research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (2,2′-bi­pyridine-κ2N,N′)-trans-bis­­(tert-butyl­di­methyl­sil­yl­oxy)-cis-dioxidomolybdenum(VI)

CROSSMARK_Color_square_no_text.svg

aA.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Prospect, 119991, Moscow, Russian Federation, bChemistry Department, M.V. Lomonosov Moscow State University, 1 Leninskie Gory Str., Building 3, Moscow 119991, Russian Federation, and cN.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky Prospect, Moscow 119991, Russian Federation
*Correspondence e-mail: mminyaev@mail.ru

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 25 May 2018; accepted 8 June 2018; online 15 June 2018)

In the title compound, [(tBuSiMe2O)2MoO2(2,2′-bi­pyridine)] or [Mo(C6H15OSi)2O2(C10H8N2)], the MoVI atom has a distorted octa­hedral environment with the sil­oxy substituents occupying the trans positions. The complex contains a rare (R3SiO)2MO2 (M = Mo, W) structural motif and was formed in a reaction between sodium molybdate and tert-butyl­dimethyl­silyl chloride in the presence of 2,2-bi­pyridine. In the crystal, neighbouring mol­ecules are linked by C—H⋯O=Mo hydrogen bonds, forming chains propagating along the a-axis direction.

1. Chemical context

Bulky sil­oxy ligands are of inter­est as they can stabilize transition metal complexes with low coordination numbers, providing attractive structures and chemistry (Eppley et al., 1991[Eppley, D. F., Wolczanski, P. T. & Van Duyne, G. D. (1991). Angew. Chem. Int. Ed. Engl. 30, 584-585.]; Neithamer et al., 1989[Neithamer, D. R., LaPointe, R. E., Wheeler, R. A., Richeson, D. S., Van Duyne, G. D. & Wolczanski, P. T. (1989). J. Am. Chem. Soc. 111, 9056-9072.]; Huang & DeKock, 1993[Huang, M. & DeKock, C. W. (1993). Inorg. Chem. 32, 2287-2291.]). The structural and reactivity studies of cis-MVIO2 and cis-MVIOS complexes (M = Mo, W), including sil­oxy derivatives, are essential for understanding the activity of specific enzymes (Thapper et al., 1999[Thapper, A., Donahue, J. P., Musgrave, K. B., Willer, M. W., Nordlander, E., Hedman, B., Hodgson, K. O. & Holm, R. H. (1999). Inorg. Chem. 38, 4104-4114.]; Miao et al., 2000[Miao, M., Willer, M. W. & Holm, R. H. (2000). Inorg. Chem. 39, 2843-2849.]). Both MoVIO2 and Mo sil­oxy derivatives have attracted attention as precursors, or as real catalytic species, in various catalytic applications (Heppekausen et al., 2012[Heppekausen, J., Stade, R., Kondoh, A., Seidel, G., Goddard, R. & Fürstner, A. (2012). Chem. Eur. J. 18, 10281-10299.]; Arzoumanian et al., 2008[Arzoumanian, H., Bakhtchadjian, R., Agrifoglio, G., Atencio, R. & Briceño, A. (2008). Transition Met. Chem. 33, 941-951.]; Coelho et al., 2011[Coelho, A. C., Nolasco, M., Balula, S. S., Antunes, M. M., Pereira, C. C. L., Almeida Paz, F. A., Valente, A. A., Pillinger, M., Ribeiro-Claro, P., Klinowski, J. & Gonçalves, I. S. (2011). Inorg. Chem. 50, 525-538.]; Bruno et al., 2006[Bruno, S. M., Monteiro, B., Balula, M. S., Lourenço, C., Valente, A. A., Pillinger, M., Ribeiro-Claro, P. & Gonçalves, I. S. (2006). Molecules, 11, 298-308.]). Herein, we report on the crystal structure and synthesis of the title complex, (tBuSiMe2O)2MoO2(bipy) (I)[link].

[Scheme 1]

It was prepared by a one-pot reaction of sodium molybdate (Na2MoO4) with 2,2-bi­pyridine (bipy) in aceto­nitrile followed by addition of tert-butyl­dimethyl­silyl chloride (Fig. 1[link]).

[Figure 1]
Figure 1
Synthesis of [(tBuSiMe2O)2MoO2(2,2′-bi­pyridine)] (I)[link].

2. Structural commentary

A view of the mol­ecular structure of the 16-electron complex (tBuSiMe2O)2MoO2(bipy) (I)[link] is given in Fig. 2[link], and selected geometrical parameters are given in Table 1[link]. The bipy ligand is not planar, but instead twisted about the C5—C6 bond with a dihedral angle of 9.76 (14)° between the two pyridine rings. The Mo environment resembles a distorted octa­hedron with the bulky sil­oxy ligands occupying the trans positions. The X—Mo—X bond angles lie in the ranges 77.30 (7)–79.91 (7)° for OSi—Mo1—N, 97.22 (8)–98.38 (9) for OSi—Mo1—OMo=O, 90.23 (7)–94.24 (7) for OMo=O—Mo1—N (cis) and 159.26 (7)–163.31 (7) for OMo=O—Mo1—N (trans). The Mo=O double bonds are, as expected, shorter by ca 0.20 Å than the Mo—OSi single bonds (Table 1[link]), while the Mo—N bond lengths are the longest.

Table 1
Selected geometric parameters (Å, °)

Mo1—O1 1.9001 (17) Mo1—O4 1.7073 (16)
Mo1—O2 1.9149 (17) Mo1—N1 2.3508 (18)
Mo1—O3 1.7058 (17) Mo1—N2 2.3523 (18)
       
O1—Mo1—O2 153.41 (7) O3—Mo1—N1 159.26 (7)
O1—Mo1—O3 98.38 (9) O4—Mo1—N1 94.24 (7)
O1—Mo1—O4 97.22 (8) O1—Mo1—N2 79.53 (7)
O2—Mo1—O3 98.38 (8) O2—Mo1—N2 79.91 (7)
O2—Mo1—O4 97.63 (8) O3—Mo1—N2 90.23 (7)
O3—Mo1—O4 106.46 (8) O4—Mo1—N2 163.31 (7)
O1—Mo1—N1 77.30 (7) N1—Mo1—N2 69.07 (6)
O2—Mo1—N1 79.72 (7)    
[Figure 2]
Figure 2
The mol­ecular structure of the title complex (I)[link]. Displacement ellipsoids are drawn at the 50% probability level and, for clarity, H atoms have been omitted.

The Mo—X bond lengths in five known complexes of types (Ph3SiO)2MoO2(L) and (Ph3SiO)2MoO2(py)2 (where L is a κ2N,N′-coordinated ligand, py is pyridine; CSD refcodes are LEKCEL, SOKPAK, WIXCEL, WIXCIP and ZASHAE; see Section 4, Database survey below) vary from 1.695 to 1.705 Å for Mo=O, 1.923 to 1.939 Å for Mo—OSi and 2.336–2.407 Å for Mo—N. Slightly shorter Mo—O bond lengths are found in the complexes (Ph3SiO)2MoO2(PPh3) (PERGAU; 1.678 and 1.678 Å for Mo=O, 1.903 and 1.922 Å for Mo—OSi) and (Ph3SiO)2MoO2 (PERFUN; 1.690 Å for Mo=O and 1.816 Å for Mo—OSi), likely because of the reduced number of coordinated σ-donating atoms. The title complex exhibits similar Mo=O and Mo—N bond lengths to those in (Ph3SiO)2MoO2(L), but the Mo—OSi bond lengths are shorter by ca 0.02 Å, probably as a result of the lower steric influence of the tBuSiMe2O ligand than that of Ph3SiO. The X—Mo—X bond angles in (I)[link] and those in (Ph3SiO)2MoO2(L) are also similar.

3. Supra­molecular features

In the crystal, neighbouring mol­ecules are linked by C—H⋯O=Mo hydrogen bonds, forming chains along the a-axis direction (Fig. 3[link] and Table 2[link]). Similar Mo=O⋯HAr inter­actions can be found in the (Ph3SiO)2MoO2(L) complexes mentioned above. Other non-valent inter­molecular short contacts present in the structure of (I)[link] are less significant.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O4i 0.95 2.38 3.260 (3) 153
C7—H7⋯O3i 0.95 2.59 3.189 (3) 122
C7—H7⋯O4i 0.95 2.55 3.494 (3) 170
C8—H8⋯O3i 0.95 2.55 3.168 (3) 123
Symmetry code: (i) x+1, y, z.
[Figure 3]
Figure 3
A view along the b axis of the crystal packing of the title complex (I)[link]. Only the H atoms involved in hydrogen bonding (dashed lines; see Table 2[link]) are included.

4. Database survey

Crystal structures possessing the (R3SiO)2M(=O)2 structural motif (M = Cr, Mo or W; R is alk­yl/ar­yl) are quite rare. Nine such structures have been described to date in the Cambridge Structural Database (CSD Version 5.39, latest update February 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), which have only R = Ph. There are two complexes of the type (Ph3SiO)2MO2 without additional σ-donors (M = Mo, CSD refcode PERFUN: Huang & DeKock, 1993[Huang, M. & DeKock, C. W. (1993). Inorg. Chem. 32, 2287-2291.]; M = Cr, PSILCR: Stensland & Kierkegaard, 1970[Stensland, B. & Kierkegaard, P. (1970). Acta Chem. Scand. 24, 211-220.]), two complexes with σ-donating monodentate ligands, viz. (Ph3SiO)2MoO2(PPh3) (PERGAU: Huang & DeKock, 1993[Huang, M. & DeKock, C. W. (1993). Inorg. Chem. 32, 2287-2291.]), (Ph3SiO)2MoO2(py)2 (py mol­ecules cis; WIXCIP: Thapper et al., 1999[Thapper, A., Donahue, J. P., Musgrave, K. B., Willer, M. W., Nordlander, E., Hedman, B., Hodgson, K. O. & Holm, R. H. (1999). Inorg. Chem. 38, 4104-4114.]) and five (Ph3SiO)2MO2(L) complexes (where M = Mo and W; L is a κ2N,N′-bidentate ligand). They include (Ph3SiO)2MoO2(bipy) (LEKCEL: Heppekausen et al., 2012[Heppekausen, J., Stade, R., Kondoh, A., Seidel, G., Goddard, R. & Fürstner, A. (2012). Chem. Eur. J. 18, 10281-10299.]), (Ph3SiO)2MoO2(4,4′-tBu2bipy) (SOKPAK: Arzoumanian et al., 2008[Arzoumanian, H., Bakhtchadjian, R., Agrifoglio, G., Atencio, R. & Briceño, A. (2008). Transition Met. Chem. 33, 941-951.]), (Ph3SiO)2MoO2(phen) (phen is 1,10-phenanthroline; WIXCEL: Thapper et al., 1999[Thapper, A., Donahue, J. P., Musgrave, K. B., Willer, M. W., Nordlander, E., Hedman, B., Hodgson, K. O. & Holm, R. H. (1999). Inorg. Chem. 38, 4104-4114.]), (Ph3SiO)2WO2(3,4,7,8-Me4phen)(MELGEP: Miao et al., 2000[Miao, M., Willer, M. W. & Holm, R. H. (2000). Inorg. Chem. 39, 2843-2849.]) and (Ph3SiO)2MoO2(pzpy) (pzpy is 2-(1H-pyrazol-3-yl)pyridine; ZASHAE: Coelho et al., 2011[Coelho, A. C., Nolasco, M., Balula, S. S., Antunes, M. M., Pereira, C. C. L., Almeida Paz, F. A., Valente, A. A., Pillinger, M., Ribeiro-Claro, P., Klinowski, J. & Gonçalves, I. S. (2011). Inorg. Chem. 50, 525-538.]).

5. Synthesis and crystallization

The title MoVI complex was synthesized by a modification of previously reported methods for an analogous complex (Huang & DeKock, 1993[Huang, M. & DeKock, C. W. (1993). Inorg. Chem. 32, 2287-2291.]; Bruno et al., 2006[Bruno, S. M., Monteiro, B., Balula, M. S., Lourenço, C., Valente, A. A., Pillinger, M., Ribeiro-Claro, P. & Gonçalves, I. S. (2006). Molecules, 11, 298-308.]). Details of the synthesis are illustrated in Fig. 1[link]. Under an argon atmosphere, a stirred mixture of anhydrous sodium molybdate (0.41 g, 2.0 mmol) and 2,2-bi­pyridine (0.310 g, 2.0 mmol) in CH3CN (15 ml) was cooled to 273 K and a solution of tert-butyl­dimethyl­silyl chloride (0.603 g, 4.00 mmol) in CH3CN (10 ml) was slowly added. The obtained suspension was allowed to warm slowly to room temperature and was stirred overnight. All volatiles were removed under reduced pressure. The residue was extracted with THF (50 ml) and filtered. The filtrates were concentrated and cooled to 248 K to afford colourless crystals of (I)[link] (yield 0.850 g, 1.55 mmol, 78%).

1H NMR (CD2Cl2, 298K) δ: −0.45 (s, 12H), 0.55 (s, 18H), 7.60 (t, 2H), 8.08 (t, 2H), 8.19 (m, 2H), 8.29 (d, 2H). 13C{1H} NMR (CD2Cl2, 298K) δ: −4.3, 19.5, 25.9, 122.0, 126.1, 139.8, 150.9. See the Supporting information for 1H and 13C{1H} NMR spectra. Analysis found (calculated for C22H38MoN2O4Si2): C 48.65 (48.33), H 7.30 (7.01), N 5.28% (5.12%).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms were found from difference-Fourier maps but positioned geometrically and refined as riding: C—H = 0.95–0.98 Å with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(C) for other H atoms. A rotating group model was applied for the methyl groups. Reflections 001, 010 and 0[\overline{1}]1 were omitted from the refinement as they were affected by the beam stop.

Table 3
Experimental details

Crystal data
Chemical formula [Mo(C6H15OSi)2O2(C10H8N2)]
Mr 546.66
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 150
a, b, c (Å) 8.4027 (8), 12.8657 (13), 14.4266 (14)
α, β, γ (°) 113.144 (2), 91.133 (2), 105.501 (2)
V3) 1368.1 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.59
Crystal size (mm) 0.37 × 0.16 × 0.01
 
Data collection
Diffractometer Bruker SMART APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.612, 0.797
No. of measured, independent and observed [I > 2σ(I)] reflections 14073, 6550, 5158
Rint 0.030
(sin θ/λ)max−1) 0.660
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.075, 1.01
No. of reflections 6550
No. of parameters 290
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.50, −0.76
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2017/1 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2017/1 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2017/1 (Sheldrick, 2015) and publCIF (Westrip, 2010).

(2,2'-Bipyridine-κ2N,N')-trans-bis(tert-\ butyldimethylsilyloxy)-cis-dioxiomolybdenum(VI) top
Crystal data top
[Mo(C6H15OSi)2O2(C10H8N2)]Z = 2
Mr = 546.66F(000) = 572
Triclinic, P1Dx = 1.327 Mg m3
a = 8.4027 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.8657 (13) ÅCell parameters from 4261 reflections
c = 14.4266 (14) Åθ = 2.5–30.2°
α = 113.144 (2)°µ = 0.59 mm1
β = 91.133 (2)°T = 150 K
γ = 105.501 (2)°Plate, colourless
V = 1368.1 (2) Å30.37 × 0.16 × 0.01 mm
Data collection top
Bruker SMART APEXII
diffractometer
6550 independent reflections
Radiation source: fine-focus sealed tube5158 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω scansθmax = 28.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1111
Tmin = 0.612, Tmax = 0.797k = 1616
14073 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0328P)2 + 0.2626P]
where P = (Fo2 + 2Fc2)/3
6550 reflections(Δ/σ)max = 0.001
290 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.76 e Å3
Special details top

Experimental. All synthetic manipulations were conducted under an argon atmosphere, using a dry box and standard Schlenk and vacuum line techniques. THF was predried over NaOH and distilled from potassium/benzophenoneketyl under argon. CH3CN was distilled from calcium hydride under argon. CD2Cl2 was carefully distilled from LiAlH4 and stored over 4?Å molecular sieves. The Mo complex was synthesized by a modification of previously reported methods for an analogous complex (Huang & DeKock, 1993; Bruno et al., 2006). Elemental (C, H, N) analysis was performed with a PerkinElmer 2400 Series II elemental CHNS/O analyzer. NMR spectra were recorded with a Bruker AVANCE 400 spectrometer at 298K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.52976 (2)0.50708 (2)0.72617 (2)0.02159 (6)
Si10.49782 (9)0.23030 (6)0.72652 (5)0.03018 (16)
Si20.76259 (8)0.79213 (6)0.75979 (5)0.02501 (15)
N10.7113 (2)0.44628 (16)0.60828 (14)0.0215 (4)
N20.7921 (2)0.53749 (17)0.80986 (14)0.0212 (4)
O10.5091 (2)0.35145 (15)0.71423 (14)0.0351 (4)
O20.6496 (2)0.65577 (14)0.72517 (12)0.0294 (4)
O30.4593 (2)0.55966 (17)0.84064 (13)0.0349 (4)
O40.36694 (19)0.46985 (16)0.63499 (13)0.0329 (4)
C10.6609 (3)0.3972 (2)0.50836 (18)0.0292 (5)
H10.5550360.3979320.4847330.035*
C20.7559 (3)0.3452 (3)0.43764 (19)0.0398 (7)
H20.7166310.3109790.3667910.048*
C30.9084 (3)0.3443 (3)0.4724 (2)0.0458 (8)
H30.9754180.3075970.4256450.055*
C40.9640 (3)0.3968 (2)0.57561 (19)0.0350 (6)
H41.0701370.3977910.6005570.042*
C50.8626 (3)0.4483 (2)0.64229 (17)0.0220 (5)
C60.9120 (3)0.5063 (2)0.75423 (17)0.0213 (5)
C71.0721 (3)0.5303 (2)0.79989 (18)0.0302 (6)
H71.1554800.5083290.7595160.036*
C81.1091 (3)0.5865 (3)0.90479 (19)0.0365 (7)
H81.2183040.6041390.9374030.044*
C90.9851 (3)0.6166 (2)0.96145 (19)0.0335 (6)
H91.0071720.6548251.0336670.040*
C100.8284 (3)0.5901 (2)0.91123 (17)0.0266 (5)
H100.7428230.6099940.9503380.032*
C110.5902 (4)0.2679 (3)0.8581 (3)0.0663 (10)
H11A0.5405880.3235520.9071400.099*
H11B0.7110210.3044350.8666460.099*
H11C0.5678370.1956170.8697730.099*
C120.6180 (5)0.1462 (3)0.6336 (3)0.0723 (11)
H12A0.7357890.1932570.6486190.108*
H12B0.5736030.1301780.5643700.108*
H12C0.6078030.0711870.6389130.108*
C130.2713 (4)0.1436 (3)0.7013 (2)0.0406 (7)
C140.1814 (4)0.2076 (4)0.7858 (3)0.0682 (11)
H14A0.0620890.1643460.7704650.102*
H14B0.1971870.2879830.7906770.102*
H14C0.2271050.2117730.8505910.102*
C150.2504 (5)0.0183 (3)0.6950 (3)0.0739 (12)
H15A0.1315070.0260890.6806290.111*
H15B0.2981240.0240240.7600150.111*
H15C0.3081730.0228230.6404590.111*
C160.1928 (4)0.1339 (3)0.6008 (3)0.0663 (11)
H16A0.0733610.0916310.5890270.099*
H16B0.2465250.0903360.5450510.099*
H16C0.2080280.2134340.6038520.099*
C170.7485 (4)0.8299 (3)0.6479 (2)0.0395 (7)
H17A0.7798160.7719380.5891290.059*
H17B0.8244270.9092480.6642710.059*
H17C0.6339280.8284170.6315100.059*
C180.9844 (3)0.8106 (2)0.8014 (2)0.0341 (6)
H18A1.0283640.7586510.7450490.051*
H18B0.9899100.7896040.8594720.051*
H18C1.0510980.8931560.8214050.051*
C190.6780 (3)0.8919 (2)0.86890 (19)0.0323 (6)
C200.7706 (4)1.0223 (3)0.8951 (2)0.0536 (8)
H20A0.7297471.0731450.9538750.080*
H20B0.7507591.0402310.8366100.080*
H20C0.8904781.0368630.9114930.080*
C210.4918 (4)0.8679 (3)0.8387 (2)0.0483 (8)
H21A0.4476290.9191610.8953100.072*
H21B0.4325690.7847340.8224210.072*
H21C0.4759980.8842990.7788580.072*
C220.6998 (4)0.8661 (3)0.96252 (19)0.0405 (7)
H22A0.6571020.9187161.0190960.061*
H22B0.8183680.8794410.9819030.061*
H22C0.6377470.7834540.9464960.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.01231 (9)0.02799 (12)0.02539 (11)0.00788 (7)0.00225 (7)0.01080 (9)
Si10.0280 (4)0.0293 (4)0.0335 (4)0.0066 (3)0.0005 (3)0.0146 (3)
Si20.0272 (3)0.0270 (4)0.0230 (3)0.0095 (3)0.0036 (3)0.0115 (3)
N10.0166 (9)0.0228 (10)0.0218 (10)0.0062 (8)0.0006 (7)0.0058 (8)
N20.0171 (9)0.0242 (10)0.0222 (10)0.0083 (8)0.0025 (7)0.0081 (8)
O10.0257 (9)0.0324 (10)0.0488 (12)0.0036 (8)0.0011 (8)0.0218 (9)
O20.0305 (9)0.0267 (9)0.0312 (10)0.0125 (8)0.0051 (7)0.0096 (8)
O30.0221 (9)0.0522 (12)0.0308 (10)0.0149 (8)0.0078 (7)0.0148 (9)
O40.0193 (8)0.0445 (11)0.0343 (10)0.0114 (8)0.0014 (7)0.0147 (9)
C10.0229 (12)0.0337 (14)0.0254 (13)0.0094 (11)0.0037 (10)0.0062 (11)
C20.0383 (15)0.0523 (18)0.0196 (13)0.0182 (14)0.0001 (11)0.0027 (12)
C30.0340 (15)0.067 (2)0.0266 (14)0.0262 (15)0.0069 (11)0.0026 (14)
C40.0223 (12)0.0529 (18)0.0266 (13)0.0184 (12)0.0041 (10)0.0086 (12)
C50.0152 (10)0.0256 (13)0.0236 (12)0.0063 (9)0.0022 (9)0.0084 (10)
C60.0178 (10)0.0255 (12)0.0213 (11)0.0081 (9)0.0023 (9)0.0094 (10)
C70.0190 (11)0.0462 (16)0.0267 (13)0.0161 (11)0.0041 (9)0.0123 (12)
C80.0219 (12)0.0586 (19)0.0277 (14)0.0165 (12)0.0023 (10)0.0139 (13)
C90.0312 (13)0.0473 (17)0.0206 (12)0.0160 (12)0.0001 (10)0.0102 (12)
C100.0240 (12)0.0349 (14)0.0228 (12)0.0140 (11)0.0064 (9)0.0104 (11)
C110.064 (2)0.074 (3)0.059 (2)0.0102 (19)0.0221 (18)0.034 (2)
C120.068 (2)0.055 (2)0.093 (3)0.029 (2)0.037 (2)0.022 (2)
C130.0400 (15)0.0408 (17)0.0405 (16)0.0009 (13)0.0004 (12)0.0249 (14)
C140.0435 (19)0.092 (3)0.070 (2)0.0143 (19)0.0225 (18)0.038 (2)
C150.065 (2)0.053 (2)0.103 (3)0.0100 (18)0.003 (2)0.050 (2)
C160.054 (2)0.070 (2)0.057 (2)0.0134 (18)0.0222 (17)0.0308 (19)
C170.0412 (15)0.0485 (18)0.0363 (16)0.0132 (14)0.0044 (12)0.0252 (14)
C180.0304 (13)0.0425 (16)0.0315 (14)0.0087 (12)0.0056 (11)0.0188 (12)
C190.0362 (14)0.0296 (14)0.0300 (14)0.0148 (12)0.0033 (11)0.0080 (11)
C200.077 (2)0.0313 (17)0.0459 (19)0.0173 (16)0.0028 (16)0.0084 (14)
C210.0469 (17)0.054 (2)0.0408 (17)0.0332 (16)0.0069 (13)0.0051 (15)
C220.0516 (17)0.0431 (17)0.0249 (14)0.0232 (14)0.0093 (12)0.0062 (12)
Geometric parameters (Å, º) top
Mo1—O11.9001 (17)C11—H11B0.9800
Mo1—O21.9149 (17)C11—H11C0.9800
Mo1—O31.7058 (17)C12—H12A0.9800
Mo1—O41.7073 (16)C12—H12B0.9800
Mo1—N12.3508 (18)C12—H12C0.9800
Mo1—N22.3523 (18)C13—C141.521 (5)
Si1—O11.6152 (18)C13—C161.525 (4)
Si1—C111.860 (3)C13—C151.540 (4)
Si1—C121.867 (3)C14—H14A0.9800
Si1—C131.876 (3)C14—H14B0.9800
Si2—O21.6219 (18)C14—H14C0.9800
Si2—C181.870 (3)C15—H15A0.9800
Si2—C171.871 (3)C15—H15B0.9800
Si2—C191.891 (3)C15—H15C0.9800
N1—C11.332 (3)C16—H16A0.9800
N1—C51.344 (3)C16—H16B0.9800
N2—C101.335 (3)C16—H16C0.9800
N2—C61.347 (3)C17—H17A0.9800
C1—C21.381 (3)C17—H17B0.9800
C1—H10.9500C17—H17C0.9800
C2—C31.372 (4)C18—H18A0.9800
C2—H20.9500C18—H18B0.9800
C3—C41.380 (3)C18—H18C0.9800
C3—H30.9500C19—C211.530 (4)
C4—C51.387 (3)C19—C221.531 (4)
C4—H40.9500C19—C201.535 (4)
C5—C61.482 (3)C20—H20A0.9800
C6—C71.387 (3)C20—H20B0.9800
C7—C81.382 (3)C20—H20C0.9800
C7—H70.9500C21—H21A0.9800
C8—C91.380 (3)C21—H21B0.9800
C8—H80.9500C21—H21C0.9800
C9—C101.379 (3)C22—H22A0.9800
C9—H90.9500C22—H22B0.9800
C10—H100.9500C22—H22C0.9800
C11—H11A0.9800
O1—Mo1—O2153.41 (7)H11A—C11—H11C109.5
O1—Mo1—O398.38 (9)H11B—C11—H11C109.5
O1—Mo1—O497.22 (8)Si1—C12—H12A109.5
O2—Mo1—O398.38 (8)Si1—C12—H12B109.5
O2—Mo1—O497.63 (8)H12A—C12—H12B109.5
O3—Mo1—O4106.46 (8)Si1—C12—H12C109.5
O1—Mo1—N177.30 (7)H12A—C12—H12C109.5
O2—Mo1—N179.72 (7)H12B—C12—H12C109.5
O3—Mo1—N1159.26 (7)C14—C13—C16108.3 (3)
O4—Mo1—N194.24 (7)C14—C13—C15109.6 (3)
O1—Mo1—N279.53 (7)C16—C13—C15109.2 (3)
O2—Mo1—N279.91 (7)C14—C13—Si1109.7 (2)
O3—Mo1—N290.23 (7)C16—C13—Si1109.4 (2)
O4—Mo1—N2163.31 (7)C15—C13—Si1110.6 (2)
N1—Mo1—N269.07 (6)C13—C14—H14A109.5
O1—Si1—C11108.92 (14)C13—C14—H14B109.5
O1—Si1—C12109.23 (15)H14A—C14—H14B109.5
C11—Si1—C12109.27 (19)C13—C14—H14C109.5
O1—Si1—C13107.15 (11)H14A—C14—H14C109.5
C11—Si1—C13111.06 (15)H14B—C14—H14C109.5
C12—Si1—C13111.14 (16)C13—C15—H15A109.5
O2—Si2—C18110.49 (11)C13—C15—H15B109.5
O2—Si2—C17107.57 (11)H15A—C15—H15B109.5
C18—Si2—C17110.27 (12)C13—C15—H15C109.5
O2—Si2—C19109.25 (11)H15A—C15—H15C109.5
C18—Si2—C19109.30 (12)H15B—C15—H15C109.5
C17—Si2—C19109.94 (13)C13—C16—H16A109.5
C1—N1—C5119.01 (19)C13—C16—H16B109.5
C1—N1—Mo1121.42 (15)H16A—C16—H16B109.5
C5—N1—Mo1119.10 (14)C13—C16—H16C109.5
C10—N2—C6118.84 (19)H16A—C16—H16C109.5
C10—N2—Mo1121.80 (14)H16B—C16—H16C109.5
C6—N2—Mo1119.28 (14)Si2—C17—H17A109.5
Si1—O1—Mo1169.53 (12)Si2—C17—H17B109.5
Si2—O2—Mo1163.13 (11)H17A—C17—H17B109.5
N1—C1—C2122.8 (2)Si2—C17—H17C109.5
N1—C1—H1118.6H17A—C17—H17C109.5
C2—C1—H1118.6H17B—C17—H17C109.5
C3—C2—C1118.2 (2)Si2—C18—H18A109.5
C3—C2—H2120.9Si2—C18—H18B109.5
C1—C2—H2120.9H18A—C18—H18B109.5
C2—C3—C4119.8 (2)Si2—C18—H18C109.5
C2—C3—H3120.1H18A—C18—H18C109.5
C4—C3—H3120.1H18B—C18—H18C109.5
C3—C4—C5118.9 (2)C21—C19—C22108.6 (2)
C3—C4—H4120.5C21—C19—C20109.5 (2)
C5—C4—H4120.5C22—C19—C20109.4 (2)
N1—C5—C4121.3 (2)C21—C19—Si2109.38 (18)
N1—C5—C6116.11 (19)C22—C19—Si2109.81 (17)
C4—C5—C6122.6 (2)C20—C19—Si2110.15 (19)
N2—C6—C7121.4 (2)C19—C20—H20A109.5
N2—C6—C5115.85 (18)C19—C20—H20B109.5
C7—C6—C5122.7 (2)H20A—C20—H20B109.5
C8—C7—C6119.3 (2)C19—C20—H20C109.5
C8—C7—H7120.4H20A—C20—H20C109.5
C6—C7—H7120.4H20B—C20—H20C109.5
C9—C8—C7119.0 (2)C19—C21—H21A109.5
C9—C8—H8120.5C19—C21—H21B109.5
C7—C8—H8120.5H21A—C21—H21B109.5
C10—C9—C8118.7 (2)C19—C21—H21C109.5
C10—C9—H9120.6H21A—C21—H21C109.5
C8—C9—H9120.6H21B—C21—H21C109.5
N2—C10—C9122.7 (2)C19—C22—H22A109.5
N2—C10—H10118.6C19—C22—H22B109.5
C9—C10—H10118.6H22A—C22—H22B109.5
Si1—C11—H11A109.5C19—C22—H22C109.5
Si1—C11—H11B109.5H22A—C22—H22C109.5
H11A—C11—H11B109.5H22B—C22—H22C109.5
Si1—C11—H11C109.5
C11—Si1—O1—Mo116.0 (7)N2—C6—C7—C80.5 (4)
C12—Si1—O1—Mo1135.2 (6)C5—C6—C7—C8178.9 (2)
C13—Si1—O1—Mo1104.3 (6)C6—C7—C8—C90.5 (4)
C18—Si2—O2—Mo168.6 (4)C7—C8—C9—C100.4 (4)
C17—Si2—O2—Mo1171.0 (3)C6—N2—C10—C91.7 (4)
C19—Si2—O2—Mo151.7 (4)Mo1—N2—C10—C9175.1 (2)
C5—N1—C1—C21.7 (4)C8—C9—C10—N20.7 (4)
Mo1—N1—C1—C2170.4 (2)O1—Si1—C13—C1467.7 (2)
N1—C1—C2—C30.1 (4)C11—Si1—C13—C1451.2 (3)
C1—C2—C3—C41.4 (5)C12—Si1—C13—C14173.0 (2)
C2—C3—C4—C50.9 (5)O1—Si1—C13—C1651.0 (3)
C1—N1—C5—C42.2 (4)C11—Si1—C13—C16169.8 (2)
Mo1—N1—C5—C4170.10 (19)C12—Si1—C13—C1668.3 (3)
C1—N1—C5—C6178.9 (2)O1—Si1—C13—C15171.3 (2)
Mo1—N1—C5—C68.9 (3)C11—Si1—C13—C1569.9 (3)
C3—C4—C5—N10.9 (4)C12—Si1—C13—C1552.0 (3)
C3—C4—C5—C6179.8 (3)O2—Si2—C19—C2153.3 (2)
C10—N2—C6—C71.6 (4)C18—Si2—C19—C21174.34 (19)
Mo1—N2—C6—C7175.28 (19)C17—Si2—C19—C2164.5 (2)
C10—N2—C6—C5179.9 (2)O2—Si2—C19—C2265.7 (2)
Mo1—N2—C6—C53.2 (3)C18—Si2—C19—C2255.3 (2)
N1—C5—C6—N27.9 (3)C17—Si2—C19—C22176.46 (19)
C4—C5—C6—N2171.0 (2)O2—Si2—C19—C20173.69 (18)
N1—C5—C6—C7170.6 (2)C18—Si2—C19—C2065.3 (2)
C4—C5—C6—C710.4 (4)C17—Si2—C19—C2055.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O4i0.952.383.260 (3)153
C7—H7···O3i0.952.593.189 (3)122
C7—H7···O4i0.952.553.494 (3)170
C8—H8···O3i0.952.553.168 (3)123
C10—H10···O30.952.613.118 (3)114
Symmetry code: (i) x+1, y, z.
 

Funding information

Funding for this research was provided by: the TIPS RAS State Plan.

References

First citationArzoumanian, H., Bakhtchadjian, R., Agrifoglio, G., Atencio, R. & Briceño, A. (2008). Transition Met. Chem. 33, 941–951.  Web of Science CrossRef Google Scholar
First citationBruker (2008). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, S. M., Monteiro, B., Balula, M. S., Lourenço, C., Valente, A. A., Pillinger, M., Ribeiro-Claro, P. & Gonçalves, I. S. (2006). Molecules, 11, 298–308.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCoelho, A. C., Nolasco, M., Balula, S. S., Antunes, M. M., Pereira, C. C. L., Almeida Paz, F. A., Valente, A. A., Pillinger, M., Ribeiro-Claro, P., Klinowski, J. & Gonçalves, I. S. (2011). Inorg. Chem. 50, 525–538.  Web of Science CrossRef Google Scholar
First citationEppley, D. F., Wolczanski, P. T. & Van Duyne, G. D. (1991). Angew. Chem. Int. Ed. Engl. 30, 584–585.  CrossRef Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHeppekausen, J., Stade, R., Kondoh, A., Seidel, G., Goddard, R. & Fürstner, A. (2012). Chem. Eur. J. 18, 10281–10299.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHuang, M. & DeKock, C. W. (1993). Inorg. Chem. 32, 2287–2291.  CrossRef Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMiao, M., Willer, M. W. & Holm, R. H. (2000). Inorg. Chem. 39, 2843–2849.  Web of Science CrossRef Google Scholar
First citationNeithamer, D. R., LaPointe, R. E., Wheeler, R. A., Richeson, D. S., Van Duyne, G. D. & Wolczanski, P. T. (1989). J. Am. Chem. Soc. 111, 9056–9072.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStensland, B. & Kierkegaard, P. (1970). Acta Chem. Scand. 24, 211–220.  CrossRef Web of Science Google Scholar
First citationThapper, A., Donahue, J. P., Musgrave, K. B., Willer, M. W., Nordlander, E., Hedman, B., Hodgson, K. O. & Holm, R. H. (1999). Inorg. Chem. 38, 4104–4114.  Web of Science CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds