 (14)0.9344 (3)0.0285 (5)
H22A0.2944300.7323180.8451100.043*
H22B0.3800130.6653290.9163930.043*
H22C0.3188020.7305031.0295280.043*
O230.23658 (11)0.62647 (9)0.95224 (15)0.0213 (3)
H230.242 (2)0.5898 (15)0.885 (3)0.040 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0147 (7)0.0195 (8)0.0143 (7)0.0010 (6)0.0037 (6)0.0009 (6)
N20.0166 (8)0.0217 (8)0.0096 (7)0.0024 (6)0.0033 (6)0.0005 (6)
C30.0170 (9)0.0125 (8)0.0147 (8)0.0020 (7)0.0012 (7)0.0008 (7)
O40.0229 (7)0.0257 (7)0.0109 (6)0.0068 (5)0.0023 (5)0.0014 (5)
C50.0140 (8)0.0150 (8)0.0128 (8)0.0023 (7)0.0015 (6)0.0025 (7)
C60.0163 (8)0.0131 (8)0.0142 (8)0.0010 (7)0.0009 (7)0.0009 (7)
C70.0216 (9)0.0175 (9)0.0117 (8)0.0021 (7)0.0031 (7)0.0013 (7)
C80.0166 (9)0.0193 (9)0.0154 (8)0.0010 (7)0.0048 (7)0.0025 (7)
C90.0135 (8)0.0141 (8)0.0175 (9)0.0002 (7)0.0009 (7)0.0018 (7)
C100.0166 (8)0.0155 (9)0.0118 (8)0.0031 (7)0.0001 (7)0.0004 (7)
O110.0225 (7)0.0215 (7)0.0104 (6)0.0055 (5)0.0012 (5)0.0029 (5)
I120.01767 (7)0.01657 (7)0.02193 (7)0.00289 (4)0.00078 (4)0.00057 (5)
C130.0166 (9)0.0131 (8)0.0155 (8)0.0020 (7)0.0000 (7)0.0006 (7)
C140.0206 (9)0.0279 (10)0.0166 (9)0.0017 (8)0.0009 (7)0.0053 (8)
C150.0143 (8)0.0154 (8)0.0155 (8)0.0018 (7)0.0000 (7)0.0009 (7)
C160.0154 (9)0.0216 (9)0.0190 (9)0.0051 (7)0.0002 (7)0.0021 (7)
C170.0180 (9)0.0210 (9)0.0160 (8)0.0022 (7)0.0009 (7)0.0026 (7)
C180.0149 (8)0.0157 (9)0.0162 (8)0.0027 (7)0.0006 (7)0.0050 (7)
C190.0150 (9)0.0169 (9)0.0210 (9)0.0027 (7)0.0012 (7)0.0005 (7)
C200.0187 (9)0.0172 (9)0.0168 (9)0.0007 (7)0.0022 (7)0.0017 (7)
N210.0170 (8)0.0230 (9)0.0182 (8)0.0038 (7)0.0019 (6)0.0006 (7)
C220.0291 (11)0.0251 (10)0.0318 (11)0.0050 (9)0.0107 (9)0.0034 (9)
O230.0277 (7)0.0223 (7)0.0140 (6)0.0043 (6)0.0014 (5)0.0005 (6)
Geometric parameters (Å, º) top
N1—N21.381 (2)C14—H14C0.9800
N1—C131.291 (2)C14—H14D0.9800
N2—H20.82 (2)C14—H14E0.9800
N2—C31.349 (2)C14—H14F0.9800
C3—O41.242 (2)C15—C161.407 (2)
C3—C51.495 (2)C15—C201.394 (3)
C5—C61.404 (2)C16—H160.9500
C5—C101.399 (2)C16—C171.379 (3)
C6—C71.394 (2)C17—H170.9500
C6—O111.359 (2)C17—C181.403 (3)
C7—H70.9500C18—C191.396 (3)
C7—C81.386 (3)C18—N211.383 (2)
C8—H80.9500C19—H190.9500
C8—C91.392 (2)C19—C201.388 (3)
C9—C101.380 (2)C20—H200.9500
C9—I122.0993 (17)N21—H21A0.85 (2)
C10—H100.9500N21—H21B0.86 (2)
O11—H110.76 (3)C22—H22A0.9800
C13—C141.509 (2)C22—H22B0.9800
C13—C151.482 (2)C22—H22C0.9800
C14—H14A0.9800C22—O231.429 (2)
C14—H14B0.9800O23—H230.800 (16)
C13—N1—N2118.21 (15)C13—C14—H14A109.5
N1—N2—H2123.2 (15)C13—C14—H14B109.5
C3—N2—N1118.42 (15)C13—C14—H14C109.5
C3—N2—H2118.4 (15)C13—C14—H14D109.5
N2—C3—C5116.98 (15)C13—C14—H14E109.5
O4—C3—N2122.40 (16)C13—C14—H14F109.5
O4—C3—C5120.59 (16)C16—C15—C13120.20 (16)
C6—C5—C3125.00 (16)C20—C15—C13122.59 (16)
C10—C5—C3116.05 (15)C20—C15—C16117.21 (16)
C10—C5—C6118.94 (16)C15—C16—H16119.2
H14Aa—C14—H14B109.5C17—C16—C15121.57 (17)
H14Ba—C14—H14C109.5C17—C16—H16119.2
H14Aa—C14—H14C109.5C16—C17—H17119.7
H14Db—C14—H14E109.5C16—C17—C18120.63 (17)
H14Eb—C14—H14F109.5C18—C17—H17119.7
H14Db—C14—H14F109.5C19—C18—C17118.27 (16)
C7—C6—C5119.36 (16)N21—C18—C17120.49 (17)
O11—C6—C5119.30 (15)N21—C18—C19121.22 (17)
O11—C6—C7121.33 (16)C18—C19—H19119.7
C6—C7—H7119.4C20—C19—C18120.60 (17)
C8—C7—C6121.12 (16)C20—C19—H19119.7
C8—C7—H7119.4C15—C20—H20119.2
C7—C8—H8120.4C19—C20—C15121.68 (17)
C7—C8—C9119.19 (16)C19—C20—H20119.2
C9—C8—H8120.4C18—N21—H21A117.5 (16)
C8—C9—I12120.11 (13)C18—N21—H21B115.7 (15)
C10—C9—C8120.35 (16)H21A—N21—H21B119 (2)
C10—C9—I12119.54 (13)H22A—C22—H22B109.5
C5—C10—H10119.6H22A—C22—H22C109.5
C9—C10—C5120.78 (16)H22B—C22—H22C109.5
C9—C10—H10119.6O23—C22—H22A109.5
C6—O11—H11111 (2)O23—C22—H22B109.5
N1—C13—C14125.66 (16)O23—C22—H22C109.5
N1—C13—C15115.19 (15)C22—O23—H23109.2 (19)
C15—C13—C14119.13 (15)
N1—N2—C3—O45.9 (3)C8—C9—C10—C53.6 (3)
N1—N2—C3—C5172.18 (15)C10—C5—C6—C74.3 (3)
N1—C13—C15—C1613.9 (2)C10—C5—C6—O11176.74 (15)
N1—C13—C15—C20166.49 (17)O11—C6—C7—C8175.98 (16)
N2—N1—C13—C143.0 (3)I12—C9—C10—C5176.29 (13)
N2—N1—C13—C15175.48 (15)C13—N1—N2—C3178.71 (16)
N2—C3—C5—C620.8 (3)C13—C15—C16—C17179.02 (17)
N2—C3—C5—C10158.64 (16)C13—C15—C20—C19179.11 (17)
C3—C5—C6—C7176.25 (16)C14—C13—C15—C16164.75 (17)
C3—C5—C6—O112.7 (3)C14—C13—C15—C2014.9 (3)
C3—C5—C10—C9179.52 (15)C15—C16—C17—C180.6 (3)
O4—C3—C5—C6161.03 (17)C16—C15—C20—C190.6 (3)
O4—C3—C5—C1019.5 (2)C16—C17—C18—C191.9 (3)
C5—C6—C7—C85.1 (3)C16—C17—C18—N21179.92 (17)
C6—C5—C10—C90.0 (3)C17—C18—C19—C202.0 (3)
C6—C7—C8—C91.5 (3)C18—C19—C20—C150.8 (3)
C7—C8—C9—C102.9 (3)C20—C15—C16—C170.6 (3)
C7—C8—C9—I12177.01 (13)N21—C18—C19—C20179.84 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O23—H23···O40.80 (2)1.97 (2)2.7561 (18)170 (3)
N2—H2···O110.82 (3)2.02 (2)2.665 (2)134.4 (19)
O11—H11···O23i0.76 (3)1.88 (3)2.6323 (18)172 (2)
N21—H21A···O4ii0.85 (2)2.14 (2)2.961 (2)164 (2)
Symmetry codes: (i) x, y, z1; (ii) x+1, y+1, z+2.
 

Funding information

LVM thanks VLIR–UOS (project ZEIN2014Z182) for financial support.

References

First citationAbbas, D., Matter, A.-M., Sanaa, Q. B., Sattar, J. A. A.-S. & Ihsan, A. M. A.-A. (2017). World J. Pharm. Sci. 5, 25–28.  Google Scholar
First citationAsif, M. & Husain, A. (2013). J. Appl. Chem. Article ID, 247203.  Google Scholar
First citationBruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBuzykin, B. I., Nabiullin, V. N., Mironova, E. V., Kostin, A. A., Tatarinov, D. A., Mironov, V. F. & Litvinov, I. A. (2012). Russ. J. Gen. Chem. 82, 1629–1645.  Web of Science CrossRef Google Scholar
First citationCui, Z., Ito, J., Dohi, H., Amemiya, Y. & Nishida, Y. (2014). PLoS One, 9, e108338.  Web of Science CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhan, M. S., Siddiqui, S. P. & Tarannum, N. (2017). Hygeia. J. D. Med. 9, 61–79.  Google Scholar
First citationKumar, N. S., Amandoron, E. A., Cherkasov, A., Finlay, B. B., Gong, H., Jackson, L., Kaur, S., Lian, T., Moreau, A., Labrière, C., Reiner, N. E., See, R. H., Strynadka, N. C., Thorson, L., Wong, E. W., Worrall, L., Zoraghi, R. & Young, R. N. (2012). Bioorg. Med. Chem. 20, 7069–7082.  Web of Science CrossRef Google Scholar
First citationMajumdar, P., Pati, A., Patra, M., Behera, R. K. & Behera, A. K. (2014). Chem. Rev. 114, 2942–2977.  Web of Science CrossRef Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMuniz-Miranda, M., Pagliai, M., Cardini, G., Messori, L., Bruni, B., Casini, A., Di Vaira, M. & Schettino, V. (2008). CrystEngComm, 10, 416–422.  Google Scholar
First citationMurty, M. S. R., Penthala, R., Nath, L. R. & Anto, R. J. (2014). Lett. Drug. Des. Discov. 11, 1133–1142.  Web of Science CrossRef Google Scholar
First citationNguyen, T. C., Nguyen, Q. T., Nguyen, T. M. N. & Nguyen, T. C. (2012). Vietnam J. Chem. 50, 12–15.  Google Scholar
First citationSarshira, E. M., Hamada, N. M., Moghazi, Y. M. & Abdelrahman, M. M. (2016). J. Heterocycl. Chem. 53, 1970–1982.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationWodnicka, A., Huzar, E., Krawczyk, M. & Kwiecień, H. (2017). Pol. J. Chem. Technol. 19, 143–148.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds