research communications
κ2N,N′)-trans-bis(tert-butyldimethylsilyloxy)-cis-dioxidomolybdenum(VI)
of (2,2′-bipyridine-aA.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Prospect, 119991, Moscow, Russian Federation, bChemistry Department, M.V. Lomonosov Moscow State University, 1 Leninskie Gory Str., Building 3, Moscow 119991, Russian Federation, and cN.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky Prospect, Moscow 119991, Russian Federation
*Correspondence e-mail: mminyaev@mail.ru
In the title compound, [(tBuSiMe2O)2MoO2(2,2′-bipyridine)] or [Mo(C6H15OSi)2O2(C10H8N2)], the MoVI atom has a distorted octahedral environment with the siloxy substituents occupying the trans positions. The complex contains a rare (R3SiO)2MO2 (M = Mo, W) structural motif and was formed in a reaction between sodium molybdate and tert-butyldimethylsilyl chloride in the presence of 2,2-bipyridine. In the crystal, neighbouring molecules are linked by C—H⋯O=Mo hydrogen bonds, forming chains propagating along the a-axis direction.
Keywords: crystal structure; molybdenum(VI); rare structural motif; coordination compounds; NMR; hydrogen bonding..
CCDC reference: 1833969
1. Chemical context
Bulky siloxy ligands are of interest as they can stabilize transition metal complexes with low coordination numbers, providing attractive structures and chemistry (Eppley et al., 1991; Neithamer et al., 1989; Huang & DeKock, 1993). The structural and reactivity studies of cis-MVIO2 and cis-MVIOS complexes (M = Mo, W), including siloxy derivatives, are essential for understanding the activity of specific enzymes (Thapper et al., 1999; Miao et al., 2000). Both MoVIO2 and Mo siloxy derivatives have attracted attention as precursors, or as real catalytic species, in various catalytic applications (Heppekausen et al., 2012; Arzoumanian et al., 2008; Coelho et al., 2011; Bruno et al., 2006). Herein, we report on the and synthesis of the title complex, (tBuSiMe2O)2MoO2(bipy) (I).
It was prepared by a one-pot reaction of sodium molybdate (Na2MoO4) with 2,2-bipyridine (bipy) in acetonitrile followed by addition of tert-butyldimethylsilyl chloride (Fig. 1).
2. Structural commentary
A view of the molecular structure of the 16-electron complex (tBuSiMe2O)2MoO2(bipy) (I) is given in Fig. 2, and selected geometrical parameters are given in Table 1. The bipy ligand is not planar, but instead twisted about the C5—C6 bond with a dihedral angle of 9.76 (14)° between the two pyridine rings. The Mo environment resembles a distorted octahedron with the bulky siloxy ligands occupying the trans positions. The X—Mo—X bond angles lie in the ranges 77.30 (7)–79.91 (7)° for OSi—Mo1—N, 97.22 (8)–98.38 (9) for OSi—Mo1—OMo=O, 90.23 (7)–94.24 (7) for OMo=O—Mo1—N (cis) and 159.26 (7)–163.31 (7) for OMo=O—Mo1—N (trans). The Mo=O double bonds are, as expected, shorter by ca 0.20 Å than the Mo—OSi single bonds (Table 1), while the Mo—N bond lengths are the longest.
|
The Mo—X bond lengths in five known complexes of types (Ph3SiO)2MoO2(L) and (Ph3SiO)2MoO2(py)2 (where L is a κ2N,N′-coordinated ligand, py is pyridine; CSD refcodes are LEKCEL, SOKPAK, WIXCEL, WIXCIP and ZASHAE; see Section 4, Database survey below) vary from 1.695 to 1.705 Å for Mo=O, 1.923 to 1.939 Å for Mo—OSi and 2.336–2.407 Å for Mo—N. Slightly shorter Mo—O bond lengths are found in the complexes (Ph3SiO)2MoO2(PPh3) (PERGAU; 1.678 and 1.678 Å for Mo=O, 1.903 and 1.922 Å for Mo—OSi) and (Ph3SiO)2MoO2 (PERFUN; 1.690 Å for Mo=O and 1.816 Å for Mo—OSi), likely because of the reduced number of coordinated σ-donating atoms. The title complex exhibits similar Mo=O and Mo—N bond lengths to those in (Ph3SiO)2MoO2(L), but the Mo—OSi bond lengths are shorter by ca 0.02 Å, probably as a result of the lower steric influence of the tBuSiMe2O ligand than that of Ph3SiO. The X—Mo—X bond angles in (I) and those in (Ph3SiO)2MoO2(L) are also similar.
3. Supramolecular features
In the crystal, neighbouring molecules are linked by C—H⋯O=Mo hydrogen bonds, forming chains along the a-axis direction (Fig. 3 and Table 2). Similar Mo=O⋯HAr interactions can be found in the (Ph3SiO)2MoO2(L) complexes mentioned above. Other non-valent intermolecular short contacts present in the structure of (I) are less significant.
4. Database survey
Crystal structures possessing the (R3SiO)2M(=O)2 structural motif (M = Cr, Mo or W; R is alkyl/aryl) are quite rare. Nine such structures have been described to date in the Cambridge Structural Database (CSD Version 5.39, latest update February 2018; Groom et al., 2016), which have only R = Ph. There are two complexes of the type (Ph3SiO)2MO2 without additional σ-donors (M = Mo, CSD refcode PERFUN: Huang & DeKock, 1993; M = Cr, PSILCR: Stensland & Kierkegaard, 1970), two complexes with σ-donating monodentate ligands, viz. (Ph3SiO)2MoO2(PPh3) (PERGAU: Huang & DeKock, 1993), (Ph3SiO)2MoO2(py)2 (py molecules cis; WIXCIP: Thapper et al., 1999) and five (Ph3SiO)2MO2(L) complexes (where M = Mo and W; L is a κ2N,N′-bidentate ligand). They include (Ph3SiO)2MoO2(bipy) (LEKCEL: Heppekausen et al., 2012), (Ph3SiO)2MoO2(4,4′-tBu2bipy) (SOKPAK: Arzoumanian et al., 2008), (Ph3SiO)2MoO2(phen) (phen is 1,10-phenanthroline; WIXCEL: Thapper et al., 1999), (Ph3SiO)2WO2(3,4,7,8-Me4phen)(MELGEP: Miao et al., 2000) and (Ph3SiO)2MoO2(pzpy) (pzpy is 2-(1H-pyrazol-3-yl)pyridine; ZASHAE: Coelho et al., 2011).
5. Synthesis and crystallization
The title MoVI complex was synthesized by a modification of previously reported methods for an analogous complex (Huang & DeKock, 1993; Bruno et al., 2006). Details of the synthesis are illustrated in Fig. 1. Under an argon atmosphere, a stirred mixture of anhydrous sodium molybdate (0.41 g, 2.0 mmol) and 2,2-bipyridine (0.310 g, 2.0 mmol) in CH3CN (15 ml) was cooled to 273 K and a solution of tert-butyldimethylsilyl chloride (0.603 g, 4.00 mmol) in CH3CN (10 ml) was slowly added. The obtained suspension was allowed to warm slowly to room temperature and was stirred overnight. All volatiles were removed under reduced pressure. The residue was extracted with THF (50 ml) and filtered. The filtrates were concentrated and cooled to 248 K to afford colourless crystals of (I) (yield 0.850 g, 1.55 mmol, 78%).
1H NMR (CD2Cl2, 298K) δ: −0.45 (s, 12H), 0.55 (s, 18H), 7.60 (t, 2H), 8.08 (t, 2H), 8.19 (m, 2H), 8.29 (d, 2H). 13C{1H} NMR (CD2Cl2, 298K) δ: −4.3, 19.5, 25.9, 122.0, 126.1, 139.8, 150.9. See the Supporting information for 1H and 13C{1H} NMR spectra. Analysis found (calculated for C22H38MoN2O4Si2): C 48.65 (48.33), H 7.30 (7.01), N 5.28% (5.12%).
6. Refinement
Crystal data, data collection and structure . All H atoms were found from difference-Fourier maps but positioned geometrically and refined as riding: C—H = 0.95–0.98 Å with Uiso(H) = 1.5Ueq(C-methyl) and 1.2Ueq(C) for other H atoms. A rotating group model was applied for the methyl groups. Reflections 001, 010 and 01 were omitted from the as they were affected by the beam stop.
details are summarized in Table 3Supporting information
CCDC reference: 1833969
https://doi.org/10.1107/S2056989018008472/su5447sup1.cif
contains datablocks I, Global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018008472/su5447Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989018008472/su5447Isup3.cdx
NMR spectra. DOI: https://doi.org/10.1107/S2056989018008472/su5447sup4.pdf
Data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2017/1 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2017/1 (Sheldrick, 2015) and publCIF (Westrip, 2010).[Mo(C6H15OSi)2O2(C10H8N2)] | Z = 2 |
Mr = 546.66 | F(000) = 572 |
Triclinic, P1 | Dx = 1.327 Mg m−3 |
a = 8.4027 (8) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 12.8657 (13) Å | Cell parameters from 4261 reflections |
c = 14.4266 (14) Å | θ = 2.5–30.2° |
α = 113.144 (2)° | µ = 0.59 mm−1 |
β = 91.133 (2)° | T = 150 K |
γ = 105.501 (2)° | Plate, colourless |
V = 1368.1 (2) Å3 | 0.37 × 0.16 × 0.01 mm |
Bruker SMART APEXII diffractometer | 6550 independent reflections |
Radiation source: fine-focus sealed tube | 5158 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.030 |
ω scans | θmax = 28.0°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −11→11 |
Tmin = 0.612, Tmax = 0.797 | k = −16→16 |
14073 measured reflections | l = −19→19 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.075 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0328P)2 + 0.2626P] where P = (Fo2 + 2Fc2)/3 |
6550 reflections | (Δ/σ)max = 0.001 |
290 parameters | Δρmax = 0.50 e Å−3 |
0 restraints | Δρmin = −0.76 e Å−3 |
Experimental. All synthetic manipulations were conducted under an argon atmosphere, using a dry box and standard Schlenk and vacuum line techniques. THF was predried over NaOH and distilled from potassium/benzophenoneketyl under argon. CH3CN was distilled from calcium hydride under argon. CD2Cl2 was carefully distilled from LiAlH4 and stored over 4?Å molecular sieves. The Mo complex was synthesized by a modification of previously reported methods for an analogous complex (Huang & DeKock, 1993; Bruno et al., 2006). Elemental (C, H, N) analysis was performed with a PerkinElmer 2400 Series II elemental CHNS/O analyzer. NMR spectra were recorded with a Bruker AVANCE 400 spectrometer at 298K. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Mo1 | 0.52976 (2) | 0.50708 (2) | 0.72617 (2) | 0.02159 (6) | |
Si1 | 0.49782 (9) | 0.23030 (6) | 0.72652 (5) | 0.03018 (16) | |
Si2 | 0.76259 (8) | 0.79213 (6) | 0.75979 (5) | 0.02501 (15) | |
N1 | 0.7113 (2) | 0.44628 (16) | 0.60828 (14) | 0.0215 (4) | |
N2 | 0.7921 (2) | 0.53749 (17) | 0.80986 (14) | 0.0212 (4) | |
O1 | 0.5091 (2) | 0.35145 (15) | 0.71423 (14) | 0.0351 (4) | |
O2 | 0.6496 (2) | 0.65577 (14) | 0.72517 (12) | 0.0294 (4) | |
O3 | 0.4593 (2) | 0.55966 (17) | 0.84064 (13) | 0.0349 (4) | |
O4 | 0.36694 (19) | 0.46985 (16) | 0.63499 (13) | 0.0329 (4) | |
C1 | 0.6609 (3) | 0.3972 (2) | 0.50836 (18) | 0.0292 (5) | |
H1 | 0.555036 | 0.397932 | 0.484733 | 0.035* | |
C2 | 0.7559 (3) | 0.3452 (3) | 0.43764 (19) | 0.0398 (7) | |
H2 | 0.716631 | 0.310979 | 0.366791 | 0.048* | |
C3 | 0.9084 (3) | 0.3443 (3) | 0.4724 (2) | 0.0458 (8) | |
H3 | 0.975418 | 0.307597 | 0.425645 | 0.055* | |
C4 | 0.9640 (3) | 0.3968 (2) | 0.57561 (19) | 0.0350 (6) | |
H4 | 1.070137 | 0.397791 | 0.600557 | 0.042* | |
C5 | 0.8626 (3) | 0.4483 (2) | 0.64229 (17) | 0.0220 (5) | |
C6 | 0.9120 (3) | 0.5063 (2) | 0.75423 (17) | 0.0213 (5) | |
C7 | 1.0721 (3) | 0.5303 (2) | 0.79989 (18) | 0.0302 (6) | |
H7 | 1.155480 | 0.508329 | 0.759516 | 0.036* | |
C8 | 1.1091 (3) | 0.5865 (3) | 0.90479 (19) | 0.0365 (7) | |
H8 | 1.218304 | 0.604139 | 0.937403 | 0.044* | |
C9 | 0.9851 (3) | 0.6166 (2) | 0.96145 (19) | 0.0335 (6) | |
H9 | 1.007172 | 0.654825 | 1.033667 | 0.040* | |
C10 | 0.8284 (3) | 0.5901 (2) | 0.91123 (17) | 0.0266 (5) | |
H10 | 0.742823 | 0.609994 | 0.950338 | 0.032* | |
C11 | 0.5902 (4) | 0.2679 (3) | 0.8581 (3) | 0.0663 (10) | |
H11A | 0.540588 | 0.323552 | 0.907140 | 0.099* | |
H11B | 0.711021 | 0.304435 | 0.866646 | 0.099* | |
H11C | 0.567837 | 0.195617 | 0.869773 | 0.099* | |
C12 | 0.6180 (5) | 0.1462 (3) | 0.6336 (3) | 0.0723 (11) | |
H12A | 0.735789 | 0.193257 | 0.648619 | 0.108* | |
H12B | 0.573603 | 0.130178 | 0.564370 | 0.108* | |
H12C | 0.607803 | 0.071187 | 0.638913 | 0.108* | |
C13 | 0.2713 (4) | 0.1436 (3) | 0.7013 (2) | 0.0406 (7) | |
C14 | 0.1814 (4) | 0.2076 (4) | 0.7858 (3) | 0.0682 (11) | |
H14A | 0.062089 | 0.164346 | 0.770465 | 0.102* | |
H14B | 0.197187 | 0.287983 | 0.790677 | 0.102* | |
H14C | 0.227105 | 0.211773 | 0.850591 | 0.102* | |
C15 | 0.2504 (5) | 0.0183 (3) | 0.6950 (3) | 0.0739 (12) | |
H15A | 0.131507 | −0.026089 | 0.680629 | 0.111* | |
H15B | 0.298124 | 0.024024 | 0.760015 | 0.111* | |
H15C | 0.308173 | −0.022823 | 0.640459 | 0.111* | |
C16 | 0.1928 (4) | 0.1339 (3) | 0.6008 (3) | 0.0663 (11) | |
H16A | 0.073361 | 0.091631 | 0.589027 | 0.099* | |
H16B | 0.246525 | 0.090336 | 0.545051 | 0.099* | |
H16C | 0.208028 | 0.213434 | 0.603852 | 0.099* | |
C17 | 0.7485 (4) | 0.8299 (3) | 0.6479 (2) | 0.0395 (7) | |
H17A | 0.779816 | 0.771938 | 0.589129 | 0.059* | |
H17B | 0.824427 | 0.909248 | 0.664271 | 0.059* | |
H17C | 0.633928 | 0.828417 | 0.631510 | 0.059* | |
C18 | 0.9844 (3) | 0.8106 (2) | 0.8014 (2) | 0.0341 (6) | |
H18A | 1.028364 | 0.758651 | 0.745049 | 0.051* | |
H18B | 0.989910 | 0.789604 | 0.859472 | 0.051* | |
H18C | 1.051098 | 0.893156 | 0.821405 | 0.051* | |
C19 | 0.6780 (3) | 0.8919 (2) | 0.86890 (19) | 0.0323 (6) | |
C20 | 0.7706 (4) | 1.0223 (3) | 0.8951 (2) | 0.0536 (8) | |
H20A | 0.729747 | 1.073145 | 0.953875 | 0.080* | |
H20B | 0.750759 | 1.040231 | 0.836610 | 0.080* | |
H20C | 0.890478 | 1.036863 | 0.911493 | 0.080* | |
C21 | 0.4918 (4) | 0.8679 (3) | 0.8387 (2) | 0.0483 (8) | |
H21A | 0.447629 | 0.919161 | 0.895310 | 0.072* | |
H21B | 0.432569 | 0.784734 | 0.822421 | 0.072* | |
H21C | 0.475998 | 0.884299 | 0.778858 | 0.072* | |
C22 | 0.6998 (4) | 0.8661 (3) | 0.96252 (19) | 0.0405 (7) | |
H22A | 0.657102 | 0.918716 | 1.019096 | 0.061* | |
H22B | 0.818368 | 0.879441 | 0.981903 | 0.061* | |
H22C | 0.637747 | 0.783454 | 0.946496 | 0.061* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mo1 | 0.01231 (9) | 0.02799 (12) | 0.02539 (11) | 0.00788 (7) | 0.00225 (7) | 0.01080 (9) |
Si1 | 0.0280 (4) | 0.0293 (4) | 0.0335 (4) | 0.0066 (3) | 0.0005 (3) | 0.0146 (3) |
Si2 | 0.0272 (3) | 0.0270 (4) | 0.0230 (3) | 0.0095 (3) | 0.0036 (3) | 0.0115 (3) |
N1 | 0.0166 (9) | 0.0228 (10) | 0.0218 (10) | 0.0062 (8) | 0.0006 (7) | 0.0058 (8) |
N2 | 0.0171 (9) | 0.0242 (10) | 0.0222 (10) | 0.0083 (8) | 0.0025 (7) | 0.0081 (8) |
O1 | 0.0257 (9) | 0.0324 (10) | 0.0488 (12) | 0.0036 (8) | 0.0011 (8) | 0.0218 (9) |
O2 | 0.0305 (9) | 0.0267 (9) | 0.0312 (10) | 0.0125 (8) | 0.0051 (7) | 0.0096 (8) |
O3 | 0.0221 (9) | 0.0522 (12) | 0.0308 (10) | 0.0149 (8) | 0.0078 (7) | 0.0148 (9) |
O4 | 0.0193 (8) | 0.0445 (11) | 0.0343 (10) | 0.0114 (8) | −0.0014 (7) | 0.0147 (9) |
C1 | 0.0229 (12) | 0.0337 (14) | 0.0254 (13) | 0.0094 (11) | −0.0037 (10) | 0.0062 (11) |
C2 | 0.0383 (15) | 0.0523 (18) | 0.0196 (13) | 0.0182 (14) | 0.0001 (11) | 0.0027 (12) |
C3 | 0.0340 (15) | 0.067 (2) | 0.0266 (14) | 0.0262 (15) | 0.0069 (11) | 0.0026 (14) |
C4 | 0.0223 (12) | 0.0529 (18) | 0.0266 (13) | 0.0184 (12) | 0.0041 (10) | 0.0086 (12) |
C5 | 0.0152 (10) | 0.0256 (13) | 0.0236 (12) | 0.0063 (9) | 0.0022 (9) | 0.0084 (10) |
C6 | 0.0178 (10) | 0.0255 (12) | 0.0213 (11) | 0.0081 (9) | 0.0023 (9) | 0.0094 (10) |
C7 | 0.0190 (11) | 0.0462 (16) | 0.0267 (13) | 0.0161 (11) | 0.0041 (9) | 0.0123 (12) |
C8 | 0.0219 (12) | 0.0586 (19) | 0.0277 (14) | 0.0165 (12) | −0.0023 (10) | 0.0139 (13) |
C9 | 0.0312 (13) | 0.0473 (17) | 0.0206 (12) | 0.0160 (12) | −0.0001 (10) | 0.0102 (12) |
C10 | 0.0240 (12) | 0.0349 (14) | 0.0228 (12) | 0.0140 (11) | 0.0064 (9) | 0.0104 (11) |
C11 | 0.064 (2) | 0.074 (3) | 0.059 (2) | 0.0102 (19) | −0.0221 (18) | 0.034 (2) |
C12 | 0.068 (2) | 0.055 (2) | 0.093 (3) | 0.029 (2) | 0.037 (2) | 0.022 (2) |
C13 | 0.0400 (15) | 0.0408 (17) | 0.0405 (16) | −0.0009 (13) | −0.0004 (12) | 0.0249 (14) |
C14 | 0.0435 (19) | 0.092 (3) | 0.070 (2) | 0.0143 (19) | 0.0225 (18) | 0.038 (2) |
C15 | 0.065 (2) | 0.053 (2) | 0.103 (3) | −0.0100 (18) | 0.003 (2) | 0.050 (2) |
C16 | 0.054 (2) | 0.070 (2) | 0.057 (2) | −0.0134 (18) | −0.0222 (17) | 0.0308 (19) |
C17 | 0.0412 (15) | 0.0485 (18) | 0.0363 (16) | 0.0132 (14) | 0.0044 (12) | 0.0252 (14) |
C18 | 0.0304 (13) | 0.0425 (16) | 0.0315 (14) | 0.0087 (12) | 0.0056 (11) | 0.0188 (12) |
C19 | 0.0362 (14) | 0.0296 (14) | 0.0300 (14) | 0.0148 (12) | 0.0033 (11) | 0.0080 (11) |
C20 | 0.077 (2) | 0.0313 (17) | 0.0459 (19) | 0.0173 (16) | 0.0028 (16) | 0.0084 (14) |
C21 | 0.0469 (17) | 0.054 (2) | 0.0408 (17) | 0.0332 (16) | 0.0069 (13) | 0.0051 (15) |
C22 | 0.0516 (17) | 0.0431 (17) | 0.0249 (14) | 0.0232 (14) | 0.0093 (12) | 0.0062 (12) |
Mo1—O1 | 1.9001 (17) | C11—H11B | 0.9800 |
Mo1—O2 | 1.9149 (17) | C11—H11C | 0.9800 |
Mo1—O3 | 1.7058 (17) | C12—H12A | 0.9800 |
Mo1—O4 | 1.7073 (16) | C12—H12B | 0.9800 |
Mo1—N1 | 2.3508 (18) | C12—H12C | 0.9800 |
Mo1—N2 | 2.3523 (18) | C13—C14 | 1.521 (5) |
Si1—O1 | 1.6152 (18) | C13—C16 | 1.525 (4) |
Si1—C11 | 1.860 (3) | C13—C15 | 1.540 (4) |
Si1—C12 | 1.867 (3) | C14—H14A | 0.9800 |
Si1—C13 | 1.876 (3) | C14—H14B | 0.9800 |
Si2—O2 | 1.6219 (18) | C14—H14C | 0.9800 |
Si2—C18 | 1.870 (3) | C15—H15A | 0.9800 |
Si2—C17 | 1.871 (3) | C15—H15B | 0.9800 |
Si2—C19 | 1.891 (3) | C15—H15C | 0.9800 |
N1—C1 | 1.332 (3) | C16—H16A | 0.9800 |
N1—C5 | 1.344 (3) | C16—H16B | 0.9800 |
N2—C10 | 1.335 (3) | C16—H16C | 0.9800 |
N2—C6 | 1.347 (3) | C17—H17A | 0.9800 |
C1—C2 | 1.381 (3) | C17—H17B | 0.9800 |
C1—H1 | 0.9500 | C17—H17C | 0.9800 |
C2—C3 | 1.372 (4) | C18—H18A | 0.9800 |
C2—H2 | 0.9500 | C18—H18B | 0.9800 |
C3—C4 | 1.380 (3) | C18—H18C | 0.9800 |
C3—H3 | 0.9500 | C19—C21 | 1.530 (4) |
C4—C5 | 1.387 (3) | C19—C22 | 1.531 (4) |
C4—H4 | 0.9500 | C19—C20 | 1.535 (4) |
C5—C6 | 1.482 (3) | C20—H20A | 0.9800 |
C6—C7 | 1.387 (3) | C20—H20B | 0.9800 |
C7—C8 | 1.382 (3) | C20—H20C | 0.9800 |
C7—H7 | 0.9500 | C21—H21A | 0.9800 |
C8—C9 | 1.380 (3) | C21—H21B | 0.9800 |
C8—H8 | 0.9500 | C21—H21C | 0.9800 |
C9—C10 | 1.379 (3) | C22—H22A | 0.9800 |
C9—H9 | 0.9500 | C22—H22B | 0.9800 |
C10—H10 | 0.9500 | C22—H22C | 0.9800 |
C11—H11A | 0.9800 | ||
O1—Mo1—O2 | 153.41 (7) | H11A—C11—H11C | 109.5 |
O1—Mo1—O3 | 98.38 (9) | H11B—C11—H11C | 109.5 |
O1—Mo1—O4 | 97.22 (8) | Si1—C12—H12A | 109.5 |
O2—Mo1—O3 | 98.38 (8) | Si1—C12—H12B | 109.5 |
O2—Mo1—O4 | 97.63 (8) | H12A—C12—H12B | 109.5 |
O3—Mo1—O4 | 106.46 (8) | Si1—C12—H12C | 109.5 |
O1—Mo1—N1 | 77.30 (7) | H12A—C12—H12C | 109.5 |
O2—Mo1—N1 | 79.72 (7) | H12B—C12—H12C | 109.5 |
O3—Mo1—N1 | 159.26 (7) | C14—C13—C16 | 108.3 (3) |
O4—Mo1—N1 | 94.24 (7) | C14—C13—C15 | 109.6 (3) |
O1—Mo1—N2 | 79.53 (7) | C16—C13—C15 | 109.2 (3) |
O2—Mo1—N2 | 79.91 (7) | C14—C13—Si1 | 109.7 (2) |
O3—Mo1—N2 | 90.23 (7) | C16—C13—Si1 | 109.4 (2) |
O4—Mo1—N2 | 163.31 (7) | C15—C13—Si1 | 110.6 (2) |
N1—Mo1—N2 | 69.07 (6) | C13—C14—H14A | 109.5 |
O1—Si1—C11 | 108.92 (14) | C13—C14—H14B | 109.5 |
O1—Si1—C12 | 109.23 (15) | H14A—C14—H14B | 109.5 |
C11—Si1—C12 | 109.27 (19) | C13—C14—H14C | 109.5 |
O1—Si1—C13 | 107.15 (11) | H14A—C14—H14C | 109.5 |
C11—Si1—C13 | 111.06 (15) | H14B—C14—H14C | 109.5 |
C12—Si1—C13 | 111.14 (16) | C13—C15—H15A | 109.5 |
O2—Si2—C18 | 110.49 (11) | C13—C15—H15B | 109.5 |
O2—Si2—C17 | 107.57 (11) | H15A—C15—H15B | 109.5 |
C18—Si2—C17 | 110.27 (12) | C13—C15—H15C | 109.5 |
O2—Si2—C19 | 109.25 (11) | H15A—C15—H15C | 109.5 |
C18—Si2—C19 | 109.30 (12) | H15B—C15—H15C | 109.5 |
C17—Si2—C19 | 109.94 (13) | C13—C16—H16A | 109.5 |
C1—N1—C5 | 119.01 (19) | C13—C16—H16B | 109.5 |
C1—N1—Mo1 | 121.42 (15) | H16A—C16—H16B | 109.5 |
C5—N1—Mo1 | 119.10 (14) | C13—C16—H16C | 109.5 |
C10—N2—C6 | 118.84 (19) | H16A—C16—H16C | 109.5 |
C10—N2—Mo1 | 121.80 (14) | H16B—C16—H16C | 109.5 |
C6—N2—Mo1 | 119.28 (14) | Si2—C17—H17A | 109.5 |
Si1—O1—Mo1 | 169.53 (12) | Si2—C17—H17B | 109.5 |
Si2—O2—Mo1 | 163.13 (11) | H17A—C17—H17B | 109.5 |
N1—C1—C2 | 122.8 (2) | Si2—C17—H17C | 109.5 |
N1—C1—H1 | 118.6 | H17A—C17—H17C | 109.5 |
C2—C1—H1 | 118.6 | H17B—C17—H17C | 109.5 |
C3—C2—C1 | 118.2 (2) | Si2—C18—H18A | 109.5 |
C3—C2—H2 | 120.9 | Si2—C18—H18B | 109.5 |
C1—C2—H2 | 120.9 | H18A—C18—H18B | 109.5 |
C2—C3—C4 | 119.8 (2) | Si2—C18—H18C | 109.5 |
C2—C3—H3 | 120.1 | H18A—C18—H18C | 109.5 |
C4—C3—H3 | 120.1 | H18B—C18—H18C | 109.5 |
C3—C4—C5 | 118.9 (2) | C21—C19—C22 | 108.6 (2) |
C3—C4—H4 | 120.5 | C21—C19—C20 | 109.5 (2) |
C5—C4—H4 | 120.5 | C22—C19—C20 | 109.4 (2) |
N1—C5—C4 | 121.3 (2) | C21—C19—Si2 | 109.38 (18) |
N1—C5—C6 | 116.11 (19) | C22—C19—Si2 | 109.81 (17) |
C4—C5—C6 | 122.6 (2) | C20—C19—Si2 | 110.15 (19) |
N2—C6—C7 | 121.4 (2) | C19—C20—H20A | 109.5 |
N2—C6—C5 | 115.85 (18) | C19—C20—H20B | 109.5 |
C7—C6—C5 | 122.7 (2) | H20A—C20—H20B | 109.5 |
C8—C7—C6 | 119.3 (2) | C19—C20—H20C | 109.5 |
C8—C7—H7 | 120.4 | H20A—C20—H20C | 109.5 |
C6—C7—H7 | 120.4 | H20B—C20—H20C | 109.5 |
C9—C8—C7 | 119.0 (2) | C19—C21—H21A | 109.5 |
C9—C8—H8 | 120.5 | C19—C21—H21B | 109.5 |
C7—C8—H8 | 120.5 | H21A—C21—H21B | 109.5 |
C10—C9—C8 | 118.7 (2) | C19—C21—H21C | 109.5 |
C10—C9—H9 | 120.6 | H21A—C21—H21C | 109.5 |
C8—C9—H9 | 120.6 | H21B—C21—H21C | 109.5 |
N2—C10—C9 | 122.7 (2) | C19—C22—H22A | 109.5 |
N2—C10—H10 | 118.6 | C19—C22—H22B | 109.5 |
C9—C10—H10 | 118.6 | H22A—C22—H22B | 109.5 |
Si1—C11—H11A | 109.5 | C19—C22—H22C | 109.5 |
Si1—C11—H11B | 109.5 | H22A—C22—H22C | 109.5 |
H11A—C11—H11B | 109.5 | H22B—C22—H22C | 109.5 |
Si1—C11—H11C | 109.5 | ||
C11—Si1—O1—Mo1 | −16.0 (7) | N2—C6—C7—C8 | 0.5 (4) |
C12—Si1—O1—Mo1 | −135.2 (6) | C5—C6—C7—C8 | 178.9 (2) |
C13—Si1—O1—Mo1 | 104.3 (6) | C6—C7—C8—C9 | 0.5 (4) |
C18—Si2—O2—Mo1 | 68.6 (4) | C7—C8—C9—C10 | −0.4 (4) |
C17—Si2—O2—Mo1 | −171.0 (3) | C6—N2—C10—C9 | 1.7 (4) |
C19—Si2—O2—Mo1 | −51.7 (4) | Mo1—N2—C10—C9 | −175.1 (2) |
C5—N1—C1—C2 | 1.7 (4) | C8—C9—C10—N2 | −0.7 (4) |
Mo1—N1—C1—C2 | −170.4 (2) | O1—Si1—C13—C14 | −67.7 (2) |
N1—C1—C2—C3 | 0.1 (4) | C11—Si1—C13—C14 | 51.2 (3) |
C1—C2—C3—C4 | −1.4 (5) | C12—Si1—C13—C14 | 173.0 (2) |
C2—C3—C4—C5 | 0.9 (5) | O1—Si1—C13—C16 | 51.0 (3) |
C1—N1—C5—C4 | −2.2 (4) | C11—Si1—C13—C16 | 169.8 (2) |
Mo1—N1—C5—C4 | 170.10 (19) | C12—Si1—C13—C16 | −68.3 (3) |
C1—N1—C5—C6 | 178.9 (2) | O1—Si1—C13—C15 | 171.3 (2) |
Mo1—N1—C5—C6 | −8.9 (3) | C11—Si1—C13—C15 | −69.9 (3) |
C3—C4—C5—N1 | 0.9 (4) | C12—Si1—C13—C15 | 52.0 (3) |
C3—C4—C5—C6 | 179.8 (3) | O2—Si2—C19—C21 | −53.3 (2) |
C10—N2—C6—C7 | −1.6 (4) | C18—Si2—C19—C21 | −174.34 (19) |
Mo1—N2—C6—C7 | 175.28 (19) | C17—Si2—C19—C21 | 64.5 (2) |
C10—N2—C6—C5 | 179.9 (2) | O2—Si2—C19—C22 | 65.7 (2) |
Mo1—N2—C6—C5 | −3.2 (3) | C18—Si2—C19—C22 | −55.3 (2) |
N1—C5—C6—N2 | 7.9 (3) | C17—Si2—C19—C22 | −176.46 (19) |
C4—C5—C6—N2 | −171.0 (2) | O2—Si2—C19—C20 | −173.69 (18) |
N1—C5—C6—C7 | −170.6 (2) | C18—Si2—C19—C20 | 65.3 (2) |
C4—C5—C6—C7 | 10.4 (4) | C17—Si2—C19—C20 | −55.9 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···O4i | 0.95 | 2.38 | 3.260 (3) | 153 |
C7—H7···O3i | 0.95 | 2.59 | 3.189 (3) | 122 |
C7—H7···O4i | 0.95 | 2.55 | 3.494 (3) | 170 |
C8—H8···O3i | 0.95 | 2.55 | 3.168 (3) | 123 |
C10—H10···O3 | 0.95 | 2.61 | 3.118 (3) | 114 |
Symmetry code: (i) x+1, y, z. |
Funding information
Funding for this research was provided by: the TIPS RAS State Plan.
References
Arzoumanian, H., Bakhtchadjian, R., Agrifoglio, G., Atencio, R. & Briceño, A. (2008). Transition Met. Chem. 33, 941–951. Web of Science CrossRef Google Scholar
Bruker (2008). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruno, S. M., Monteiro, B., Balula, M. S., Lourenço, C., Valente, A. A., Pillinger, M., Ribeiro-Claro, P. & Gonçalves, I. S. (2006). Molecules, 11, 298–308. Web of Science CrossRef PubMed CAS Google Scholar
Coelho, A. C., Nolasco, M., Balula, S. S., Antunes, M. M., Pereira, C. C. L., Almeida Paz, F. A., Valente, A. A., Pillinger, M., Ribeiro-Claro, P., Klinowski, J. & Gonçalves, I. S. (2011). Inorg. Chem. 50, 525–538. Web of Science CrossRef Google Scholar
Eppley, D. F., Wolczanski, P. T. & Van Duyne, G. D. (1991). Angew. Chem. Int. Ed. Engl. 30, 584–585. CrossRef Web of Science Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Heppekausen, J., Stade, R., Kondoh, A., Seidel, G., Goddard, R. & Fürstner, A. (2012). Chem. Eur. J. 18, 10281–10299. Web of Science CSD CrossRef CAS PubMed Google Scholar
Huang, M. & DeKock, C. W. (1993). Inorg. Chem. 32, 2287–2291. CrossRef Web of Science Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Miao, M., Willer, M. W. & Holm, R. H. (2000). Inorg. Chem. 39, 2843–2849. Web of Science CrossRef Google Scholar
Neithamer, D. R., LaPointe, R. E., Wheeler, R. A., Richeson, D. S., Van Duyne, G. D. & Wolczanski, P. T. (1989). J. Am. Chem. Soc. 111, 9056–9072. CrossRef Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Stensland, B. & Kierkegaard, P. (1970). Acta Chem. Scand. 24, 211–220. CrossRef Web of Science Google Scholar
Thapper, A., Donahue, J. P., Musgrave, K. B., Willer, M. W., Nordlander, E., Hedman, B., Hodgson, K. O. & Holm, R. H. (1999). Inorg. Chem. 38, 4104–4114. Web of Science CrossRef Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.