research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of (aceto­nitrile-κN)tris­­(pyridine-4-thio­amide-κN)bis­­(thio­cyanate-κN)cobalt(II) aceto­nitrile disolvate and tetra­kis­(pyridine-4-thio­amide-κN)bis­­(thio­cyanate-κN)nickel(II) methanol penta­solvate

CROSSMARK_Color_square_no_text.svg

aInstitut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth Str. 2, D-24118 Kiel, Germany
*Correspondence e-mail: t.neumann@ac.uni-kiel.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 20 April 2018; accepted 22 May 2018; online 12 June 2018)

Reaction of Co(NCS)2 or Ni(NCS)2 with pyridine-4-thio­amide in different solvents led to the formation of two compounds with composition [Co(NCS)2(C2H3N)(C6H6N2S)3]·2CH3CN (1) and [Ni(NCS)2(C6H6N2S)4]·5CH3OH (2), respectively. The asymmetric unit of compound 1 consists of one cobalt(II) cation, two thio­cyanate anions, three pyridine-4-thio­amide ligands, one coordinating and two solvate aceto­nitrile mol­ecules. One of the two aceto­nitrile solvate mol­ecules is disordered over two sets of sites in a 0.62:0.38 ratio. The asymmetric unit of compound 2 comprises of one nickel(II) cation, two thio­cyanate anions, four N-bonding pyridine-4-thio­amide ligands and five methanol solvate mol­ecules. In compound 1, the cobalt(II) cations are octa­hedrally coordinated into discrete complexes by two terminal N-bonding thio­cyanate anions, the N atoms of three pyridine-4-thio­amide ligands and one aceto­nitrile mol­ecule. Additional aceto­nitrile solvate mol­ecules are located between the complexes,. The complexes and solvate mol­ecules are linked via inter­molecular hydrogen bonding into a three-dimensional framework. In compound 2, the nickel(II) cations are likewise octa­hedrally coordinated by two terminal N-bonded thio­cyanate anions and four N-bonding pyridine-4-thio­amide ligands into discrete complexes. From their arrangement cavities are formed, in which the methanol solvate mol­ecules are located. Again, the complexes and solvate mol­ecules are linked into a three-dimensional framework by inter­molecular hydrogen bonding.

1. Chemical context

For several years we have been inter­ested in the structural, thermal and magnetic properties of coordination compounds and polymers based on transition metal thio- and seleno­cyanates (Wöhlert et al., 2013a[Wöhlert, S., Wriedt, M., Fic, T., Tomkowicz, Z., Haase, W. & Näther, C. (2013a). Inorg. Chem. 52, 1061-1068.], 2014a[Wöhlert, S., Runčevski, T., Dinnebier, R. E., Ebbinghaus, S. G. & Näther, C. (2014a). Cryst. Growth Des. 14, 1902-1913.]). In contrast to other three-atomic ligands such as, for example azides, these ligands show a more versatile coordination behaviour, including a terminal coordination and a number of different bridging modes. Therefore they are of inter­est from a structural point of view (Massoud et al., 2013[Massoud, S. S., Guilbeau, A. E., Luong, H. T., Vicente, R., Albering, J. H., Fischer, R. C. & Mautner, F. A. (2013). Polyhedron, 54, 26-33.]; Mousavi et al., 2012[Mousavi, M., Béreau, V., Duhayon, C., Guionneau, P. & Sutter, J. P. (2012). Chem. Commun. 48, 10028-10030.]; Prananto et al., 2017[Prananto, Y. P., Urbatsch, A., Moubaraki, B., Murray, K. S., Turner, D. R., Deacon, G. B. & Batten, S. R. (2017). Aust. J. Chem. 70, 516-528.]; Kabešová et al., 1995[Kabešová, M., Boča, R., Melník, M., Valigura, D. & Dunaj-Jurčo, M. (1995). Coord. Chem. Rev. 140, 115-135.]; Palion-Gazda et al., 2017[Palion-Gazda, J., Gryca, I., Maroń, A., Machura, B. & Kruszynski, R. (2017). Polyhedron, 135, 109-120.]). Moreover, if paramagnetic metal cations are linked by these anionic ligands into chains or layers, cooperative magnetic phenomena can be expected. Hence the rational synthesis of such compounds is in the focus of our investigations (Palion-Gazda et al., 2015[Palion-Gazda, J., Machura, B., Lloret, F. & Julve, M. (2015). Cryst. Growth Des. 15, 2380-2388.]; Wöhlert et al., 2013a[Wöhlert, S., Wriedt, M., Fic, T., Tomkowicz, Z., Haase, W. & Näther, C. (2013a). Inorg. Chem. 52, 1061-1068.]). In this context, compounds of special inter­est include those in which the metal cations are linked by pairs of anionic ligands into linear chains because they can exhibit one-dimensional or three-dimensional ferromagnetic ordering, as shown recently for a number of compounds derived from Co(NCS)2 (Rams et al., 2017a[Rams, M., Böhme, M., Kataev, V., Krupskaya, Y., Büchner, B., Plass, W., Neumann, T., Tomkowicz, Z. & Näther, C. (2017a). Phys. Chem. Chem. Phys. 19, 24534-24544.],b[Rams, M., Tomkowicz, Z., Böhme, M., Plass, W., Suckert, S., Werner, J., Jess, I. & Näther, C. (2017b). Phys. Chem. Chem. Phys. 19, 3232-3243.]; Wöhlert et al. 2012[Wöhlert, S., Ruschewitz, U. & Näther, C. (2012). Cryst. Growth Des. 12, 2715-2718.], 2013b[Wöhlert, S., Fic, T., Tomkowicz, Z., Ebbinghaus, S. G., Rams, M., Haase, W. & Näther, C. (2013b). Inorg. Chem. 52, 12947-12957.], 2014b[Wöhlert, S., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Fink, L., Schmidt, M. U. & Näther, C. (2014b). Inorg. Chem. 53, 8298-8310.]; Werner et al., 2015[Werner, J., Rams, M., Tomkowicz, Z., Runčevski, T., Dinnebier, R. E., Suckert, S. & Näther, C. (2015). Inorg. Chem. 54, 2893-2901.]). Unfortunately, the paramagnetic metal cations CoII or NiII are less chalcophilic and therefore do not form compounds with polymeric structures from solutions, but with discrete complexes instead. In the majority of cases, these cations are octa­hedrally coordinated by two anionic ligands and four monodentate N-donor co-ligands. However, if such complexes are heated, they frequently decompose in discrete steps, forming new compounds as inter­mediates in which the metal cations are linked into one- or two-dimensional network structures. This is the reason why we are also inter­ested in such simple complexes or their solvates (Suckert et al., 2017[Suckert, S., Rams, M., Germann, L. S., Cegiełka, D. M., Dinnebier, R. E. & Näther, C. (2017). Cryst. Growth Des. 17, 3997-4005.]).

[Scheme 1]

In the course of our project we became inter­ested in the monodentate ligand pyridine-4-thio­amide, which might be able to link M(NCS)2 chains (M = Co, Ni) into layers by inter­molecular N—H⋯S hydrogen bonding. For example, this motif is observed in the crystal structure of the pure ligand (Colleter & Gadret, 1967[Colleter, J. C. & Gadret, M. (1967). Bull. Soc. Chim. Fr. 3463-3469.]; Eccles et al., 2014[Eccles, K. S., Morrison, R. E., Maguire, A. R. & Lawrence, S. E. (2014). Cryst. Growth Des. 14, 2753-2762.]). Moreover, one compound derived from Cd(NCS)2 is known in which the metal cations are linked by pairs of anionic ligands into chains (Neumann et al., 2016[Neumann, T., Jess, I. & Näther, C. (2016). Acta Cryst. E72, 370-373.]). Therefore we attempted in the synthesis of discrete precursor complexes or solvates in which the anionic ligands are only terminal N-bonding to transform them subsequently into the desired chain compounds by thermal annealing. Unfortunately, no pure samples could be obtained (Neumann et al., 2017[Neumann, T., Jess, I. & Näther, C. (2017). Acta Cryst. E73, 1786-1789.],2018[Neumann, T., Jess, I. & Näther, C. (2018). Acta Cryst. E74, 141-146.]). In the course of this work we obtained two additional compounds from aceto­nitrile or methanol solution, viz. [Co(NCS)2(C6H6N2S)3(C2H3N)]·2C2H3N (1) and [Ni(NCS)2(C6H6N2S)4]·5CH3OH (2), for which the CN stretching vibration is observed at 2081 cm−1 (1) and 2101 cm−1 (2), respectively. As a consequence, their structures should consist of discrete complexes with terminal N-bonded thio­cyanate anions and additional solvate mol­ecules, even if these wave numbers are at the borderline of those expected for the desired bridging anionic ligands. To check if our assumption can be verified, we have performed single-crystal structure determinations of 1 and 2 and report the results in this communication.

2. Structural commentary

Unfortunately, 1 and 2 could not be prepared as pure phases and were either contaminated with additional unknown crystalline phases or, if an excess of pyridine-4-thio­amide was used, with this less soluble ligand. Therefore, no further investigations regarding physical properties were performed.

The asymmetric unit of compound 1 consists of one cobalt(II) cation, two thio­cyanate anions, three pyridine-4-thio­amide ligands and three aceto­nitrile mol­ecules. One of the two aceto­nitrile solvate mol­ecules is disordered over two sets of sites in a refined ratio of 0.62:0.38. The CoII cation is octa­hedrally coordinated by two terminal N-bonding thio­cyanate anions, an acetonitrile molecule and the pyridine N atoms of three pyridine-4-thio­amide ligands into a discrete complex with the same ligand types trans-positioned to each other (Fig. 1[link]). The Co—N bond lengths to the thio­cyanate anions are significantly shorter than those to the pyridine N atoms (Table 1[link]), in agreement with values for similar structures (Goodgame et al., 2003[Goodgame, D. M. L., Grachvogel, D. A., White, A. J. P. & Williams, D. J. (2003). Inorg. Chim. Acta, 348, 187-193.]; Prananto et al., 2017[Prananto, Y. P., Urbatsch, A., Moubaraki, B., Murray, K. S., Turner, D. R., Deacon, G. B. & Batten, S. R. (2017). Aust. J. Chem. 70, 516-528.]). The bond angles deviate from ideal values, showing that the octa­hedra are slightly distorted (Table 1[link]).

Table 1
Selected geometric parameters (Å, °) for 1[link]

Co1—N1 2.0650 (16) Co1—N31 2.1785 (14)
Co1—N2 2.0720 (16) Co1—N3 2.1950 (15)
Co1—N21 2.1666 (15) Co1—N11 2.2032 (15)
       
N1—Co1—N2 177.65 (6) N21—Co1—N3 88.82 (6)
N1—Co1—N21 91.08 (6) N31—Co1—N3 177.72 (6)
N2—Co1—N21 88.02 (6) N1—Co1—N11 92.70 (6)
N1—Co1—N31 89.52 (6) N2—Co1—N11 88.06 (6)
N2—Co1—N31 92.66 (6) N21—Co1—N11 174.69 (5)
N21—Co1—N31 90.26 (6) N31—Co1—N11 93.50 (5)
N1—Co1—N3 88.41 (6) N3—Co1—N11 87.56 (6)
N2—Co1—N3 89.39 (6)    
[Figure 1]
Figure 1
View of the asymmetric unit of compound 1 with atom labelling and displacement ellipsoids drawn at the 50% probability level. The disordered aceto­nitrile solvent mol­ecule is shown with both orientations.

The asymmetric unit of compound 2 comprises of one nickel(II) cation, two thio­cyanate anions, four N-bonded pyridine-4-thio­amide ligands and five methanol solvate mol­ecules (Fig. 2[link]). The NiII cation is also octa­hedrally coordinated by N atoms, but in this case by four pyridine-4-thio­amide ligands and two terminal thio­cyanate anions. Bond lengths and angles (Table 2[link]) are comparable to those in the structure of compound 1, but the NiN6 octa­hedron is less distorted than the CoN6 octa­hedron. It is noted that in both structures the pyridine-4-thio­amide ligands are not planar. The thio­amide groups are rotated differently out of the pyridine ring plane, with dihedral angles in the range 5.3 (2)–54.5 (2)° for 1 and 40.7 (2)–47.2 (2)° for 2.

Table 2
Selected geometric parameters (Å, °) for 2[link]

Ni1—N1 2.0435 (18) Ni1—N31 2.1250 (17)
Ni1—N2 2.0526 (18) Ni1—N41 2.1262 (17)
Ni1—N21 2.1157 (16) Ni1—N11 2.1316 (17)
       
N1—Ni1—N2 178.69 (7) N21—Ni1—N41 179.30 (7)
N1—Ni1—N21 90.21 (7) N31—Ni1—N41 90.22 (7)
N2—Ni1—N21 90.67 (7) N1—Ni1—N11 91.28 (7)
N1—Ni1—N31 89.06 (7) N2—Ni1—N11 89.71 (7)
N2—Ni1—N31 89.98 (7) N21—Ni1—N11 88.91 (6)
N21—Ni1—N31 89.16 (6) N31—Ni1—N11 178.04 (6)
N1—Ni1—N41 89.46 (7) N41—Ni1—N11 91.72 (7)
N2—Ni1—N41 89.65 (7)    
[Figure 2]
Figure 2
View of the asymmetric unit of compound 2 with atom labelling and displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

In the crystal structure of compound 1, the discrete complexes are linked by inter­molecular N—H⋯S hydrogen bonding between the H atoms of the amino groups and the S atoms of the thio­cyanate anions or the pyridine-4-thio­amide ligands into a three-dimensional framework (Fig. 3[link], Table 3[link]). The complexes are arranged in such a way that cavities are formed in which additional aceto­nitrile mol­ecules are embedded. These solvate mol­ecules are linked together via C—H⋯N inter­actions between the methyl H atoms and the N atom of the aceto­nitrile mol­ecules, but are also connected to the metal complexes by inter­molecular C—H⋯N and C—H⋯S inter­actions.

Table 3
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4C⋯N5′i 0.98 2.37 3.081 (12) 129
C6—H6C⋯S31ii 0.98 3.02 3.901 (3) 150
C11—H11⋯S21i 0.95 2.83 3.6556 (18) 146
C12—H12⋯S1iii 0.95 3.01 3.8491 (18) 148
N12—H1N⋯S1iii 0.88 2.66 3.5097 (17) 163
N12—H2N⋯S2i 0.88 2.71 3.5731 (17) 167
C21—H21⋯N3 0.95 2.63 3.134 (3) 114
C22—H22⋯N5iv 0.95 2.50 3.384 (7) 154
C25—H25⋯S2v 0.95 2.91 3.7172 (18) 144
N22—H3N⋯S1vi 0.88 2.59 3.4715 (19) 179
N22—H4N⋯S31v 0.88 2.87 3.729 (2) 167
C34—H34⋯S11vii 0.95 2.98 3.7698 (19) 142
C35—H35⋯N1 0.95 2.56 3.094 (2) 116
C35—H35⋯S21i 0.95 2.95 3.7301 (19) 140
N32—H5N⋯S2viii 0.88 2.74 3.5390 (18) 152
N32—H6N⋯N4 0.88 2.10 2.951 (3) 164
C8—H8B⋯S11vi 0.98 2.76 3.728 (19) 172
C8′—H8D⋯N5′iv 0.98 2.46 3.26 (2) 140
C8′—H8F⋯S11ix 0.98 2.88 3.65 (3) 137
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+1, -z+1; (iii) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) -x, -y+1, -z+2; (v) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vi) x-1, y, z; (vii) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (viii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ix) -x+1, -y+1, -z+2.
[Figure 3]
Figure 3
Crystal structure of compound 1 in a view along the a axis. Inter­molecular hydrogen bonding is shown as dashed lines.

In the crystal structure of compound 2, a variety of different hydrogen-bonding inter­actions is observed in which the methanol solvate mol­ecules act both as acceptor and donor groups. Like in compound 1, the complexes are connected into a three-dimensional framework by inter­molecular N—H⋯S hydrogen bonding between the H atoms of the amino groups and the S atoms of the thio­cyanate anions. Again, cavities are formed that host the methanol solvate mol­ecules. These mol­ecules are linked by inter­molecular O—H⋯O hydrogen bonding to other methanol mol­ecules, but are also connected to the complexes by N—H⋯O and O—H⋯S hydrogen bonds to the amino groups and the S atoms of the pyridine-4-thio­amide ligands and to the thio­cyanate S atoms (Fig. 4[link], Table 4[link]). Finally, C—H⋯N and C—H⋯S inter­actions consolidate the packing of the mol­ecules in the structure.

Table 4
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯S2i 0.84 2.88 3.409 (2) 123
O1—H1⋯S11ii 0.84 2.92 3.578 (2) 137
O2—H2⋯S31iii 0.84 2.62 3.413 (3) 157
O3—H3⋯S1iv 0.84 2.77 3.427 (2) 136
O3—H3⋯S31v 0.84 2.93 3.576 (2) 135
C5—H5A⋯S31v 0.98 3.03 3.632 (4) 121
O4—H4⋯O5 0.84 1.92 2.708 (5) 156
C6—H6B⋯S31vi 0.98 2.73 3.566 (4) 143
O5—H5⋯S41vii 0.84 2.51 3.216 (3) 142
C7—H7A⋯S41vii 0.98 2.93 3.528 (5) 121
C11—H11⋯N1 0.95 2.52 3.063 (3) 117
C11—H11⋯S1viii 0.95 2.73 3.442 (2) 133
C12—H12⋯S1viii 0.95 2.96 3.542 (2) 121
C15—H15⋯N2 0.95 2.61 3.097 (3) 113
N12—H1N⋯O2 0.88 2.02 2.898 (3) 177
N12—H2N⋯S2ix 0.88 2.58 3.446 (2) 171
C21—H21⋯N1 0.95 2.65 3.109 (3) 110
C25—H25⋯N2 0.95 2.66 3.122 (3) 111
C25—H25⋯S2x 0.95 2.94 3.846 (2) 159
N22—H4N⋯S2xi 0.88 2.64 3.4939 (19) 163
N22—H3N⋯O1 0.88 2.10 2.978 (3) 174
N32—H5N⋯O5 0.88 1.95 2.833 (3) 180
N32—H6N⋯S1vi 0.88 2.64 3.478 (2) 159
C45—H45⋯S11ix 0.95 2.89 3.673 (2) 141
N42—H7N⋯O3 0.88 2.08 2.957 (3) 173
N42—H8N⋯S1xii 0.88 2.88 3.749 (2) 169
Symmetry codes: (i) x+1, y, z; (ii) -x+2, -y+1, -z+1; (iii) x, y-1, z; (iv) x-1, y, z; (v) -x, -y+2, -z; (vi) -x+1, -y+2, -z; (vii) x+1, y+1, z; (viii) -x+1, -y+1, -z; (ix) -x+1, -y+1, -z+1; (x) -x+1, -y+2, -z+1; (xi) -x+2, -y+2, -z+1; (xii) -x, -y+1, -z.
[Figure 4]
Figure 4
Crystal structure of compound 2 in a view along the a axis. Inter­molecular hydrogen bonding is shown as dashed lines.

4. Database survey

There are only two cobalt thio­cyanate derivatives with additional pyridine-4-thio­amide ligands reported in the Cambridge Structure Database (Version 5.39, last update February 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). In tetra­kis­(pyridine-4-carbo­thio­amide-κN1)bis-(thio­cyanato-κN)cobalt(II) methanol monosolvate and tetra­kis­(pyridine-4-carbo­thio­amide-κN1)bis-(thio­cyanato-κN)cobalt(II) monohydrate, the CoII cations are octa­hedrally coordinated by four pyridine-4-carbo­thio­amide ligands and two thio­cyanate anions, with the different types of solvent mol­ecules being located in cavities of the structure (Neumann et al., 2017[Neumann, T., Jess, I. & Näther, C. (2017). Acta Cryst. E73, 1786-1789.], 2018[Neumann, T., Jess, I. & Näther, C. (2018). Acta Cryst. E74, 141-146.]). In Zn(NCS)2(pyridine-4-thio­amide)2, the ZnII cations are tetra­hedrally coordinated by two thio­cyanate anions and two pyridine-4-thio­amide ligands (Neumann et al., 2018[Neumann, T., Jess, I. & Näther, C. (2018). Acta Cryst. E74, 141-146.]). In addition there is one compound with cadmium, in which the CdII cations are octa­hedrally coordinated by two terminal N-bonded pyridine­thio­amide ligands and four thio­cyanate anions and linked by pairs of anionic ligands into linear chains (Neumann et al., 2016[Neumann, T., Jess, I. & Näther, C. (2016). Acta Cryst. E72, 370-373.]). Alongside the structure of the pure pyridine-4-thio­amide ligand (Colleter & Gadret, 1967[Colleter, J. C. & Gadret, M. (1967). Bull. Soc. Chim. Fr. 3463-3469.]; Eccles et al., 2014[Eccles, K. S., Morrison, R. E., Maguire, A. R. & Lawrence, S. E. (2014). Cryst. Growth Des. 14, 2753-2762.]), its protonated form with iodide as counter-anion was reported by Shotonwa & Boeré (2014[Shotonwa, I. O. & Boeré, R. T. (2014). Acta Cryst. E70, o340-o341.]).

5. Synthesis and crystallization

Co(NCS)2 and pyridine-4-thio­amide were purchased from Alfa Aesar. Ni(NCS)2 was prepared by the reaction of equimolar amounts of Ba(SCN)2·3H2O with NiSO4·6H2O in water. The colourless precipitate of BaSO4 was filtered off and the resulting clear solution was evaporated until complete dryness. The purity of Ni(NCS)2 was checked by X-ray powder diffraction measurements.

Crystals of compound 1 were obtained by the reaction of 8.8 mg Co(NCS)2 (0.05 mmol) with 13.8 mg pyridine-4-thio­amide (0.1 mmol) in 1 ml aceto­nitrile. The reaction mixture was left to stand at room-temperature, leading to a few crystals of the title compound suitable for single-crystal X-ray diffraction.

For the synthesis of compound 2, 8.8 mg Ni(NCS)2 (0.05 mmol) were reacted with 27.6 mg pyridine-4-thio­amide (0.2 mmol) in 3.0 ml methanol. The mixture was heated to the boiling temperature of methanol and then slowly cooled down, leading to the formation of a few crystals suitable for single-crystal X-ray diffraction.

All reaction batches were contaminated with additional crystalline phases that are unknown. If an excess of pyridine-4-thio­amide was used to shift the equillibria in the directions of the discrete complexes with only coordinating pyridine-4-thio­amide ligands, the batches were always contaminated with this organic ligand because it is poorly soluble in the used solvents.

IR spectra of manually selected crystals are included for both compounds in the supporting information.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. The C—H hydrogen atoms were positioned with idealized geometry (C—H = 0.95–0.98 Å; methyl H atoms were allowed to rotate but not to tip) and were refined with Uiso(H) = 1.2Ueq(C) (1.5 for methyl and hydroxyl H atoms) using a riding model. The N—H hydrogen atoms were located in a difference-Fourier map, their bond lengths set to ideal values (N—H = 0.88 Å) and refined with Uiso(H) = 1.5Ueq(N) using a riding model. In 1, one of the two crystallographically independent aceto­nitrile solvent mol­ecules is disordered over two sets of sites and was refined using a split model with restraints [SAME in SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.])], leading to a ratio of 0.62:0.38 for the two orientations (fixed at the final stage of refinement).

Table 5
Experimental details

  1 2
Crystal data
Chemical formula [Co(NCS)2(C2H3N)(C6H6N2S)3]·2C2H3N [Ni(NCS)2(C6H6N2S)4]·5CH4O
Mr 712.81 887.83
Crystal system, space group Monoclinic, P21/c Triclinic, P[\overline{1}]
Temperature (K) 200 200
a, b, c (Å) 11.3566 (4), 12.3251 (2), 23.7557 (8) 10.4520 (3), 14.5934 (4), 15.0580 (5)
α, β, γ (°) 90, 93.273 (3), 90 101.553 (2), 97.105 (2), 106.417 (2)
V3) 3319.69 (17) 2118.43 (11)
Z 4 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.87 0.80
Crystal size (mm) 0.12 × 0.10 × 0.08 0.30 × 0.18 × 0.10
 
Data collection
Diffractometer Stoe IPDS2 Stoe IPDS2
Absorption correction Numerical (X-RED and X-SHAPE; Stoe, 2008[Stoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.622, 0.889
No. of measured, independent and observed [I > 2σ(I)] reflections 25043, 7218, 6002 30865, 9253, 7895
Rint 0.027 0.031
(sin θ/λ)max−1) 0.639 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.080, 1.04 0.039, 0.109, 1.06
No. of reflections 7218 9253
No. of parameters 419 486
No. of restraints 9 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.34, −0.33 0.62, −0.57
Computer programs: X-AREA (Stoe, 2008[Stoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 1990[Brandenburg, K. (1990). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both structures, data collection: X-AREA (Stoe, 2008); cell refinement: X-AREA (Stoe, 2008); data reduction: X-AREA (Stoe, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Diamond (Brandenburg, 1990); software used to prepare material for publication: publCIF (Westrip, 2010).

(Acetonitrile-κN)tris(pyridine-4-thioamide-κN)bis(thiocyanato-κN)cobalt(II) acetonitrile disolvate (Compound1) top
Crystal data top
[Co(NCS)2(C2H3N)(C6H6N2S)3]·2C2H3NF(000) = 1468
Mr = 712.81Dx = 1.426 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.3566 (4) ÅCell parameters from 25043 reflections
b = 12.3251 (2) Åθ = 1.7–27.0°
c = 23.7557 (8) ŵ = 0.87 mm1
β = 93.273 (3)°T = 200 K
V = 3319.69 (17) Å3Block, brown
Z = 40.12 × 0.10 × 0.08 mm
Data collection top
STOE IPDS-2
diffractometer
Rint = 0.027
ω scansθmax = 27.0°, θmin = 1.7°
25043 measured reflectionsh = 1414
7218 independent reflectionsk = 1415
6002 reflections with I > 2σ(I)l = 3030
Refinement top
Refinement on F29 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.0441P)2 + 0.5907P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.002
7218 reflectionsΔρmax = 0.34 e Å3
419 parametersΔρmin = 0.33 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.62828 (2)0.49502 (2)0.82672 (2)0.02661 (7)
N10.70292 (15)0.34698 (13)0.80907 (7)0.0359 (3)
C10.73383 (16)0.26112 (15)0.79702 (7)0.0307 (4)
S10.77894 (5)0.13954 (4)0.78062 (2)0.03821 (11)
N20.55051 (14)0.64072 (13)0.84732 (6)0.0343 (3)
C20.52817 (15)0.72538 (15)0.86457 (7)0.0295 (4)
S20.49682 (5)0.84533 (4)0.88860 (2)0.04202 (12)
N30.61781 (15)0.44151 (14)0.91443 (6)0.0387 (4)
C30.61548 (19)0.40477 (17)0.95811 (8)0.0409 (4)
C40.6128 (3)0.3573 (2)1.01395 (10)0.0704 (8)
H4A0.64030.28201.01280.106*
H4B0.53190.35891.02630.106*
H4C0.66440.39891.04050.106*
N40.3375 (2)0.6038 (3)0.56403 (10)0.0857 (9)
C50.2523 (3)0.5621 (2)0.57241 (10)0.0576 (6)
C60.1421 (3)0.5092 (3)0.58145 (13)0.0799 (10)
H6A0.08070.56390.58580.120*
H6B0.15050.46470.61560.120*
H6C0.12000.46280.54900.120*
N50.1359 (7)0.5306 (5)1.0399 (3)0.087 (3)0.62
C70.0520 (6)0.5785 (5)1.04825 (19)0.0699 (16)0.62
C80.0562 (13)0.6419 (14)1.0603 (7)0.082 (4)0.62
H8A0.04940.68281.09540.123*0.62
H8B0.06720.69251.02920.123*0.62
H8C0.12390.59281.06430.123*0.62
N5'0.1549 (9)0.4866 (8)1.0254 (4)0.063 (2)0.38
C7'0.1247 (6)0.4336 (6)0.9894 (3)0.0539 (16)0.38
C8'0.0796 (19)0.3668 (18)0.9442 (9)0.061 (4)0.38
H8D0.00080.39220.93560.091*0.38
H8E0.13280.37260.91040.091*0.38
H8F0.07490.29090.95640.091*0.38
N110.80040 (13)0.56775 (12)0.85214 (6)0.0302 (3)
C110.89844 (17)0.54836 (16)0.82515 (8)0.0339 (4)
H110.89520.49460.79640.041*
C121.00400 (17)0.60162 (16)0.83647 (7)0.0340 (4)
H121.07060.58460.81570.041*
C131.01251 (16)0.68036 (15)0.87846 (7)0.0293 (3)
C140.91243 (17)0.69721 (16)0.90835 (7)0.0333 (4)
H140.91460.74760.93870.040*
C150.80988 (17)0.64104 (16)0.89414 (7)0.0332 (4)
H150.74260.65480.91500.040*
C161.12262 (16)0.74442 (15)0.89216 (7)0.0324 (4)
N121.21164 (14)0.72915 (15)0.85928 (7)0.0397 (4)
H1N1.20270.69570.82660.060*
H2N1.27540.76870.86610.060*
S111.13309 (5)0.83113 (5)0.94560 (2)0.04363 (13)
N210.45275 (13)0.43047 (12)0.80859 (6)0.0304 (3)
C210.37190 (16)0.43714 (17)0.84752 (8)0.0365 (4)
H210.39430.46910.88290.044*
C220.25792 (17)0.39979 (17)0.83859 (8)0.0378 (4)
H220.20430.40340.86780.045*
C230.22269 (16)0.35688 (15)0.78638 (8)0.0329 (4)
C240.30512 (17)0.35158 (16)0.74560 (8)0.0341 (4)
H240.28370.32400.70910.041*
C250.41881 (16)0.38689 (15)0.75876 (7)0.0317 (4)
H250.47550.37990.73110.038*
C260.09837 (16)0.32242 (16)0.77362 (8)0.0362 (4)
N220.05589 (16)0.25230 (17)0.80962 (9)0.0536 (5)
H3N0.01380.22280.80210.080*
H4N0.09640.22770.83960.080*
S210.02293 (4)0.37470 (4)0.71886 (2)0.03954 (12)
N310.63857 (13)0.54138 (12)0.73865 (6)0.0284 (3)
C310.56230 (16)0.61090 (15)0.71318 (7)0.0304 (4)
H310.50060.63920.73420.037*
C320.56864 (17)0.64377 (15)0.65764 (7)0.0329 (4)
H320.51070.69100.64070.039*
C330.66128 (17)0.60637 (15)0.62729 (7)0.0325 (4)
C340.73991 (17)0.53387 (16)0.65314 (7)0.0334 (4)
H340.80400.50650.63340.040*
C350.72442 (16)0.50179 (15)0.70767 (7)0.0324 (4)
H350.77680.44920.72430.039*
C360.67792 (19)0.64037 (17)0.56790 (8)0.0399 (4)
N320.58298 (19)0.63969 (19)0.53393 (7)0.0565 (5)
H5N0.58430.66020.49850.085*
H6N0.51410.61510.54350.085*
S310.81118 (6)0.67528 (6)0.54887 (2)0.05599 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.02609 (12)0.02759 (12)0.02615 (11)0.00033 (9)0.00155 (8)0.00024 (9)
N10.0378 (9)0.0323 (8)0.0376 (8)0.0035 (7)0.0024 (6)0.0008 (6)
C10.0272 (8)0.0343 (10)0.0306 (8)0.0027 (7)0.0019 (6)0.0036 (7)
S10.0420 (3)0.0280 (2)0.0453 (2)0.0007 (2)0.0089 (2)0.00051 (19)
N20.0336 (8)0.0337 (8)0.0356 (7)0.0017 (7)0.0027 (6)0.0023 (6)
C20.0281 (9)0.0343 (10)0.0260 (7)0.0013 (7)0.0008 (6)0.0017 (7)
S20.0581 (3)0.0324 (2)0.0357 (2)0.0065 (2)0.0041 (2)0.00340 (19)
N30.0387 (9)0.0450 (10)0.0323 (8)0.0007 (8)0.0018 (6)0.0051 (7)
C30.0459 (11)0.0408 (11)0.0365 (10)0.0055 (9)0.0063 (8)0.0020 (8)
C40.106 (2)0.0678 (17)0.0391 (11)0.0193 (16)0.0174 (13)0.0178 (12)
N40.0587 (15)0.141 (3)0.0563 (13)0.0153 (16)0.0072 (11)0.0269 (15)
C50.0606 (16)0.0687 (17)0.0430 (12)0.0035 (13)0.0019 (11)0.0062 (11)
C60.099 (2)0.081 (2)0.0614 (16)0.0387 (19)0.0166 (16)0.0124 (14)
N50.129 (7)0.067 (4)0.072 (4)0.025 (4)0.055 (4)0.004 (3)
C70.101 (4)0.062 (3)0.051 (2)0.038 (3)0.041 (3)0.021 (2)
C80.103 (9)0.084 (6)0.061 (4)0.041 (6)0.026 (5)0.020 (4)
N5'0.061 (4)0.070 (7)0.059 (5)0.013 (4)0.006 (4)0.004 (4)
C7'0.044 (3)0.061 (4)0.054 (4)0.002 (3)0.010 (3)0.026 (3)
C8'0.061 (7)0.064 (8)0.057 (9)0.006 (7)0.003 (6)0.016 (5)
N110.0289 (7)0.0315 (8)0.0300 (7)0.0015 (6)0.0009 (6)0.0007 (6)
C110.0320 (9)0.0357 (10)0.0342 (9)0.0019 (8)0.0031 (7)0.0070 (7)
C120.0300 (9)0.0388 (10)0.0335 (9)0.0020 (8)0.0047 (7)0.0044 (7)
C130.0301 (9)0.0312 (9)0.0264 (8)0.0012 (7)0.0012 (6)0.0033 (6)
C140.0342 (9)0.0360 (10)0.0296 (8)0.0003 (8)0.0004 (7)0.0056 (7)
C150.0302 (9)0.0392 (10)0.0304 (8)0.0014 (8)0.0035 (7)0.0039 (7)
C160.0333 (9)0.0330 (9)0.0304 (8)0.0019 (8)0.0027 (7)0.0054 (7)
N120.0305 (8)0.0489 (10)0.0397 (8)0.0079 (7)0.0009 (6)0.0052 (7)
S110.0460 (3)0.0464 (3)0.0382 (2)0.0120 (2)0.0000 (2)0.0079 (2)
N210.0278 (7)0.0309 (8)0.0325 (7)0.0026 (6)0.0015 (6)0.0017 (6)
C210.0308 (9)0.0469 (11)0.0319 (9)0.0028 (8)0.0026 (7)0.0053 (8)
C220.0297 (9)0.0481 (11)0.0359 (9)0.0017 (8)0.0046 (7)0.0020 (8)
C230.0292 (9)0.0297 (9)0.0395 (9)0.0006 (7)0.0004 (7)0.0018 (7)
C240.0325 (9)0.0348 (10)0.0349 (9)0.0010 (8)0.0008 (7)0.0032 (7)
C250.0307 (9)0.0331 (9)0.0315 (8)0.0023 (7)0.0029 (7)0.0026 (7)
C260.0289 (9)0.0351 (10)0.0446 (10)0.0002 (8)0.0019 (7)0.0040 (8)
N220.0319 (9)0.0620 (13)0.0661 (12)0.0109 (9)0.0058 (8)0.0201 (10)
S210.0325 (2)0.0461 (3)0.0393 (2)0.0015 (2)0.00403 (18)0.0051 (2)
N310.0294 (7)0.0308 (7)0.0253 (6)0.0011 (6)0.0026 (5)0.0001 (5)
C310.0299 (9)0.0317 (9)0.0298 (8)0.0007 (7)0.0027 (7)0.0004 (7)
C320.0344 (9)0.0327 (9)0.0313 (8)0.0004 (8)0.0005 (7)0.0017 (7)
C330.0373 (10)0.0324 (9)0.0279 (8)0.0075 (8)0.0011 (7)0.0014 (7)
C340.0327 (9)0.0382 (10)0.0299 (8)0.0014 (8)0.0051 (7)0.0032 (7)
C350.0305 (9)0.0363 (10)0.0304 (8)0.0017 (8)0.0024 (7)0.0001 (7)
C360.0496 (12)0.0416 (11)0.0288 (8)0.0045 (9)0.0054 (8)0.0012 (8)
N320.0536 (12)0.0857 (15)0.0298 (8)0.0040 (11)0.0003 (8)0.0136 (9)
S310.0562 (3)0.0740 (4)0.0391 (3)0.0196 (3)0.0143 (2)0.0030 (3)
Geometric parameters (Å, º) top
Co1—N12.0650 (16)C14—C151.380 (3)
Co1—N22.0720 (16)C14—H140.9500
Co1—N212.1666 (15)C15—H150.9500
Co1—N312.1785 (14)C16—N121.326 (2)
Co1—N32.1950 (15)C16—S111.6583 (19)
Co1—N112.2032 (15)N12—H1N0.8799
N1—C11.156 (2)N12—H2N0.8800
C1—S11.6378 (19)N21—C251.336 (2)
N2—C21.155 (2)N21—C211.342 (2)
C2—S21.6314 (19)C21—C221.379 (3)
N3—C31.134 (2)C21—H210.9500
C3—C41.451 (3)C22—C231.386 (3)
C4—H4A0.9800C22—H220.9500
C4—H4B0.9800C23—C241.387 (3)
C4—H4C0.9800C23—C261.489 (3)
N4—C51.123 (4)C24—C251.381 (3)
C5—C61.439 (4)C24—H240.9500
C6—H6A0.9800C25—H250.9500
C6—H6B0.9800C26—N221.326 (3)
C6—H6C0.9800C26—S211.647 (2)
N5—C71.129 (8)N22—H3N0.8799
C7—C81.470 (14)N22—H4N0.8800
C8—H8A0.9800N31—C311.338 (2)
C8—H8B0.9800N31—C351.346 (2)
C8—H8C0.9800C31—C321.386 (2)
N5'—C7'1.144 (9)C31—H310.9500
C7'—C8'1.469 (15)C32—C331.388 (3)
C8'—H8D0.9800C32—H320.9500
C8'—H8E0.9800C33—C341.382 (3)
C8'—H8F0.9800C33—C361.494 (2)
N11—C111.338 (2)C34—C351.375 (2)
N11—C151.346 (2)C34—H340.9500
C11—C121.380 (3)C35—H350.9500
C11—H110.9500C36—N321.309 (3)
C12—C131.391 (3)C36—S311.661 (2)
C12—H120.9500N32—H5N0.8800
C13—C141.390 (2)N32—H6N0.8799
C13—C161.499 (3)
N1—Co1—N2177.65 (6)C15—C14—C13120.22 (16)
N1—Co1—N2191.08 (6)C15—C14—H14119.9
N2—Co1—N2188.02 (6)C13—C14—H14119.9
N1—Co1—N3189.52 (6)N11—C15—C14123.29 (16)
N2—Co1—N3192.66 (6)N11—C15—H15118.4
N21—Co1—N3190.26 (6)C14—C15—H15118.4
N1—Co1—N388.41 (6)N12—C16—C13116.87 (16)
N2—Co1—N389.39 (6)N12—C16—S11121.24 (15)
N21—Co1—N388.82 (6)C13—C16—S11121.88 (13)
N31—Co1—N3177.72 (6)C16—N12—H1N122.2
N1—Co1—N1192.70 (6)C16—N12—H2N117.4
N2—Co1—N1188.06 (6)H1N—N12—H2N118.3
N21—Co1—N11174.69 (5)C25—N21—C21117.44 (16)
N31—Co1—N1193.50 (5)C25—N21—Co1122.63 (12)
N3—Co1—N1187.56 (6)C21—N21—Co1119.88 (12)
C1—N1—Co1173.25 (16)N21—C21—C22123.13 (17)
N1—C1—S1179.26 (19)N21—C21—H21118.4
C2—N2—Co1166.49 (16)C22—C21—H21118.4
N2—C2—S2179.66 (17)C21—C22—C23119.05 (17)
C3—N3—Co1173.73 (17)C21—C22—H22120.5
N3—C3—C4179.7 (3)C23—C22—H22120.5
C3—C4—H4A109.5C22—C23—C24118.11 (17)
C3—C4—H4B109.5C22—C23—C26120.86 (16)
H4A—C4—H4B109.5C24—C23—C26120.96 (16)
C3—C4—H4C109.5C25—C24—C23119.13 (17)
H4A—C4—H4C109.5C25—C24—H24120.4
H4B—C4—H4C109.5C23—C24—H24120.4
N4—C5—C6178.3 (3)N21—C25—C24123.06 (16)
C5—C6—H6A109.5N21—C25—H25118.5
C5—C6—H6B109.5C24—C25—H25118.5
H6A—C6—H6B109.5N22—C26—C23115.48 (17)
C5—C6—H6C109.5N22—C26—S21124.91 (16)
H6A—C6—H6C109.5C23—C26—S21119.58 (14)
H6B—C6—H6C109.5C26—N22—H3N119.6
N5—C7—C8178.7 (8)C26—N22—H4N123.7
C7—C8—H8A109.5H3N—N22—H4N116.4
C7—C8—H8B109.5C31—N31—C35117.08 (14)
H8A—C8—H8B109.5C31—N31—Co1122.23 (11)
C7—C8—H8C109.5C35—N31—Co1120.68 (12)
H8A—C8—H8C109.5N31—C31—C32123.38 (16)
H8B—C8—H8C109.5N31—C31—H31118.3
N5'—C7'—C8'177.0 (11)C32—C31—H31118.3
C7'—C8'—H8D109.5C31—C32—C33118.66 (17)
C7'—C8'—H8E109.5C31—C32—H32120.7
H8D—C8'—H8E109.5C33—C32—H32120.7
C7'—C8'—H8F109.5C34—C33—C32118.28 (16)
H8D—C8'—H8F109.5C34—C33—C36119.17 (17)
H8E—C8'—H8F109.5C32—C33—C36122.54 (18)
C11—N11—C15116.21 (16)C35—C34—C33119.35 (17)
C11—N11—Co1123.08 (12)C35—C34—H34120.3
C15—N11—Co1120.56 (12)C33—C34—H34120.3
N11—C11—C12124.01 (17)N31—C35—C34123.11 (17)
N11—C11—H11118.0N31—C35—H35118.4
C12—C11—H11118.0C34—C35—H35118.4
C11—C12—C13119.72 (17)N32—C36—C33115.85 (18)
C11—C12—H12120.1N32—C36—S31124.40 (15)
C13—C12—H12120.1C33—C36—S31119.75 (15)
C14—C13—C12116.44 (17)C36—N32—H5N121.9
C14—C13—C16120.45 (16)C36—N32—H6N123.8
C12—C13—C16123.11 (16)H5N—N32—H6N114.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4C···N5i0.982.373.081 (12)129
C6—H6C···S31ii0.983.023.901 (3)150
C11—H11···S21i0.952.833.6556 (18)146
C12—H12···S1iii0.953.013.8491 (18)148
N12—H1N···S1iii0.882.663.5097 (17)163
N12—H2N···S2i0.882.713.5731 (17)167
C21—H21···N30.952.633.134 (3)114
C22—H22···N5iv0.952.503.384 (7)154
C25—H25···S2v0.952.913.7172 (18)144
N22—H3N···S1vi0.882.593.4715 (19)179
N22—H4N···S31v0.882.873.729 (2)167
C34—H34···S11vii0.952.983.7698 (19)142
C35—H35···N10.952.563.094 (2)116
C35—H35···S21i0.952.953.7301 (19)140
N32—H5N···S2viii0.882.743.5390 (18)152
N32—H6N···N40.882.102.951 (3)164
C8—H8B···S11vi0.982.763.728 (19)172
C8—H8D···N5iv0.982.463.26 (2)140
C8—H8F···S11ix0.982.883.65 (3)137
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1; (iii) x+2, y+1/2, z+3/2; (iv) x, y+1, z+2; (v) x+1, y1/2, z+3/2; (vi) x1, y, z; (vii) x+2, y1/2, z+3/2; (viii) x, y+3/2, z1/2; (ix) x+1, y+1, z+2.
Tetrakis(pyridine-4-thioamide-κN)bis(thiocyanato-κN)nickel(II) methanol pentasolvate (Compound2) top
Crystal data top
[Ni(NCS)2(C6H6N2S)4]·5CH4OZ = 2
Mr = 887.83F(000) = 928
Triclinic, P1Dx = 1.392 Mg m3
a = 10.4520 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 14.5934 (4) ÅCell parameters from 30865 reflections
c = 15.0580 (5) Åθ = 1.5–27.0°
α = 101.553 (2)°µ = 0.80 mm1
β = 97.105 (2)°T = 200 K
γ = 106.417 (2)°Block, yellow
V = 2118.43 (11) Å30.30 × 0.18 × 0.10 mm
Data collection top
STOE IPDS-2
diffractometer
7895 reflections with I > 2σ(I)
ω scansRint = 0.031
Absorption correction: numerical
(X-Red and X-Shape; Stoe, 2008)
θmax = 27.0°, θmin = 1.5°
Tmin = 0.622, Tmax = 0.889h = 1313
30865 measured reflectionsk = 1818
9253 independent reflectionsl = 1919
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0575P)2 + 1.0537P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.026
9253 reflectionsΔρmax = 0.62 e Å3
486 parametersΔρmin = 0.57 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.51341 (2)0.75649 (2)0.25835 (2)0.02541 (8)
N10.54979 (18)0.69614 (13)0.13314 (13)0.0327 (4)
C10.55335 (19)0.66218 (14)0.05750 (14)0.0274 (4)
S10.55930 (7)0.61468 (4)0.04898 (4)0.03984 (14)
N20.47316 (17)0.81774 (12)0.38258 (12)0.0312 (4)
C20.45784 (19)0.84815 (14)0.45634 (14)0.0270 (4)
S20.43803 (5)0.89172 (4)0.56086 (4)0.03231 (12)
O11.11056 (19)0.76700 (17)0.45151 (19)0.0685 (6)
H11.17140.75290.48270.103*
C30.9826 (3)0.7028 (2)0.4528 (3)0.0619 (8)
H3A0.99320.66120.49510.093*
H3B0.94120.66100.39050.093*
H3C0.92400.74130.47370.093*
O20.2866 (3)0.29719 (16)0.25572 (19)0.0746 (7)
H20.25600.24660.21170.112*
C40.2076 (4)0.3592 (3)0.2485 (3)0.0869 (11)
H4A0.22680.40870.30710.130*
H4B0.11110.32020.23410.130*
H4C0.22940.39230.19910.130*
O30.1063 (2)0.74182 (19)0.0459 (2)0.0769 (7)
H30.17660.74150.01200.115*
C50.0077 (4)0.7993 (3)0.0215 (4)0.0954 (14)
H5A0.00070.86470.02240.143*
H5B0.01510.76790.04070.143*
H5C0.08910.80600.06550.143*
O40.9917 (4)1.1226 (3)0.1994 (3)0.1172 (11)
H40.92551.13740.21740.176*
C60.9483 (5)1.0242 (3)0.1498 (3)0.0990 (14)
H6A1.02691.00040.14710.149*
H6B0.90321.01860.08690.149*
H6C0.88430.98440.18040.149*
O50.7792 (3)1.1926 (2)0.2133 (2)0.0917 (9)
H50.81831.23280.18470.138*
C70.8085 (7)1.2391 (5)0.3032 (4)0.138 (2)
H7A0.80121.30540.30790.208*
H7B0.90171.24590.33070.208*
H7C0.74551.20580.33850.208*
N110.55562 (17)0.64292 (12)0.31467 (12)0.0292 (3)
C110.5353 (3)0.55466 (16)0.25963 (16)0.0399 (5)
H110.50320.54460.19550.048*
C120.5581 (3)0.47683 (17)0.29056 (16)0.0428 (5)
H120.54210.41510.24830.051*
C130.6048 (2)0.48958 (16)0.38378 (15)0.0336 (4)
C140.6301 (2)0.58205 (16)0.44148 (15)0.0355 (5)
H140.66530.59470.50550.043*
C150.6037 (2)0.65570 (16)0.40479 (15)0.0340 (4)
H150.62020.71850.44520.041*
C160.6263 (3)0.40563 (17)0.41981 (16)0.0398 (5)
N120.5319 (2)0.31979 (15)0.38285 (15)0.0457 (5)
H1N0.45680.31470.34580.069*
H2N0.52920.26220.39340.069*
S110.76130 (8)0.42440 (6)0.50051 (6)0.0593 (2)
N210.72138 (16)0.84055 (12)0.30150 (12)0.0286 (3)
C210.8184 (2)0.80324 (16)0.27672 (16)0.0342 (4)
H210.79200.73830.23830.041*
C220.9556 (2)0.85515 (16)0.30453 (16)0.0363 (5)
H221.02180.82560.28680.044*
C230.9951 (2)0.95123 (16)0.35878 (15)0.0315 (4)
C240.8945 (2)0.99054 (15)0.38322 (15)0.0329 (4)
H240.91781.05640.41920.040*
C250.7602 (2)0.93304 (15)0.35472 (15)0.0315 (4)
H250.69220.95990.37350.038*
C261.1412 (2)1.01136 (16)0.38800 (15)0.0344 (4)
N221.22398 (18)0.96366 (15)0.41365 (14)0.0385 (4)
H4N1.31290.99040.42620.058*
H3N1.19610.90510.42500.058*
S211.19199 (6)1.12876 (4)0.38386 (5)0.04608 (15)
N310.47817 (17)0.87293 (12)0.20441 (12)0.0288 (3)
C310.5552 (2)0.91431 (15)0.14905 (15)0.0324 (4)
H310.62240.88680.12960.039*
C320.5413 (2)0.99481 (16)0.11913 (16)0.0359 (5)
H320.59971.02300.08140.043*
C330.4415 (2)1.03440 (16)0.14444 (16)0.0345 (4)
C340.3592 (2)0.99038 (17)0.20028 (16)0.0374 (5)
H340.28841.01440.21830.045*
C350.3820 (2)0.91149 (16)0.22892 (15)0.0339 (4)
H350.32660.88300.26810.041*
C360.4190 (2)1.11957 (17)0.11202 (17)0.0403 (5)
N320.5284 (2)1.19414 (15)0.11852 (18)0.0520 (6)
H5N0.60611.19340.14810.078*
H6N0.52701.24400.09430.078*
S310.26248 (7)1.11340 (5)0.06808 (6)0.0578 (2)
N410.30423 (17)0.67290 (13)0.21366 (12)0.0310 (4)
C410.2366 (2)0.66188 (16)0.12907 (15)0.0342 (4)
H410.28520.69010.08660.041*
C420.0993 (2)0.61148 (16)0.10008 (16)0.0370 (5)
H420.05430.60760.04000.044*
C430.0283 (2)0.56666 (16)0.15998 (17)0.0361 (5)
C440.0988 (2)0.57619 (17)0.24755 (17)0.0398 (5)
H440.05400.54570.29020.048*
C450.2346 (2)0.63047 (16)0.27168 (16)0.0363 (5)
H450.28120.63820.33240.044*
C460.1192 (2)0.50686 (18)0.13038 (19)0.0437 (5)
N420.1973 (2)0.54523 (17)0.08483 (17)0.0515 (5)
H7N0.16990.60100.06830.077*
H8N0.28520.51390.07210.077*
S410.17085 (7)0.39687 (6)0.15227 (7)0.0666 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.02585 (13)0.02370 (13)0.02562 (13)0.00738 (9)0.00263 (9)0.00581 (9)
N10.0353 (9)0.0315 (9)0.0308 (9)0.0112 (7)0.0047 (7)0.0065 (7)
C10.0274 (9)0.0241 (9)0.0301 (10)0.0079 (7)0.0012 (7)0.0087 (8)
S10.0564 (3)0.0380 (3)0.0263 (3)0.0188 (3)0.0059 (2)0.0062 (2)
N20.0327 (9)0.0288 (8)0.0318 (9)0.0103 (7)0.0055 (7)0.0063 (7)
C20.0243 (8)0.0228 (9)0.0337 (11)0.0073 (7)0.0023 (7)0.0089 (8)
S20.0369 (3)0.0324 (3)0.0302 (3)0.0145 (2)0.0078 (2)0.0076 (2)
O10.0363 (9)0.0662 (13)0.1032 (18)0.0093 (9)0.0012 (10)0.0403 (13)
C30.0440 (14)0.0586 (17)0.082 (2)0.0114 (13)0.0091 (14)0.0225 (16)
O20.0758 (15)0.0506 (12)0.0884 (18)0.0191 (11)0.0121 (12)0.0152 (11)
C40.072 (2)0.080 (3)0.110 (3)0.029 (2)0.010 (2)0.021 (2)
O30.0504 (11)0.0750 (15)0.109 (2)0.0153 (11)0.0006 (12)0.0485 (15)
C50.062 (2)0.088 (3)0.153 (4)0.0253 (19)0.014 (2)0.070 (3)
O40.109 (2)0.115 (3)0.120 (3)0.049 (2)0.005 (2)0.008 (2)
C60.087 (3)0.101 (3)0.083 (3)0.001 (2)0.006 (2)0.014 (2)
O50.0716 (16)0.0709 (16)0.119 (2)0.0153 (13)0.0155 (15)0.0239 (16)
C70.186 (6)0.197 (6)0.094 (4)0.101 (5)0.082 (4)0.079 (4)
N110.0326 (8)0.0260 (8)0.0280 (8)0.0093 (7)0.0016 (7)0.0069 (6)
C110.0605 (14)0.0289 (10)0.0282 (11)0.0141 (10)0.0019 (10)0.0063 (8)
C120.0683 (16)0.0283 (10)0.0330 (11)0.0187 (10)0.0061 (11)0.0076 (9)
C130.0369 (10)0.0334 (10)0.0347 (11)0.0141 (8)0.0067 (9)0.0134 (9)
C140.0408 (11)0.0382 (11)0.0278 (10)0.0151 (9)0.0003 (8)0.0087 (8)
C150.0387 (11)0.0307 (10)0.0303 (10)0.0126 (8)0.0010 (8)0.0046 (8)
C160.0509 (13)0.0387 (12)0.0380 (12)0.0216 (10)0.0107 (10)0.0160 (9)
N120.0586 (13)0.0343 (10)0.0495 (12)0.0189 (9)0.0064 (10)0.0182 (9)
S110.0673 (4)0.0537 (4)0.0597 (4)0.0251 (3)0.0083 (3)0.0239 (3)
N210.0260 (8)0.0273 (8)0.0307 (9)0.0077 (6)0.0030 (6)0.0053 (7)
C210.0310 (10)0.0297 (10)0.0386 (11)0.0114 (8)0.0024 (8)0.0009 (8)
C220.0291 (10)0.0355 (11)0.0428 (12)0.0138 (8)0.0054 (9)0.0026 (9)
C230.0276 (9)0.0341 (10)0.0306 (10)0.0084 (8)0.0034 (8)0.0063 (8)
C240.0305 (10)0.0293 (10)0.0354 (11)0.0080 (8)0.0053 (8)0.0029 (8)
C250.0281 (9)0.0289 (10)0.0363 (11)0.0098 (8)0.0057 (8)0.0042 (8)
C260.0286 (10)0.0387 (11)0.0317 (11)0.0087 (8)0.0053 (8)0.0023 (9)
N220.0256 (8)0.0417 (10)0.0452 (11)0.0101 (7)0.0023 (7)0.0076 (8)
S210.0317 (3)0.0354 (3)0.0643 (4)0.0052 (2)0.0027 (3)0.0088 (3)
N310.0300 (8)0.0277 (8)0.0301 (9)0.0096 (7)0.0044 (7)0.0106 (7)
C310.0306 (10)0.0330 (10)0.0375 (11)0.0123 (8)0.0091 (8)0.0123 (9)
C320.0358 (10)0.0336 (11)0.0411 (12)0.0100 (8)0.0091 (9)0.0157 (9)
C330.0357 (10)0.0299 (10)0.0372 (11)0.0105 (8)0.0011 (9)0.0101 (8)
C340.0391 (11)0.0384 (11)0.0412 (12)0.0199 (9)0.0099 (9)0.0116 (9)
C350.0352 (10)0.0368 (11)0.0354 (11)0.0159 (9)0.0104 (9)0.0127 (9)
C360.0462 (12)0.0348 (11)0.0432 (13)0.0171 (10)0.0038 (10)0.0139 (10)
N320.0485 (12)0.0370 (11)0.0726 (16)0.0118 (9)0.0008 (11)0.0269 (10)
S310.0447 (3)0.0499 (4)0.0843 (5)0.0191 (3)0.0010 (3)0.0312 (4)
N410.0283 (8)0.0304 (8)0.0317 (9)0.0061 (7)0.0020 (7)0.0088 (7)
C410.0316 (10)0.0360 (11)0.0325 (11)0.0070 (8)0.0020 (8)0.0106 (9)
C420.0326 (10)0.0377 (11)0.0368 (11)0.0081 (9)0.0022 (9)0.0105 (9)
C430.0287 (10)0.0315 (10)0.0452 (13)0.0075 (8)0.0027 (9)0.0087 (9)
C440.0349 (11)0.0414 (12)0.0410 (12)0.0057 (9)0.0070 (9)0.0150 (10)
C450.0338 (10)0.0383 (11)0.0333 (11)0.0056 (9)0.0016 (8)0.0129 (9)
C460.0311 (11)0.0405 (12)0.0548 (15)0.0066 (9)0.0026 (10)0.0116 (11)
N420.0308 (10)0.0495 (12)0.0692 (15)0.0080 (9)0.0023 (10)0.0176 (11)
S410.0384 (3)0.0507 (4)0.1036 (7)0.0017 (3)0.0032 (4)0.0362 (4)
Geometric parameters (Å, º) top
Ni1—N12.0435 (18)N12—H1N0.8800
Ni1—N22.0526 (18)N12—H2N0.8801
Ni1—N212.1157 (16)N21—C211.337 (3)
Ni1—N312.1250 (17)N21—C251.344 (3)
Ni1—N412.1262 (17)C21—C221.384 (3)
Ni1—N112.1316 (17)C21—H210.9500
N1—C11.157 (3)C22—C231.391 (3)
C1—S11.631 (2)C22—H220.9500
N2—C21.159 (3)C23—C241.387 (3)
C2—S21.636 (2)C23—C261.490 (3)
O1—C31.405 (3)C24—C251.378 (3)
O1—H10.8400C24—H240.9500
C3—H3A0.9800C25—H250.9500
C3—H3B0.9800C26—N221.322 (3)
C3—H3C0.9800C26—S211.661 (2)
O2—C41.398 (4)N22—H4N0.8800
O2—H20.8400N22—H3N0.8801
C4—H4A0.9800N31—C351.339 (3)
C4—H4B0.9800N31—C311.342 (3)
C4—H4C0.9800C31—C321.377 (3)
O3—C51.388 (4)C31—H310.9500
O3—H30.8400C32—C331.385 (3)
C5—H5A0.9800C32—H320.9500
C5—H5B0.9800C33—C341.394 (3)
C5—H5C0.9800C33—C361.489 (3)
O4—C61.395 (5)C34—C351.377 (3)
O4—H40.8400C34—H340.9500
C6—H6A0.9800C35—H350.9500
C6—H6B0.9800C36—N321.315 (3)
C6—H6C0.9800C36—S311.657 (2)
O5—C71.341 (6)N32—H5N0.8801
O5—H50.8401N32—H6N0.8799
C7—H7A0.9800N41—C411.334 (3)
C7—H7B0.9800N41—C451.340 (3)
C7—H7C0.9800C41—C421.383 (3)
N11—C111.329 (3)C41—H410.9500
N11—C151.344 (3)C42—C431.385 (3)
C11—C121.379 (3)C42—H420.9500
C11—H110.9500C43—C441.389 (3)
C12—C131.385 (3)C43—C461.501 (3)
C12—H120.9500C44—C451.377 (3)
C13—C141.385 (3)C44—H440.9500
C13—C161.496 (3)C45—H450.9500
C14—C151.380 (3)C46—N421.313 (3)
C14—H140.9500C46—S411.656 (3)
C15—H150.9500N42—H7N0.8799
C16—N121.319 (3)N42—H8N0.8800
C16—S111.663 (3)
N1—Ni1—N2178.69 (7)C16—N12—H1N121.7
N1—Ni1—N2190.21 (7)C16—N12—H2N127.8
N2—Ni1—N2190.67 (7)H1N—N12—H2N110.4
N1—Ni1—N3189.06 (7)C21—N21—C25117.90 (17)
N2—Ni1—N3189.98 (7)C21—N21—Ni1121.02 (13)
N21—Ni1—N3189.16 (6)C25—N21—Ni1121.08 (13)
N1—Ni1—N4189.46 (7)N21—C21—C22122.89 (19)
N2—Ni1—N4189.65 (7)N21—C21—H21118.6
N21—Ni1—N41179.30 (7)C22—C21—H21118.6
N31—Ni1—N4190.22 (7)C21—C22—C23118.92 (19)
N1—Ni1—N1191.28 (7)C21—C22—H22120.5
N2—Ni1—N1189.71 (7)C23—C22—H22120.5
N21—Ni1—N1188.91 (6)C24—C23—C22118.20 (19)
N31—Ni1—N11178.04 (6)C24—C23—C26120.74 (19)
N41—Ni1—N1191.72 (7)C22—C23—C26121.04 (19)
C1—N1—Ni1170.85 (17)C25—C24—C23119.27 (19)
N1—C1—S1179.7 (2)C25—C24—H24120.4
C2—N2—Ni1173.81 (17)C23—C24—H24120.4
N2—C2—S2179.4 (2)N21—C25—C24122.78 (19)
C3—O1—H1109.5N21—C25—H25118.6
O1—C3—H3A109.5C24—C25—H25118.6
O1—C3—H3B109.5N22—C26—C23115.3 (2)
H3A—C3—H3B109.5N22—C26—S21124.16 (17)
O1—C3—H3C109.5C23—C26—S21120.56 (17)
H3A—C3—H3C109.5C26—N22—H4N122.5
H3B—C3—H3C109.5C26—N22—H3N123.7
C4—O2—H2109.5H4N—N22—H3N113.5
O2—C4—H4A109.5C35—N31—C31117.33 (18)
O2—C4—H4B109.5C35—N31—Ni1120.65 (14)
H4A—C4—H4B109.5C31—N31—Ni1121.92 (14)
O2—C4—H4C109.5N31—C31—C32123.0 (2)
H4A—C4—H4C109.5N31—C31—H31118.5
H4B—C4—H4C109.5C32—C31—H31118.5
C5—O3—H3109.5C31—C32—C33119.5 (2)
O3—C5—H5A109.5C31—C32—H32120.2
O3—C5—H5B109.5C33—C32—H32120.2
H5A—C5—H5B109.5C32—C33—C34117.7 (2)
O3—C5—H5C109.5C32—C33—C36122.0 (2)
H5A—C5—H5C109.5C34—C33—C36120.3 (2)
H5B—C5—H5C109.5C35—C34—C33119.0 (2)
C6—O4—H4109.5C35—C34—H34120.5
O4—C6—H6A109.5C33—C34—H34120.5
O4—C6—H6B109.5N31—C35—C34123.4 (2)
H6A—C6—H6B109.5N31—C35—H35118.3
O4—C6—H6C109.5C34—C35—H35118.3
H6A—C6—H6C109.5N32—C36—C33116.1 (2)
H6B—C6—H6C109.5N32—C36—S31124.75 (19)
C7—O5—H5107.6C33—C36—S31119.16 (17)
O5—C7—H7A107.6C36—N32—H5N118.1
O5—C7—H7B110.9C36—N32—H6N122.8
H7A—C7—H7B108.2H5N—N32—H6N119.1
O5—C7—H7C112.6C41—N41—C45117.46 (18)
H7A—C7—H7C108.2C41—N41—Ni1122.39 (14)
H7B—C7—H7C109.3C45—N41—Ni1120.14 (14)
C11—N11—C15116.96 (18)N41—C41—C42123.2 (2)
C11—N11—Ni1119.87 (14)N41—C41—H41118.4
C15—N11—Ni1123.18 (14)C42—C41—H41118.4
N11—C11—C12123.6 (2)C41—C42—C43119.0 (2)
N11—C11—H11118.2C41—C42—H42120.5
C12—C11—H11118.2C43—C42—H42120.5
C11—C12—C13119.3 (2)C42—C43—C44118.0 (2)
C11—C12—H12120.3C42—C43—C46121.1 (2)
C13—C12—H12120.3C44—C43—C46120.8 (2)
C14—C13—C12117.7 (2)C45—C44—C43119.1 (2)
C14—C13—C16121.8 (2)C45—C44—H44120.4
C12—C13—C16120.5 (2)C43—C44—H44120.4
C15—C14—C13119.2 (2)N41—C45—C44123.1 (2)
C15—C14—H14120.4N41—C45—H45118.4
C13—C14—H14120.4C44—C45—H45118.4
N11—C15—C14123.3 (2)N42—C46—C43116.3 (2)
N11—C15—H15118.4N42—C46—S41124.76 (18)
C14—C15—H15118.4C43—C46—S41118.88 (18)
N12—C16—C13114.9 (2)C46—N42—H7N125.7
N12—C16—S11124.92 (18)C46—N42—H8N117.1
C13—C16—S11120.23 (18)H7N—N42—H8N117.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···S2i0.842.883.409 (2)123
O1—H1···S11ii0.842.923.578 (2)137
O2—H2···S31iii0.842.623.413 (3)157
O3—H3···S1iv0.842.773.427 (2)136
O3—H3···S31v0.842.933.576 (2)135
C5—H5A···S31v0.983.033.632 (4)121
O4—H4···O50.841.922.708 (5)156
C6—H6B···S31vi0.982.733.566 (4)143
O5—H5···S41vii0.842.513.216 (3)142
C7—H7A···S41vii0.982.933.528 (5)121
C11—H11···N10.952.523.063 (3)117
C11—H11···S1viii0.952.733.442 (2)133
C12—H12···S1viii0.952.963.542 (2)121
C15—H15···N20.952.613.097 (3)113
N12—H1N···O20.882.022.898 (3)177
N12—H2N···S2ix0.882.583.446 (2)171
C21—H21···N10.952.653.109 (3)110
C25—H25···N20.952.663.122 (3)111
C25—H25···S2x0.952.943.846 (2)159
N22—H4N···S2xi0.882.643.4939 (19)163
N22—H3N···O10.882.102.978 (3)174
N32—H5N···O50.881.952.833 (3)180
N32—H6N···S1vi0.882.643.478 (2)159
C45—H45···S11ix0.952.893.673 (2)141
N42—H7N···O30.882.082.957 (3)173
N42—H8N···S1xii0.882.883.749 (2)169
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1, z+1; (iii) x, y1, z; (iv) x1, y, z; (v) x, y+2, z; (vi) x+1, y+2, z; (vii) x+1, y+1, z; (viii) x+1, y+1, z; (ix) x+1, y+1, z+1; (x) x+1, y+2, z+1; (xi) x+2, y+2, z+1; (xii) x, y+1, z.
 

Acknowledgements

We thank Professor Dr Wolfgang Bensch for access to his experimental facilities.

Funding information

This project was supported by the Deutsche Forschungsgemeinschaft (Project No. NA 720/5–2) and the State of Schleswig-Holstein.

References

First citationBrandenburg, K. (1990). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationColleter, J. C. & Gadret, M. (1967). Bull. Soc. Chim. Fr. 3463–3469.  Google Scholar
First citationEccles, K. S., Morrison, R. E., Maguire, A. R. & Lawrence, S. E. (2014). Cryst. Growth Des. 14, 2753–2762.  Web of Science CSD CrossRef CAS Google Scholar
First citationGoodgame, D. M. L., Grachvogel, D. A., White, A. J. P. & Williams, D. J. (2003). Inorg. Chim. Acta, 348, 187–193.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKabešová, M., Boča, R., Melník, M., Valigura, D. & Dunaj-Jurčo, M. (1995). Coord. Chem. Rev. 140, 115–135.  Google Scholar
First citationMassoud, S. S., Guilbeau, A. E., Luong, H. T., Vicente, R., Albering, J. H., Fischer, R. C. & Mautner, F. A. (2013). Polyhedron, 54, 26–33.  Web of Science CSD CrossRef CAS Google Scholar
First citationMousavi, M., Béreau, V., Duhayon, C., Guionneau, P. & Sutter, J. P. (2012). Chem. Commun. 48, 10028–10030.  Web of Science CSD CrossRef CAS Google Scholar
First citationNeumann, T., Jess, I. & Näther, C. (2016). Acta Cryst. E72, 370–373.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNeumann, T., Jess, I. & Näther, C. (2017). Acta Cryst. E73, 1786–1789.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNeumann, T., Jess, I. & Näther, C. (2018). Acta Cryst. E74, 141–146.  Web of Science CrossRef IUCr Journals Google Scholar
First citationPalion-Gazda, J., Gryca, I., Maroń, A., Machura, B. & Kruszynski, R. (2017). Polyhedron, 135, 109–120.  Google Scholar
First citationPalion-Gazda, J., Machura, B., Lloret, F. & Julve, M. (2015). Cryst. Growth Des. 15, 2380–2388.  CAS Google Scholar
First citationPrananto, Y. P., Urbatsch, A., Moubaraki, B., Murray, K. S., Turner, D. R., Deacon, G. B. & Batten, S. R. (2017). Aust. J. Chem. 70, 516–528.  Web of Science CSD CrossRef CAS Google Scholar
First citationRams, M., Böhme, M., Kataev, V., Krupskaya, Y., Büchner, B., Plass, W., Neumann, T., Tomkowicz, Z. & Näther, C. (2017a). Phys. Chem. Chem. Phys. 19, 24534–24544.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRams, M., Tomkowicz, Z., Böhme, M., Plass, W., Suckert, S., Werner, J., Jess, I. & Näther, C. (2017b). Phys. Chem. Chem. Phys. 19, 3232–3243.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShotonwa, I. O. & Boeré, R. T. (2014). Acta Cryst. E70, o340–o341.  CSD CrossRef IUCr Journals Google Scholar
First citationStoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationSuckert, S., Rams, M., Germann, L. S., Cegiełka, D. M., Dinnebier, R. E. & Näther, C. (2017). Cryst. Growth Des. 17, 3997–4005.  Web of Science CSD CrossRef CAS Google Scholar
First citationWerner, J., Rams, M., Tomkowicz, Z., Runčevski, T., Dinnebier, R. E., Suckert, S. & Näther, C. (2015). Inorg. Chem. 54, 2893–2901.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWöhlert, S., Fic, T., Tomkowicz, Z., Ebbinghaus, S. G., Rams, M., Haase, W. & Näther, C. (2013b). Inorg. Chem. 52, 12947–12957.  Google Scholar
First citationWöhlert, S., Runčevski, T., Dinnebier, R. E., Ebbinghaus, S. G. & Näther, C. (2014a). Cryst. Growth Des. 14, 1902–1913.  Google Scholar
First citationWöhlert, S., Ruschewitz, U. & Näther, C. (2012). Cryst. Growth Des. 12, 2715–2718.  Google Scholar
First citationWöhlert, S., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Fink, L., Schmidt, M. U. & Näther, C. (2014b). Inorg. Chem. 53, 8298–8310.  Google Scholar
First citationWöhlert, S., Wriedt, M., Fic, T., Tomkowicz, Z., Haase, W. & Näther, C. (2013a). Inorg. Chem. 52, 1061–1068.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds