research communications
Crystal structures of (acetonitrile-κN)tris(pyridine-4-thioamide-κN)bis(thiocyanate-κN)cobalt(II) acetonitrile disolvate and tetrakis(pyridine-4-thioamide-κN)bis(thiocyanate-κN)nickel(II) methanol pentasolvate
aInstitut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth Str. 2, D-24118 Kiel, Germany
*Correspondence e-mail: t.neumann@ac.uni-kiel.de
Reaction of Co(NCS)2 or Ni(NCS)2 with pyridine-4-thioamide in different solvents led to the formation of two compounds with composition [Co(NCS)2(C2H3N)(C6H6N2S)3]·2CH3CN (1) and [Ni(NCS)2(C6H6N2S)4]·5CH3OH (2), respectively. The of compound 1 consists of one cobalt(II) cation, two thiocyanate anions, three pyridine-4-thioamide ligands, one coordinating and two solvate acetonitrile molecules. One of the two acetonitrile solvate molecules is disordered over two sets of sites in a 0.62:0.38 ratio. The of compound 2 comprises of one nickel(II) cation, two thiocyanate anions, four N-bonding pyridine-4-thioamide ligands and five methanol solvate molecules. In compound 1, the cobalt(II) cations are octahedrally coordinated into discrete complexes by two terminal N-bonding thiocyanate anions, the N atoms of three pyridine-4-thioamide ligands and one acetonitrile molecule. Additional acetonitrile solvate molecules are located between the complexes,. The complexes and solvate molecules are linked via intermolecular hydrogen bonding into a three-dimensional framework. In compound 2, the nickel(II) cations are likewise octahedrally coordinated by two terminal N-bonded thiocyanate anions and four N-bonding pyridine-4-thioamide ligands into discrete complexes. From their arrangement cavities are formed, in which the methanol solvate molecules are located. Again, the complexes and solvate molecules are linked into a three-dimensional framework by intermolecular hydrogen bonding.
Keywords: crystal structure; discrete complexes; thiocyanate; hydrogen bonding; cobalt; nickel.
1. Chemical context
For several years we have been interested in the structural, thermal and magnetic properties of coordination compounds and polymers based on transition metal thio- and selenocyanates (Wöhlert et al., 2013a, 2014a). In contrast to other three-atomic ligands such as, for example these ligands show a more versatile coordination behaviour, including a terminal coordination and a number of different bridging modes. Therefore they are of interest from a structural point of view (Massoud et al., 2013; Mousavi et al., 2012; Prananto et al., 2017; Kabešová et al., 1995; Palion-Gazda et al., 2017). Moreover, if paramagnetic metal cations are linked by these anionic ligands into chains or layers, cooperative magnetic phenomena can be expected. Hence the rational synthesis of such compounds is in the focus of our investigations (Palion-Gazda et al., 2015; Wöhlert et al., 2013a). In this context, compounds of special interest include those in which the metal cations are linked by pairs of anionic ligands into linear chains because they can exhibit one-dimensional or three-dimensional ferromagnetic ordering, as shown recently for a number of compounds derived from Co(NCS)2 (Rams et al., 2017a,b; Wöhlert et al. 2012, 2013b, 2014b; Werner et al., 2015). Unfortunately, the paramagnetic metal cations CoII or NiII are less chalcophilic and therefore do not form compounds with polymeric structures from solutions, but with discrete complexes instead. In the majority of cases, these cations are octahedrally coordinated by two anionic ligands and four monodentate N-donor co-ligands. However, if such complexes are heated, they frequently decompose in discrete steps, forming new compounds as intermediates in which the metal cations are linked into one- or two-dimensional network structures. This is the reason why we are also interested in such simple complexes or their solvates (Suckert et al., 2017).
In the course of our project we became interested in the monodentate ligand pyridine-4-thioamide, which might be able to link M(NCS)2 chains (M = Co, Ni) into layers by intermolecular N—H⋯S hydrogen bonding. For example, this motif is observed in the of the pure ligand (Colleter & Gadret, 1967; Eccles et al., 2014). Moreover, one compound derived from Cd(NCS)2 is known in which the metal cations are linked by pairs of anionic ligands into chains (Neumann et al., 2016). Therefore we attempted in the synthesis of discrete precursor complexes or solvates in which the anionic ligands are only terminal N-bonding to transform them subsequently into the desired chain compounds by thermal annealing. Unfortunately, no pure samples could be obtained (Neumann et al., 2017,2018). In the course of this work we obtained two additional compounds from acetonitrile or methanol solution, viz. [Co(NCS)2(C6H6N2S)3(C2H3N)]·2C2H3N (1) and [Ni(NCS)2(C6H6N2S)4]·5CH3OH (2), for which the CN stretching vibration is observed at 2081 cm−1 (1) and 2101 cm−1 (2), respectively. As a consequence, their structures should consist of discrete complexes with terminal N-bonded thiocyanate anions and additional solvate molecules, even if these wave numbers are at the borderline of those expected for the desired bridging anionic ligands. To check if our assumption can be verified, we have performed single-crystal structure determinations of 1 and 2 and report the results in this communication.
2. Structural commentary
Unfortunately, 1 and 2 could not be prepared as pure phases and were either contaminated with additional unknown crystalline phases or, if an excess of pyridine-4-thioamide was used, with this less soluble ligand. Therefore, no further investigations regarding physical properties were performed.
The 1 consists of one cobalt(II) cation, two thiocyanate anions, three pyridine-4-thioamide ligands and three acetonitrile molecules. One of the two acetonitrile solvate molecules is disordered over two sets of sites in a refined ratio of 0.62:0.38. The CoII cation is octahedrally coordinated by two terminal N-bonding thiocyanate anions, an acetonitrile molecule and the pyridine N atoms of three pyridine-4-thioamide ligands into a discrete complex with the same ligand types trans-positioned to each other (Fig. 1). The Co—N bond lengths to the thiocyanate anions are significantly shorter than those to the pyridine N atoms (Table 1), in agreement with values for similar structures (Goodgame et al., 2003; Prananto et al., 2017). The bond angles deviate from ideal values, showing that the octahedra are slightly distorted (Table 1).
of compound
|
The 2 comprises of one nickel(II) cation, two thiocyanate anions, four N-bonded pyridine-4-thioamide ligands and five methanol solvate molecules (Fig. 2). The NiII cation is also octahedrally coordinated by N atoms, but in this case by four pyridine-4-thioamide ligands and two terminal thiocyanate anions. Bond lengths and angles (Table 2) are comparable to those in the structure of compound 1, but the NiN6 octahedron is less distorted than the CoN6 octahedron. It is noted that in both structures the pyridine-4-thioamide ligands are not planar. The thioamide groups are rotated differently out of the pyridine ring plane, with dihedral angles in the range 5.3 (2)–54.5 (2)° for 1 and 40.7 (2)–47.2 (2)° for 2.
of compound
|
3. Supramolecular features
In the 1, the discrete complexes are linked by intermolecular N—H⋯S hydrogen bonding between the H atoms of the amino groups and the S atoms of the thiocyanate anions or the pyridine-4-thioamide ligands into a three-dimensional framework (Fig. 3, Table 3). The complexes are arranged in such a way that cavities are formed in which additional acetonitrile molecules are embedded. These solvate molecules are linked together via C—H⋯N interactions between the methyl H atoms and the N atom of the acetonitrile molecules, but are also connected to the metal complexes by intermolecular C—H⋯N and C—H⋯S interactions.
of compoundIn the 2, a variety of different hydrogen-bonding interactions is observed in which the methanol solvate molecules act both as acceptor and donor groups. Like in compound 1, the complexes are connected into a three-dimensional framework by intermolecular N—H⋯S hydrogen bonding between the H atoms of the amino groups and the S atoms of the thiocyanate anions. Again, cavities are formed that host the methanol solvate molecules. These molecules are linked by intermolecular O—H⋯O hydrogen bonding to other methanol molecules, but are also connected to the complexes by N—H⋯O and O—H⋯S hydrogen bonds to the amino groups and the S atoms of the pyridine-4-thioamide ligands and to the thiocyanate S atoms (Fig. 4, Table 4). Finally, C—H⋯N and C—H⋯S interactions consolidate the packing of the molecules in the structure.
of compound
|
4. Database survey
There are only two cobalt thiocyanate derivatives with additional pyridine-4-thioamide ligands reported in the Cambridge Structure Database (Version 5.39, last update February 2018; Groom et al., 2016). In tetrakis(pyridine-4-carbothioamide-κN1)bis-(thiocyanato-κN)cobalt(II) methanol monosolvate and tetrakis(pyridine-4-carbothioamide-κN1)bis-(thiocyanato-κN)cobalt(II) monohydrate, the CoII cations are octahedrally coordinated by four pyridine-4-carbothioamide ligands and two thiocyanate anions, with the different types of solvent molecules being located in cavities of the structure (Neumann et al., 2017, 2018). In Zn(NCS)2(pyridine-4-thioamide)2, the ZnII cations are tetrahedrally coordinated by two thiocyanate anions and two pyridine-4-thioamide ligands (Neumann et al., 2018). In addition there is one compound with cadmium, in which the CdII cations are octahedrally coordinated by two terminal N-bonded pyridinethioamide ligands and four thiocyanate anions and linked by pairs of anionic ligands into linear chains (Neumann et al., 2016). Alongside the structure of the pure pyridine-4-thioamide ligand (Colleter & Gadret, 1967; Eccles et al., 2014), its protonated form with iodide as counter-anion was reported by Shotonwa & Boeré (2014).
5. Synthesis and crystallization
Co(NCS)2 and pyridine-4-thioamide were purchased from Alfa Aesar. Ni(NCS)2 was prepared by the reaction of equimolar amounts of Ba(SCN)2·3H2O with NiSO4·6H2O in water. The colourless precipitate of BaSO4 was filtered off and the resulting clear solution was evaporated until complete dryness. The purity of Ni(NCS)2 was checked by X-ray powder diffraction measurements.
Crystals of compound 1 were obtained by the reaction of 8.8 mg Co(NCS)2 (0.05 mmol) with 13.8 mg pyridine-4-thioamide (0.1 mmol) in 1 ml acetonitrile. The reaction mixture was left to stand at room-temperature, leading to a few crystals of the title compound suitable for single-crystal X-ray diffraction.
For the synthesis of compound 2, 8.8 mg Ni(NCS)2 (0.05 mmol) were reacted with 27.6 mg pyridine-4-thioamide (0.2 mmol) in 3.0 ml methanol. The mixture was heated to the boiling temperature of methanol and then slowly cooled down, leading to the formation of a few crystals suitable for single-crystal X-ray diffraction.
All reaction batches were contaminated with additional crystalline phases that are unknown. If an excess of pyridine-4-thioamide was used to shift the equillibria in the directions of the discrete complexes with only coordinating pyridine-4-thioamide ligands, the batches were always contaminated with this organic ligand because it is poorly soluble in the used solvents.
IR spectra of manually selected crystals are included for both compounds in the supporting information.
6. Refinement
Crystal data, data collection and structure . The C—H hydrogen atoms were positioned with idealized geometry (C—H = 0.95–0.98 Å; methyl H atoms were allowed to rotate but not to tip) and were refined with Uiso(H) = 1.2Ueq(C) (1.5 for methyl and hydroxyl H atoms) using a riding model. The N—H hydrogen atoms were located in a difference-Fourier map, their bond lengths set to ideal values (N—H = 0.88 Å) and refined with Uiso(H) = 1.5Ueq(N) using a riding model. In 1, one of the two crystallographically independent acetonitrile solvent molecules is disordered over two sets of sites and was refined using a split model with restraints [SAME in SHELXL (Sheldrick, 2015)], leading to a ratio of 0.62:0.38 for the two orientations (fixed at the final stage of refinement).
details are summarized in Table 5
|
Supporting information
https://doi.org/10.1107/S2056989018007612/wm5443sup1.cif
contains datablocks Compound1, Compound2. DOI:Structure factors: contains datablock Compound1. DOI: https://doi.org/10.1107/S2056989018007612/wm5443Compound1sup2.hkl
Structure factors: contains datablock Compound2. DOI: https://doi.org/10.1107/S2056989018007612/wm5443Compound2sup3.hkl
Figs. S1 and S2. IR-Data for compounds 1 and 2. DOI: https://doi.org/10.1107/S2056989018007612/wm5443sup4.pdf
For both structures, data collection: X-AREA (Stoe, 2008); cell
X-AREA (Stoe, 2008); data reduction: X-AREA (Stoe, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Diamond (Brandenburg, 1990); software used to prepare material for publication: publCIF (Westrip, 2010).[Co(NCS)2(C2H3N)(C6H6N2S)3]·2C2H3N | F(000) = 1468 |
Mr = 712.81 | Dx = 1.426 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 11.3566 (4) Å | Cell parameters from 25043 reflections |
b = 12.3251 (2) Å | θ = 1.7–27.0° |
c = 23.7557 (8) Å | µ = 0.87 mm−1 |
β = 93.273 (3)° | T = 200 K |
V = 3319.69 (17) Å3 | Block, brown |
Z = 4 | 0.12 × 0.10 × 0.08 mm |
STOE IPDS-2 diffractometer | Rint = 0.027 |
ω scans | θmax = 27.0°, θmin = 1.7° |
25043 measured reflections | h = −14→14 |
7218 independent reflections | k = −14→15 |
6002 reflections with I > 2σ(I) | l = −30→30 |
Refinement on F2 | 9 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.032 | H-atom parameters constrained |
wR(F2) = 0.080 | w = 1/[σ2(Fo2) + (0.0441P)2 + 0.5907P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.002 |
7218 reflections | Δρmax = 0.34 e Å−3 |
419 parameters | Δρmin = −0.33 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Co1 | 0.62828 (2) | 0.49502 (2) | 0.82672 (2) | 0.02661 (7) | |
N1 | 0.70292 (15) | 0.34698 (13) | 0.80907 (7) | 0.0359 (3) | |
C1 | 0.73383 (16) | 0.26112 (15) | 0.79702 (7) | 0.0307 (4) | |
S1 | 0.77894 (5) | 0.13954 (4) | 0.78062 (2) | 0.03821 (11) | |
N2 | 0.55051 (14) | 0.64072 (13) | 0.84732 (6) | 0.0343 (3) | |
C2 | 0.52817 (15) | 0.72538 (15) | 0.86457 (7) | 0.0295 (4) | |
S2 | 0.49682 (5) | 0.84533 (4) | 0.88860 (2) | 0.04202 (12) | |
N3 | 0.61781 (15) | 0.44151 (14) | 0.91443 (6) | 0.0387 (4) | |
C3 | 0.61548 (19) | 0.40477 (17) | 0.95811 (8) | 0.0409 (4) | |
C4 | 0.6128 (3) | 0.3573 (2) | 1.01395 (10) | 0.0704 (8) | |
H4A | 0.6403 | 0.2820 | 1.0128 | 0.106* | |
H4B | 0.5319 | 0.3589 | 1.0263 | 0.106* | |
H4C | 0.6644 | 0.3989 | 1.0405 | 0.106* | |
N4 | 0.3375 (2) | 0.6038 (3) | 0.56403 (10) | 0.0857 (9) | |
C5 | 0.2523 (3) | 0.5621 (2) | 0.57241 (10) | 0.0576 (6) | |
C6 | 0.1421 (3) | 0.5092 (3) | 0.58145 (13) | 0.0799 (10) | |
H6A | 0.0807 | 0.5639 | 0.5858 | 0.120* | |
H6B | 0.1505 | 0.4647 | 0.6156 | 0.120* | |
H6C | 0.1200 | 0.4628 | 0.5490 | 0.120* | |
N5 | −0.1359 (7) | 0.5306 (5) | 1.0399 (3) | 0.087 (3) | 0.62 |
C7 | −0.0520 (6) | 0.5785 (5) | 1.04825 (19) | 0.0699 (16) | 0.62 |
C8 | 0.0562 (13) | 0.6419 (14) | 1.0603 (7) | 0.082 (4) | 0.62 |
H8A | 0.0494 | 0.6828 | 1.0954 | 0.123* | 0.62 |
H8B | 0.0672 | 0.6925 | 1.0292 | 0.123* | 0.62 |
H8C | 0.1239 | 0.5928 | 1.0643 | 0.123* | 0.62 |
N5' | −0.1549 (9) | 0.4866 (8) | 1.0254 (4) | 0.063 (2) | 0.38 |
C7' | −0.1247 (6) | 0.4336 (6) | 0.9894 (3) | 0.0539 (16) | 0.38 |
C8' | −0.0796 (19) | 0.3668 (18) | 0.9442 (9) | 0.061 (4) | 0.38 |
H8D | −0.0008 | 0.3922 | 0.9356 | 0.091* | 0.38 |
H8E | −0.1328 | 0.3726 | 0.9104 | 0.091* | 0.38 |
H8F | −0.0749 | 0.2909 | 0.9564 | 0.091* | 0.38 |
N11 | 0.80040 (13) | 0.56775 (12) | 0.85214 (6) | 0.0302 (3) | |
C11 | 0.89844 (17) | 0.54836 (16) | 0.82515 (8) | 0.0339 (4) | |
H11 | 0.8952 | 0.4946 | 0.7964 | 0.041* | |
C12 | 1.00400 (17) | 0.60162 (16) | 0.83647 (7) | 0.0340 (4) | |
H12 | 1.0706 | 0.5846 | 0.8157 | 0.041* | |
C13 | 1.01251 (16) | 0.68036 (15) | 0.87846 (7) | 0.0293 (3) | |
C14 | 0.91243 (17) | 0.69721 (16) | 0.90835 (7) | 0.0333 (4) | |
H14 | 0.9146 | 0.7476 | 0.9387 | 0.040* | |
C15 | 0.80988 (17) | 0.64104 (16) | 0.89414 (7) | 0.0332 (4) | |
H15 | 0.7426 | 0.6548 | 0.9150 | 0.040* | |
C16 | 1.12262 (16) | 0.74442 (15) | 0.89216 (7) | 0.0324 (4) | |
N12 | 1.21164 (14) | 0.72915 (15) | 0.85928 (7) | 0.0397 (4) | |
H1N | 1.2027 | 0.6957 | 0.8266 | 0.060* | |
H2N | 1.2754 | 0.7687 | 0.8661 | 0.060* | |
S11 | 1.13309 (5) | 0.83113 (5) | 0.94560 (2) | 0.04363 (13) | |
N21 | 0.45275 (13) | 0.43047 (12) | 0.80859 (6) | 0.0304 (3) | |
C21 | 0.37190 (16) | 0.43714 (17) | 0.84752 (8) | 0.0365 (4) | |
H21 | 0.3943 | 0.4691 | 0.8829 | 0.044* | |
C22 | 0.25792 (17) | 0.39979 (17) | 0.83859 (8) | 0.0378 (4) | |
H22 | 0.2043 | 0.4034 | 0.8678 | 0.045* | |
C23 | 0.22269 (16) | 0.35688 (15) | 0.78638 (8) | 0.0329 (4) | |
C24 | 0.30512 (17) | 0.35158 (16) | 0.74560 (8) | 0.0341 (4) | |
H24 | 0.2837 | 0.3240 | 0.7091 | 0.041* | |
C25 | 0.41881 (16) | 0.38689 (15) | 0.75876 (7) | 0.0317 (4) | |
H25 | 0.4755 | 0.3799 | 0.7311 | 0.038* | |
C26 | 0.09837 (16) | 0.32242 (16) | 0.77362 (8) | 0.0362 (4) | |
N22 | 0.05589 (16) | 0.25230 (17) | 0.80962 (9) | 0.0536 (5) | |
H3N | −0.0138 | 0.2228 | 0.8021 | 0.080* | |
H4N | 0.0964 | 0.2277 | 0.8396 | 0.080* | |
S21 | 0.02293 (4) | 0.37470 (4) | 0.71886 (2) | 0.03954 (12) | |
N31 | 0.63857 (13) | 0.54138 (12) | 0.73865 (6) | 0.0284 (3) | |
C31 | 0.56230 (16) | 0.61090 (15) | 0.71318 (7) | 0.0304 (4) | |
H31 | 0.5006 | 0.6392 | 0.7342 | 0.037* | |
C32 | 0.56864 (17) | 0.64377 (15) | 0.65764 (7) | 0.0329 (4) | |
H32 | 0.5107 | 0.6910 | 0.6407 | 0.039* | |
C33 | 0.66128 (17) | 0.60637 (15) | 0.62729 (7) | 0.0325 (4) | |
C34 | 0.73991 (17) | 0.53387 (16) | 0.65314 (7) | 0.0334 (4) | |
H34 | 0.8040 | 0.5065 | 0.6334 | 0.040* | |
C35 | 0.72442 (16) | 0.50179 (15) | 0.70767 (7) | 0.0324 (4) | |
H35 | 0.7768 | 0.4492 | 0.7243 | 0.039* | |
C36 | 0.67792 (19) | 0.64037 (17) | 0.56790 (8) | 0.0399 (4) | |
N32 | 0.58298 (19) | 0.63969 (19) | 0.53393 (7) | 0.0565 (5) | |
H5N | 0.5843 | 0.6602 | 0.4985 | 0.085* | |
H6N | 0.5141 | 0.6151 | 0.5435 | 0.085* | |
S31 | 0.81118 (6) | 0.67528 (6) | 0.54887 (2) | 0.05599 (16) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.02609 (12) | 0.02759 (12) | 0.02615 (11) | −0.00033 (9) | 0.00155 (8) | −0.00024 (9) |
N1 | 0.0378 (9) | 0.0323 (8) | 0.0376 (8) | 0.0035 (7) | 0.0024 (6) | 0.0008 (6) |
C1 | 0.0272 (8) | 0.0343 (10) | 0.0306 (8) | −0.0027 (7) | 0.0019 (6) | 0.0036 (7) |
S1 | 0.0420 (3) | 0.0280 (2) | 0.0453 (2) | 0.0007 (2) | 0.0089 (2) | −0.00051 (19) |
N2 | 0.0336 (8) | 0.0337 (8) | 0.0356 (7) | 0.0017 (7) | 0.0027 (6) | −0.0023 (6) |
C2 | 0.0281 (9) | 0.0343 (10) | 0.0260 (7) | −0.0013 (7) | 0.0008 (6) | 0.0017 (7) |
S2 | 0.0581 (3) | 0.0324 (2) | 0.0357 (2) | 0.0065 (2) | 0.0041 (2) | −0.00340 (19) |
N3 | 0.0387 (9) | 0.0450 (10) | 0.0323 (8) | −0.0007 (8) | 0.0018 (6) | 0.0051 (7) |
C3 | 0.0459 (11) | 0.0408 (11) | 0.0365 (10) | 0.0055 (9) | 0.0063 (8) | 0.0020 (8) |
C4 | 0.106 (2) | 0.0678 (17) | 0.0391 (11) | 0.0193 (16) | 0.0174 (13) | 0.0178 (12) |
N4 | 0.0587 (15) | 0.141 (3) | 0.0563 (13) | −0.0153 (16) | −0.0072 (11) | 0.0269 (15) |
C5 | 0.0606 (16) | 0.0687 (17) | 0.0430 (12) | −0.0035 (13) | −0.0019 (11) | 0.0062 (11) |
C6 | 0.099 (2) | 0.081 (2) | 0.0614 (16) | −0.0387 (19) | 0.0166 (16) | −0.0124 (14) |
N5 | 0.129 (7) | 0.067 (4) | 0.072 (4) | 0.025 (4) | 0.055 (4) | 0.004 (3) |
C7 | 0.101 (4) | 0.062 (3) | 0.051 (2) | 0.038 (3) | 0.041 (3) | 0.021 (2) |
C8 | 0.103 (9) | 0.084 (6) | 0.061 (4) | 0.041 (6) | 0.026 (5) | 0.020 (4) |
N5' | 0.061 (4) | 0.070 (7) | 0.059 (5) | 0.013 (4) | 0.006 (4) | 0.004 (4) |
C7' | 0.044 (3) | 0.061 (4) | 0.054 (4) | −0.002 (3) | −0.010 (3) | 0.026 (3) |
C8' | 0.061 (7) | 0.064 (8) | 0.057 (9) | 0.006 (7) | −0.003 (6) | 0.016 (5) |
N11 | 0.0289 (7) | 0.0315 (8) | 0.0300 (7) | −0.0015 (6) | 0.0009 (6) | −0.0007 (6) |
C11 | 0.0320 (9) | 0.0357 (10) | 0.0342 (9) | −0.0019 (8) | 0.0031 (7) | −0.0070 (7) |
C12 | 0.0300 (9) | 0.0388 (10) | 0.0335 (9) | −0.0020 (8) | 0.0047 (7) | −0.0044 (7) |
C13 | 0.0301 (9) | 0.0312 (9) | 0.0264 (8) | −0.0012 (7) | −0.0012 (6) | 0.0033 (6) |
C14 | 0.0342 (9) | 0.0360 (10) | 0.0296 (8) | −0.0003 (8) | 0.0004 (7) | −0.0056 (7) |
C15 | 0.0302 (9) | 0.0392 (10) | 0.0304 (8) | −0.0014 (8) | 0.0035 (7) | −0.0039 (7) |
C16 | 0.0333 (9) | 0.0330 (9) | 0.0304 (8) | −0.0019 (8) | −0.0027 (7) | 0.0054 (7) |
N12 | 0.0305 (8) | 0.0489 (10) | 0.0397 (8) | −0.0079 (7) | 0.0009 (6) | −0.0052 (7) |
S11 | 0.0460 (3) | 0.0464 (3) | 0.0382 (2) | −0.0120 (2) | 0.0000 (2) | −0.0079 (2) |
N21 | 0.0278 (7) | 0.0309 (8) | 0.0325 (7) | −0.0026 (6) | 0.0015 (6) | −0.0017 (6) |
C21 | 0.0308 (9) | 0.0469 (11) | 0.0319 (9) | −0.0028 (8) | 0.0026 (7) | −0.0053 (8) |
C22 | 0.0297 (9) | 0.0481 (11) | 0.0359 (9) | −0.0017 (8) | 0.0046 (7) | −0.0020 (8) |
C23 | 0.0292 (9) | 0.0297 (9) | 0.0395 (9) | −0.0006 (7) | −0.0004 (7) | 0.0018 (7) |
C24 | 0.0325 (9) | 0.0348 (10) | 0.0349 (9) | −0.0010 (8) | 0.0008 (7) | −0.0032 (7) |
C25 | 0.0307 (9) | 0.0331 (9) | 0.0315 (8) | −0.0023 (7) | 0.0029 (7) | −0.0026 (7) |
C26 | 0.0289 (9) | 0.0351 (10) | 0.0446 (10) | 0.0002 (8) | 0.0019 (7) | −0.0040 (8) |
N22 | 0.0319 (9) | 0.0620 (13) | 0.0661 (12) | −0.0109 (9) | −0.0058 (8) | 0.0201 (10) |
S21 | 0.0325 (2) | 0.0461 (3) | 0.0393 (2) | 0.0015 (2) | −0.00403 (18) | −0.0051 (2) |
N31 | 0.0294 (7) | 0.0308 (7) | 0.0253 (6) | −0.0011 (6) | 0.0026 (5) | 0.0001 (5) |
C31 | 0.0299 (9) | 0.0317 (9) | 0.0298 (8) | 0.0007 (7) | 0.0027 (7) | 0.0004 (7) |
C32 | 0.0344 (9) | 0.0327 (9) | 0.0313 (8) | 0.0004 (8) | −0.0005 (7) | 0.0017 (7) |
C33 | 0.0373 (10) | 0.0324 (9) | 0.0279 (8) | −0.0075 (8) | 0.0011 (7) | −0.0014 (7) |
C34 | 0.0327 (9) | 0.0382 (10) | 0.0299 (8) | −0.0014 (8) | 0.0051 (7) | −0.0032 (7) |
C35 | 0.0305 (9) | 0.0363 (10) | 0.0304 (8) | 0.0017 (8) | 0.0024 (7) | −0.0001 (7) |
C36 | 0.0496 (12) | 0.0416 (11) | 0.0288 (8) | −0.0045 (9) | 0.0054 (8) | 0.0012 (8) |
N32 | 0.0536 (12) | 0.0857 (15) | 0.0298 (8) | −0.0040 (11) | −0.0003 (8) | 0.0136 (9) |
S31 | 0.0562 (3) | 0.0740 (4) | 0.0391 (3) | −0.0196 (3) | 0.0143 (2) | 0.0030 (3) |
Co1—N1 | 2.0650 (16) | C14—C15 | 1.380 (3) |
Co1—N2 | 2.0720 (16) | C14—H14 | 0.9500 |
Co1—N21 | 2.1666 (15) | C15—H15 | 0.9500 |
Co1—N31 | 2.1785 (14) | C16—N12 | 1.326 (2) |
Co1—N3 | 2.1950 (15) | C16—S11 | 1.6583 (19) |
Co1—N11 | 2.2032 (15) | N12—H1N | 0.8799 |
N1—C1 | 1.156 (2) | N12—H2N | 0.8800 |
C1—S1 | 1.6378 (19) | N21—C25 | 1.336 (2) |
N2—C2 | 1.155 (2) | N21—C21 | 1.342 (2) |
C2—S2 | 1.6314 (19) | C21—C22 | 1.379 (3) |
N3—C3 | 1.134 (2) | C21—H21 | 0.9500 |
C3—C4 | 1.451 (3) | C22—C23 | 1.386 (3) |
C4—H4A | 0.9800 | C22—H22 | 0.9500 |
C4—H4B | 0.9800 | C23—C24 | 1.387 (3) |
C4—H4C | 0.9800 | C23—C26 | 1.489 (3) |
N4—C5 | 1.123 (4) | C24—C25 | 1.381 (3) |
C5—C6 | 1.439 (4) | C24—H24 | 0.9500 |
C6—H6A | 0.9800 | C25—H25 | 0.9500 |
C6—H6B | 0.9800 | C26—N22 | 1.326 (3) |
C6—H6C | 0.9800 | C26—S21 | 1.647 (2) |
N5—C7 | 1.129 (8) | N22—H3N | 0.8799 |
C7—C8 | 1.470 (14) | N22—H4N | 0.8800 |
C8—H8A | 0.9800 | N31—C31 | 1.338 (2) |
C8—H8B | 0.9800 | N31—C35 | 1.346 (2) |
C8—H8C | 0.9800 | C31—C32 | 1.386 (2) |
N5'—C7' | 1.144 (9) | C31—H31 | 0.9500 |
C7'—C8' | 1.469 (15) | C32—C33 | 1.388 (3) |
C8'—H8D | 0.9800 | C32—H32 | 0.9500 |
C8'—H8E | 0.9800 | C33—C34 | 1.382 (3) |
C8'—H8F | 0.9800 | C33—C36 | 1.494 (2) |
N11—C11 | 1.338 (2) | C34—C35 | 1.375 (2) |
N11—C15 | 1.346 (2) | C34—H34 | 0.9500 |
C11—C12 | 1.380 (3) | C35—H35 | 0.9500 |
C11—H11 | 0.9500 | C36—N32 | 1.309 (3) |
C12—C13 | 1.391 (3) | C36—S31 | 1.661 (2) |
C12—H12 | 0.9500 | N32—H5N | 0.8800 |
C13—C14 | 1.390 (2) | N32—H6N | 0.8799 |
C13—C16 | 1.499 (3) | ||
N1—Co1—N2 | 177.65 (6) | C15—C14—C13 | 120.22 (16) |
N1—Co1—N21 | 91.08 (6) | C15—C14—H14 | 119.9 |
N2—Co1—N21 | 88.02 (6) | C13—C14—H14 | 119.9 |
N1—Co1—N31 | 89.52 (6) | N11—C15—C14 | 123.29 (16) |
N2—Co1—N31 | 92.66 (6) | N11—C15—H15 | 118.4 |
N21—Co1—N31 | 90.26 (6) | C14—C15—H15 | 118.4 |
N1—Co1—N3 | 88.41 (6) | N12—C16—C13 | 116.87 (16) |
N2—Co1—N3 | 89.39 (6) | N12—C16—S11 | 121.24 (15) |
N21—Co1—N3 | 88.82 (6) | C13—C16—S11 | 121.88 (13) |
N31—Co1—N3 | 177.72 (6) | C16—N12—H1N | 122.2 |
N1—Co1—N11 | 92.70 (6) | C16—N12—H2N | 117.4 |
N2—Co1—N11 | 88.06 (6) | H1N—N12—H2N | 118.3 |
N21—Co1—N11 | 174.69 (5) | C25—N21—C21 | 117.44 (16) |
N31—Co1—N11 | 93.50 (5) | C25—N21—Co1 | 122.63 (12) |
N3—Co1—N11 | 87.56 (6) | C21—N21—Co1 | 119.88 (12) |
C1—N1—Co1 | 173.25 (16) | N21—C21—C22 | 123.13 (17) |
N1—C1—S1 | 179.26 (19) | N21—C21—H21 | 118.4 |
C2—N2—Co1 | 166.49 (16) | C22—C21—H21 | 118.4 |
N2—C2—S2 | 179.66 (17) | C21—C22—C23 | 119.05 (17) |
C3—N3—Co1 | 173.73 (17) | C21—C22—H22 | 120.5 |
N3—C3—C4 | 179.7 (3) | C23—C22—H22 | 120.5 |
C3—C4—H4A | 109.5 | C22—C23—C24 | 118.11 (17) |
C3—C4—H4B | 109.5 | C22—C23—C26 | 120.86 (16) |
H4A—C4—H4B | 109.5 | C24—C23—C26 | 120.96 (16) |
C3—C4—H4C | 109.5 | C25—C24—C23 | 119.13 (17) |
H4A—C4—H4C | 109.5 | C25—C24—H24 | 120.4 |
H4B—C4—H4C | 109.5 | C23—C24—H24 | 120.4 |
N4—C5—C6 | 178.3 (3) | N21—C25—C24 | 123.06 (16) |
C5—C6—H6A | 109.5 | N21—C25—H25 | 118.5 |
C5—C6—H6B | 109.5 | C24—C25—H25 | 118.5 |
H6A—C6—H6B | 109.5 | N22—C26—C23 | 115.48 (17) |
C5—C6—H6C | 109.5 | N22—C26—S21 | 124.91 (16) |
H6A—C6—H6C | 109.5 | C23—C26—S21 | 119.58 (14) |
H6B—C6—H6C | 109.5 | C26—N22—H3N | 119.6 |
N5—C7—C8 | 178.7 (8) | C26—N22—H4N | 123.7 |
C7—C8—H8A | 109.5 | H3N—N22—H4N | 116.4 |
C7—C8—H8B | 109.5 | C31—N31—C35 | 117.08 (14) |
H8A—C8—H8B | 109.5 | C31—N31—Co1 | 122.23 (11) |
C7—C8—H8C | 109.5 | C35—N31—Co1 | 120.68 (12) |
H8A—C8—H8C | 109.5 | N31—C31—C32 | 123.38 (16) |
H8B—C8—H8C | 109.5 | N31—C31—H31 | 118.3 |
N5'—C7'—C8' | 177.0 (11) | C32—C31—H31 | 118.3 |
C7'—C8'—H8D | 109.5 | C31—C32—C33 | 118.66 (17) |
C7'—C8'—H8E | 109.5 | C31—C32—H32 | 120.7 |
H8D—C8'—H8E | 109.5 | C33—C32—H32 | 120.7 |
C7'—C8'—H8F | 109.5 | C34—C33—C32 | 118.28 (16) |
H8D—C8'—H8F | 109.5 | C34—C33—C36 | 119.17 (17) |
H8E—C8'—H8F | 109.5 | C32—C33—C36 | 122.54 (18) |
C11—N11—C15 | 116.21 (16) | C35—C34—C33 | 119.35 (17) |
C11—N11—Co1 | 123.08 (12) | C35—C34—H34 | 120.3 |
C15—N11—Co1 | 120.56 (12) | C33—C34—H34 | 120.3 |
N11—C11—C12 | 124.01 (17) | N31—C35—C34 | 123.11 (17) |
N11—C11—H11 | 118.0 | N31—C35—H35 | 118.4 |
C12—C11—H11 | 118.0 | C34—C35—H35 | 118.4 |
C11—C12—C13 | 119.72 (17) | N32—C36—C33 | 115.85 (18) |
C11—C12—H12 | 120.1 | N32—C36—S31 | 124.40 (15) |
C13—C12—H12 | 120.1 | C33—C36—S31 | 119.75 (15) |
C14—C13—C12 | 116.44 (17) | C36—N32—H5N | 121.9 |
C14—C13—C16 | 120.45 (16) | C36—N32—H6N | 123.8 |
C12—C13—C16 | 123.11 (16) | H5N—N32—H6N | 114.2 |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4C···N5′i | 0.98 | 2.37 | 3.081 (12) | 129 |
C6—H6C···S31ii | 0.98 | 3.02 | 3.901 (3) | 150 |
C11—H11···S21i | 0.95 | 2.83 | 3.6556 (18) | 146 |
C12—H12···S1iii | 0.95 | 3.01 | 3.8491 (18) | 148 |
N12—H1N···S1iii | 0.88 | 2.66 | 3.5097 (17) | 163 |
N12—H2N···S2i | 0.88 | 2.71 | 3.5731 (17) | 167 |
C21—H21···N3 | 0.95 | 2.63 | 3.134 (3) | 114 |
C22—H22···N5iv | 0.95 | 2.50 | 3.384 (7) | 154 |
C25—H25···S2v | 0.95 | 2.91 | 3.7172 (18) | 144 |
N22—H3N···S1vi | 0.88 | 2.59 | 3.4715 (19) | 179 |
N22—H4N···S31v | 0.88 | 2.87 | 3.729 (2) | 167 |
C34—H34···S11vii | 0.95 | 2.98 | 3.7698 (19) | 142 |
C35—H35···N1 | 0.95 | 2.56 | 3.094 (2) | 116 |
C35—H35···S21i | 0.95 | 2.95 | 3.7301 (19) | 140 |
N32—H5N···S2viii | 0.88 | 2.74 | 3.5390 (18) | 152 |
N32—H6N···N4 | 0.88 | 2.10 | 2.951 (3) | 164 |
C8—H8B···S11vi | 0.98 | 2.76 | 3.728 (19) | 172 |
C8′—H8D···N5′iv | 0.98 | 2.46 | 3.26 (2) | 140 |
C8′—H8F···S11ix | 0.98 | 2.88 | 3.65 (3) | 137 |
Symmetry codes: (i) x+1, y, z; (ii) −x+1, −y+1, −z+1; (iii) −x+2, y+1/2, −z+3/2; (iv) −x, −y+1, −z+2; (v) −x+1, y−1/2, −z+3/2; (vi) x−1, y, z; (vii) −x+2, y−1/2, −z+3/2; (viii) x, −y+3/2, z−1/2; (ix) −x+1, −y+1, −z+2. |
[Ni(NCS)2(C6H6N2S)4]·5CH4O | Z = 2 |
Mr = 887.83 | F(000) = 928 |
Triclinic, P1 | Dx = 1.392 Mg m−3 |
a = 10.4520 (3) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 14.5934 (4) Å | Cell parameters from 30865 reflections |
c = 15.0580 (5) Å | θ = 1.5–27.0° |
α = 101.553 (2)° | µ = 0.80 mm−1 |
β = 97.105 (2)° | T = 200 K |
γ = 106.417 (2)° | Block, yellow |
V = 2118.43 (11) Å3 | 0.30 × 0.18 × 0.10 mm |
STOE IPDS-2 diffractometer | 7895 reflections with I > 2σ(I) |
ω scans | Rint = 0.031 |
Absorption correction: numerical (X-Red and X-Shape; Stoe, 2008) | θmax = 27.0°, θmin = 1.5° |
Tmin = 0.622, Tmax = 0.889 | h = −13→13 |
30865 measured reflections | k = −18→18 |
9253 independent reflections | l = −19→19 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.039 | H-atom parameters constrained |
wR(F2) = 0.109 | w = 1/[σ2(Fo2) + (0.0575P)2 + 1.0537P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.026 |
9253 reflections | Δρmax = 0.62 e Å−3 |
486 parameters | Δρmin = −0.57 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.51341 (2) | 0.75649 (2) | 0.25835 (2) | 0.02541 (8) | |
N1 | 0.54979 (18) | 0.69614 (13) | 0.13314 (13) | 0.0327 (4) | |
C1 | 0.55335 (19) | 0.66218 (14) | 0.05750 (14) | 0.0274 (4) | |
S1 | 0.55930 (7) | 0.61468 (4) | −0.04898 (4) | 0.03984 (14) | |
N2 | 0.47316 (17) | 0.81774 (12) | 0.38258 (12) | 0.0312 (4) | |
C2 | 0.45784 (19) | 0.84815 (14) | 0.45634 (14) | 0.0270 (4) | |
S2 | 0.43803 (5) | 0.89172 (4) | 0.56086 (4) | 0.03231 (12) | |
O1 | 1.11056 (19) | 0.76700 (17) | 0.45151 (19) | 0.0685 (6) | |
H1 | 1.1714 | 0.7529 | 0.4827 | 0.103* | |
C3 | 0.9826 (3) | 0.7028 (2) | 0.4528 (3) | 0.0619 (8) | |
H3A | 0.9932 | 0.6612 | 0.4951 | 0.093* | |
H3B | 0.9412 | 0.6610 | 0.3905 | 0.093* | |
H3C | 0.9240 | 0.7413 | 0.4737 | 0.093* | |
O2 | 0.2866 (3) | 0.29719 (16) | 0.25572 (19) | 0.0746 (7) | |
H2 | 0.2560 | 0.2466 | 0.2117 | 0.112* | |
C4 | 0.2076 (4) | 0.3592 (3) | 0.2485 (3) | 0.0869 (11) | |
H4A | 0.2268 | 0.4087 | 0.3071 | 0.130* | |
H4B | 0.1111 | 0.3202 | 0.2341 | 0.130* | |
H4C | 0.2294 | 0.3923 | 0.1991 | 0.130* | |
O3 | −0.1063 (2) | 0.74182 (19) | 0.0459 (2) | 0.0769 (7) | |
H3 | −0.1766 | 0.7415 | 0.0120 | 0.115* | |
C5 | 0.0077 (4) | 0.7993 (3) | 0.0215 (4) | 0.0954 (14) | |
H5A | −0.0007 | 0.8647 | 0.0224 | 0.143* | |
H5B | 0.0151 | 0.7679 | −0.0407 | 0.143* | |
H5C | 0.0891 | 0.8060 | 0.0655 | 0.143* | |
O4 | 0.9917 (4) | 1.1226 (3) | 0.1994 (3) | 0.1172 (11) | |
H4 | 0.9255 | 1.1374 | 0.2174 | 0.176* | |
C6 | 0.9483 (5) | 1.0242 (3) | 0.1498 (3) | 0.0990 (14) | |
H6A | 1.0269 | 1.0004 | 0.1471 | 0.149* | |
H6B | 0.9032 | 1.0186 | 0.0869 | 0.149* | |
H6C | 0.8843 | 0.9844 | 0.1804 | 0.149* | |
O5 | 0.7792 (3) | 1.1926 (2) | 0.2133 (2) | 0.0917 (9) | |
H5 | 0.8183 | 1.2328 | 0.1847 | 0.138* | |
C7 | 0.8085 (7) | 1.2391 (5) | 0.3032 (4) | 0.138 (2) | |
H7A | 0.8012 | 1.3054 | 0.3079 | 0.208* | |
H7B | 0.9017 | 1.2459 | 0.3307 | 0.208* | |
H7C | 0.7455 | 1.2058 | 0.3385 | 0.208* | |
N11 | 0.55562 (17) | 0.64292 (12) | 0.31467 (12) | 0.0292 (3) | |
C11 | 0.5353 (3) | 0.55466 (16) | 0.25963 (16) | 0.0399 (5) | |
H11 | 0.5032 | 0.5446 | 0.1955 | 0.048* | |
C12 | 0.5581 (3) | 0.47683 (17) | 0.29056 (16) | 0.0428 (5) | |
H12 | 0.5421 | 0.4151 | 0.2483 | 0.051* | |
C13 | 0.6048 (2) | 0.48958 (16) | 0.38378 (15) | 0.0336 (4) | |
C14 | 0.6301 (2) | 0.58205 (16) | 0.44148 (15) | 0.0355 (5) | |
H14 | 0.6653 | 0.5947 | 0.5055 | 0.043* | |
C15 | 0.6037 (2) | 0.65570 (16) | 0.40479 (15) | 0.0340 (4) | |
H15 | 0.6202 | 0.7185 | 0.4452 | 0.041* | |
C16 | 0.6263 (3) | 0.40563 (17) | 0.41981 (16) | 0.0398 (5) | |
N12 | 0.5319 (2) | 0.31979 (15) | 0.38285 (15) | 0.0457 (5) | |
H1N | 0.4568 | 0.3147 | 0.3458 | 0.069* | |
H2N | 0.5292 | 0.2622 | 0.3934 | 0.069* | |
S11 | 0.76130 (8) | 0.42440 (6) | 0.50051 (6) | 0.0593 (2) | |
N21 | 0.72138 (16) | 0.84055 (12) | 0.30150 (12) | 0.0286 (3) | |
C21 | 0.8184 (2) | 0.80324 (16) | 0.27672 (16) | 0.0342 (4) | |
H21 | 0.7920 | 0.7383 | 0.2383 | 0.041* | |
C22 | 0.9556 (2) | 0.85515 (16) | 0.30453 (16) | 0.0363 (5) | |
H22 | 1.0218 | 0.8256 | 0.2868 | 0.044* | |
C23 | 0.9951 (2) | 0.95123 (16) | 0.35878 (15) | 0.0315 (4) | |
C24 | 0.8945 (2) | 0.99054 (15) | 0.38322 (15) | 0.0329 (4) | |
H24 | 0.9178 | 1.0564 | 0.4192 | 0.040* | |
C25 | 0.7602 (2) | 0.93304 (15) | 0.35472 (15) | 0.0315 (4) | |
H25 | 0.6922 | 0.9599 | 0.3735 | 0.038* | |
C26 | 1.1412 (2) | 1.01136 (16) | 0.38800 (15) | 0.0344 (4) | |
N22 | 1.22398 (18) | 0.96366 (15) | 0.41365 (14) | 0.0385 (4) | |
H4N | 1.3129 | 0.9904 | 0.4262 | 0.058* | |
H3N | 1.1961 | 0.9051 | 0.4250 | 0.058* | |
S21 | 1.19199 (6) | 1.12876 (4) | 0.38386 (5) | 0.04608 (15) | |
N31 | 0.47817 (17) | 0.87293 (12) | 0.20441 (12) | 0.0288 (3) | |
C31 | 0.5552 (2) | 0.91431 (15) | 0.14905 (15) | 0.0324 (4) | |
H31 | 0.6224 | 0.8868 | 0.1296 | 0.039* | |
C32 | 0.5413 (2) | 0.99481 (16) | 0.11913 (16) | 0.0359 (5) | |
H32 | 0.5997 | 1.0230 | 0.0814 | 0.043* | |
C33 | 0.4415 (2) | 1.03440 (16) | 0.14444 (16) | 0.0345 (4) | |
C34 | 0.3592 (2) | 0.99038 (17) | 0.20028 (16) | 0.0374 (5) | |
H34 | 0.2884 | 1.0144 | 0.2183 | 0.045* | |
C35 | 0.3820 (2) | 0.91149 (16) | 0.22892 (15) | 0.0339 (4) | |
H35 | 0.3266 | 0.8830 | 0.2681 | 0.041* | |
C36 | 0.4190 (2) | 1.11957 (17) | 0.11202 (17) | 0.0403 (5) | |
N32 | 0.5284 (2) | 1.19414 (15) | 0.11852 (18) | 0.0520 (6) | |
H5N | 0.6061 | 1.1934 | 0.1481 | 0.078* | |
H6N | 0.5270 | 1.2440 | 0.0943 | 0.078* | |
S31 | 0.26248 (7) | 1.11340 (5) | 0.06808 (6) | 0.0578 (2) | |
N41 | 0.30423 (17) | 0.67290 (13) | 0.21366 (12) | 0.0310 (4) | |
C41 | 0.2366 (2) | 0.66188 (16) | 0.12907 (15) | 0.0342 (4) | |
H41 | 0.2852 | 0.6901 | 0.0866 | 0.041* | |
C42 | 0.0993 (2) | 0.61148 (16) | 0.10008 (16) | 0.0370 (5) | |
H42 | 0.0543 | 0.6076 | 0.0400 | 0.044* | |
C43 | 0.0283 (2) | 0.56666 (16) | 0.15998 (17) | 0.0361 (5) | |
C44 | 0.0988 (2) | 0.57619 (17) | 0.24755 (17) | 0.0398 (5) | |
H44 | 0.0540 | 0.5457 | 0.2902 | 0.048* | |
C45 | 0.2346 (2) | 0.63047 (16) | 0.27168 (16) | 0.0363 (5) | |
H45 | 0.2812 | 0.6382 | 0.3324 | 0.044* | |
C46 | −0.1192 (2) | 0.50686 (18) | 0.13038 (19) | 0.0437 (5) | |
N42 | −0.1973 (2) | 0.54523 (17) | 0.08483 (17) | 0.0515 (5) | |
H7N | −0.1699 | 0.6010 | 0.0683 | 0.077* | |
H8N | −0.2852 | 0.5139 | 0.0721 | 0.077* | |
S41 | −0.17085 (7) | 0.39687 (6) | 0.15227 (7) | 0.0666 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.02585 (13) | 0.02370 (13) | 0.02562 (13) | 0.00738 (9) | 0.00263 (9) | 0.00581 (9) |
N1 | 0.0353 (9) | 0.0315 (9) | 0.0308 (9) | 0.0112 (7) | 0.0047 (7) | 0.0065 (7) |
C1 | 0.0274 (9) | 0.0241 (9) | 0.0301 (10) | 0.0079 (7) | 0.0012 (7) | 0.0087 (8) |
S1 | 0.0564 (3) | 0.0380 (3) | 0.0263 (3) | 0.0188 (3) | 0.0059 (2) | 0.0062 (2) |
N2 | 0.0327 (9) | 0.0288 (8) | 0.0318 (9) | 0.0103 (7) | 0.0055 (7) | 0.0063 (7) |
C2 | 0.0243 (8) | 0.0228 (9) | 0.0337 (11) | 0.0073 (7) | 0.0023 (7) | 0.0089 (8) |
S2 | 0.0369 (3) | 0.0324 (3) | 0.0302 (3) | 0.0145 (2) | 0.0078 (2) | 0.0076 (2) |
O1 | 0.0363 (9) | 0.0662 (13) | 0.1032 (18) | 0.0093 (9) | −0.0012 (10) | 0.0403 (13) |
C3 | 0.0440 (14) | 0.0586 (17) | 0.082 (2) | 0.0114 (13) | 0.0091 (14) | 0.0225 (16) |
O2 | 0.0758 (15) | 0.0506 (12) | 0.0884 (18) | 0.0191 (11) | −0.0121 (12) | 0.0152 (11) |
C4 | 0.072 (2) | 0.080 (3) | 0.110 (3) | 0.029 (2) | 0.010 (2) | 0.021 (2) |
O3 | 0.0504 (11) | 0.0750 (15) | 0.109 (2) | 0.0153 (11) | −0.0006 (12) | 0.0485 (15) |
C5 | 0.062 (2) | 0.088 (3) | 0.153 (4) | 0.0253 (19) | 0.014 (2) | 0.070 (3) |
O4 | 0.109 (2) | 0.115 (3) | 0.120 (3) | 0.049 (2) | −0.005 (2) | 0.008 (2) |
C6 | 0.087 (3) | 0.101 (3) | 0.083 (3) | 0.001 (2) | 0.006 (2) | 0.014 (2) |
O5 | 0.0716 (16) | 0.0709 (16) | 0.119 (2) | 0.0153 (13) | −0.0155 (15) | 0.0239 (16) |
C7 | 0.186 (6) | 0.197 (6) | 0.094 (4) | 0.101 (5) | 0.082 (4) | 0.079 (4) |
N11 | 0.0326 (8) | 0.0260 (8) | 0.0280 (8) | 0.0093 (7) | 0.0016 (7) | 0.0069 (6) |
C11 | 0.0605 (14) | 0.0289 (10) | 0.0282 (11) | 0.0141 (10) | 0.0019 (10) | 0.0063 (8) |
C12 | 0.0683 (16) | 0.0283 (10) | 0.0330 (11) | 0.0187 (10) | 0.0061 (11) | 0.0076 (9) |
C13 | 0.0369 (10) | 0.0334 (10) | 0.0347 (11) | 0.0141 (8) | 0.0067 (9) | 0.0134 (9) |
C14 | 0.0408 (11) | 0.0382 (11) | 0.0278 (10) | 0.0151 (9) | 0.0003 (8) | 0.0087 (8) |
C15 | 0.0387 (11) | 0.0307 (10) | 0.0303 (10) | 0.0126 (8) | −0.0010 (8) | 0.0046 (8) |
C16 | 0.0509 (13) | 0.0387 (12) | 0.0380 (12) | 0.0216 (10) | 0.0107 (10) | 0.0160 (9) |
N12 | 0.0586 (13) | 0.0343 (10) | 0.0495 (12) | 0.0189 (9) | 0.0064 (10) | 0.0182 (9) |
S11 | 0.0673 (4) | 0.0537 (4) | 0.0597 (4) | 0.0251 (3) | −0.0083 (3) | 0.0239 (3) |
N21 | 0.0260 (8) | 0.0273 (8) | 0.0307 (9) | 0.0077 (6) | 0.0030 (6) | 0.0053 (7) |
C21 | 0.0310 (10) | 0.0297 (10) | 0.0386 (11) | 0.0114 (8) | 0.0024 (8) | 0.0009 (8) |
C22 | 0.0291 (10) | 0.0355 (11) | 0.0428 (12) | 0.0138 (8) | 0.0054 (9) | 0.0026 (9) |
C23 | 0.0276 (9) | 0.0341 (10) | 0.0306 (10) | 0.0084 (8) | 0.0034 (8) | 0.0063 (8) |
C24 | 0.0305 (10) | 0.0293 (10) | 0.0354 (11) | 0.0080 (8) | 0.0053 (8) | 0.0029 (8) |
C25 | 0.0281 (9) | 0.0289 (10) | 0.0363 (11) | 0.0098 (8) | 0.0057 (8) | 0.0042 (8) |
C26 | 0.0286 (10) | 0.0387 (11) | 0.0317 (11) | 0.0087 (8) | 0.0053 (8) | 0.0023 (9) |
N22 | 0.0256 (8) | 0.0417 (10) | 0.0452 (11) | 0.0101 (7) | 0.0023 (7) | 0.0076 (8) |
S21 | 0.0317 (3) | 0.0354 (3) | 0.0643 (4) | 0.0052 (2) | 0.0027 (3) | 0.0088 (3) |
N31 | 0.0300 (8) | 0.0277 (8) | 0.0301 (9) | 0.0096 (7) | 0.0044 (7) | 0.0106 (7) |
C31 | 0.0306 (10) | 0.0330 (10) | 0.0375 (11) | 0.0123 (8) | 0.0091 (8) | 0.0123 (9) |
C32 | 0.0358 (10) | 0.0336 (11) | 0.0411 (12) | 0.0100 (8) | 0.0091 (9) | 0.0157 (9) |
C33 | 0.0357 (10) | 0.0299 (10) | 0.0372 (11) | 0.0105 (8) | 0.0011 (9) | 0.0101 (8) |
C34 | 0.0391 (11) | 0.0384 (11) | 0.0412 (12) | 0.0199 (9) | 0.0099 (9) | 0.0116 (9) |
C35 | 0.0352 (10) | 0.0368 (11) | 0.0354 (11) | 0.0159 (9) | 0.0104 (9) | 0.0127 (9) |
C36 | 0.0462 (12) | 0.0348 (11) | 0.0432 (13) | 0.0171 (10) | 0.0038 (10) | 0.0139 (10) |
N32 | 0.0485 (12) | 0.0370 (11) | 0.0726 (16) | 0.0118 (9) | 0.0008 (11) | 0.0269 (10) |
S31 | 0.0447 (3) | 0.0499 (4) | 0.0843 (5) | 0.0191 (3) | −0.0010 (3) | 0.0312 (4) |
N41 | 0.0283 (8) | 0.0304 (8) | 0.0317 (9) | 0.0061 (7) | 0.0020 (7) | 0.0088 (7) |
C41 | 0.0316 (10) | 0.0360 (11) | 0.0325 (11) | 0.0070 (8) | 0.0020 (8) | 0.0106 (9) |
C42 | 0.0326 (10) | 0.0377 (11) | 0.0368 (11) | 0.0081 (9) | −0.0022 (9) | 0.0105 (9) |
C43 | 0.0287 (10) | 0.0315 (10) | 0.0452 (13) | 0.0075 (8) | 0.0027 (9) | 0.0087 (9) |
C44 | 0.0349 (11) | 0.0414 (12) | 0.0410 (12) | 0.0057 (9) | 0.0070 (9) | 0.0150 (10) |
C45 | 0.0338 (10) | 0.0383 (11) | 0.0333 (11) | 0.0056 (9) | 0.0016 (8) | 0.0129 (9) |
C46 | 0.0311 (11) | 0.0405 (12) | 0.0548 (15) | 0.0066 (9) | 0.0026 (10) | 0.0116 (11) |
N42 | 0.0308 (10) | 0.0495 (12) | 0.0692 (15) | 0.0080 (9) | −0.0023 (10) | 0.0176 (11) |
S41 | 0.0384 (3) | 0.0507 (4) | 0.1036 (7) | −0.0017 (3) | −0.0032 (4) | 0.0362 (4) |
Ni1—N1 | 2.0435 (18) | N12—H1N | 0.8800 |
Ni1—N2 | 2.0526 (18) | N12—H2N | 0.8801 |
Ni1—N21 | 2.1157 (16) | N21—C21 | 1.337 (3) |
Ni1—N31 | 2.1250 (17) | N21—C25 | 1.344 (3) |
Ni1—N41 | 2.1262 (17) | C21—C22 | 1.384 (3) |
Ni1—N11 | 2.1316 (17) | C21—H21 | 0.9500 |
N1—C1 | 1.157 (3) | C22—C23 | 1.391 (3) |
C1—S1 | 1.631 (2) | C22—H22 | 0.9500 |
N2—C2 | 1.159 (3) | C23—C24 | 1.387 (3) |
C2—S2 | 1.636 (2) | C23—C26 | 1.490 (3) |
O1—C3 | 1.405 (3) | C24—C25 | 1.378 (3) |
O1—H1 | 0.8400 | C24—H24 | 0.9500 |
C3—H3A | 0.9800 | C25—H25 | 0.9500 |
C3—H3B | 0.9800 | C26—N22 | 1.322 (3) |
C3—H3C | 0.9800 | C26—S21 | 1.661 (2) |
O2—C4 | 1.398 (4) | N22—H4N | 0.8800 |
O2—H2 | 0.8400 | N22—H3N | 0.8801 |
C4—H4A | 0.9800 | N31—C35 | 1.339 (3) |
C4—H4B | 0.9800 | N31—C31 | 1.342 (3) |
C4—H4C | 0.9800 | C31—C32 | 1.377 (3) |
O3—C5 | 1.388 (4) | C31—H31 | 0.9500 |
O3—H3 | 0.8400 | C32—C33 | 1.385 (3) |
C5—H5A | 0.9800 | C32—H32 | 0.9500 |
C5—H5B | 0.9800 | C33—C34 | 1.394 (3) |
C5—H5C | 0.9800 | C33—C36 | 1.489 (3) |
O4—C6 | 1.395 (5) | C34—C35 | 1.377 (3) |
O4—H4 | 0.8400 | C34—H34 | 0.9500 |
C6—H6A | 0.9800 | C35—H35 | 0.9500 |
C6—H6B | 0.9800 | C36—N32 | 1.315 (3) |
C6—H6C | 0.9800 | C36—S31 | 1.657 (2) |
O5—C7 | 1.341 (6) | N32—H5N | 0.8801 |
O5—H5 | 0.8401 | N32—H6N | 0.8799 |
C7—H7A | 0.9800 | N41—C41 | 1.334 (3) |
C7—H7B | 0.9800 | N41—C45 | 1.340 (3) |
C7—H7C | 0.9800 | C41—C42 | 1.383 (3) |
N11—C11 | 1.329 (3) | C41—H41 | 0.9500 |
N11—C15 | 1.344 (3) | C42—C43 | 1.385 (3) |
C11—C12 | 1.379 (3) | C42—H42 | 0.9500 |
C11—H11 | 0.9500 | C43—C44 | 1.389 (3) |
C12—C13 | 1.385 (3) | C43—C46 | 1.501 (3) |
C12—H12 | 0.9500 | C44—C45 | 1.377 (3) |
C13—C14 | 1.385 (3) | C44—H44 | 0.9500 |
C13—C16 | 1.496 (3) | C45—H45 | 0.9500 |
C14—C15 | 1.380 (3) | C46—N42 | 1.313 (3) |
C14—H14 | 0.9500 | C46—S41 | 1.656 (3) |
C15—H15 | 0.9500 | N42—H7N | 0.8799 |
C16—N12 | 1.319 (3) | N42—H8N | 0.8800 |
C16—S11 | 1.663 (3) | ||
N1—Ni1—N2 | 178.69 (7) | C16—N12—H1N | 121.7 |
N1—Ni1—N21 | 90.21 (7) | C16—N12—H2N | 127.8 |
N2—Ni1—N21 | 90.67 (7) | H1N—N12—H2N | 110.4 |
N1—Ni1—N31 | 89.06 (7) | C21—N21—C25 | 117.90 (17) |
N2—Ni1—N31 | 89.98 (7) | C21—N21—Ni1 | 121.02 (13) |
N21—Ni1—N31 | 89.16 (6) | C25—N21—Ni1 | 121.08 (13) |
N1—Ni1—N41 | 89.46 (7) | N21—C21—C22 | 122.89 (19) |
N2—Ni1—N41 | 89.65 (7) | N21—C21—H21 | 118.6 |
N21—Ni1—N41 | 179.30 (7) | C22—C21—H21 | 118.6 |
N31—Ni1—N41 | 90.22 (7) | C21—C22—C23 | 118.92 (19) |
N1—Ni1—N11 | 91.28 (7) | C21—C22—H22 | 120.5 |
N2—Ni1—N11 | 89.71 (7) | C23—C22—H22 | 120.5 |
N21—Ni1—N11 | 88.91 (6) | C24—C23—C22 | 118.20 (19) |
N31—Ni1—N11 | 178.04 (6) | C24—C23—C26 | 120.74 (19) |
N41—Ni1—N11 | 91.72 (7) | C22—C23—C26 | 121.04 (19) |
C1—N1—Ni1 | 170.85 (17) | C25—C24—C23 | 119.27 (19) |
N1—C1—S1 | 179.7 (2) | C25—C24—H24 | 120.4 |
C2—N2—Ni1 | 173.81 (17) | C23—C24—H24 | 120.4 |
N2—C2—S2 | 179.4 (2) | N21—C25—C24 | 122.78 (19) |
C3—O1—H1 | 109.5 | N21—C25—H25 | 118.6 |
O1—C3—H3A | 109.5 | C24—C25—H25 | 118.6 |
O1—C3—H3B | 109.5 | N22—C26—C23 | 115.3 (2) |
H3A—C3—H3B | 109.5 | N22—C26—S21 | 124.16 (17) |
O1—C3—H3C | 109.5 | C23—C26—S21 | 120.56 (17) |
H3A—C3—H3C | 109.5 | C26—N22—H4N | 122.5 |
H3B—C3—H3C | 109.5 | C26—N22—H3N | 123.7 |
C4—O2—H2 | 109.5 | H4N—N22—H3N | 113.5 |
O2—C4—H4A | 109.5 | C35—N31—C31 | 117.33 (18) |
O2—C4—H4B | 109.5 | C35—N31—Ni1 | 120.65 (14) |
H4A—C4—H4B | 109.5 | C31—N31—Ni1 | 121.92 (14) |
O2—C4—H4C | 109.5 | N31—C31—C32 | 123.0 (2) |
H4A—C4—H4C | 109.5 | N31—C31—H31 | 118.5 |
H4B—C4—H4C | 109.5 | C32—C31—H31 | 118.5 |
C5—O3—H3 | 109.5 | C31—C32—C33 | 119.5 (2) |
O3—C5—H5A | 109.5 | C31—C32—H32 | 120.2 |
O3—C5—H5B | 109.5 | C33—C32—H32 | 120.2 |
H5A—C5—H5B | 109.5 | C32—C33—C34 | 117.7 (2) |
O3—C5—H5C | 109.5 | C32—C33—C36 | 122.0 (2) |
H5A—C5—H5C | 109.5 | C34—C33—C36 | 120.3 (2) |
H5B—C5—H5C | 109.5 | C35—C34—C33 | 119.0 (2) |
C6—O4—H4 | 109.5 | C35—C34—H34 | 120.5 |
O4—C6—H6A | 109.5 | C33—C34—H34 | 120.5 |
O4—C6—H6B | 109.5 | N31—C35—C34 | 123.4 (2) |
H6A—C6—H6B | 109.5 | N31—C35—H35 | 118.3 |
O4—C6—H6C | 109.5 | C34—C35—H35 | 118.3 |
H6A—C6—H6C | 109.5 | N32—C36—C33 | 116.1 (2) |
H6B—C6—H6C | 109.5 | N32—C36—S31 | 124.75 (19) |
C7—O5—H5 | 107.6 | C33—C36—S31 | 119.16 (17) |
O5—C7—H7A | 107.6 | C36—N32—H5N | 118.1 |
O5—C7—H7B | 110.9 | C36—N32—H6N | 122.8 |
H7A—C7—H7B | 108.2 | H5N—N32—H6N | 119.1 |
O5—C7—H7C | 112.6 | C41—N41—C45 | 117.46 (18) |
H7A—C7—H7C | 108.2 | C41—N41—Ni1 | 122.39 (14) |
H7B—C7—H7C | 109.3 | C45—N41—Ni1 | 120.14 (14) |
C11—N11—C15 | 116.96 (18) | N41—C41—C42 | 123.2 (2) |
C11—N11—Ni1 | 119.87 (14) | N41—C41—H41 | 118.4 |
C15—N11—Ni1 | 123.18 (14) | C42—C41—H41 | 118.4 |
N11—C11—C12 | 123.6 (2) | C41—C42—C43 | 119.0 (2) |
N11—C11—H11 | 118.2 | C41—C42—H42 | 120.5 |
C12—C11—H11 | 118.2 | C43—C42—H42 | 120.5 |
C11—C12—C13 | 119.3 (2) | C42—C43—C44 | 118.0 (2) |
C11—C12—H12 | 120.3 | C42—C43—C46 | 121.1 (2) |
C13—C12—H12 | 120.3 | C44—C43—C46 | 120.8 (2) |
C14—C13—C12 | 117.7 (2) | C45—C44—C43 | 119.1 (2) |
C14—C13—C16 | 121.8 (2) | C45—C44—H44 | 120.4 |
C12—C13—C16 | 120.5 (2) | C43—C44—H44 | 120.4 |
C15—C14—C13 | 119.2 (2) | N41—C45—C44 | 123.1 (2) |
C15—C14—H14 | 120.4 | N41—C45—H45 | 118.4 |
C13—C14—H14 | 120.4 | C44—C45—H45 | 118.4 |
N11—C15—C14 | 123.3 (2) | N42—C46—C43 | 116.3 (2) |
N11—C15—H15 | 118.4 | N42—C46—S41 | 124.76 (18) |
C14—C15—H15 | 118.4 | C43—C46—S41 | 118.88 (18) |
N12—C16—C13 | 114.9 (2) | C46—N42—H7N | 125.7 |
N12—C16—S11 | 124.92 (18) | C46—N42—H8N | 117.1 |
C13—C16—S11 | 120.23 (18) | H7N—N42—H8N | 117.1 |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···S2i | 0.84 | 2.88 | 3.409 (2) | 123 |
O1—H1···S11ii | 0.84 | 2.92 | 3.578 (2) | 137 |
O2—H2···S31iii | 0.84 | 2.62 | 3.413 (3) | 157 |
O3—H3···S1iv | 0.84 | 2.77 | 3.427 (2) | 136 |
O3—H3···S31v | 0.84 | 2.93 | 3.576 (2) | 135 |
C5—H5A···S31v | 0.98 | 3.03 | 3.632 (4) | 121 |
O4—H4···O5 | 0.84 | 1.92 | 2.708 (5) | 156 |
C6—H6B···S31vi | 0.98 | 2.73 | 3.566 (4) | 143 |
O5—H5···S41vii | 0.84 | 2.51 | 3.216 (3) | 142 |
C7—H7A···S41vii | 0.98 | 2.93 | 3.528 (5) | 121 |
C11—H11···N1 | 0.95 | 2.52 | 3.063 (3) | 117 |
C11—H11···S1viii | 0.95 | 2.73 | 3.442 (2) | 133 |
C12—H12···S1viii | 0.95 | 2.96 | 3.542 (2) | 121 |
C15—H15···N2 | 0.95 | 2.61 | 3.097 (3) | 113 |
N12—H1N···O2 | 0.88 | 2.02 | 2.898 (3) | 177 |
N12—H2N···S2ix | 0.88 | 2.58 | 3.446 (2) | 171 |
C21—H21···N1 | 0.95 | 2.65 | 3.109 (3) | 110 |
C25—H25···N2 | 0.95 | 2.66 | 3.122 (3) | 111 |
C25—H25···S2x | 0.95 | 2.94 | 3.846 (2) | 159 |
N22—H4N···S2xi | 0.88 | 2.64 | 3.4939 (19) | 163 |
N22—H3N···O1 | 0.88 | 2.10 | 2.978 (3) | 174 |
N32—H5N···O5 | 0.88 | 1.95 | 2.833 (3) | 180 |
N32—H6N···S1vi | 0.88 | 2.64 | 3.478 (2) | 159 |
C45—H45···S11ix | 0.95 | 2.89 | 3.673 (2) | 141 |
N42—H7N···O3 | 0.88 | 2.08 | 2.957 (3) | 173 |
N42—H8N···S1xii | 0.88 | 2.88 | 3.749 (2) | 169 |
Symmetry codes: (i) x+1, y, z; (ii) −x+2, −y+1, −z+1; (iii) x, y−1, z; (iv) x−1, y, z; (v) −x, −y+2, −z; (vi) −x+1, −y+2, −z; (vii) x+1, y+1, z; (viii) −x+1, −y+1, −z; (ix) −x+1, −y+1, −z+1; (x) −x+1, −y+2, −z+1; (xi) −x+2, −y+2, −z+1; (xii) −x, −y+1, −z. |
Acknowledgements
We thank Professor Dr Wolfgang Bensch for access to his experimental facilities.
Funding information
This project was supported by the Deutsche Forschungsgemeinschaft (Project No. NA 720/5–2) and the State of Schleswig-Holstein.
References
Brandenburg, K. (1990). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Colleter, J. C. & Gadret, M. (1967). Bull. Soc. Chim. Fr. 3463–3469. Google Scholar
Eccles, K. S., Morrison, R. E., Maguire, A. R. & Lawrence, S. E. (2014). Cryst. Growth Des. 14, 2753–2762. Web of Science CSD CrossRef CAS Google Scholar
Goodgame, D. M. L., Grachvogel, D. A., White, A. J. P. & Williams, D. J. (2003). Inorg. Chim. Acta, 348, 187–193. Web of Science CSD CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kabešová, M., Boča, R., Melník, M., Valigura, D. & Dunaj-Jurčo, M. (1995). Coord. Chem. Rev. 140, 115–135. Google Scholar
Massoud, S. S., Guilbeau, A. E., Luong, H. T., Vicente, R., Albering, J. H., Fischer, R. C. & Mautner, F. A. (2013). Polyhedron, 54, 26–33. Web of Science CSD CrossRef CAS Google Scholar
Mousavi, M., Béreau, V., Duhayon, C., Guionneau, P. & Sutter, J. P. (2012). Chem. Commun. 48, 10028–10030. Web of Science CSD CrossRef CAS Google Scholar
Neumann, T., Jess, I. & Näther, C. (2016). Acta Cryst. E72, 370–373. Web of Science CSD CrossRef IUCr Journals Google Scholar
Neumann, T., Jess, I. & Näther, C. (2017). Acta Cryst. E73, 1786–1789. Web of Science CSD CrossRef IUCr Journals Google Scholar
Neumann, T., Jess, I. & Näther, C. (2018). Acta Cryst. E74, 141–146. Web of Science CrossRef IUCr Journals Google Scholar
Palion-Gazda, J., Gryca, I., Maroń, A., Machura, B. & Kruszynski, R. (2017). Polyhedron, 135, 109–120. Google Scholar
Palion-Gazda, J., Machura, B., Lloret, F. & Julve, M. (2015). Cryst. Growth Des. 15, 2380–2388. CAS Google Scholar
Prananto, Y. P., Urbatsch, A., Moubaraki, B., Murray, K. S., Turner, D. R., Deacon, G. B. & Batten, S. R. (2017). Aust. J. Chem. 70, 516–528. Web of Science CSD CrossRef CAS Google Scholar
Rams, M., Böhme, M., Kataev, V., Krupskaya, Y., Büchner, B., Plass, W., Neumann, T., Tomkowicz, Z. & Näther, C. (2017a). Phys. Chem. Chem. Phys. 19, 24534–24544. Web of Science CrossRef CAS PubMed Google Scholar
Rams, M., Tomkowicz, Z., Böhme, M., Plass, W., Suckert, S., Werner, J., Jess, I. & Näther, C. (2017b). Phys. Chem. Chem. Phys. 19, 3232–3243. Web of Science CSD CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shotonwa, I. O. & Boeré, R. T. (2014). Acta Cryst. E70, o340–o341. CSD CrossRef IUCr Journals Google Scholar
Stoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany. Google Scholar
Suckert, S., Rams, M., Germann, L. S., Cegiełka, D. M., Dinnebier, R. E. & Näther, C. (2017). Cryst. Growth Des. 17, 3997–4005. Web of Science CSD CrossRef CAS Google Scholar
Werner, J., Rams, M., Tomkowicz, Z., Runčevski, T., Dinnebier, R. E., Suckert, S. & Näther, C. (2015). Inorg. Chem. 54, 2893–2901. Web of Science CSD CrossRef CAS PubMed Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wöhlert, S., Fic, T., Tomkowicz, Z., Ebbinghaus, S. G., Rams, M., Haase, W. & Näther, C. (2013b). Inorg. Chem. 52, 12947–12957. Google Scholar
Wöhlert, S., Runčevski, T., Dinnebier, R. E., Ebbinghaus, S. G. & Näther, C. (2014a). Cryst. Growth Des. 14, 1902–1913. Google Scholar
Wöhlert, S., Ruschewitz, U. & Näther, C. (2012). Cryst. Growth Des. 12, 2715–2718. Google Scholar
Wöhlert, S., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Fink, L., Schmidt, M. U. & Näther, C. (2014b). Inorg. Chem. 53, 8298–8310. Google Scholar
Wöhlert, S., Wriedt, M., Fic, T., Tomkowicz, Z., Haase, W. & Näther, C. (2013a). Inorg. Chem. 52, 1061–1068. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.