research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis and energy frameworks of 1-(2,4-di­methyl­phen­yl)-4-(4-meth­­oxy­phen­yl)naphthalene

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Bharathi Women's College (A), Chennai-108, Tamilnadu, India, bDepartment of Organic Chemistry, University of Madras, Chennai-25, Tamilnadu, India, and cPG and Research Department of Physics, Queen Mary's College (A), Chennai-4, Tamilnadu, India
*Correspondence e-mail: guqmc@yahoo.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 24 May 2018; accepted 6 June 2018; online 8 June 2018)

In the title compound, C25H22O, the two rings of the naphthalene system are inclined to each other by 3.06 (15)°. The mean plane of the naphthalene ring system makes a dihedral angle of 65.24 (12)° with the di­methyl­phenyl ring and 55.82 (12)° with the meth­oxy­phenyl ring. The di­methyl­phenyl ring is inclined to the meth­oxy­phenyl ring by 59.28 (14)°. In the crystal, adjacent mol­ecules are linked via C—H⋯π inter­actions, forming chains along [100]. Using Hirshfeld surface and two-dimensional fingerprint plots, the presence of short inter­molecular inter­actions in the crystal structure were analysed. The inter­molecular inter­action energies were also calculated and their distribution over the crystal structure was visualized graphically using energy frameworks.

1. Chemical context

Naphthalene and its derivatives are known for their wide range of applications in the field of pharmaceuticals. They are also used in the manufacturing of colorants, surface-active agents, resins, disinfectants and insecticides. These derivatives play a vital role in the control of microbial infection (Rokade & Sayyed, 2009[Rokade, Y. B. & Sayyed, R. Z. (2009). Rasayan J. Chem. 2, 972-980.]) and in the chemical defence against biological enemies (Wright et al., 2000[Wright, M. S., Lax, A. R., Henderson, G. & Chen, J. A. (2000). Mycologia, 92, 42-45.]). Compounds with a naphthalene moiety have been shown to exhibit significant anti-TB activity (Upadhayaya et al., 2010[Upadhayaya, R. S., Vandavasi, J. K., Kardile, R. A., Lahore, S. V., Dixit, S. S., Deokar, H. S., Shinde, P. D., Sarmah, M. P. & Chattopadhyaya, J. (2010). Eur. J. Med. Chem. 45, 1854-1867.]).

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is illustrated in Fig. 1[link]. The benzene ring (C9–C14) of the naphthalene moiety is substituted by a di­methyl­phenyl ring (C2–C4/C6–C8) and a meth­oxy­phenyl ring (C19–C24) para to each other. The naphthalene ring system is slightly bent with the two aryl rings being inclined to each other by 3.06 (15)°. Its mean plane makes dihedral angles of 65.24 (12)° with the di­methyl­phenyl ring (C2–C4/C6–C8) and 55.82 (12)° with meth­oxy­phenyl ring (C19–C24). The latter two rings are inclined to each other by 59.28 (14)°. The meth­oxy group (C22/O1/C25) lies out of the plane of the benzene ring (C19–C24) to which it is attached by 11.3 (3)°. The bond lengths and bond angles are similar to those reported for 1,4-di­phenyl­naphthalene, which crystallized with two independent mol­ecules in the asymmetric unit (Lima et al., 2012[Lima, C. F. R. A. C., Rocha, M. A. A., Schröder, B., Gomes, L. R., Low, J. N. & Santos, L. M. N. B. F. (2012). J. Phys. Chem. B, 116, 3557-3570.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at 50% probability level.

3. Supra­molecular features

In the crystal, there is only one significant inter­molecular inter­action present, viz. a C—H⋯π inter­action linking adjacent mol­ecules to form chains propagating along the a-axis direction (Table 1[link] and Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C13–C18 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C25—H25CCgi 0.96 2.78 3.597 (5) 144
Symmetry code: (i) x-1, y, z.
[Figure 2]
Figure 2
The crystal packing of the title compound, viewed along the b axis. The C—H⋯π inter­actions (see Table 1[link]) are shown as dashed lines, and only the H atom H25C (grey ball) has been included.

4. Database survey

A search of the Cambridge Structural Database (Version 5.39, last update February 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the aromatic skeleton of the title compound yielded ten hits. They include 1,4-di­phenyl­naphthalene itself, which crystallized with two independent mol­ecules in the asymmetric unit (CSD refcode ZAXJEP: Lima et al., 2012[Lima, C. F. R. A. C., Rocha, M. A. A., Schröder, B., Gomes, L. R., Low, J. N. & Santos, L. M. N. B. F. (2012). J. Phys. Chem. B, 116, 3557-3570.]). There are also a number of copper(II) complexes (LAYQOU: Chen et al., 2017[Chen, F., Bai, D., Jiang, D., Wang, Y. & He, H. (2017). Dalton Trans. 46, 11469-11478.]; BOSHIC: Cai et al., 2014[Cai, J., Lin, Y., Yu, J., Wu, C., Chen, L., Cui, Y., Yang, Y., Chen, B. & Qian, G. (2014). RSC Adv. 4, 49457-49461.]; PUBSOV: Lin et al., 2009[Lin, X., Telepeni, I., Blake, A. J., Dailly, A., Brown, C. M., Simmons, J. M., Zoppi, M., Walker, G. S., Thomas, K. M., Mays, T. J., Hubberstey, P., Champness, N. R. & Schröder, M. (2009). J. Am. Chem. Soc. 131, 2159-2171.]) of the tetra­carb­oxy­lic acid derivative, 5,5′-(naphthalene-1,4-di­yl)diisophthalic acid, all of which are metal–organic frameworks.

5. Analysis of the Hirshfeld surfaces, inter­action energies and energy frameworks

The Hirshfeld surfaces and two-dimensional fingerprint plots were generated in order to explore and qu­antify the weak inter­molecular inter­actions using the program CrystalExplorer 17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer 17.5. The University of Western Australia.]). The electrostatic potentials were calculated using TONTO, integrated in the program CrystalExplorer (Spackman et al., 2008[Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377-388.]; Jayatilaka et al., 2005[Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: https://hirshfeldsurface.net/]). The Hirshfeld surfaces of the title compound were mapped over dnorm, electrostatic potential, curvedness and shape index (Fig. 3[link]a–3d); depending upon the closeness to the adjacent mol­ecules, the colour patches are mapped differently on the Hirshfeld surface (Fig. 3[link]e). Two-dimensional fingerprint plots showing the result of all inter­molecular contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) are presented in Fig. 4[link]a; di (x axis) and de (y axis) are the closest inter­nal and external distance from a given point on the Hirshfeld surface. The fingerprint plot of H⋯H contacts, which represent the largest contribution to the Hirshfeld surface (64.6%), are shown as a distinct pattern with a minimum value of de = di ≃ 1.2 Å (Fig. 4[link]b). The C⋯H/H⋯C inter­actions appear as the next largest region of the fingerprint plot, highly concentrated at the edges, having almost the same de + di ≃ 2.7 Å (Fig. 4[link]c), with on overall contribution of 27.1%. The O⋯H/H⋯O inter­actions on the fingerprint plot, which contribute 5.2% of the total Hirshfeld surfaces, with de + di ≃ 2.8 Å (Fig. 4[link]d) are shown as two symmetrical wings. The C⋯C contacts, which are the measure of ππ stacking inter­actions, occupy 3.1% of the Hirshfeld surfaces and appear as a unique triangle at about de = di ≃ 1.8 Å (Fig. 4[link]e). These weak inter­actions mostly contribute to the packing of the title compound.

[Figure 3]
Figure 3
Hirshfeld surfaces mapped over (a) dnorm, (b) electrostatic potential, (c) shape index and (d) curvedness and (e) fragment patches.
[Figure 4]
Figure 4
Two-dimensional fingerprint plot for the title compound showing the contributions of individual types of inter­actions: (a) all inter­molecular contacts, (b) H⋯H contacts, (c) C⋯H/H⋯C contacts, (d) H⋯O/O⋯H contacts, (e) C⋯C contacts. The outline of the full fingerprint is shown in grey. Surfaces to the right highlight the relevant surface patches associated with the specific contacts with dnorm mapped.

The inter­action energies between the mol­ecules are obtained using monomer wavefunctions at the B3LYP/6-31G(p,d) level. The total inter­action energy, which is the sum of scaled components, was calculated for a 3.8 Å radius cluster of mol­ecules around the selected mol­ecule (Fig. 5[link]a). The scale factors used in the CE-B3LYP benchmarked energy model (Mackenzie et al., 2017[Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575-587.]) are given in Table 2[link]. The energies calculated by the energy model reveals that the dispersion energy contributes significantly to the inter­actions in the crystal (Table 3[link]).

Table 2
Scale factors for the benchmarked energy model

Energy model kelec kpol kenergy-dispersive krep
CE-B3LYP⋯B3LYP/6–31G(d,p) electron densities 1.057 0.740 0.871 0.618

Table 3
Inter­action energies (kJ mol−1)

R is the distance between mol­ecular centroids (mean atomic position) in Å and N is the number of molecules at that distance.

Colour N symop R Eelec Epol Eenergy-dispersive Erep Etotal
Red 2 x, y, z 15.38 −2.2 −0.6 −11.2 6.2 −8.6
Orange 1 x, −y, −z 15.99 −4.3 −0.8 −11.5 4.2 −12.5
Yellow 1 x, −y, −z 7.45 −6.2 −1.3 −39.2 19.3 −29.7
Lime 2 x, y, z 9.17 −10.0 −1.8 −44.0 26.8 −33.6
Green 2 x, y, z 10.46 −0.1 −0.1 −6.6 1.5 −5.0
Aqua­marine 1 x, −y, −z 6.86 −6.8 −0.9 −39.9 18.7 −31.0
Cyan 1 x, −y, −z 10.11 −0.3 −0.4 −19.8 6.7 −13.7
Blue 1 x, −y, −z 5.37 −3.3 −1.9 −69.2 32.2 −45.2
Violet 1 x, −y, −z 9.31 −6.5 −0.8 −36.0 20.7 −26.0
Orchid 2 x, y, z 14.01 0.1 0.0 −2.0 0.0 −1.7
Magenta 1 x, −y, −z 11.61 −3.3 −1.0 −41.6 20.4 −27.9
[Figure 5]
Figure 5
(a) Inter­action between the selected mol­ecule and the mol­ecules present in a 3.8 Å cluster around it, (b) Coulombic energy, (c) dispersion energy and (d) total energy.

The energy framework calculations were performed for a cluster of mol­ecules present in 2 × 2 × 2 unit cells using the CE-B3LYP energy model. Energies between mol­ecular pairs are represented as cylinders joining the centroids of pairs of mol­ecules with the cylinder radius proportional to the magnitude of the inter­action energy. Energy frameworks were constructed for Eelec as red cylinders, Edis as green and Etot as blue (Fig. 5[link]b–5d) and these cylinders represent the relative strength of mol­ecular packing in different directions. Thus the supra­molecular architecture of the crystal structure is visualized uniquely by energy frameworks.

6. Synthesis and crystallization

A reaction scheme for the synthesis of the title compound is illustrated in Fig. 6[link]. To a solution of m-xylyl-p-anisyl tethered benzo[c]furan (0.16 g, 0.49 mmol) in dry xylenes (15 ml) was added tetra­thia­fulvalene (TTF) (0.10 g, 0.49 mmol) and the mixture was refluxed until the consumption of benzo[c]furan was complete; monitored by the disappearance of the fluorescent colour after 6 h. After the removal of xylenes in vacuo, the crude adduct was dissolved in dry CH2Cl2 (15 ml) and then kept at 273 K. To this, triflic acid (0.02 g, 0.13 mmol) was added and the mixture stirred at room temperature for 10 min. After completion of the reaction (monitored by TLC), it was poured into ice–water (20 ml) and then extracted with CH2Cl2 (2 × 10 ml). The organic layers were combined and washed with aq. NaHCO3 (2 × 10 ml) and then dried (Na2SO4). Removal of the solvent followed by column chromatographic purification (silica gel, 5% ethyl acetate in hexa­ne) afforded the title compound as a yellow solid (0.20 g, 79%). Yellow block-like crystals of the title compound, suitable for X-ray diffraction analysis, were obtained by slow evaporation of a solution in CHCl3 (m.p. 351–353 K).

[Figure 6]
Figure 6
Reaction scheme.

7. Refinement

Crystal data collection and structure refinement details are summarized in Table 4[link]. All H atoms were positioned geometrically and refined using a riding model: C—H = 0.93–0.96 Å with Uiso(H) = 1.5 Ueq(C-meth­yl) and 1.2Ueq(C) for other H atoms.

Table 4
Experimental details

Crystal data
Chemical formula C25H22O
Mr 338.42
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 9.1670 (9), 10.4566 (10), 11.2499 (11)
α, β, γ (°) 64.707 (4), 71.312 (4), 77.032 (4)
V3) 918.75 (16)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.15 × 0.10 × 0.10
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.900, 0.945
No. of measured, independent and observed [I > 2σ(I)] reflections 19120, 3828, 1777
Rint 0.060
(sin θ/λ)max−1) 0.631
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.193, 1.00
No. of reflections 3828
No. of parameters 238
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.27, −0.19
Computer programs: APEX2, SAINT and XPREP (Bruker, 2012[Bruker (2012). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: APEX2 and SAINT (Bruker, 2012); data reduction: SAINT and XPREP (Bruker, 2012); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b).

1-(2,4-Dimethylphenyl)-4-(4-methoxyphenyl)naphthalene top
Crystal data top
C25H22OZ = 2
Mr = 338.42F(000) = 360
Triclinic, P1Dx = 1.223 Mg m3
a = 9.1670 (9) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.4566 (10) ÅCell parameters from 19154 reflections
c = 11.2499 (11) Åθ = 2.3–22.7°
α = 64.707 (4)°µ = 0.07 mm1
β = 71.312 (4)°T = 296 K
γ = 77.032 (4)°Block, yellow
V = 918.75 (16) Å30.15 × 0.10 × 0.10 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1777 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.060
ω and φ scanθmax = 26.6°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 1111
Tmin = 0.900, Tmax = 0.945k = 1313
19120 measured reflectionsl = 1414
3828 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.193H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0922P)2 + 0.0768P]
where P = (Fo2 + 2Fc2)/3
3828 reflections(Δ/σ)max < 0.001
238 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.19 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7907 (4)0.8345 (4)0.2984 (3)0.0771 (10)
H1A0.70170.80470.29370.116*
H1B0.77500.93500.27710.116*
H1C0.80530.78490.38850.116*
C20.9307 (3)0.8015 (3)0.1987 (3)0.0509 (7)
C31.0610 (3)0.8748 (3)0.1542 (3)0.0578 (8)
H31.05830.94110.18980.069*
C41.1927 (3)0.8530 (3)0.0602 (3)0.0573 (8)
C51.3309 (4)0.9324 (4)0.0196 (4)0.0863 (11)
H5A1.42370.86790.01690.129*
H5B1.32050.97240.08480.129*
H5C1.33651.00710.06860.129*
C61.1935 (3)0.7571 (3)0.0065 (3)0.0598 (8)
H61.28030.74150.05850.072*
C71.0668 (3)0.6835 (3)0.0480 (3)0.0541 (7)
H71.06990.61980.00930.065*
C80.9353 (3)0.7015 (3)0.1453 (3)0.0446 (7)
C90.8049 (3)0.6158 (3)0.1869 (3)0.0437 (6)
C100.7284 (3)0.6328 (3)0.0942 (3)0.0537 (7)
H100.75340.70370.00790.064*
C110.6138 (3)0.5472 (3)0.1247 (3)0.0527 (7)
H110.56480.56330.05810.063*
C120.5716 (3)0.4408 (3)0.2488 (3)0.0426 (6)
C130.6437 (3)0.4220 (3)0.3514 (2)0.0393 (6)
C140.7621 (3)0.5075 (3)0.3195 (2)0.0403 (6)
C150.8360 (3)0.4807 (3)0.4219 (3)0.0507 (7)
H150.91730.53230.40170.061*
C160.7907 (3)0.3810 (3)0.5493 (3)0.0602 (8)
H160.84140.36490.61470.072*
C170.6690 (3)0.3029 (3)0.5823 (3)0.0612 (8)
H170.63610.23740.67060.073*
C180.5983 (3)0.3221 (3)0.4860 (3)0.0518 (7)
H180.51800.26820.50920.062*
C190.4540 (3)0.3483 (3)0.2743 (2)0.0432 (6)
C200.3108 (3)0.4064 (3)0.2491 (3)0.0504 (7)
H200.28770.50460.21820.060*
C210.2007 (3)0.3235 (3)0.2682 (3)0.0525 (7)
H210.10510.36580.25070.063*
C220.2331 (3)0.1787 (3)0.3130 (3)0.0510 (7)
C230.3750 (3)0.1177 (3)0.3379 (3)0.0601 (8)
H230.39770.01950.36760.072*
C240.4841 (3)0.2011 (3)0.3193 (3)0.0543 (7)
H240.57940.15810.33710.065*
C250.0236 (4)0.1430 (4)0.3343 (4)0.0834 (11)
H25A0.08540.06670.36440.125*
H25B0.02840.20700.24370.125*
H25C0.06240.19320.39420.125*
O10.1324 (2)0.0867 (2)0.3352 (2)0.0742 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.076 (2)0.079 (2)0.081 (2)0.0173 (19)0.0011 (18)0.044 (2)
C20.0503 (17)0.0521 (17)0.0505 (17)0.0106 (14)0.0132 (14)0.0171 (14)
C30.068 (2)0.0485 (17)0.0622 (19)0.0158 (15)0.0235 (16)0.0169 (15)
C40.0534 (18)0.0526 (18)0.0532 (18)0.0149 (15)0.0173 (15)0.0013 (15)
C50.069 (2)0.091 (3)0.088 (3)0.040 (2)0.0228 (19)0.007 (2)
C60.0523 (18)0.0585 (19)0.0533 (18)0.0127 (15)0.0040 (14)0.0106 (16)
C70.0547 (17)0.0528 (18)0.0498 (17)0.0128 (14)0.0061 (14)0.0169 (14)
C80.0491 (16)0.0419 (15)0.0427 (15)0.0124 (13)0.0133 (13)0.0113 (13)
C90.0458 (15)0.0475 (16)0.0415 (15)0.0104 (13)0.0101 (12)0.0186 (13)
C100.0621 (18)0.0550 (18)0.0421 (16)0.0192 (15)0.0150 (14)0.0093 (14)
C110.0593 (18)0.0571 (18)0.0424 (17)0.0159 (15)0.0180 (14)0.0113 (14)
C120.0412 (15)0.0454 (15)0.0438 (16)0.0070 (12)0.0088 (12)0.0197 (13)
C130.0393 (14)0.0416 (15)0.0365 (15)0.0044 (12)0.0067 (11)0.0165 (12)
C140.0404 (14)0.0416 (15)0.0408 (15)0.0055 (12)0.0091 (12)0.0178 (13)
C150.0515 (16)0.0574 (18)0.0482 (17)0.0131 (14)0.0149 (14)0.0197 (15)
C160.069 (2)0.070 (2)0.0467 (18)0.0158 (17)0.0230 (15)0.0174 (16)
C170.073 (2)0.067 (2)0.0392 (17)0.0215 (17)0.0110 (15)0.0115 (15)
C180.0526 (17)0.0563 (18)0.0454 (17)0.0149 (14)0.0063 (13)0.0185 (15)
C190.0435 (15)0.0456 (16)0.0436 (15)0.0065 (13)0.0088 (12)0.0206 (13)
C200.0522 (17)0.0465 (16)0.0551 (17)0.0068 (14)0.0183 (13)0.0179 (14)
C210.0458 (16)0.0576 (19)0.0610 (18)0.0057 (14)0.0174 (13)0.0261 (15)
C220.0521 (18)0.0548 (19)0.0544 (18)0.0148 (15)0.0075 (14)0.0285 (15)
C230.060 (2)0.0463 (17)0.076 (2)0.0056 (16)0.0136 (16)0.0280 (16)
C240.0451 (16)0.0518 (18)0.0666 (19)0.0019 (14)0.0130 (14)0.0256 (15)
C250.060 (2)0.102 (3)0.108 (3)0.029 (2)0.0172 (19)0.051 (2)
O10.0641 (14)0.0687 (14)0.1023 (18)0.0233 (12)0.0140 (12)0.0415 (13)
Geometric parameters (Å, º) top
C1—C21.495 (4)C13—C181.413 (3)
C1—H1A0.9600C13—C141.421 (3)
C1—H1B0.9600C14—C151.416 (3)
C1—H1C0.9600C15—C161.360 (4)
C2—C81.399 (4)C15—H150.9300
C2—C31.401 (3)C16—C171.390 (3)
C3—C41.375 (4)C16—H160.9300
C3—H30.9300C17—C181.357 (4)
C4—C61.373 (4)C17—H170.9300
C4—C51.510 (4)C18—H180.9300
C5—H5A0.9600C19—C201.380 (4)
C5—H5B0.9600C19—C241.391 (4)
C5—H5C0.9600C20—C211.383 (3)
C6—C71.381 (3)C20—H200.9300
C6—H60.9300C21—C221.370 (4)
C7—C81.385 (3)C21—H210.9300
C7—H70.9300C22—O11.373 (3)
C8—C91.488 (3)C22—C231.373 (4)
C9—C101.366 (3)C23—C241.381 (3)
C9—C141.430 (3)C23—H230.9300
C10—C111.397 (3)C24—H240.9300
C10—H100.9300C25—O11.420 (4)
C11—C121.363 (4)C25—H25A0.9600
C11—H110.9300C25—H25B0.9600
C12—C131.430 (3)C25—H25C0.9600
C12—C191.488 (3)
C2—C1—H1A109.5C18—C13—C12121.9 (2)
C2—C1—H1B109.5C14—C13—C12119.8 (2)
H1A—C1—H1B109.5C15—C14—C13118.0 (2)
C2—C1—H1C109.5C15—C14—C9121.8 (2)
H1A—C1—H1C109.5C13—C14—C9120.2 (2)
H1B—C1—H1C109.5C16—C15—C14121.4 (3)
C8—C2—C3118.4 (2)C16—C15—H15119.3
C8—C2—C1122.1 (2)C14—C15—H15119.3
C3—C2—C1119.5 (3)C15—C16—C17120.4 (3)
C4—C3—C2122.9 (3)C15—C16—H16119.8
C4—C3—H3118.5C17—C16—H16119.8
C2—C3—H3118.5C18—C17—C16120.1 (3)
C6—C4—C3117.8 (3)C18—C17—H17120.0
C6—C4—C5121.9 (3)C16—C17—H17120.0
C3—C4—C5120.3 (3)C17—C18—C13121.6 (3)
C4—C5—H5A109.5C17—C18—H18119.2
C4—C5—H5B109.5C13—C18—H18119.2
H5A—C5—H5B109.5C20—C19—C24117.0 (2)
C4—C5—H5C109.5C20—C19—C12120.9 (2)
H5A—C5—H5C109.5C24—C19—C12122.1 (2)
H5B—C5—H5C109.5C19—C20—C21122.2 (3)
C4—C6—C7120.7 (3)C19—C20—H20118.9
C4—C6—H6119.7C21—C20—H20118.9
C7—C6—H6119.7C22—C21—C20119.7 (3)
C6—C7—C8122.1 (3)C22—C21—H21120.2
C6—C7—H7119.0C20—C21—H21120.2
C8—C7—H7119.0C21—C22—O1124.4 (3)
C7—C8—C2118.1 (2)C21—C22—C23119.5 (3)
C7—C8—C9118.8 (2)O1—C22—C23116.0 (3)
C2—C8—C9123.1 (2)C22—C23—C24120.5 (3)
C10—C9—C14117.6 (2)C22—C23—H23119.8
C10—C9—C8120.0 (2)C24—C23—H23119.8
C14—C9—C8122.3 (2)C23—C24—C19121.2 (3)
C9—C10—C11122.3 (3)C23—C24—H24119.4
C9—C10—H10118.9C19—C24—H24119.4
C11—C10—H10118.9O1—C25—H25A109.5
C12—C11—C10122.1 (3)O1—C25—H25B109.5
C12—C11—H11119.0H25A—C25—H25B109.5
C10—C11—H11119.0O1—C25—H25C109.5
C11—C12—C13118.0 (2)H25A—C25—H25C109.5
C11—C12—C19120.0 (2)H25B—C25—H25C109.5
C13—C12—C19122.0 (2)C22—O1—C25117.3 (2)
C18—C13—C14118.4 (2)
C8—C2—C3—C40.2 (4)C12—C13—C14—C92.4 (3)
C1—C2—C3—C4178.4 (3)C10—C9—C14—C15179.2 (2)
C2—C3—C4—C61.4 (4)C8—C9—C14—C153.5 (4)
C2—C3—C4—C5178.2 (3)C10—C9—C14—C130.0 (3)
C3—C4—C6—C71.2 (4)C8—C9—C14—C13175.7 (2)
C5—C4—C6—C7178.4 (3)C13—C14—C15—C163.2 (4)
C4—C6—C7—C80.7 (4)C9—C14—C15—C16177.6 (2)
C6—C7—C8—C22.3 (4)C14—C15—C16—C170.3 (4)
C6—C7—C8—C9178.6 (2)C15—C16—C17—C182.4 (4)
C3—C2—C8—C72.0 (4)C16—C17—C18—C130.9 (4)
C1—C2—C8—C7176.6 (3)C14—C13—C18—C172.6 (4)
C3—C2—C8—C9178.9 (2)C12—C13—C18—C17178.8 (3)
C1—C2—C8—C92.5 (4)C11—C12—C19—C2053.8 (3)
C7—C8—C9—C1063.5 (3)C13—C12—C19—C20126.4 (3)
C2—C8—C9—C10115.5 (3)C11—C12—C19—C24123.9 (3)
C7—C8—C9—C14112.1 (3)C13—C12—C19—C2456.0 (3)
C2—C8—C9—C1468.9 (3)C24—C19—C20—C210.5 (4)
C14—C9—C10—C111.1 (4)C12—C19—C20—C21178.2 (2)
C8—C9—C10—C11174.7 (2)C19—C20—C21—C220.3 (4)
C9—C10—C11—C120.3 (4)C20—C21—C22—O1179.9 (2)
C10—C11—C12—C132.7 (4)C20—C21—C22—C230.2 (4)
C10—C11—C12—C19177.2 (2)C21—C22—C23—C240.6 (4)
C11—C12—C13—C18174.9 (2)O1—C22—C23—C24179.7 (2)
C19—C12—C13—C185.2 (3)C22—C23—C24—C190.4 (4)
C11—C12—C13—C143.7 (3)C20—C19—C24—C230.1 (4)
C19—C12—C13—C14176.2 (2)C12—C19—C24—C23177.8 (2)
C18—C13—C14—C154.5 (3)C21—C22—O1—C2511.4 (4)
C12—C13—C14—C15176.8 (2)C23—C22—O1—C25168.9 (3)
C18—C13—C14—C9176.2 (2)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C13–C18 ring.
D—H···AD—HH···AD···AD—H···A
C25—H25C···Cgi0.962.783.597 (5)144
Symmetry code: (i) x1, y, z.
Scale factors for the benchmarked energy model top
Energy modelkeleckpolkdispkrep
CE-B3LYP···B3LYP/6-31G(d,p) electron densities1.0570.7400.8710.618
Interaction energies (KJ mol-1) top
R is the distance between molecular centroids (mean atomic position) in Å.
ColourNsymopREelecEpolEdispErepEtotal
Red2x, y, z15.38-2.2-0.6-11.26.2-8.6
Orange1-x, -y, -z15.99-4.3-0.8-11.54.2-12.5
Yellow1-x, -y, -z7.45-6.2-1.3-39.219.3-29.7
Lime2x, y, z9.17-10.0-1.8-44.026.8-33.6
Green2x, y, z10.46-0.1-0.1-6.61.5-5.0
Aquamarine1-x, -y, -z6.86-6.8-0.9-39.918.7-31.0
Cyan1-x, -y, -z10.11-0.3-0.4-19.86.7-13.7
Blue1-x, -y, -z5.37-3.3-1.9-69.232.2-45.2
Violet1-x, -y, -z9.31-6.5-0.8-36.020.7-26.0
Orchid2x, y, z14.010.10.0-2.00.0-1.7
Magenta1-x, -y, -z11.61-3.3-1.0-41.620.4-27.9
 

Acknowledgements

The authors thank the Central Instrumentation Facility (DST–FIST), Queen Mary's College (A), Chennai-4, for the computing facilities and the SAIF, IIT, Madras, for the X-ray data collection facility.

References

First citationBruker (2012). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCai, J., Lin, Y., Yu, J., Wu, C., Chen, L., Cui, Y., Yang, Y., Chen, B. & Qian, G. (2014). RSC Adv. 4, 49457–49461.  Web of Science CrossRef Google Scholar
First citationChen, F., Bai, D., Jiang, D., Wang, Y. & He, H. (2017). Dalton Trans. 46, 11469–11478.  Web of Science CrossRef Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO – A System for Computational Chemistry. Available at: https://hirshfeldsurface.net/  Google Scholar
First citationLima, C. F. R. A. C., Rocha, M. A. A., Schröder, B., Gomes, L. R., Low, J. N. & Santos, L. M. N. B. F. (2012). J. Phys. Chem. B, 116, 3557–3570.  Web of Science CrossRef Google Scholar
First citationLin, X., Telepeni, I., Blake, A. J., Dailly, A., Brown, C. M., Simmons, J. M., Zoppi, M., Walker, G. S., Thomas, K. M., Mays, T. J., Hubberstey, P., Champness, N. R. & Schröder, M. (2009). J. Am. Chem. Soc. 131, 2159–2171.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationRokade, Y. B. & Sayyed, R. Z. (2009). Rasayan J. Chem. 2, 972–980.  CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.  CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer 17.5. The University of Western Australia.  Google Scholar
First citationUpadhayaya, R. S., Vandavasi, J. K., Kardile, R. A., Lahore, S. V., Dixit, S. S., Deokar, H. S., Shinde, P. D., Sarmah, M. P. & Chattopadhyaya, J. (2010). Eur. J. Med. Chem. 45, 1854–1867.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWright, M. S., Lax, A. R., Henderson, G. & Chen, J. A. (2000). Mycologia, 92, 42–45.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds