research communications
E)-N'-[1-(4-aminophenyl)ethylidene]-2-hydroxy-5-iodobenzohydrazide methanol monosolvate
of (aFaculty of Chemistry, Ho Chi Minh City University of Education, 280 An Duong Vuong Street, District No. 5, Ho Chi Minh City, Vietnam, bSchool of Natural Sciences Education, Vinh University, 182 Le Duan St., Vinh City, Vietnam, cFaculty of Chemistry, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam, dFaculty of Foundation Science, College of Printing Industry, Phuc Dien, Bac Tu Liem, Hanoi, Vietnam, eDepartment of Chemistry, Hanoi University of Science, 19 Le Thanh Tong Street, Hai Ba Trung District, Hanoi, Vietnam, and fDepartment of Chemistry, KU Leuven, Biomolecular Architecture, Celestijnenlaan 200F, Leuven (Heverlee), B-3001, Belgium
*Correspondence e-mail: luc.vanmeervelt@kuleuven.be
In the title compound, C15H14IN3O2·CH3OH, two aromatic rings are linked by an N-substituted hydrazide function. The dihedral angle between the aromatic rings is 10.53 (8)°. The stereochemistry about the imine function is E. The methanol molecule forms an O—H⋯O hydrogen bond to the hydrazide O atom. In the crystal, chains of molecules running along the c-axis direction are formed by O—H⋯O hydrogen bonds. Adjacent chains are linked through N—H⋯O hydrogen bonds and π–π stacking interactions. The intermolecular interactions in the crystal packing were investigated using Hirshfeld surface analysis, which indicated that the most significant contacts are H⋯H (38.2%), followed by C⋯H/H⋯C (20.6%), O⋯H/H⋯O (11.1%) and I⋯H/H⋯I (9.7%).
CCDC reference: 1846971
1. Chemical context
N-substituted have been attracted much attention for their structures, coordination ability, biological activities and transformations to (Majumdar et al., 2014; Asif & Husain, 2013; Khan et al., 2017). Derivatives of salicylic acid act as antibacterial (Kumar et al., 2012; Cui et al., 2014; Sarshira et al., 2016), antifungal (Wodnicka et al., 2017; Abbas et al., 2017) and antitumor (Murty et al., 2014) agents. In addition, some salicylhydrazones exhibit significant antitrypanosomal activity with IC50 ranging from 1 to 34 µM. N-substituted containing the typical –C(O)—NH—N=C< can be prepared by a condensation reaction between a hydrazide and a carbonyl compound (an aldehyde or a ketone).
As a continuation of our research work to synthesize derivatives of 5-iodosalicylohydrazide (Nguyen et al., 2012), the new compound (E)-N'-[1-(4-aminophenyl)ethylidene]-2-hydroxy-5-iodobenzohydrazide methanol monosolvate was synthesized. The structure of the compound was determined by IR, 1H NMR, 13C NMR and HR–MS spectroscopy as well as X-ray diffraction and the is reported herein.
2. Structural commentary
The title compound (Fig. 1) crystallizes as a methanol monosolvate in the monoclinic P21/c with one hydrazide molecule and a methanol solvate molecule in the The OH group of methanol is hydrogen bonded to the hydrazide oxygen atom O4 (Fig. 1, Table 1). The dihedral angle between the aromatic rings is 10.53 (8)°. This relatively planar character of the molecule is caused by an intramolecular hydrogen bond, N2—H2⋯O11 (Table 1), and the presence of the hydrazide and the C13=N1 double bond. The r.m.s. deviation from a plane through all 21 non-Hatoms is 0.291 Å [with a maximum deviation of 0.838 (1) Å observed for atom O4]. The torsion angles about the bonds of the hydrazide link between the two aromatic rings are: C15—C13=N1—N2 = −175.48 (15)°, C13=N1—N2—C3 = 178.71 (16)° and N1—N2—C3—C5 = −172.18 (15)°. The stereochemistry about the imine function C13=N1 is E. The planar character causes short contacts for the H atoms of methyl group C14 with the H atoms on atoms N2 and C20. As a consequence, this methyl group displays rotational disorder with occupancies of 0.66 (2) and 0.34 (2).
3. Supramolecular features
In the crystal, chains of molecules are formed along the c-axis direction by alternating O11—H11⋯O23i and O23—H23⋯O4 hydrogen bonds (Table 1 and Fig. 2). The interaction of adjacent chains through N21—H21A⋯O4ii hydrogen bonds results in the formation of dimers with graph set R22(22) (Table 1 and Fig. 3). Both aromatic rings are involved in π–π stacking interactions [Cg1⋯Cg1i = 3.9769 (10) Å, slippage 2.042 Å and Cg1⋯Cg2ii = 3.8635 (11) Å, slippage 1.596 Å; Cg1 and Cg2 are the centroids of rings C5–C10 and C15–C20, respectively; Fig. 4]. The crystal packing contains no voids.
Additional insight into the crystal packing forces was obtained from a Hirshfeld surface analysis using CrystalExplorer (McKinnon et al., 2007; Spackman & Jayatilaka, 2009). The largest bright-red spots on the Hirshfeld surface mapped over dnorm correspond to the (N,O)—H⋯O hydrogen-bonding contacts (Fig. 5). The pale-red spots are the weaker C⋯H (C18⋯H20), H⋯H (H14F⋯H22B), I⋯H (I12⋯H21B) and I⋯O (I12⋯O23) interactions. The most important 2D fingerprint plots, decomposed to highlight particular close contacts of atom pairs and their contribution, are given in Fig. 6. The relative contributions of the different intermolecular interactions to the Hirshfeld surface area in descending order are: H⋯H (38.2%), C⋯H/H⋯C (20.6%), O⋯H/H⋯O (11.1%), I⋯H/H⋯I (9.7%), N⋯H/H⋯N (7.2%) and C⋯C (5.7%). Contributions from the intermolecular non- or low-polar interactions are much greater than the contributions from the O⋯H contacts. The weak I⋯H interactions contribute significantly to the crystal packing.
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.39, last update November 2017; Groom et al., 2016) for the central N-substituted hydrazide moiety (Fig. 7a) resulted in 461 hits. The histograms of the torsion angles show the distribution for torsion angles tor1 (Fig. 7b) and tor3 (Fig. 7d) as expected for a planar However, the histogram of torsion angle tor2 (Fig. 7c) shows the presence of three non-planar entries with torsion angle values of −72.1 (refcode XIJTAN; Buzykin et al., 2012), −67.9 (refcode NIZTUM; Muniz-Miranda et al., 2008) and +68.6° (XIJTAN; Buzykin et al., 2012).
5. Synthesis and crystallization
The reaction scheme used to synthesize the title compound, 5, is shown in Fig. 8. Methyl salicylate, methyl 2-hydroxy-5-iodobenzoate and 2-hydroxy-5-iodobenzohydrazide were prepared from salicylic acid according to the method described in our earlier work (Nguyen et al., 2012).
Methyl salicylate, 2: liquid; b.p. 494-495 K, yield 73%.
Methyl 2-hydroxy-5-iodobenzoate (methyl 5-iodosalicylate), 3: white needles, m.p. 347–348 K, yield 85%; IR (ν, cm−1): 3156, 3080, 2949, 1676, 1604, 527.
2-Hydroxy-5-iodobenzohydrazide, 4: white needles, m.p. 451 K, yield 79%; IR (ν, cm−1): 3405, 3322, 1626, 1574, 529; 1H NMR (δ, ppm): 12.41 (1H, br, OH), 10.12 (1H, br, NH), 8.12 (1H, d, 4J = 2.0, ArH), 7.65 (1H, dd, 3J = 9.0 Hz, 4J = 2.0 Hz, ArH), 6.75 (1H, d, 3J = 9.0 Hz, ArH), 4.80 (2H, br, NH2); 13C NMR: 166.1 (CO), 158.9, 141.3, 135.5, 119.9, 117.4, 80.5.
(E)-N'-[1-(4-aminophenyl)ethylidene]-2-hydroxy-5-iodobenzohydrazide, 5: A solution of 2-hydroxy-5-iodobenzohydrazide 4 and 4′-aminoacetophenone was refluxed for 2 h. The reaction mixture was cooled down to room temperature and the precipitate obtained was filtered off and crystallized from methanol to give 5 as yellow crystals in 78% yield. M.p. 515–516 K. IR (ν, cm−1): 3440, 3298, 3201 (OH, N—H), 2932 (Csp3—H), 1634, 1577 (C=O, C=N); 1H NMR (δ, ppm and J, Hz): 11.11 (1H, s, NH), 8.23 (1H, s, ArH), 7.70 (1H, d, 3J = 8.5, ArH), 7.59 (2H, d, 3J = 8.5, ArH), 6.86 (1H, d, 3J = 8.5, ArH), 6.59 (2H, d, 3J = 8.5, ArH), 5.55 (2H, br, NH2), 2.22 (3H, s, –CH3); 13C NMR (δ, ppm): 161.1 (C=O), 157.0, 154.8, 150.9, 141.6, 138.7, 128.3, 125.2, 121.0, 120.1, 113.7, 82.0, 14.1; MS: m/z 396.0069 (M+H)+, calculated for C15H15IN3O2: 396.0209.
6. Refinement
Crystal data, data collection and structure . The H atoms attached to atoms N2, N21, O11 and O23 were found in a difference-Fourier map and refined freely. The other H atoms were placed at calculated positions and refined in riding mode, with C—H distances of 0.95 (aromatic) and 0.98 Å (CH3), and isotropic displacement parameters equal to 1.2Ueq of the parent atoms (1.5Ueq for CH3). The difference-Fourier map indicated disorder for the H atoms of methyl group C14. The final occupancy factors for the two sets of H atoms are 0.66 (2) and 0.34 (2). In the final cycles of two reflections showing very poor agreement were omitted as outliers.
details are summarized in Table 2Supporting information
CCDC reference: 1846971
https://doi.org/10.1107/S2056989018008204/sj5557sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018008204/sj5557Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989018008204/sj5557Isup3.cml
Data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C15H14IN3O2·CH4O | F(000) = 848 |
Mr = 427.23 | Dx = 1.714 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 12.9877 (10) Å | Cell parameters from 9842 reflections |
b = 14.8982 (10) Å | θ = 3.1–30.5° |
c = 8.5593 (6) Å | µ = 1.95 mm−1 |
β = 91.806 (2)° | T = 100 K |
V = 1655.3 (2) Å3 | Block, yellow |
Z = 4 | 0.41 × 0.27 × 0.22 mm |
Bruker D8 Quest CMOS diffractometer | 3086 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.044 |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | θmax = 26.4°, θmin = 3.1° |
Tmin = 0.613, Tmax = 0.746 | h = −16→16 |
45415 measured reflections | k = −18→18 |
3394 independent reflections | l = −10→10 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.017 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.041 | w = 1/[σ2(Fo2) + (0.0145P)2 + 1.4435P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.001 |
3394 reflections | Δρmax = 0.61 e Å−3 |
231 parameters | Δρmin = −0.24 e Å−3 |
1 restraint |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
N1 | 0.40946 (11) | 0.57600 (10) | 0.63743 (17) | 0.0163 (3) | |
N2 | 0.33272 (11) | 0.55807 (10) | 0.52645 (18) | 0.0161 (3) | |
H2 | 0.3379 (16) | 0.5699 (15) | 0.433 (3) | 0.023 (6)* | |
C3 | 0.24587 (13) | 0.51777 (11) | 0.5728 (2) | 0.0148 (3) | |
O4 | 0.22915 (10) | 0.50292 (9) | 0.71249 (14) | 0.0199 (3) | |
C5 | 0.17050 (13) | 0.48847 (12) | 0.4474 (2) | 0.0140 (3) | |
C6 | 0.16570 (13) | 0.52242 (11) | 0.2943 (2) | 0.0145 (3) | |
C7 | 0.08776 (14) | 0.49318 (12) | 0.1909 (2) | 0.0170 (4) | |
H7 | 0.081025 | 0.519641 | 0.090110 | 0.020* | |
C8 | 0.01991 (14) | 0.42619 (12) | 0.2326 (2) | 0.0172 (4) | |
H8 | −0.031928 | 0.405794 | 0.160228 | 0.021* | |
C9 | 0.02861 (13) | 0.38912 (12) | 0.3817 (2) | 0.0150 (3) | |
C10 | 0.10096 (13) | 0.42151 (12) | 0.48894 (19) | 0.0147 (3) | |
H10 | 0.103575 | 0.398069 | 0.592210 | 0.018* | |
O11 | 0.23620 (10) | 0.58419 (9) | 0.25082 (15) | 0.0182 (3) | |
H11 | 0.233 (2) | 0.5920 (18) | 0.163 (3) | 0.042 (8)* | |
I12 | −0.06829 (2) | 0.28322 (2) | 0.44470 (2) | 0.01876 (5) | |
C13 | 0.49324 (13) | 0.61305 (12) | 0.5921 (2) | 0.0151 (3) | |
C14 | 0.51380 (15) | 0.64301 (14) | 0.4276 (2) | 0.0217 (4) | |
H14A | 0.454135 | 0.628694 | 0.359179 | 0.033* | 0.66 (2) |
H14B | 0.574751 | 0.611872 | 0.390192 | 0.033* | 0.66 (2) |
H14C | 0.525871 | 0.707940 | 0.426604 | 0.033* | 0.66 (2) |
H14D | 0.506928 | 0.591666 | 0.356473 | 0.033* | 0.34 (2) |
H14E | 0.583785 | 0.667320 | 0.423635 | 0.033* | 0.34 (2) |
H14F | 0.464045 | 0.689520 | 0.395866 | 0.033* | 0.34 (2) |
C15 | 0.57516 (13) | 0.62386 (12) | 0.7151 (2) | 0.0151 (3) | |
C16 | 0.56846 (14) | 0.57802 (13) | 0.8582 (2) | 0.0187 (4) | |
H16 | 0.510394 | 0.540934 | 0.875386 | 0.022* | |
C17 | 0.64415 (14) | 0.58565 (12) | 0.9740 (2) | 0.0183 (4) | |
H17 | 0.637198 | 0.554354 | 1.069845 | 0.022* | |
C18 | 0.73134 (13) | 0.63918 (12) | 0.9518 (2) | 0.0156 (3) | |
C19 | 0.73773 (14) | 0.68645 (12) | 0.8117 (2) | 0.0176 (4) | |
H19 | 0.795006 | 0.724630 | 0.795497 | 0.021* | |
C20 | 0.66115 (14) | 0.67820 (12) | 0.6957 (2) | 0.0175 (4) | |
H20 | 0.667530 | 0.710410 | 0.600736 | 0.021* | |
N21 | 0.80719 (13) | 0.64660 (12) | 1.06816 (19) | 0.0195 (3) | |
H21A | 0.8080 (17) | 0.6075 (16) | 1.140 (3) | 0.025 (6)* | |
H21B | 0.8644 (19) | 0.6701 (16) | 1.040 (3) | 0.028 (6)* | |
C22 | 0.31350 (17) | 0.69396 (14) | 0.9344 (3) | 0.0285 (5) | |
H22A | 0.294430 | 0.732318 | 0.845110 | 0.043* | |
H22B | 0.380013 | 0.665329 | 0.916393 | 0.043* | |
H22C | 0.318802 | 0.730503 | 1.029528 | 0.043* | |
O23 | 0.23658 (11) | 0.62647 (9) | 0.95224 (15) | 0.0213 (3) | |
H23 | 0.242 (2) | 0.5898 (15) | 0.885 (3) | 0.040 (8)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0147 (7) | 0.0195 (8) | 0.0143 (7) | −0.0010 (6) | −0.0037 (6) | −0.0009 (6) |
N2 | 0.0166 (8) | 0.0217 (8) | 0.0096 (7) | −0.0024 (6) | −0.0033 (6) | 0.0005 (6) |
C3 | 0.0170 (9) | 0.0125 (8) | 0.0147 (8) | 0.0020 (7) | −0.0012 (7) | −0.0008 (7) |
O4 | 0.0229 (7) | 0.0257 (7) | 0.0109 (6) | −0.0068 (5) | −0.0023 (5) | 0.0014 (5) |
C5 | 0.0140 (8) | 0.0150 (8) | 0.0128 (8) | 0.0023 (7) | −0.0015 (6) | −0.0025 (7) |
C6 | 0.0163 (8) | 0.0131 (8) | 0.0142 (8) | 0.0010 (7) | 0.0009 (7) | −0.0009 (7) |
C7 | 0.0216 (9) | 0.0175 (9) | 0.0117 (8) | 0.0021 (7) | −0.0031 (7) | 0.0013 (7) |
C8 | 0.0166 (9) | 0.0193 (9) | 0.0154 (8) | 0.0010 (7) | −0.0048 (7) | −0.0025 (7) |
C9 | 0.0135 (8) | 0.0141 (8) | 0.0175 (9) | 0.0002 (7) | 0.0009 (7) | −0.0018 (7) |
C10 | 0.0166 (8) | 0.0155 (9) | 0.0118 (8) | 0.0031 (7) | −0.0001 (7) | 0.0004 (7) |
O11 | 0.0225 (7) | 0.0215 (7) | 0.0104 (6) | −0.0055 (5) | −0.0012 (5) | 0.0029 (5) |
I12 | 0.01767 (7) | 0.01657 (7) | 0.02193 (7) | −0.00289 (4) | −0.00078 (4) | 0.00057 (5) |
C13 | 0.0166 (9) | 0.0131 (8) | 0.0155 (8) | 0.0020 (7) | 0.0000 (7) | −0.0006 (7) |
C14 | 0.0206 (9) | 0.0279 (10) | 0.0166 (9) | −0.0017 (8) | −0.0009 (7) | 0.0053 (8) |
C15 | 0.0143 (8) | 0.0154 (8) | 0.0155 (8) | 0.0018 (7) | 0.0000 (7) | −0.0009 (7) |
C16 | 0.0154 (9) | 0.0216 (9) | 0.0190 (9) | −0.0051 (7) | 0.0002 (7) | 0.0021 (7) |
C17 | 0.0180 (9) | 0.0210 (9) | 0.0160 (8) | −0.0022 (7) | 0.0009 (7) | 0.0026 (7) |
C18 | 0.0149 (8) | 0.0157 (9) | 0.0162 (8) | 0.0027 (7) | −0.0006 (7) | −0.0050 (7) |
C19 | 0.0150 (9) | 0.0169 (9) | 0.0210 (9) | −0.0027 (7) | 0.0012 (7) | 0.0005 (7) |
C20 | 0.0187 (9) | 0.0172 (9) | 0.0168 (9) | 0.0007 (7) | 0.0022 (7) | 0.0017 (7) |
N21 | 0.0170 (8) | 0.0230 (9) | 0.0182 (8) | −0.0038 (7) | −0.0019 (6) | 0.0006 (7) |
C22 | 0.0291 (11) | 0.0251 (10) | 0.0318 (11) | −0.0050 (9) | 0.0107 (9) | −0.0034 (9) |
O23 | 0.0277 (7) | 0.0223 (7) | 0.0140 (6) | −0.0043 (6) | 0.0014 (5) | −0.0005 (6) |
N1—N2 | 1.381 (2) | C14—H14C | 0.9800 |
N1—C13 | 1.291 (2) | C14—H14D | 0.9800 |
N2—H2 | 0.82 (2) | C14—H14E | 0.9800 |
N2—C3 | 1.349 (2) | C14—H14F | 0.9800 |
C3—O4 | 1.242 (2) | C15—C16 | 1.407 (2) |
C3—C5 | 1.495 (2) | C15—C20 | 1.394 (3) |
C5—C6 | 1.404 (2) | C16—H16 | 0.9500 |
C5—C10 | 1.399 (2) | C16—C17 | 1.379 (3) |
C6—C7 | 1.394 (2) | C17—H17 | 0.9500 |
C6—O11 | 1.359 (2) | C17—C18 | 1.403 (3) |
C7—H7 | 0.9500 | C18—C19 | 1.396 (3) |
C7—C8 | 1.386 (3) | C18—N21 | 1.383 (2) |
C8—H8 | 0.9500 | C19—H19 | 0.9500 |
C8—C9 | 1.392 (2) | C19—C20 | 1.388 (3) |
C9—C10 | 1.380 (2) | C20—H20 | 0.9500 |
C9—I12 | 2.0993 (17) | N21—H21A | 0.85 (2) |
C10—H10 | 0.9500 | N21—H21B | 0.86 (2) |
O11—H11 | 0.76 (3) | C22—H22A | 0.9800 |
C13—C14 | 1.509 (2) | C22—H22B | 0.9800 |
C13—C15 | 1.482 (2) | C22—H22C | 0.9800 |
C14—H14A | 0.9800 | C22—O23 | 1.429 (2) |
C14—H14B | 0.9800 | O23—H23 | 0.800 (16) |
C13—N1—N2 | 118.21 (15) | C13—C14—H14A | 109.5 |
N1—N2—H2 | 123.2 (15) | C13—C14—H14B | 109.5 |
C3—N2—N1 | 118.42 (15) | C13—C14—H14C | 109.5 |
C3—N2—H2 | 118.4 (15) | C13—C14—H14D | 109.5 |
N2—C3—C5 | 116.98 (15) | C13—C14—H14E | 109.5 |
O4—C3—N2 | 122.40 (16) | C13—C14—H14F | 109.5 |
O4—C3—C5 | 120.59 (16) | C16—C15—C13 | 120.20 (16) |
C6—C5—C3 | 125.00 (16) | C20—C15—C13 | 122.59 (16) |
C10—C5—C3 | 116.05 (15) | C20—C15—C16 | 117.21 (16) |
C10—C5—C6 | 118.94 (16) | C15—C16—H16 | 119.2 |
H14Aa—C14—H14B | 109.5 | C17—C16—C15 | 121.57 (17) |
H14Ba—C14—H14C | 109.5 | C17—C16—H16 | 119.2 |
H14Aa—C14—H14C | 109.5 | C16—C17—H17 | 119.7 |
H14Db—C14—H14E | 109.5 | C16—C17—C18 | 120.63 (17) |
H14Eb—C14—H14F | 109.5 | C18—C17—H17 | 119.7 |
H14Db—C14—H14F | 109.5 | C19—C18—C17 | 118.27 (16) |
C7—C6—C5 | 119.36 (16) | N21—C18—C17 | 120.49 (17) |
O11—C6—C5 | 119.30 (15) | N21—C18—C19 | 121.22 (17) |
O11—C6—C7 | 121.33 (16) | C18—C19—H19 | 119.7 |
C6—C7—H7 | 119.4 | C20—C19—C18 | 120.60 (17) |
C8—C7—C6 | 121.12 (16) | C20—C19—H19 | 119.7 |
C8—C7—H7 | 119.4 | C15—C20—H20 | 119.2 |
C7—C8—H8 | 120.4 | C19—C20—C15 | 121.68 (17) |
C7—C8—C9 | 119.19 (16) | C19—C20—H20 | 119.2 |
C9—C8—H8 | 120.4 | C18—N21—H21A | 117.5 (16) |
C8—C9—I12 | 120.11 (13) | C18—N21—H21B | 115.7 (15) |
C10—C9—C8 | 120.35 (16) | H21A—N21—H21B | 119 (2) |
C10—C9—I12 | 119.54 (13) | H22A—C22—H22B | 109.5 |
C5—C10—H10 | 119.6 | H22A—C22—H22C | 109.5 |
C9—C10—C5 | 120.78 (16) | H22B—C22—H22C | 109.5 |
C9—C10—H10 | 119.6 | O23—C22—H22A | 109.5 |
C6—O11—H11 | 111 (2) | O23—C22—H22B | 109.5 |
N1—C13—C14 | 125.66 (16) | O23—C22—H22C | 109.5 |
N1—C13—C15 | 115.19 (15) | C22—O23—H23 | 109.2 (19) |
C15—C13—C14 | 119.13 (15) | ||
N1—N2—C3—O4 | 5.9 (3) | C8—C9—C10—C5 | −3.6 (3) |
N1—N2—C3—C5 | −172.18 (15) | C10—C5—C6—C7 | 4.3 (3) |
N1—C13—C15—C16 | 13.9 (2) | C10—C5—C6—O11 | −176.74 (15) |
N1—C13—C15—C20 | −166.49 (17) | O11—C6—C7—C8 | 175.98 (16) |
N2—N1—C13—C14 | 3.0 (3) | I12—C9—C10—C5 | 176.29 (13) |
N2—N1—C13—C15 | −175.48 (15) | C13—N1—N2—C3 | 178.71 (16) |
N2—C3—C5—C6 | −20.8 (3) | C13—C15—C16—C17 | 179.02 (17) |
N2—C3—C5—C10 | 158.64 (16) | C13—C15—C20—C19 | −179.11 (17) |
C3—C5—C6—C7 | −176.25 (16) | C14—C13—C15—C16 | −164.75 (17) |
C3—C5—C6—O11 | 2.7 (3) | C14—C13—C15—C20 | 14.9 (3) |
C3—C5—C10—C9 | −179.52 (15) | C15—C16—C17—C18 | −0.6 (3) |
O4—C3—C5—C6 | 161.03 (17) | C16—C15—C20—C19 | 0.6 (3) |
O4—C3—C5—C10 | −19.5 (2) | C16—C17—C18—C19 | 1.9 (3) |
C5—C6—C7—C8 | −5.1 (3) | C16—C17—C18—N21 | −179.92 (17) |
C6—C5—C10—C9 | 0.0 (3) | C17—C18—C19—C20 | −2.0 (3) |
C6—C7—C8—C9 | 1.5 (3) | C18—C19—C20—C15 | 0.8 (3) |
C7—C8—C9—C10 | 2.9 (3) | C20—C15—C16—C17 | −0.6 (3) |
C7—C8—C9—I12 | −177.01 (13) | N21—C18—C19—C20 | 179.84 (17) |
D—H···A | D—H | H···A | D···A | D—H···A |
O23—H23···O4 | 0.80 (2) | 1.97 (2) | 2.7561 (18) | 170 (3) |
N2—H2···O11 | 0.82 (3) | 2.02 (2) | 2.665 (2) | 134.4 (19) |
O11—H11···O23i | 0.76 (3) | 1.88 (3) | 2.6323 (18) | 172 (2) |
N21—H21A···O4ii | 0.85 (2) | 2.14 (2) | 2.961 (2) | 164 (2) |
Symmetry codes: (i) x, y, z−1; (ii) −x+1, −y+1, −z+2. |
Funding information
LVM thanks VLIR–UOS (project ZEIN2014Z182) for financial support.
References
Abbas, D., Matter, A.-M., Sanaa, Q. B., Sattar, J. A. A.-S. & Ihsan, A. M. A.-A. (2017). World J. Pharm. Sci. 5, 25–28. Google Scholar
Asif, M. & Husain, A. (2013). J. Appl. Chem. Article ID, 247203. Google Scholar
Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Buzykin, B. I., Nabiullin, V. N., Mironova, E. V., Kostin, A. A., Tatarinov, D. A., Mironov, V. F. & Litvinov, I. A. (2012). Russ. J. Gen. Chem. 82, 1629–1645. Web of Science CrossRef Google Scholar
Cui, Z., Ito, J., Dohi, H., Amemiya, Y. & Nishida, Y. (2014). PLoS One, 9, e108338. Web of Science CrossRef Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Khan, M. S., Siddiqui, S. P. & Tarannum, N. (2017). Hygeia. J. D. Med. 9, 61–79. Google Scholar
Kumar, N. S., Amandoron, E. A., Cherkasov, A., Finlay, B. B., Gong, H., Jackson, L., Kaur, S., Lian, T., Moreau, A., Labrière, C., Reiner, N. E., See, R. H., Strynadka, N. C., Thorson, L., Wong, E. W., Worrall, L., Zoraghi, R. & Young, R. N. (2012). Bioorg. Med. Chem. 20, 7069–7082. Web of Science CrossRef Google Scholar
Majumdar, P., Pati, A., Patra, M., Behera, R. K. & Behera, A. K. (2014). Chem. Rev. 114, 2942–2977. Web of Science CrossRef Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Muniz-Miranda, M., Pagliai, M., Cardini, G., Messori, L., Bruni, B., Casini, A., Di Vaira, M. & Schettino, V. (2008). CrystEngComm, 10, 416–422. Google Scholar
Murty, M. S. R., Penthala, R., Nath, L. R. & Anto, R. J. (2014). Lett. Drug. Des. Discov. 11, 1133–1142. Web of Science CrossRef Google Scholar
Nguyen, T. C., Nguyen, Q. T., Nguyen, T. M. N. & Nguyen, T. C. (2012). Vietnam J. Chem. 50, 12–15. Google Scholar
Sarshira, E. M., Hamada, N. M., Moghazi, Y. M. & Abdelrahman, M. M. (2016). J. Heterocycl. Chem. 53, 1970–1982. Web of Science CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Wodnicka, A., Huzar, E., Krawczyk, M. & Kwiecień, H. (2017). Pol. J. Chem. Technol. 19, 143–148. Web of Science CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.