research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of cis-[1,2-bis­­(di­phenyl­phosphan­yl)ethene-κ2P,P′]di­chlorido­platinum(II) chloro­form disolvate: a new polymorph

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Grand Valley State University, 1 Campus Dr., Allendale, MI 49401, USA, and bCenter for Crystallographic Research, Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
*Correspondence e-mail: biross@gvsu.edu

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 24 May 2018; accepted 15 June 2018; online 21 June 2018)

The title compound, [PtCl2(C26H22P2)]·2CHCl3 (I), is the third monoclinic polymorph of this platinum(II) complex involving the bidentate ligand cis-1,2-bis­(di­phenyl­phosphan­yl)ethyl­ene (cis-dppe) [for the others, see: Oberhauser et al. (1998a[Oberhauser, W., Bachmann, C., Stampfl, T., Haid, R., Langes, C., Rieder, A. & Brüggeller, P. (1998a). Inorg. Chim. Acta, 274, 143-154.]). Inorg. Chim. Acta, 274, 143–154, and Oberhauser et al. (1995[Oberhauser, W., Bachmann, C. & Brüggeller, P. (1995). Inorg. Chim. Acta, 238, 35-43.]). Inorg. Chim. Acta, 238, 35–43]. The structure of compound (I) was solved in the space group P21/c, with one complex mol­ecule in the asymmetric unit along with two solvate chloro­form mol­ecules. The PtII atom is ligated by two P and two Cl atoms in the equatorial plane and has a perfect square-planar coordination sphere. In the crystal, the complex mol­ecule is linked to the chloro­form solvate mol­ecules by C—H⋯Cl hydrogen bonds and face-on C—Cl⋯π inter­actions. There are also weak offset ππ inter­actions present [inter­centroid distances are 3.770 (6) and 4.096 (6) Å], linking the mol­ecules to form supra­molecular sheets that lie in the bc plane.

1. Chemical context

The rigid compound cis-1,2-bis­(di­phenyl­phosphan­yl)ethyl­ene (cis-dppe) has been widely exploited as a bidentate ligand for transition metals. A selection of recent examples include complexes involving iron(II) (Song et al., 2018[Song, L.-C., Gao, X.-Y., Liu, W.-B., Zhang, H.-T. & Cao, M. (2018). Organometallics, 37, 1050-1061.]), copper(I) (Trivedi et al., 2017[Trivedi, M., Smreker, J. R., Singh, G., Kumar, A. & Rath, N. P. (2017). New J. Chem. 41, 14145-14151.]), gold(I) (Yao & Yam, 2015[Yao, L.-Y. & Yam, V. W.-W. (2015). J. Am. Chem. Soc. 137, 3506-3509.]), nickel(II) (Schallenberg et al., 2014[Schallenberg, D., Neubauer, A., Erdmann, E., Tänzler, M., Villinger, A., Lochbrunner, S. & Seidel, W. W. (2014). Inorg. Chem. 53, 8859-8873.]), nickel(III) (Hwang et al., 2015[Hwang, S. J., Anderson, B. L., Powers, D. C., Maher, A. G., Hadt, R. G. & Nocera, D. G. (2015). Organometallics, 34, 4766-4774.]), and palladium(II) and platinum(II) (Song et al., 2017[Song, L.-C., Zhang, L.-D., Liu, B.-B., Ding, S.-D., Chen, H., Xu, X.-F. & Fan, G.-L. (2017). Organometallics, 36, 1419-1429.]; Oberhauser et al., 1998a[Oberhauser, W., Bachmann, C., Stampfl, T., Haid, R., Langes, C., Rieder, A. & Brüggeller, P. (1998a). Inorg. Chim. Acta, 274, 143-154.]). The phospho­rus atoms of this ligand have also been modified to give the corresponding oxide, sulfide and selenide derivatives (Morse et al., 2016[Morse, P. T., Staples, R. J. & Biros, S. M. (2016). Polyhedron, 114, 2-12.]; Duncan & Gallagher, 1981[Duncan, M. & Gallagher, M. J. (1981). Org. Magn. Reson. 15, 37-42.]; Colquhoun et al., 1979[Colquhoun, I. J., McFarlane, H. C. E., McFarlane, W., Nash, J. A., Keat, R., Rycroft, D. S. & Thompson, D. G. (1979). Org. Magn. Reson. 12, 473-475.]; Aguiar & Daigle, 1964[Aguiar, A. M. & Daigle, D. (1964). J. Am. Chem. Soc. 86, 5354-5355.]). Hence, structural studies of the parent bis­phosphine are relevant to a wide array of researchers.

[Scheme 1]

2. Structural commentary

The mol­ecular structures of the cis-dppe ligand and the title compound (I)[link] are shown in Fig. 1[link]. This Pt–ligand complex features a square-planar geometry around the PtII metal center with bidentate coordination by the phospho­rus atoms of the cis-dppe ligand. The metal coordination sphere is completed by two chloride anions.

[Figure 1]
Figure 1
A view of the mol­ecular structure of the title compound, with the atom labeling. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen atoms bonded to the ligand have been omitted for clarity.

As for the previously reported polymorphs of compound (I)[link], structure HINCIQ (Oberhauser et al., 1998a[Oberhauser, W., Bachmann, C., Stampfl, T., Haid, R., Langes, C., Rieder, A. & Brüggeller, P. (1998a). Inorg. Chim. Acta, 274, 143-154.]) was solved in space group P21/n without solvent in the unit cell, while structure ZOLYII (Oberhauser et al., 1995[Oberhauser, W., Bachmann, C. & Brüggeller, P. (1995). Inorg. Chim. Acta, 238, 35-43.]) was solved in the space group P21/m as a chloro­form and methyl­ene chloride solvate. The latter complex mol­ecule possesses mirror symmetry with the mirror bis­ecting the Pt atom and central C=C bond of the cis-dppe ligand. Selected bond distances and bond angles for the title compound (I)[link], and the two other monoclinic polymorphs are given in Table 1[link].

Table 1
Selected bond distances (Å), bond angles (°) and the fourfold coordination descriptor, τ4a, for the three polymorphs of [(cis-dppe)Pt(Cl)2]

Compound (I) HINCIQb ZOLYIIc
Pt1—Cl1 2.358 (2) 2.36482) 2.360 (2)
Pt1—Cl2 2.363 (2) 2.366 (3) 2.360 (2)
Pt1—P1 2.217 (2) 2.216 (2) 2.211 (2)
Pt1—P2 2.210 (2) 2.219 (2) 2.211 (2)
P1—Pt1—Cl2 177.58 (7) 176.35 (10) 177.92 (9)
P2—Pt1—Cl1 178.38 (7) 175.81 (10) 177.92 (9)
τ4 0.02 0.05 0.0
Notes: (a) Yang et al. (2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]); (b) Oberhauser et al. (1998a[Oberhauser, W., Bachmann, C., Stampfl, T., Haid, R., Langes, C., Rieder, A. & Brüggeller, P. (1998a). Inorg. Chim. Acta, 274, 143-154.]); (c) Oberhauser et al. (1995[Oberhauser, W., Bachmann, C. & Brüggeller, P. (1995). Inorg. Chim. Acta, 238, 35-43.]).

When comparing these two structures to the title compound, the bond lengths and angles around the PtII center of all three structures are, unsurprisingly, quite similar. The Pt—P bond lengths range from 2.210 (2) to 2.219 (2) Å, while the Pt—Cl bond lengths range from 2.358 (2) to 2.366 (3) Å. The P—Pt—P bond angles range from 86.66 (11) to 87.08 (5)°, while the Cl—Pt—Cl bond angles range from 90.33 (7) to 91.03 (5)°. The τ4 descriptor for fourfold coordination (where, for the extreme forms τ4 = 0.00 for square-planar, 1.00 for tetra­hedral and 0.85 for trigonal–pyramidal; Yang et al., 2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]) of the Pt atoms range from 0.02 for compound (I)[link], 0.05 for HINCIQ and 0.0 for ZOLYII, indicating perfect square-planar coordination spheres for each Pt atom.

3. Supra­molecular features

In the crystal of (I)[link], the metal–ligand complex is linked to the chloro­form solvate mol­ecules by C—H⋯Cl hydrogen bonds and Cl⋯π inter­actions. The hydrogen atoms of both chloro­form mol­ecules are engaged in weak hydrogen bonds with the metal-bound chlorine atoms (Fig. 2[link] and Table 2[link]). The DA distances range from 3.616 (9) to 3.789 (10) Å, while the D—H⋯A bond angles range from 132 to 158°. Three face-on Cl⋯π inter­actions (Imai et al., 2008[Imai, Y. N., Inoue, Y., Nakanishi, I. & Kitaura, K. (2008). Protein Sci. 17, 1129-1137.]) are also present involving the chlorine atoms of the chloro­form mol­ecules and the aromatic rings of the cis-dppe ligand (Fig. 2[link] and Table 3[link]). The Cl⋯ring centroid distances for these inter­actions range from 3.242 (5) to 3.441 (7) Å, while the C—Cl⋯ring centroid angles range from 139.2 (5) to 160.3 (4)°.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1S—H1S⋯Cl1 1.00 3.04 3.782 (11) 132
C1S—H1S⋯Cl2 1.00 2.84 3.789 (10) 158
C2S—H2S⋯Cl1i 1.00 2.80 3.616 (9) 139
C2S—H2S⋯Cl2i 1.00 2.77 3.649 (9) 147
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Table 3
Face-on Cl⋯π inter­actions (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the phenyl rings C3–C8, C9–C14 and C15–C20, respectively.

C—Cl⋯Cg C—Cl Cl⋯Cg C⋯Cg C—Cl⋯Cg
C1S—Cl1SCg1 1.706 (11) 3.441 (7) 4.862 (11) 139.2 (5)
C2S—Cl4SCg2 1.737 (8) 3.242 (5) 4.775 (9) 145.4 (3)
C2S—Cl6SCg3 1.735 (8) 3.349 (5) 5.017 (9) 160.3 (4)
[Figure 2]
Figure 2
A view along the b axis of the title compound showing the C—H⋯Cl hydrogen bonds (blue dotted lines) and chlorine⋯π inter­actions (red dashed lines) found in the crystal lattice [symmetry code: (i) x, −y + [{1\over 2}], z − [{1\over 2}]].

The complex mol­ecules are also linked by weak offset ππ inter­actions, forming sheets that lie in the bc plane, as shown in Fig. 3[link]. The inter­centroid distances are Cg2⋯Cg2ii = 4.096 (6) Å [Cg2 is the centroid of ring C9–C14, α = 0.0 (5)°, inter­planar distance = 3.917 (4) Å, slippage = 1.20 Å, symmetry code (ii) −x + 2, −y, −z + 1], and Cg3⋯Cg4iii = 3.770 (6) Å [Cg3 and Cg4 are the centroids of rings C15–C20 and C21–C26, respectively, α = 5.3 (5)°, inter­planar distances are 3.326 (4) and 3.439 (4) Å, slippage = 1.544 Å, symmetry code (iii) −x + 1, y − [{1\over 2}], −z + [{1\over 2}]].

[Figure 3]
Figure 3
A view along the a axis of the weak offset ππ inter­actions (purple dashed lines) between aromatic rings of the title compound, resulting in the formation of supra­molecular sheets. Chloroform solvent molecules have been omitted for clarity.

The closely related polymorph ZOLYII, which contains one CH2Cl2 solvent mol­ecule and one CHCl3 solvent mol­ecule in the unit cell, also shows Cl⋯π inter­actions. However, the methyl­ene chloride solvent mol­ecule is not engaged in a hydrogen bond with a chlorine atom of the PtII complex, and is disordered in the crystal lattice.

4. Database survey

The Cambridge Structural Database (CSD, version 5.39, February 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) contains 21 structures in which the cis-dppe ligand is coordinated to a PtII center. In addition to the two polymorphs described above, the most similar cis-dppe–PtII coordination complexes include AFEXEO (Vaz et al., 2002[Vaz, R. H., Silva, R. M., Reibenspies, J. H. & Serra, O. A. (2002). J. Braz. Chem. Soc. 13, 82-87.]) and FOQPUW (Lobana et al., 2000[Lobana, T. S., Verma, R., Hundal, G. & Castineiras, A. (2000). Polyhedron, 19, 899-906.]), where the PtII center is bound by two thiol­ate ligands (–SPh and –SPy, respectively). Another structure related to the title compound is KADQEL (Oberhauser et al., 1998b[Oberhauser, W., Bachmann, C., Stampfl, T., Haid, R., Langes, C., Rieder, A. & Brüggeller, P. (1998b). Polyhedron, 17, 3211-3220.]) in which the PtII center is coordinated by two aceto­nitrile mol­ecules. Finally, structure ZOLYOO (Oberhauser et al., 1995[Oberhauser, W., Bachmann, C. & Brüggeller, P. (1995). Inorg. Chim. Acta, 238, 35-43.]) contains one PtII center coordinated by two cis-dppe ligands with two outer sphere tetra­phenyl­borate mol­ecules as counter-anions. In each of these structures, the bond lengths and angles are similar to those described above for the title compound.

5. Synthesis and crystallization

The title compound was prepared serendipitously by mixing 20.5 mg of cis-1,2-dppeSe2 (Colquhoun et al., 1979[Colquhoun, I. J., McFarlane, H. C. E., McFarlane, W., Nash, J. A., Keat, R., Rycroft, D. S. & Thompson, D. G. (1979). Org. Magn. Reson. 12, 473-475.]) with 8 mg of Pt(NCPh)2Cl2 in CDCl3 (0.7 ml) in a NMR tube. This solution was left to stand at room temperature, and colorless needle-like crystals of compound (I)[link] were obtained within a few days.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. The hydrogen atoms were placed in calculated positions and refined as riding: C—H = 0.95–1.00 Å with Uiso(H) = 1.2Ueq(C).

Table 4
Experimental details

Crystal data
Chemical formula [PtCl2(C26H22P2)]·2CHCl3
Mr 901.10
Crystal system, space group Monoclinic, P21/c
Temperature (K) 173
a, b, c (Å) 11.1441 (10), 18.0870 (17), 16.9621 (16)
β (°) 106.2465 (10)
V3) 3282.4 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 5.04
Crystal size (mm) 0.26 × 0.14 × 0.10
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.503, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 26503, 6039, 3360
Rint 0.069
(sin θ/λ)max−1) 0.603
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.122, 1.03
No. of reflections 6039
No. of parameters 352
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 3.44, −1.01
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]; Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]), CrystalMaker (Palmer, 2007[Palmer, D. (2007). CrystalMaker. CrystalMaker Software Ltd, Yarnton, Oxfordshire, England.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009; Bourhis et al., 2015); software used to prepare material for publication: CrystalMaker (Palmer, 2007).

cis-[1,2-Bis(diphenylphosphanyl)ethene-κ2P,P']dichloridoplatinum(II) chloroform disolvate top
Crystal data top
[PtCl2(C26H22P2)]·2CHCl3F(000) = 1744
Mr = 901.10Dx = 1.823 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.1441 (10) ÅCell parameters from 6541 reflections
b = 18.0870 (17) Åθ = 2.2–25.4°
c = 16.9621 (16) ŵ = 5.04 mm1
β = 106.2465 (10)°T = 173 K
V = 3282.4 (5) Å3Needle, colorless
Z = 40.26 × 0.14 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
3360 reflections with I > 2σ(I)
φ and ω scansRint = 0.069
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
θmax = 25.4°, θmin = 1.7°
Tmin = 0.502, Tmax = 0.745h = 1313
26503 measured reflectionsk = 2121
6039 independent reflectionsl = 2019
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0396P)2 + 10.564P]
where P = (Fo2 + 2Fc2)/3
6039 reflections(Δ/σ)max = 0.001
352 parametersΔρmax = 3.44 e Å3
0 restraintsΔρmin = 1.00 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.76626 (2)0.25106 (2)0.26582 (2)0.02442 (12)
Cl10.75592 (19)0.15899 (10)0.16572 (12)0.0322 (5)
Cl20.7627 (2)0.34405 (10)0.16732 (12)0.0346 (5)
P10.77172 (19)0.16744 (11)0.36235 (12)0.0246 (5)
P20.78048 (19)0.33570 (10)0.36196 (12)0.0243 (5)
C10.7832 (8)0.2162 (5)0.4579 (5)0.0316 (19)
H10.78510.19010.50680.038*
C20.7887 (7)0.2879 (5)0.4572 (5)0.0319 (19)
H20.79700.31510.50630.038*
C30.9055 (8)0.1058 (4)0.3861 (5)0.031 (2)
C41.0070 (9)0.1237 (5)0.4509 (6)0.053 (3)
H41.00360.16540.48430.064*
C51.1147 (11)0.0803 (6)0.4674 (7)0.068 (3)
H51.18410.09110.51320.082*
C61.1195 (11)0.0210 (6)0.4160 (6)0.063 (3)
H61.19430.00680.42370.075*
C71.0156 (11)0.0033 (5)0.3545 (7)0.059 (3)
H71.01710.03910.32170.071*
C80.9087 (9)0.0453 (5)0.3388 (5)0.044 (2)
H80.83750.03220.29520.053*
C90.6333 (8)0.1110 (4)0.3461 (5)0.032 (2)
C100.5226 (8)0.1331 (4)0.2901 (5)0.037 (2)
H100.52190.17580.25750.044*
C110.4138 (9)0.0937 (5)0.2815 (6)0.050 (2)
H110.33840.10900.24300.060*
C120.4156 (11)0.0322 (6)0.3292 (7)0.063 (3)
H120.34040.00550.32410.075*
C130.5234 (12)0.0087 (5)0.3838 (7)0.059 (3)
H130.52330.03450.41570.071*
C140.6331 (10)0.0481 (5)0.3925 (6)0.051 (3)
H140.70840.03180.43040.061*
C150.6507 (8)0.3979 (4)0.3499 (5)0.0290 (19)
C160.5387 (9)0.3850 (5)0.2923 (6)0.046 (2)
H160.53070.34460.25540.055*
C170.4375 (10)0.4306 (6)0.2880 (7)0.066 (3)
H170.36070.42170.24740.079*
C180.4464 (12)0.4881 (7)0.3410 (8)0.066 (4)
H180.37610.51880.33810.079*
C190.5565 (13)0.5010 (6)0.3980 (8)0.069 (4)
H190.56270.54140.43480.083*
C200.6601 (10)0.4571 (5)0.4042 (6)0.054 (3)
H200.73660.46700.44460.065*
C210.9205 (8)0.3907 (5)0.3809 (5)0.035 (2)
C220.9220 (9)0.4607 (5)0.3500 (6)0.051 (3)
H220.84560.48280.32000.061*
C231.0324 (11)0.4998 (6)0.3615 (6)0.060 (3)
H231.03180.54880.34140.072*
C241.1423 (10)0.4664 (7)0.4025 (6)0.061 (3)
H241.21880.49220.40940.073*
C251.1440 (10)0.3972 (7)0.4336 (8)0.085 (4)
H251.22090.37550.46330.101*
C261.0345 (9)0.3588 (6)0.4219 (7)0.062 (3)
H261.03640.30970.44210.074*
Cl1S1.1237 (5)0.1975 (3)0.2977 (2)0.1431 (18)
Cl2S1.0900 (3)0.1895 (2)0.1275 (2)0.1086 (13)
Cl3S1.1475 (6)0.3253 (3)0.2052 (5)0.226 (4)
C1S1.0756 (10)0.2471 (5)0.2089 (7)0.066 (3)
H1S0.98480.25830.19950.079*
Cl4S0.4561 (3)0.16565 (15)0.48152 (18)0.0731 (8)
Cl5S0.3791 (3)0.25490 (16)0.59773 (16)0.0679 (8)
Cl6S0.4741 (3)0.32216 (15)0.47379 (18)0.0681 (8)
C2S0.4841 (8)0.2468 (4)0.5386 (5)0.040 (2)
H2S0.57080.24470.57640.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.02528 (18)0.02567 (17)0.02229 (17)0.00053 (16)0.00661 (12)0.00026 (16)
Cl10.0440 (13)0.0263 (10)0.0265 (11)0.0004 (9)0.0104 (10)0.0046 (9)
Cl20.0494 (14)0.0302 (10)0.0260 (11)0.0040 (10)0.0132 (10)0.0034 (9)
P10.0261 (12)0.0261 (11)0.0201 (11)0.0019 (9)0.0040 (9)0.0028 (9)
P20.0289 (12)0.0234 (10)0.0209 (11)0.0004 (9)0.0075 (10)0.0012 (9)
C10.035 (5)0.039 (5)0.022 (5)0.004 (4)0.009 (4)0.002 (4)
C20.026 (5)0.046 (5)0.023 (5)0.004 (4)0.004 (4)0.004 (4)
C30.029 (5)0.031 (4)0.035 (5)0.013 (4)0.011 (4)0.011 (4)
C40.053 (7)0.050 (6)0.057 (7)0.006 (5)0.016 (6)0.002 (5)
C50.064 (8)0.078 (8)0.056 (7)0.020 (6)0.005 (6)0.013 (6)
C60.067 (8)0.072 (8)0.046 (7)0.038 (6)0.010 (6)0.013 (6)
C70.081 (9)0.054 (6)0.051 (7)0.031 (6)0.031 (7)0.011 (5)
C80.050 (6)0.050 (5)0.030 (5)0.010 (5)0.009 (5)0.005 (4)
C90.032 (5)0.033 (5)0.031 (5)0.001 (4)0.008 (4)0.000 (4)
C100.043 (6)0.036 (5)0.034 (5)0.009 (4)0.015 (5)0.009 (4)
C110.036 (6)0.066 (7)0.048 (6)0.013 (5)0.014 (5)0.004 (5)
C120.075 (9)0.067 (7)0.059 (7)0.035 (7)0.040 (7)0.024 (6)
C130.092 (10)0.040 (6)0.055 (7)0.007 (6)0.037 (7)0.001 (5)
C140.075 (8)0.042 (5)0.039 (6)0.010 (5)0.021 (5)0.002 (5)
C150.034 (5)0.029 (4)0.031 (5)0.005 (4)0.021 (4)0.005 (4)
C160.040 (6)0.057 (6)0.044 (6)0.002 (5)0.015 (5)0.003 (5)
C170.048 (7)0.070 (8)0.079 (9)0.022 (6)0.019 (6)0.035 (7)
C180.066 (8)0.071 (8)0.077 (9)0.044 (7)0.046 (7)0.045 (7)
C190.107 (10)0.048 (6)0.073 (8)0.042 (7)0.058 (8)0.014 (6)
C200.062 (7)0.045 (6)0.051 (7)0.024 (5)0.010 (6)0.002 (5)
C210.039 (5)0.040 (5)0.026 (5)0.006 (4)0.008 (4)0.002 (4)
C220.044 (6)0.055 (6)0.052 (7)0.011 (5)0.010 (5)0.002 (5)
C230.080 (9)0.055 (7)0.046 (7)0.026 (6)0.022 (7)0.004 (5)
C240.047 (7)0.089 (9)0.047 (7)0.031 (6)0.017 (6)0.006 (6)
C250.034 (6)0.102 (10)0.098 (10)0.007 (7)0.014 (7)0.019 (8)
C260.032 (6)0.059 (6)0.085 (8)0.005 (5)0.000 (6)0.015 (6)
Cl1S0.165 (4)0.189 (5)0.087 (3)0.079 (4)0.054 (3)0.043 (3)
Cl2S0.075 (2)0.157 (4)0.097 (3)0.018 (2)0.029 (2)0.011 (3)
Cl3S0.276 (7)0.097 (3)0.395 (10)0.060 (4)0.244 (7)0.033 (5)
C1S0.053 (6)0.077 (7)0.075 (8)0.018 (6)0.028 (6)0.019 (7)
Cl4S0.104 (2)0.0567 (16)0.0630 (18)0.0037 (16)0.0315 (17)0.0171 (14)
Cl5S0.0672 (17)0.095 (2)0.0518 (16)0.0031 (17)0.0334 (14)0.0059 (16)
Cl6S0.0653 (18)0.0624 (17)0.080 (2)0.0084 (14)0.0262 (16)0.0302 (15)
C2S0.044 (5)0.038 (5)0.038 (5)0.009 (5)0.013 (4)0.002 (5)
Geometric parameters (Å, º) top
Pt1—Cl12.3580 (18)C12—C131.363 (14)
Pt1—Cl22.3632 (19)C13—C141.387 (14)
Pt1—P12.2173 (19)C15—C161.372 (12)
Pt1—P22.2099 (19)C15—C201.397 (11)
P1—C11.818 (8)C16—C171.383 (12)
P1—C31.814 (8)C17—C181.360 (15)
P1—C91.806 (8)C18—C191.353 (16)
P2—C21.812 (8)C19—C201.382 (13)
P2—C151.798 (8)C21—C221.371 (12)
P2—C211.803 (8)C21—C261.392 (12)
C1—C21.297 (11)C22—C231.384 (13)
C3—C41.377 (12)C23—C241.368 (14)
C3—C81.364 (11)C24—C251.355 (15)
C4—C51.396 (13)C25—C261.370 (13)
C5—C61.393 (14)Cl1S—C1S1.706 (11)
C6—C71.362 (14)Cl2S—C1S1.773 (11)
C7—C81.376 (12)Cl3S—C1S1.636 (11)
C9—C101.388 (11)Cl4S—C2S1.737 (8)
C9—C141.383 (11)Cl5S—C2S1.748 (9)
C10—C111.379 (11)Cl6S—C2S1.735 (8)
C11—C121.373 (13)
Cl1—Pt1—Cl290.33 (6)C14—C9—P1121.0 (7)
P1—Pt1—Cl192.04 (7)C14—C9—C10118.9 (8)
P1—Pt1—Cl2177.58 (7)C11—C10—C9120.7 (8)
P2—Pt1—Cl1178.38 (7)C12—C11—C10119.3 (10)
P2—Pt1—Cl290.70 (7)C13—C12—C11121.2 (10)
P2—Pt1—P186.91 (7)C12—C13—C14119.7 (10)
C1—P1—Pt1107.9 (3)C9—C14—C13120.2 (10)
C3—P1—Pt1115.7 (3)C16—C15—P2121.2 (7)
C3—P1—C1104.6 (4)C16—C15—C20119.0 (8)
C9—P1—Pt1115.3 (3)C20—C15—P2119.7 (7)
C9—P1—C1104.8 (4)C15—C16—C17120.2 (10)
C9—P1—C3107.5 (4)C18—C17—C16120.9 (11)
C2—P2—Pt1107.6 (3)C19—C18—C17119.2 (10)
C15—P2—Pt1117.4 (3)C18—C19—C20121.8 (11)
C15—P2—C2103.8 (3)C19—C20—C15118.9 (10)
C15—P2—C21107.7 (4)C22—C21—P2123.0 (7)
C21—P2—Pt1113.2 (3)C22—C21—C26117.9 (8)
C21—P2—C2106.3 (4)C26—C21—P2118.9 (7)
C2—C1—P1117.9 (7)C21—C22—C23121.5 (10)
C1—C2—P2119.6 (7)C24—C23—C22118.7 (10)
C4—C3—P1118.2 (7)C25—C24—C23121.2 (10)
C8—C3—P1121.1 (7)C24—C25—C26119.8 (11)
C8—C3—C4120.5 (8)C25—C26—C21120.8 (10)
C3—C4—C5119.7 (9)Cl1S—C1S—Cl2S107.7 (6)
C6—C5—C4119.3 (11)Cl3S—C1S—Cl1S116.9 (8)
C7—C6—C5119.2 (10)Cl3S—C1S—Cl2S109.0 (6)
C6—C7—C8121.5 (10)Cl4S—C2S—Cl5S110.2 (5)
C3—C8—C7119.5 (9)Cl6S—C2S—Cl4S109.9 (5)
C10—C9—P1119.9 (6)Cl6S—C2S—Cl5S111.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1S—H1S···Cl11.003.043.782 (11)132
C1S—H1S···Cl21.002.843.789 (10)158
C2S—H2S···Cl1i1.002.803.616 (9)139
C2S—H2S···Cl2i1.002.773.649 (9)147
Symmetry code: (i) x, y+1/2, z+1/2.
Selected bond distances (Å), bond angles (°) and the fourfold coordination descriptor, τ4a, for the three polymorphs of [(cis-dppe)Pt(Cl)2] top
Compound(I)HINCIQbZOLYIIc
Pt1—Cl12.358 (2)2.36482)2.360 (2)
Pt1—Cl22.363 (2)2.366 (3)2.360 (2)
Pt1—P12.217 (2)2.216 (2)2.211 (2)
Pt1—P22.210 (2)2.219 (2)2.211 (2)
P1—Pt1—Cl2177.58 (7)176.35 (10)177.92 (9)
P2—Pt1—Cl1178.38 (7)175.81 (10)177.92 (9)
τ40.020.050.0
Notes: (a) Yang et al. (2007); (b) Oberhauser et al. (1998a); (c) Oberhauser et al. (1995).
Face-on Cl···π interactions (Å, °) top
Cg1, Cg2 and Cg3 are the centroids of the phenyl rings C3–C8, C9–C14 and C15–C20, respectively.
C—Cl···CgC—ClCl···CgC···CgC—Cl···Cg
C1S—Cl1S···Cg11.706 (11)3.441 (7)4.862 (11)139.2 (5)
C2S—Cl4S···Cg21.737 (8)3.242 (5)4.775 (9)145.4 (3)
C2S—Cl6S···Cg31.735 (8)3.349 (5)5.017 (9)160.3 (4)
 

Acknowledgements

The authors thank Pfizer, Inc. for the donation of a Varian INOVA 400 FT NMR. The CCD-based X-ray diffractometers at Michigan State University were upgraded and/or replaced by departmental funds.

Funding information

Funding for this research was provided by: National Science Foundation [grant Nos. CCLI CHE-0087655, MRI CHE-1725699 and REU CHE-1559886 (to J. Mugemana)]; GVSU OURS, CSCE and the Chemistry Department's Weldon Fund.

References

First citationAguiar, A. M. & Daigle, D. (1964). J. Am. Chem. Soc. 86, 5354–5355.  CrossRef Web of Science Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2013). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationColquhoun, I. J., McFarlane, H. C. E., McFarlane, W., Nash, J. A., Keat, R., Rycroft, D. S. & Thompson, D. G. (1979). Org. Magn. Reson. 12, 473–475.  CrossRef Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDuncan, M. & Gallagher, M. J. (1981). Org. Magn. Reson. 15, 37–42.  CrossRef Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHwang, S. J., Anderson, B. L., Powers, D. C., Maher, A. G., Hadt, R. G. & Nocera, D. G. (2015). Organometallics, 34, 4766–4774.  Web of Science CrossRef Google Scholar
First citationImai, Y. N., Inoue, Y., Nakanishi, I. & Kitaura, K. (2008). Protein Sci. 17, 1129–1137.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLobana, T. S., Verma, R., Hundal, G. & Castineiras, A. (2000). Polyhedron, 19, 899–906.  Web of Science CSD CrossRef CAS Google Scholar
First citationMorse, P. T., Staples, R. J. & Biros, S. M. (2016). Polyhedron, 114, 2–12.  Web of Science CrossRef Google Scholar
First citationOberhauser, W., Bachmann, C. & Brüggeller, P. (1995). Inorg. Chim. Acta, 238, 35–43.  CrossRef Web of Science Google Scholar
First citationOberhauser, W., Bachmann, C., Stampfl, T., Haid, R., Langes, C., Rieder, A. & Brüggeller, P. (1998a). Inorg. Chim. Acta, 274, 143–154.  Web of Science CrossRef Google Scholar
First citationOberhauser, W., Bachmann, C., Stampfl, T., Haid, R., Langes, C., Rieder, A. & Brüggeller, P. (1998b). Polyhedron, 17, 3211–3220.  Web of Science CrossRef Google Scholar
First citationPalmer, D. (2007). CrystalMaker. CrystalMaker Software Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSchallenberg, D., Neubauer, A., Erdmann, E., Tänzler, M., Villinger, A., Lochbrunner, S. & Seidel, W. W. (2014). Inorg. Chem. 53, 8859–8873.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSong, L.-C., Gao, X.-Y., Liu, W.-B., Zhang, H.-T. & Cao, M. (2018). Organometallics, 37, 1050–1061.  Web of Science CrossRef Google Scholar
First citationSong, L.-C., Zhang, L.-D., Liu, B.-B., Ding, S.-D., Chen, H., Xu, X.-F. & Fan, G.-L. (2017). Organometallics, 36, 1419–1429.  Web of Science CrossRef Google Scholar
First citationTrivedi, M., Smreker, J. R., Singh, G., Kumar, A. & Rath, N. P. (2017). New J. Chem. 41, 14145–14151.  Web of Science CrossRef Google Scholar
First citationVaz, R. H., Silva, R. M., Reibenspies, J. H. & Serra, O. A. (2002). J. Braz. Chem. Soc. 13, 82–87.  CrossRef Google Scholar
First citationYang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYao, L.-Y. & Yam, V. W.-W. (2015). J. Am. Chem. Soc. 137, 3506–3509.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds