research communications
cis-[1,2-bis(diphenylphosphanyl)ethene-κ2P,P′]dichloridoplatinum(II) chloroform disolvate: a new polymorph
ofaDepartment of Chemistry, Grand Valley State University, 1 Campus Dr., Allendale, MI 49401, USA, and bCenter for Crystallographic Research, Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
*Correspondence e-mail: biross@gvsu.edu
The title compound, [PtCl2(C26H22P2)]·2CHCl3 (I), is the third monoclinic polymorph of this platinum(II) complex involving the bidentate ligand cis-1,2-bis(diphenylphosphanyl)ethylene (cis-dppe) [for the others, see: Oberhauser et al. (1998a). Inorg. Chim. Acta, 274, 143–154, and Oberhauser et al. (1995). Inorg. Chim. Acta, 238, 35–43]. The structure of compound (I) was solved in the P21/c, with one complex molecule in the along with two solvate chloroform molecules. The PtII atom is ligated by two P and two Cl atoms in the equatorial plane and has a perfect square-planar coordination sphere. In the crystal, the complex molecule is linked to the chloroform solvate molecules by C—H⋯Cl hydrogen bonds and face-on C—Cl⋯π interactions. There are also weak offset π–π interactions present [intercentroid distances are 3.770 (6) and 4.096 (6) Å], linking the molecules to form supramolecular sheets that lie in the bc plane.
Keywords: crystal structure; polymorph; cis-dppe; C—H⋯Cl hydrogen bonding; face-on C—Cl⋯π interactions; offset π–π interactions.
CCDC reference: 1849747
1. Chemical context
The rigid compound cis-1,2-bis(diphenylphosphanyl)ethylene (cis-dppe) has been widely exploited as a bidentate ligand for transition metals. A selection of recent examples include complexes involving iron(II) (Song et al., 2018), copper(I) (Trivedi et al., 2017), gold(I) (Yao & Yam, 2015), nickel(II) (Schallenberg et al., 2014), nickel(III) (Hwang et al., 2015), and palladium(II) and platinum(II) (Song et al., 2017; Oberhauser et al., 1998a). The phosphorus atoms of this ligand have also been modified to give the corresponding oxide, sulfide and selenide derivatives (Morse et al., 2016; Duncan & Gallagher, 1981; Colquhoun et al., 1979; Aguiar & Daigle, 1964). Hence, structural studies of the parent bisphosphine are relevant to a wide array of researchers.
2. Structural commentary
The molecular structures of the cis-dppe ligand and the title compound (I) are shown in Fig. 1. This Pt–ligand complex features a square-planar geometry around the PtII metal center with bidentate coordination by the phosphorus atoms of the cis-dppe ligand. The metal coordination sphere is completed by two chloride anions.
As for the previously reported polymorphs of compound (I), structure HINCIQ (Oberhauser et al., 1998a) was solved in P21/n without solvent in the while structure ZOLYII (Oberhauser et al., 1995) was solved in the P21/m as a chloroform and methylene chloride solvate. The latter complex molecule possesses mirror symmetry with the mirror bisecting the Pt atom and central C=C bond of the cis-dppe ligand. Selected bond distances and bond angles for the title compound (I), and the two other monoclinic polymorphs are given in Table 1.
When comparing these two structures to the title compound, the bond lengths and angles around the PtII center of all three structures are, unsurprisingly, quite similar. The Pt—P bond lengths range from 2.210 (2) to 2.219 (2) Å, while the Pt—Cl bond lengths range from 2.358 (2) to 2.366 (3) Å. The P—Pt—P bond angles range from 86.66 (11) to 87.08 (5)°, while the Cl—Pt—Cl bond angles range from 90.33 (7) to 91.03 (5)°. The τ4 descriptor for fourfold coordination (where, for the extreme forms τ4 = 0.00 for square-planar, 1.00 for tetrahedral and 0.85 for trigonal–pyramidal; Yang et al., 2007) of the Pt atoms range from 0.02 for compound (I), 0.05 for HINCIQ and 0.0 for ZOLYII, indicating perfect square-planar coordination spheres for each Pt atom.
3. Supramolecular features
In the crystal of (I), the metal–ligand complex is linked to the chloroform solvate molecules by C—H⋯Cl hydrogen bonds and Cl⋯π interactions. The hydrogen atoms of both chloroform molecules are engaged in weak hydrogen bonds with the metal-bound chlorine atoms (Fig. 2 and Table 2). The D⋯A distances range from 3.616 (9) to 3.789 (10) Å, while the D—H⋯A bond angles range from 132 to 158°. Three face-on Cl⋯π interactions (Imai et al., 2008) are also present involving the chlorine atoms of the chloroform molecules and the aromatic rings of the cis-dppe ligand (Fig. 2 and Table 3). The Cl⋯ring centroid distances for these interactions range from 3.242 (5) to 3.441 (7) Å, while the C—Cl⋯ring centroid angles range from 139.2 (5) to 160.3 (4)°.
|
|
The complex molecules are also linked by weak offset π–π interactions, forming sheets that lie in the bc plane, as shown in Fig. 3. The intercentroid distances are Cg2⋯Cg2ii = 4.096 (6) Å [Cg2 is the centroid of ring C9–C14, α = 0.0 (5)°, interplanar distance = 3.917 (4) Å, slippage = 1.20 Å, symmetry code (ii) −x + 2, −y, −z + 1], and Cg3⋯Cg4iii = 3.770 (6) Å [Cg3 and Cg4 are the centroids of rings C15–C20 and C21–C26, respectively, α = 5.3 (5)°, interplanar distances are 3.326 (4) and 3.439 (4) Å, slippage = 1.544 Å, symmetry code (iii) −x + 1, y − , −z + ].
The closely related polymorph ZOLYII, which contains one CH2Cl2 solvent molecule and one CHCl3 solvent molecule in the also shows Cl⋯π interactions. However, the methylene chloride solvent molecule is not engaged in a hydrogen bond with a chlorine atom of the PtII complex, and is disordered in the crystal lattice.
4. Database survey
The Cambridge Structural Database (CSD, version 5.39, February 2018; Groom et al., 2016) contains 21 structures in which the cis-dppe ligand is coordinated to a PtII center. In addition to the two polymorphs described above, the most similar cis-dppe–PtII coordination complexes include AFEXEO (Vaz et al., 2002) and FOQPUW (Lobana et al., 2000), where the PtII center is bound by two thiolate ligands (–SPh and –SPy, respectively). Another structure related to the title compound is KADQEL (Oberhauser et al., 1998b) in which the PtII center is coordinated by two acetonitrile molecules. Finally, structure ZOLYOO (Oberhauser et al., 1995) contains one PtII center coordinated by two cis-dppe ligands with two outer sphere tetraphenylborate molecules as counter-anions. In each of these structures, the bond lengths and angles are similar to those described above for the title compound.
5. Synthesis and crystallization
The title compound was prepared serendipitously by mixing 20.5 mg of cis-1,2-dppeSe2 (Colquhoun et al., 1979) with 8 mg of Pt(NCPh)2Cl2 in CDCl3 (0.7 ml) in a NMR tube. This solution was left to stand at room temperature, and colorless needle-like crystals of compound (I) were obtained within a few days.
6. Refinement
Crystal data, data collection and structure . The hydrogen atoms were placed in calculated positions and refined as riding: C—H = 0.95–1.00 Å with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 4
|
Supporting information
CCDC reference: 1849747
https://doi.org/10.1107/S2056989018008836/su5444sup1.cif
contains datablocks Global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018008836/su5444Isup2.hkl
Data collection: APEX2 (Bruker, 2013); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009; Bourhis et al., 2015); software used to prepare material for publication: CrystalMaker (Palmer, 2007).[PtCl2(C26H22P2)]·2CHCl3 | F(000) = 1744 |
Mr = 901.10 | Dx = 1.823 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 11.1441 (10) Å | Cell parameters from 6541 reflections |
b = 18.0870 (17) Å | θ = 2.2–25.4° |
c = 16.9621 (16) Å | µ = 5.04 mm−1 |
β = 106.2465 (10)° | T = 173 K |
V = 3282.4 (5) Å3 | Needle, colorless |
Z = 4 | 0.26 × 0.14 × 0.10 mm |
Bruker APEXII CCD diffractometer | 3360 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.069 |
Absorption correction: multi-scan (SADABS; Bruker, 2013) | θmax = 25.4°, θmin = 1.7° |
Tmin = 0.502, Tmax = 0.745 | h = −13→13 |
26503 measured reflections | k = −21→21 |
6039 independent reflections | l = −20→19 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.042 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.122 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0396P)2 + 10.564P] where P = (Fo2 + 2Fc2)/3 |
6039 reflections | (Δ/σ)max = 0.001 |
352 parameters | Δρmax = 3.44 e Å−3 |
0 restraints | Δρmin = −1.00 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Pt1 | 0.76626 (2) | 0.25106 (2) | 0.26582 (2) | 0.02442 (12) | |
Cl1 | 0.75592 (19) | 0.15899 (10) | 0.16572 (12) | 0.0322 (5) | |
Cl2 | 0.7627 (2) | 0.34405 (10) | 0.16732 (12) | 0.0346 (5) | |
P1 | 0.77172 (19) | 0.16744 (11) | 0.36235 (12) | 0.0246 (5) | |
P2 | 0.78048 (19) | 0.33570 (10) | 0.36196 (12) | 0.0243 (5) | |
C1 | 0.7832 (8) | 0.2162 (5) | 0.4579 (5) | 0.0316 (19) | |
H1 | 0.7851 | 0.1901 | 0.5068 | 0.038* | |
C2 | 0.7887 (7) | 0.2879 (5) | 0.4572 (5) | 0.0319 (19) | |
H2 | 0.7970 | 0.3151 | 0.5063 | 0.038* | |
C3 | 0.9055 (8) | 0.1058 (4) | 0.3861 (5) | 0.031 (2) | |
C4 | 1.0070 (9) | 0.1237 (5) | 0.4509 (6) | 0.053 (3) | |
H4 | 1.0036 | 0.1654 | 0.4843 | 0.064* | |
C5 | 1.1147 (11) | 0.0803 (6) | 0.4674 (7) | 0.068 (3) | |
H5 | 1.1841 | 0.0911 | 0.5132 | 0.082* | |
C6 | 1.1195 (11) | 0.0210 (6) | 0.4160 (6) | 0.063 (3) | |
H6 | 1.1943 | −0.0068 | 0.4237 | 0.075* | |
C7 | 1.0156 (11) | 0.0033 (5) | 0.3545 (7) | 0.059 (3) | |
H7 | 1.0171 | −0.0391 | 0.3217 | 0.071* | |
C8 | 0.9087 (9) | 0.0453 (5) | 0.3388 (5) | 0.044 (2) | |
H8 | 0.8375 | 0.0322 | 0.2952 | 0.053* | |
C9 | 0.6333 (8) | 0.1110 (4) | 0.3461 (5) | 0.032 (2) | |
C10 | 0.5226 (8) | 0.1331 (4) | 0.2901 (5) | 0.037 (2) | |
H10 | 0.5219 | 0.1758 | 0.2575 | 0.044* | |
C11 | 0.4138 (9) | 0.0937 (5) | 0.2815 (6) | 0.050 (2) | |
H11 | 0.3384 | 0.1090 | 0.2430 | 0.060* | |
C12 | 0.4156 (11) | 0.0322 (6) | 0.3292 (7) | 0.063 (3) | |
H12 | 0.3404 | 0.0055 | 0.3241 | 0.075* | |
C13 | 0.5234 (12) | 0.0087 (5) | 0.3838 (7) | 0.059 (3) | |
H13 | 0.5233 | −0.0345 | 0.4157 | 0.071* | |
C14 | 0.6331 (10) | 0.0481 (5) | 0.3925 (6) | 0.051 (3) | |
H14 | 0.7084 | 0.0318 | 0.4304 | 0.061* | |
C15 | 0.6507 (8) | 0.3979 (4) | 0.3499 (5) | 0.0290 (19) | |
C16 | 0.5387 (9) | 0.3850 (5) | 0.2923 (6) | 0.046 (2) | |
H16 | 0.5307 | 0.3446 | 0.2554 | 0.055* | |
C17 | 0.4375 (10) | 0.4306 (6) | 0.2880 (7) | 0.066 (3) | |
H17 | 0.3607 | 0.4217 | 0.2474 | 0.079* | |
C18 | 0.4464 (12) | 0.4881 (7) | 0.3410 (8) | 0.066 (4) | |
H18 | 0.3761 | 0.5188 | 0.3381 | 0.079* | |
C19 | 0.5565 (13) | 0.5010 (6) | 0.3980 (8) | 0.069 (4) | |
H19 | 0.5627 | 0.5414 | 0.4348 | 0.083* | |
C20 | 0.6601 (10) | 0.4571 (5) | 0.4042 (6) | 0.054 (3) | |
H20 | 0.7366 | 0.4670 | 0.4446 | 0.065* | |
C21 | 0.9205 (8) | 0.3907 (5) | 0.3809 (5) | 0.035 (2) | |
C22 | 0.9220 (9) | 0.4607 (5) | 0.3500 (6) | 0.051 (3) | |
H22 | 0.8456 | 0.4828 | 0.3200 | 0.061* | |
C23 | 1.0324 (11) | 0.4998 (6) | 0.3615 (6) | 0.060 (3) | |
H23 | 1.0318 | 0.5488 | 0.3414 | 0.072* | |
C24 | 1.1423 (10) | 0.4664 (7) | 0.4025 (6) | 0.061 (3) | |
H24 | 1.2188 | 0.4922 | 0.4094 | 0.073* | |
C25 | 1.1440 (10) | 0.3972 (7) | 0.4336 (8) | 0.085 (4) | |
H25 | 1.2209 | 0.3755 | 0.4633 | 0.101* | |
C26 | 1.0345 (9) | 0.3588 (6) | 0.4219 (7) | 0.062 (3) | |
H26 | 1.0364 | 0.3097 | 0.4421 | 0.074* | |
Cl1S | 1.1237 (5) | 0.1975 (3) | 0.2977 (2) | 0.1431 (18) | |
Cl2S | 1.0900 (3) | 0.1895 (2) | 0.1275 (2) | 0.1086 (13) | |
Cl3S | 1.1475 (6) | 0.3253 (3) | 0.2052 (5) | 0.226 (4) | |
C1S | 1.0756 (10) | 0.2471 (5) | 0.2089 (7) | 0.066 (3) | |
H1S | 0.9848 | 0.2583 | 0.1995 | 0.079* | |
Cl4S | 0.4561 (3) | 0.16565 (15) | 0.48152 (18) | 0.0731 (8) | |
Cl5S | 0.3791 (3) | 0.25490 (16) | 0.59773 (16) | 0.0679 (8) | |
Cl6S | 0.4741 (3) | 0.32216 (15) | 0.47379 (18) | 0.0681 (8) | |
C2S | 0.4841 (8) | 0.2468 (4) | 0.5386 (5) | 0.040 (2) | |
H2S | 0.5708 | 0.2447 | 0.5764 | 0.048* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pt1 | 0.02528 (18) | 0.02567 (17) | 0.02229 (17) | 0.00053 (16) | 0.00661 (12) | 0.00026 (16) |
Cl1 | 0.0440 (13) | 0.0263 (10) | 0.0265 (11) | 0.0004 (9) | 0.0104 (10) | −0.0046 (9) |
Cl2 | 0.0494 (14) | 0.0302 (10) | 0.0260 (11) | −0.0040 (10) | 0.0132 (10) | 0.0034 (9) |
P1 | 0.0261 (12) | 0.0261 (11) | 0.0201 (11) | 0.0019 (9) | 0.0040 (9) | 0.0028 (9) |
P2 | 0.0289 (12) | 0.0234 (10) | 0.0209 (11) | 0.0004 (9) | 0.0075 (10) | −0.0012 (9) |
C1 | 0.035 (5) | 0.039 (5) | 0.022 (5) | 0.004 (4) | 0.009 (4) | −0.002 (4) |
C2 | 0.026 (5) | 0.046 (5) | 0.023 (5) | 0.004 (4) | 0.004 (4) | −0.004 (4) |
C3 | 0.029 (5) | 0.031 (4) | 0.035 (5) | 0.013 (4) | 0.011 (4) | 0.011 (4) |
C4 | 0.053 (7) | 0.050 (6) | 0.057 (7) | 0.006 (5) | 0.016 (6) | −0.002 (5) |
C5 | 0.064 (8) | 0.078 (8) | 0.056 (7) | 0.020 (6) | 0.005 (6) | 0.013 (6) |
C6 | 0.067 (8) | 0.072 (8) | 0.046 (7) | 0.038 (6) | 0.010 (6) | 0.013 (6) |
C7 | 0.081 (9) | 0.054 (6) | 0.051 (7) | 0.031 (6) | 0.031 (7) | 0.011 (5) |
C8 | 0.050 (6) | 0.050 (5) | 0.030 (5) | 0.010 (5) | 0.009 (5) | −0.005 (4) |
C9 | 0.032 (5) | 0.033 (5) | 0.031 (5) | −0.001 (4) | 0.008 (4) | 0.000 (4) |
C10 | 0.043 (6) | 0.036 (5) | 0.034 (5) | −0.009 (4) | 0.015 (5) | −0.009 (4) |
C11 | 0.036 (6) | 0.066 (7) | 0.048 (6) | −0.013 (5) | 0.014 (5) | −0.004 (5) |
C12 | 0.075 (9) | 0.067 (7) | 0.059 (7) | −0.035 (7) | 0.040 (7) | −0.024 (6) |
C13 | 0.092 (10) | 0.040 (6) | 0.055 (7) | −0.007 (6) | 0.037 (7) | 0.001 (5) |
C14 | 0.075 (8) | 0.042 (5) | 0.039 (6) | −0.010 (5) | 0.021 (5) | −0.002 (5) |
C15 | 0.034 (5) | 0.029 (4) | 0.031 (5) | 0.005 (4) | 0.021 (4) | 0.005 (4) |
C16 | 0.040 (6) | 0.057 (6) | 0.044 (6) | 0.002 (5) | 0.015 (5) | 0.003 (5) |
C17 | 0.048 (7) | 0.070 (8) | 0.079 (9) | 0.022 (6) | 0.019 (6) | 0.035 (7) |
C18 | 0.066 (8) | 0.071 (8) | 0.077 (9) | 0.044 (7) | 0.046 (7) | 0.045 (7) |
C19 | 0.107 (10) | 0.048 (6) | 0.073 (8) | 0.042 (7) | 0.058 (8) | 0.014 (6) |
C20 | 0.062 (7) | 0.045 (6) | 0.051 (7) | 0.024 (5) | 0.010 (6) | −0.002 (5) |
C21 | 0.039 (5) | 0.040 (5) | 0.026 (5) | −0.006 (4) | 0.008 (4) | −0.002 (4) |
C22 | 0.044 (6) | 0.055 (6) | 0.052 (7) | −0.011 (5) | 0.010 (5) | 0.002 (5) |
C23 | 0.080 (9) | 0.055 (7) | 0.046 (7) | −0.026 (6) | 0.022 (7) | −0.004 (5) |
C24 | 0.047 (7) | 0.089 (9) | 0.047 (7) | −0.031 (6) | 0.017 (6) | −0.006 (6) |
C25 | 0.034 (6) | 0.102 (10) | 0.098 (10) | −0.007 (7) | −0.014 (7) | 0.019 (8) |
C26 | 0.032 (6) | 0.059 (6) | 0.085 (8) | −0.005 (5) | 0.000 (6) | 0.015 (6) |
Cl1S | 0.165 (4) | 0.189 (5) | 0.087 (3) | 0.079 (4) | 0.054 (3) | 0.043 (3) |
Cl2S | 0.075 (2) | 0.157 (4) | 0.097 (3) | −0.018 (2) | 0.029 (2) | −0.011 (3) |
Cl3S | 0.276 (7) | 0.097 (3) | 0.395 (10) | −0.060 (4) | 0.244 (7) | −0.033 (5) |
C1S | 0.053 (6) | 0.077 (7) | 0.075 (8) | 0.018 (6) | 0.028 (6) | 0.019 (7) |
Cl4S | 0.104 (2) | 0.0567 (16) | 0.0630 (18) | −0.0037 (16) | 0.0315 (17) | −0.0171 (14) |
Cl5S | 0.0672 (17) | 0.095 (2) | 0.0518 (16) | 0.0031 (17) | 0.0334 (14) | −0.0059 (16) |
Cl6S | 0.0653 (18) | 0.0624 (17) | 0.080 (2) | 0.0084 (14) | 0.0262 (16) | 0.0302 (15) |
C2S | 0.044 (5) | 0.038 (5) | 0.038 (5) | 0.009 (5) | 0.013 (4) | 0.002 (5) |
Pt1—Cl1 | 2.3580 (18) | C12—C13 | 1.363 (14) |
Pt1—Cl2 | 2.3632 (19) | C13—C14 | 1.387 (14) |
Pt1—P1 | 2.2173 (19) | C15—C16 | 1.372 (12) |
Pt1—P2 | 2.2099 (19) | C15—C20 | 1.397 (11) |
P1—C1 | 1.818 (8) | C16—C17 | 1.383 (12) |
P1—C3 | 1.814 (8) | C17—C18 | 1.360 (15) |
P1—C9 | 1.806 (8) | C18—C19 | 1.353 (16) |
P2—C2 | 1.812 (8) | C19—C20 | 1.382 (13) |
P2—C15 | 1.798 (8) | C21—C22 | 1.371 (12) |
P2—C21 | 1.803 (8) | C21—C26 | 1.392 (12) |
C1—C2 | 1.297 (11) | C22—C23 | 1.384 (13) |
C3—C4 | 1.377 (12) | C23—C24 | 1.368 (14) |
C3—C8 | 1.364 (11) | C24—C25 | 1.355 (15) |
C4—C5 | 1.396 (13) | C25—C26 | 1.370 (13) |
C5—C6 | 1.393 (14) | Cl1S—C1S | 1.706 (11) |
C6—C7 | 1.362 (14) | Cl2S—C1S | 1.773 (11) |
C7—C8 | 1.376 (12) | Cl3S—C1S | 1.636 (11) |
C9—C10 | 1.388 (11) | Cl4S—C2S | 1.737 (8) |
C9—C14 | 1.383 (11) | Cl5S—C2S | 1.748 (9) |
C10—C11 | 1.379 (11) | Cl6S—C2S | 1.735 (8) |
C11—C12 | 1.373 (13) | ||
Cl1—Pt1—Cl2 | 90.33 (6) | C14—C9—P1 | 121.0 (7) |
P1—Pt1—Cl1 | 92.04 (7) | C14—C9—C10 | 118.9 (8) |
P1—Pt1—Cl2 | 177.58 (7) | C11—C10—C9 | 120.7 (8) |
P2—Pt1—Cl1 | 178.38 (7) | C12—C11—C10 | 119.3 (10) |
P2—Pt1—Cl2 | 90.70 (7) | C13—C12—C11 | 121.2 (10) |
P2—Pt1—P1 | 86.91 (7) | C12—C13—C14 | 119.7 (10) |
C1—P1—Pt1 | 107.9 (3) | C9—C14—C13 | 120.2 (10) |
C3—P1—Pt1 | 115.7 (3) | C16—C15—P2 | 121.2 (7) |
C3—P1—C1 | 104.6 (4) | C16—C15—C20 | 119.0 (8) |
C9—P1—Pt1 | 115.3 (3) | C20—C15—P2 | 119.7 (7) |
C9—P1—C1 | 104.8 (4) | C15—C16—C17 | 120.2 (10) |
C9—P1—C3 | 107.5 (4) | C18—C17—C16 | 120.9 (11) |
C2—P2—Pt1 | 107.6 (3) | C19—C18—C17 | 119.2 (10) |
C15—P2—Pt1 | 117.4 (3) | C18—C19—C20 | 121.8 (11) |
C15—P2—C2 | 103.8 (3) | C19—C20—C15 | 118.9 (10) |
C15—P2—C21 | 107.7 (4) | C22—C21—P2 | 123.0 (7) |
C21—P2—Pt1 | 113.2 (3) | C22—C21—C26 | 117.9 (8) |
C21—P2—C2 | 106.3 (4) | C26—C21—P2 | 118.9 (7) |
C2—C1—P1 | 117.9 (7) | C21—C22—C23 | 121.5 (10) |
C1—C2—P2 | 119.6 (7) | C24—C23—C22 | 118.7 (10) |
C4—C3—P1 | 118.2 (7) | C25—C24—C23 | 121.2 (10) |
C8—C3—P1 | 121.1 (7) | C24—C25—C26 | 119.8 (11) |
C8—C3—C4 | 120.5 (8) | C25—C26—C21 | 120.8 (10) |
C3—C4—C5 | 119.7 (9) | Cl1S—C1S—Cl2S | 107.7 (6) |
C6—C5—C4 | 119.3 (11) | Cl3S—C1S—Cl1S | 116.9 (8) |
C7—C6—C5 | 119.2 (10) | Cl3S—C1S—Cl2S | 109.0 (6) |
C6—C7—C8 | 121.5 (10) | Cl4S—C2S—Cl5S | 110.2 (5) |
C3—C8—C7 | 119.5 (9) | Cl6S—C2S—Cl4S | 109.9 (5) |
C10—C9—P1 | 119.9 (6) | Cl6S—C2S—Cl5S | 111.3 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C1S—H1S···Cl1 | 1.00 | 3.04 | 3.782 (11) | 132 |
C1S—H1S···Cl2 | 1.00 | 2.84 | 3.789 (10) | 158 |
C2S—H2S···Cl1i | 1.00 | 2.80 | 3.616 (9) | 139 |
C2S—H2S···Cl2i | 1.00 | 2.77 | 3.649 (9) | 147 |
Symmetry code: (i) x, −y+1/2, z+1/2. |
Compound | (I) | HINCIQb | ZOLYIIc |
Pt1—Cl1 | 2.358 (2) | 2.36482) | 2.360 (2) |
Pt1—Cl2 | 2.363 (2) | 2.366 (3) | 2.360 (2) |
Pt1—P1 | 2.217 (2) | 2.216 (2) | 2.211 (2) |
Pt1—P2 | 2.210 (2) | 2.219 (2) | 2.211 (2) |
P1—Pt1—Cl2 | 177.58 (7) | 176.35 (10) | 177.92 (9) |
P2—Pt1—Cl1 | 178.38 (7) | 175.81 (10) | 177.92 (9) |
τ4 | 0.02 | 0.05 | 0.0 |
Notes: (a) Yang et al. (2007); (b) Oberhauser et al. (1998a); (c) Oberhauser et al. (1995). |
Cg1, Cg2 and Cg3 are the centroids of the phenyl rings C3–C8, C9–C14 and C15–C20, respectively. |
C—Cl···Cg | C—Cl | Cl···Cg | C···Cg | C—Cl···Cg |
C1S—Cl1S···Cg1 | 1.706 (11) | 3.441 (7) | 4.862 (11) | 139.2 (5) |
C2S—Cl4S···Cg2 | 1.737 (8) | 3.242 (5) | 4.775 (9) | 145.4 (3) |
C2S—Cl6S···Cg3 | 1.735 (8) | 3.349 (5) | 5.017 (9) | 160.3 (4) |
Acknowledgements
The authors thank Pfizer, Inc. for the donation of a Varian INOVA 400 FT NMR. The CCD-based X-ray diffractometers at Michigan State University were upgraded and/or replaced by departmental funds.
Funding information
Funding for this research was provided by: National Science Foundation [grant Nos. CCLI CHE-0087655, MRI CHE-1725699 and REU CHE-1559886 (to J. Mugemana)]; GVSU OURS, CSCE and the Chemistry Department's Weldon Fund.
References
Aguiar, A. M. & Daigle, D. (1964). J. Am. Chem. Soc. 86, 5354–5355. CrossRef Web of Science Google Scholar
Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75. Web of Science CrossRef IUCr Journals Google Scholar
Bruker (2013). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Colquhoun, I. J., McFarlane, H. C. E., McFarlane, W., Nash, J. A., Keat, R., Rycroft, D. S. & Thompson, D. G. (1979). Org. Magn. Reson. 12, 473–475. CrossRef Web of Science Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Duncan, M. & Gallagher, M. J. (1981). Org. Magn. Reson. 15, 37–42. CrossRef Web of Science Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hwang, S. J., Anderson, B. L., Powers, D. C., Maher, A. G., Hadt, R. G. & Nocera, D. G. (2015). Organometallics, 34, 4766–4774. Web of Science CrossRef Google Scholar
Imai, Y. N., Inoue, Y., Nakanishi, I. & Kitaura, K. (2008). Protein Sci. 17, 1129–1137. Web of Science CrossRef PubMed CAS Google Scholar
Lobana, T. S., Verma, R., Hundal, G. & Castineiras, A. (2000). Polyhedron, 19, 899–906. Web of Science CSD CrossRef CAS Google Scholar
Morse, P. T., Staples, R. J. & Biros, S. M. (2016). Polyhedron, 114, 2–12. Web of Science CrossRef Google Scholar
Oberhauser, W., Bachmann, C. & Brüggeller, P. (1995). Inorg. Chim. Acta, 238, 35–43. CrossRef Web of Science Google Scholar
Oberhauser, W., Bachmann, C., Stampfl, T., Haid, R., Langes, C., Rieder, A. & Brüggeller, P. (1998a). Inorg. Chim. Acta, 274, 143–154. Web of Science CrossRef Google Scholar
Oberhauser, W., Bachmann, C., Stampfl, T., Haid, R., Langes, C., Rieder, A. & Brüggeller, P. (1998b). Polyhedron, 17, 3211–3220. Web of Science CrossRef Google Scholar
Palmer, D. (2007). CrystalMaker. CrystalMaker Software Ltd, Yarnton, Oxfordshire, England. Google Scholar
Schallenberg, D., Neubauer, A., Erdmann, E., Tänzler, M., Villinger, A., Lochbrunner, S. & Seidel, W. W. (2014). Inorg. Chem. 53, 8859–8873. Web of Science CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Song, L.-C., Gao, X.-Y., Liu, W.-B., Zhang, H.-T. & Cao, M. (2018). Organometallics, 37, 1050–1061. Web of Science CrossRef Google Scholar
Song, L.-C., Zhang, L.-D., Liu, B.-B., Ding, S.-D., Chen, H., Xu, X.-F. & Fan, G.-L. (2017). Organometallics, 36, 1419–1429. Web of Science CrossRef Google Scholar
Trivedi, M., Smreker, J. R., Singh, G., Kumar, A. & Rath, N. P. (2017). New J. Chem. 41, 14145–14151. Web of Science CrossRef Google Scholar
Vaz, R. H., Silva, R. M., Reibenspies, J. H. & Serra, O. A. (2002). J. Braz. Chem. Soc. 13, 82–87. CrossRef Google Scholar
Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964. Web of Science CSD CrossRef PubMed CAS Google Scholar
Yao, L.-Y. & Yam, V. W.-W. (2015). J. Am. Chem. Soc. 137, 3506–3509. Web of Science CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.