research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A new crystal form and anti­microbial activity of (E)-1-[3-(2-hy­dr­oxy­benzyl­­idene­amino)­phen­yl]ethanone

CROSSMARK_Color_square_no_text.svg

aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (URCHEMS), Département de Chimie, Université des freres Mentouri-Constantine 1, 25000 Constantine, Algeria
*Correspondence e-mail: c_aouatef@yahoo.fr

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 12 May 2018; accepted 31 May 2018; online 5 June 2018)

The title Schiff base compound, C15H13NO2, crystallizes in a new crystal form in the space group P212121, which is different from the monoclinic P21/n space group reported previously [De et al. (2009[De, R. L., Mukherjee, J., Mandal, M., Roy, L., Bhowal, R. & Banerjee, I. (2009). Indian J. Chem. Sect B, 48, 595-598.]). Indian J. Chem. Sect. B, 48, 595–598]. An intra­molecular O—H⋯N hydrogen bond occurs between the hy­droxy and azomethine moieties. In the crystal, mol­ecules are linked by weak C—H⋯O hydrogen bonds into supra­molecular chains propagating along the b-axis direction with a C(8) graph-set motif. The contribution of these two contacts in Hirshfeld surface area are around 19 and 21%, respectively. The title compound was screened for its anti­bacterial activity against two gram-negative (Escherichia coli and Salmonella typhimurium) and one gram-positive (Staphyloccus aureus) bacteria. The results of this study reveal that this Schiff base shows good activity against only one bacterium, i.e. Salmonella typhimurium.

1. Chemical context

Schiff bases (Wang et al., 2008[Wang, L., Feng, Y., Xue, J. & Yukun, L. (2008). J. Serb. Chem. Soc. 73, 1-6.]) are versatile ligands synthesized from the condensation of primary amines with carbonyl groups. These compounds have been shown to exhibit a broad range of biological activities, including anti­fungal, anti­bacterial, anti-malarial, anti­proliferative, anti-inflammatory, anti­viral and anti­pyretic properties (Dhar & Taploo, 1982[Dhar, D. N. & Taploo, C. L. (1982). J. Sci. Ind. Res. 41, 501-506.]; Przybylski et al., 2009[Przybylski, P., Huczynski, A., Pyta, K., Brzezinski, B. & Bartl, F. (2009). Curr. Org. Chem. 13, 124-148.]). Imine or azomethine groups are present in various natural, natural-derived and non-natural compounds and have been shown to be critical for their biological activity (Bringmann et al., 2004[Bringmann, G., Dreyer, M., Faber, J. H., Dalsgaard, P. W., Staerk, D., Jaroszewski, J. W., Ndangalasi, H., Mbago, F., Brun, R. & Christensen, S. B. (2004). J. Nat. Prod. 67, 743-748.]; de Souza et al., 2007[Souza, A. O. de, Galetti, F. C. S., Silva, C. L., Bicalho, B., Parma, M. M. & Fonseca, S. F. (2007). Quim Nova, 30, 1563-1566.]).

[Scheme 1]

In this paper, we report the structural characterization using X-ray diffraction of the title Schiff base derived from salicyl­aldehyde, including an investigation of the Hirshfeld surfaces and its anti­microbial activity against two gram-negative (Escherichia coli and Salmonella typhimurium) and one gram-positive (Staphyloccus aureus) bacteria. Schiff bases derived from this benzaldehyde are members of one of the most commonly investigated classes of compound, and have attracted the inter­est of chemists and physicists because they show photochromism and thermochromism in the solid state. These photo- and thermochromic features are caused by proton transfer to the N atom from the O atom under the influence of light or temperature, respectively. It has been proposed that mol­ecules showing thermochromism are planar and those showing photochromism are non-planar (Moustakali-Mavridis et al., 1980[Moustakali-Mavridis, I., Hadjoudis, B. & Mavridis, A. (1980). Acta Cryst. B36, 1126-1130.]; Hadjoudis et al., 1987[Hadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, I. (1987). Tetrahedron, 43, 1345-1360.]).

2. Structural commentary

The title Schiff base (Fig. 1[link]) consists of two aromatic phenyl rings linked via an azomethine (C=N) group. The two phenyl rings are monosubstituted by a hydroxyl group on the same side as the azomethine carbon atom and by an aceto group on the other side. Relevant bond distances and angles are in good agreement with those reported in similar Schiff base compounds (Benarous et al., 2016[Benarous, N., Cherouana, A., Aubert, E., Durand, P. & Dahaoui, S. (2016). J. Mol. Struct. 1105, 186-193.]; Chen et al., 2011[Chen, X.-T., Xiang, Y., Song, P.-S., Wei, R., Zhou, Z.-J., Li, K. & Tong, A.-J. (2011). J. Lumin. 131, 1453-1459.]). The C1—N1—C7—C8 torsion angle of −179.4 (2)° indicates an almost planar E configuration with respect to the imine C=N bond, as expected for a compound having an azomethine HC=N bond as this is the most thermodynamically stable configuration (Ciciani et al., 2008[Ciciani, G., Coronnello, M., Guerrini, G., Selleri, S., Cantore, M., Failli, P., Mini, E. & Costanzo, A. (2008). Bioorg. Med. Chem. 16, 9409-9419.]). The N1=C7 [1.293 (3) Å] and C9—C10 [1.394 (3) Å] bond distances indicate that the compound adopts the phenol–imine tautomeric form with an N=C double bond and a C—C single bond (Table 1[link]). Comparable values are observed in Schiff bases obtained from the same salicyl­aldehyde derivative with phenol–imine tautomeric form (Albayrak et al., 2010[Albayrak, Ç., Koşar, B., Demir, S., Odabaşoğlu, M. & Büyükgüngör, O. (2010). J. Mol. Struct. 963, 211-218.]; Şahin et al., 2009[Şahin, Z. S., Gūmūş, S., Macit, M. & Işık, Ş. (2009). Acta Cryst. E65, o3022.]).

Table 1
Selected geometric parameters (Å, °)

O1—C9 1.349 (3) N1—C1 1.415 (3)
O2—C14 1.213 (3) N1—C7 1.293 (3)
       
C1—N1—C7 121.25 (18) O1—C9—C10 119.10 (19)
N1—C1—C2 115.86 (19) O1—C9—C8 121.3 (2)
N1—C1—C6 125.3 (2) O2—C14—C15 120.9 (2)
N1—C7—C8 120.8 (2) O2—C14—C3 120.5 (2)
[Figure 1]
Figure 1
View of the title compound with the atom-numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

An intra­molecular O—H⋯N hydrogen bond (Table 2[link]) occurs between the O-hydroxyl and N azomethine atoms, forming an S(6) ring motif. Such a hydrogen bond is frequently observed in Schiff bases derived from salicyl­aldehyde (Alpaslan et al., 2011[Alpaslan, Y. B., Alpaslan, G., Ağar, A. A., İskeleli, N. O. & Öztekin, E. (2011). J. Mol. Struct. 995, 58-65.]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.84 1.84 2.590 (2) 148
C7—H7⋯O2i 0.95 2.40 3.321 (3) 162
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

3. Supra­molecular features

In the crystal, the mol­ecules are linked via C—H⋯O hydrogen bonds between the carbon atom of azomethine group and the oxygen atom of the meth­oxy substituent, generating infinite chains with graph-set motif C(8) along the b-axis direction (Table 2[link], Fig. 2[link]). The chains are linked via ππ inter­actions (3.535 Å) between the C8–C13 benzene ring and the C=N double bond (Fig. 3[link]).

[Figure 2]
Figure 2
C—H⋯O hydrogen bonds (Table 1[link]) in the title compound.
[Figure 3]
Figure 3
ππ inter­action between a benzene ring and the C=N double bond.

4. Hirshfeld surfaces analysis

Hirshfeld surfaces and two-dimensional fingerprint plots were generated by CrystalExplorer 3.1 (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer. The University of Western Australia.]) to visualize and explore the inter­molecular inter­actions. These mol­ecular surfaces reflect inter­molecular contacts based on colour coding distances from the surface to the nearest atom exterior (de) or inter­ior (di) to the surface. In the Hirshfeld surface mapped over dnorm (Fig. 4[link]), red indicates the presence of short contacts and white represents contacts around the van der Waals separation, while the blue areas are completely devoid of close contacts. The inter­molecular inter­actions were analysed by a combination of 3D Hirshfeld surfaces and 2D fingerprint plots, showing that the inter­molecular H⋯H contacts make the largest contribution, corresponding to 46% of the total Hirshfeld surface area (Fig. 5[link]). The presence of short inter­molecular H⋯H contacts is observed in the vicinity of 2.30 Å. These contacts are manifested as white spots on the dnorm surface and are considered to be weak inter­actions. In the fingerprint plots (Fig. 6[link]), the C⋯H/H⋯C contacts, representing 21.6% of the total Hirshfeld surface, appear as two short spikes. The red spots on the dnorm surface in Fig. 4[link] are due to the CH⋯O contacts corresponding to the C—H⋯O hydrogen bond. The O⋯H contacts (19.4% of the total Hirshfeld surface) show up as a sharp spike in the fingerprint plots at de + di ≃ 2.3 Å. Finally, the packing cohesion in this structure is also provided by C⋯N and C⋯C inter­actions, which correspond to ππ stacking inter­actions.

[Figure 4]
Figure 4
Hirshfeld surface of the title compound mapped over dnorm (−0.60 to 0.90 a.u.).
[Figure 5]
Figure 5
Relative contributions of various inter­actions to the Hirshfeld surface area.
[Figure 6]
Figure 6
Two-dimensional fingerprints of the compound, showing all inter­actions and H⋯H, C⋯H, O⋯H, C⋯C and C⋯N contacts.

5. Database survey

A search for the title compound in the Cambridge Structural Database (Version 2.39; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed that the crystal structure of the title compound had been previously been reported in the monoclinic P21/n space group (De et al., 2009[De, R. L., Mukherjee, J., Mandal, M., Roy, L., Bhowal, R. & Banerjee, I. (2009). Indian J. Chem. Sect B, 48, 595-598.]). The latter differs from the title structure at position 3 of the aceto substituent, which is on the same side of the hydroxyl group in the title compound and in the opposite side in the reported one. This difference in position directly affects the hydrogen-bonding pattern. Similar infinite C—H⋯O chains occur in both compounds but the angle between linked molecules is ca 67.99° in the title compound and 77.61° in the reported one. The CSD search also found seven hits for structures containing the title molecule but with additional substituents (a methoxy or an additional hydroxyl group).

6. Anti­microbial activity

The title compound was screened for its anti­bacterial activity against two gram-negative (Escherichia coli and Salmonella typhimurium) and one gram-positive (Staphyloccus aureus) bacterial strains by the agar-well diffusion method (Cruickshank,1970[Cruickshank, R. (1970). Medical Microbiology, 11th ed., pp. 652, 901. Edinburgh and London: E & S. Livingstone Ltd.]). The solvent DMSO was used as negative control. A 0.5 ml spore suspension (10−6–10−7 spore ml−1) of each of the investigated organisms was added to a sterile agar medium just before solidification, then poured into sterile petri dishes (9 cm in diameter) and left to solidify. Using a sterile cork borer (6 mm in diameter), five holes (wells) were made in each dish, and then 5 µL of the tested compound, dissolved in DMSO with different concentrations (C, C/2, C/4, C/8), was poured into these holes. Finally, the dishes were incubated at 310 K for 48 h. Clear or inhibition zones were detected around each hole. DMSO alone (0.5 µL) was used as a control under the same conditions for each organism by subtracting the diameter of inhibition zone resulting with DMSO from that obtained in the study compound. The anti­bacterial activity of Cefotaxime was also measured in comparison to the title compound and used as a standard to reveal the potency of synthesized derivative.

The results of the anti­microbial screening indicate that the compound shows significant activity only against Salmonella typhimurium with an inhibition zone diameter of 15 mm. This value is close to that observed with the standard used (Cefotaxime) against the same bacterium (16 mm). For the two other bacteria, Escherichia coli and Staphyloccus aureus, the standard exhibits a higher activity than the study compound, for which the inhibition zone diameter is under 2 mm. These results are summarized in Fig. 7[link], which gives the MICs (minimum inhibitory concentrations) of the title Schiff base and Cefotaxime.

[Figure 7]
Figure 7
MICs (minimum inhibitory concentrations) anti­bacterial activity of the title compound and the standard Cefotaxime

7. Synthesis and crystallization

The title Schiff base was synthesized by reacting 3-amino­aceto­phenone (0.13 g, 1 mmol) and salicyl­aldehyde (0.12 g, 1 mmol) in ethanol (20 ml). The resulting mixture was refluxed for 3 h. Yellow single crystals suitable for single crystal X-ray diffraction studies were obtained by slow evaporation of the solution.

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms were located in difference electron-density maps and treated as riding on their parent atoms, with C—H = 0.95–0.98 Å with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmeth­yl) and O—H = 0.84 Å with Uiso(H) = 1.5Ueq(O).

Table 3
Experimental details

Crystal data
Chemical formula C15H13NO2
Mr 239.26
Crystal system, space group Orthorhombic, P212121
Temperature (K) 100
a, b, c (Å) 4.8637 (3), 14.6601 (10), 16.6512 (9)
V3) 1187.27 (13)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.72
Crystal size (mm) 0.1 × 0.1 × 0.08
 
Data collection
Diffractometer Oxford Diffraction Xcalibur Sapphire2 CCD
Absorption correction Integration (ABSORB; DeTitta, 1985[DeTitta, G. T. (1985). J. Appl. Cryst. 18, 75-79.])
Tmin, Tmax 0.966, 0.991
No. of measured, independent and observed [I > 2σ(I)] reflections 10738, 2461, 2222
Rint 0.058
(sin θ/λ)max−1) 0.632
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.131, 1.07
No. of reflections 2461
No. of parameters 163
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.33, −0.36
Absolute structure Flack x determined using 838 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.00 (19)
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

(E)-1-[3-(2-Hydroxybenzylideneamino)phenyl]ethanone top
Crystal data top
C15H13NO2F(000) = 504
Mr = 239.26Dx = 1.339 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2ac 2abCell parameters from 10738 reflections
a = 4.8637 (3) Åθ = 4.0–77.0°
b = 14.6601 (10) ŵ = 0.72 mm1
c = 16.6512 (9) ÅT = 100 K
V = 1187.27 (13) Å3Prism, yellow
Z = 40.1 × 0.1 × 0.08 mm
Data collection top
Oxford Diffraction Xcalibur Sapphire2 CCD
diffractometer
2461 independent reflections
Radiation source: fine-focus sealed tube2222 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
φ and ω scansθmax = 77.0°, θmin = 4.0°
Absorption correction: integration
(ABSORB; DeTitta, 1985)
h = 56
Tmin = 0.966, Tmax = 0.991k = 1818
10738 measured reflectionsl = 2020
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0633P)2 + 0.6475P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.046(Δ/σ)max < 0.001
wR(F2) = 0.131Δρmax = 0.33 e Å3
S = 1.07Δρmin = 0.36 e Å3
2461 reflectionsAbsolute structure: Flack x determined using 838 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
163 parametersAbsolute structure parameter: 0.00 (19)
0 restraints
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2016 (4)0.05562 (11)0.50631 (9)0.0218 (4)
O20.9481 (4)0.29985 (14)0.27572 (12)0.0356 (6)
N10.0723 (4)0.03478 (13)0.37418 (10)0.0173 (5)
C10.2784 (5)0.06549 (15)0.32063 (12)0.0175 (6)
C20.4217 (5)0.14349 (16)0.34432 (13)0.0202 (6)
C30.6303 (5)0.17989 (15)0.29616 (13)0.0201 (6)
C40.6939 (5)0.13896 (17)0.22293 (13)0.0225 (6)
C50.5530 (5)0.06016 (17)0.19957 (13)0.0233 (6)
C60.3462 (5)0.02425 (17)0.24763 (13)0.0225 (7)
C70.0656 (5)0.03891 (15)0.36008 (13)0.0183 (6)
C80.2785 (5)0.06931 (15)0.41500 (13)0.0173 (6)
C90.3394 (5)0.02099 (14)0.48639 (12)0.0174 (6)
C100.5447 (5)0.05303 (15)0.53750 (13)0.0196 (6)
C110.6896 (5)0.13149 (15)0.51850 (13)0.0203 (6)
C120.6348 (5)0.17920 (15)0.44765 (14)0.0208 (6)
C130.4307 (5)0.14870 (15)0.39705 (13)0.0199 (6)
C140.7915 (5)0.26259 (16)0.32198 (15)0.0243 (7)
C150.7613 (6)0.29571 (19)0.40716 (18)0.0354 (8)
H10.085970.067730.470380.0326*
H20.377060.172210.393770.0242*
H40.831700.164350.189220.0270*
H50.599060.030960.150450.0280*
H60.250060.028780.230720.0270*
H70.027120.073580.313210.0219*
H100.585480.020920.585610.0235*
H110.827770.153090.554060.0244*
H120.737470.232260.434510.0250*
H130.391710.181630.349250.0239*
H15A0.626830.257630.435400.0531*
H15B0.698110.359190.406950.0531*
H15C0.939260.291860.434540.0531*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0218 (8)0.0262 (8)0.0173 (7)0.0043 (6)0.0034 (6)0.0041 (6)
O20.0345 (11)0.0348 (10)0.0376 (10)0.0070 (8)0.0067 (9)0.0108 (8)
N10.0156 (9)0.0224 (9)0.0140 (8)0.0023 (7)0.0002 (7)0.0011 (7)
C10.0160 (10)0.0225 (10)0.0141 (10)0.0040 (9)0.0006 (8)0.0045 (8)
C20.0193 (11)0.0239 (11)0.0173 (10)0.0052 (9)0.0013 (9)0.0024 (8)
C30.0181 (12)0.0220 (10)0.0202 (10)0.0032 (8)0.0003 (8)0.0057 (8)
C40.0174 (11)0.0333 (12)0.0169 (10)0.0035 (10)0.0011 (9)0.0103 (9)
C50.0212 (12)0.0349 (12)0.0139 (9)0.0035 (10)0.0016 (9)0.0015 (9)
C60.0182 (12)0.0337 (12)0.0155 (10)0.0008 (10)0.0008 (8)0.0002 (9)
C70.0196 (11)0.0217 (10)0.0135 (9)0.0035 (9)0.0005 (9)0.0011 (8)
C80.0173 (11)0.0206 (10)0.0141 (10)0.0021 (8)0.0011 (8)0.0014 (8)
C90.0183 (11)0.0188 (9)0.0151 (9)0.0027 (8)0.0033 (8)0.0015 (8)
C100.0201 (11)0.0239 (10)0.0147 (9)0.0016 (9)0.0001 (8)0.0002 (8)
C110.0175 (10)0.0242 (10)0.0193 (10)0.0014 (9)0.0014 (9)0.0043 (8)
C120.0207 (12)0.0183 (10)0.0235 (11)0.0008 (8)0.0030 (9)0.0008 (8)
C130.0220 (12)0.0193 (10)0.0185 (10)0.0021 (9)0.0034 (9)0.0006 (8)
C140.0210 (12)0.0200 (10)0.0320 (12)0.0013 (9)0.0027 (10)0.0066 (9)
C150.0385 (16)0.0290 (12)0.0388 (15)0.0107 (11)0.0066 (12)0.0038 (11)
Geometric parameters (Å, º) top
O1—C91.349 (3)C10—C111.386 (3)
O2—C141.213 (3)C11—C121.397 (3)
O1—H10.8400C12—C131.377 (3)
N1—C11.415 (3)C14—C151.506 (4)
N1—C71.293 (3)C2—H20.9500
C1—C61.397 (3)C4—H40.9500
C1—C21.396 (3)C5—H50.9500
C2—C31.399 (3)C6—H60.9500
C3—C41.394 (3)C7—H70.9500
C3—C141.507 (3)C10—H100.9500
C4—C51.398 (3)C11—H110.9500
C5—C61.389 (3)C12—H120.9500
C7—C81.452 (3)C13—H130.9500
C8—C131.411 (3)C15—H15A0.9800
C8—C91.415 (3)C15—H15B0.9800
C9—C101.394 (3)C15—H15C0.9800
O1···N12.590 (2)C5···H11ix2.9900
O2···C7i3.321 (3)C5···H10ix3.0200
O1···H15Bii2.7200C6···H10ix2.9800
O1···H5iii2.7600C6···H72.5600
O2···H42.5200C7···H62.6500
O2···H6i2.6900C7···H12.4100
O2···H7i2.4000C9···H5iii2.9700
N1···O12.590 (2)C10···H5iii2.8900
N1···C3iv3.292 (3)C11···H12viii3.0700
N1···H11.8400C12···H11viii2.8800
C1···C3iv3.594 (3)C12···H12viii3.0400
C1···C4iv3.448 (3)C13···H11viii3.0600
C1···C7v3.599 (3)C15···H22.6100
C1···C8v3.320 (3)H1···N11.8400
C1···C9v3.561 (3)H1···C13.0600
C2···C9v3.572 (3)H1···C72.4100
C2···C14iv3.547 (3)H2···C152.6100
C3···N1v3.292 (3)H2···H15A1.8800
C3···C1v3.594 (3)H4···O22.5200
C4···C1v3.448 (3)H4···H12x2.6000
C5···C7v3.563 (3)H5···O1xi2.7600
C6···C7v3.542 (3)H5···C9xi2.9700
C7···C6iv3.542 (3)H5···C10xi2.8900
C7···C5iv3.563 (3)H6···C72.6500
C7···C11v3.485 (3)H6···H72.0300
C7···C13v3.536 (3)H6···O2vi2.6900
C7···C12v3.278 (3)H7···C62.5600
C7···O2vi3.321 (3)H7···H62.0300
C7···C1iv3.599 (3)H7···H132.4500
C8···C11v3.465 (3)H7···O2vi2.4000
C8···C1iv3.320 (3)H10···C5xii3.0200
C8···C12v3.563 (3)H10···C6xii2.9800
C9···C2iv3.572 (3)H10···H15Bxiii2.6000
C9···C11v3.591 (3)H11···C5xii2.9900
C9···C1iv3.561 (3)H11···C12vii2.8800
C11···C8iv3.465 (3)H11···C13vii3.0600
C11···C7iv3.485 (3)H12···C11vii3.0700
C11···C12vii3.565 (3)H12···C12vii3.0400
C11···C9iv3.591 (3)H12···H4xiv2.6000
C12···C11viii3.565 (3)H13···H72.4500
C12···C7iv3.278 (3)H15A···C22.4700
C12···C8iv3.563 (3)H15A···H21.8800
C13···C7iv3.536 (3)H15A···H15Cii2.4600
C14···C2v3.547 (3)H15B···O1xv2.7200
C1···H13.0600H15B···H10xvi2.6000
C2···H15A2.4700H15C···H15Axv2.4600
C9—O1—H1109.00O2—C14—C3120.5 (2)
C1—N1—C7121.25 (18)C1—C2—H2120.00
N1—C1—C2115.86 (19)C3—C2—H2120.00
N1—C1—C6125.3 (2)C3—C4—H4120.00
C2—C1—C6118.9 (2)C5—C4—H4120.00
C1—C2—C3120.8 (2)C4—C5—H5120.00
C2—C3—C4119.9 (2)C6—C5—H5120.00
C2—C3—C14121.4 (2)C1—C6—H6120.00
C4—C3—C14118.7 (2)C5—C6—H6120.00
C3—C4—C5119.4 (2)N1—C7—H7120.00
C4—C5—C6120.5 (2)C8—C7—H7120.00
C1—C6—C5120.5 (2)C9—C10—H10120.00
N1—C7—C8120.8 (2)C11—C10—H10120.00
C7—C8—C13119.6 (2)C10—C11—H11120.00
C9—C8—C13118.7 (2)C12—C11—H11120.00
C7—C8—C9121.7 (2)C11—C12—H12120.00
O1—C9—C10119.10 (19)C13—C12—H12120.00
C8—C9—C10119.6 (2)C8—C13—H13119.00
O1—C9—C8121.3 (2)C12—C13—H13119.00
C9—C10—C11120.3 (2)C14—C15—H15A109.00
C10—C11—C12120.8 (2)C14—C15—H15B109.00
C11—C12—C13119.5 (2)C14—C15—H15C109.00
C8—C13—C12121.1 (2)H15A—C15—H15B109.00
O2—C14—C15120.9 (2)H15A—C15—H15C109.00
C3—C14—C15118.5 (2)H15B—C15—H15C109.00
C7—N1—C1—C2177.1 (2)C3—C4—C5—C61.8 (4)
C7—N1—C1—C63.0 (3)C4—C5—C6—C11.0 (4)
C1—N1—C7—C8179.4 (2)N1—C7—C8—C91.3 (3)
N1—C1—C2—C3179.9 (2)N1—C7—C8—C13178.4 (2)
C6—C1—C2—C30.2 (3)C7—C8—C9—O10.1 (3)
N1—C1—C6—C5179.9 (2)C7—C8—C9—C10179.7 (2)
C2—C1—C6—C50.1 (4)C13—C8—C9—O1179.6 (2)
C1—C2—C3—C41.0 (4)C13—C8—C9—C100.7 (3)
C1—C2—C3—C14178.4 (2)C7—C8—C13—C12179.7 (2)
C2—C3—C4—C51.8 (3)C9—C8—C13—C120.1 (3)
C14—C3—C4—C5177.6 (2)O1—C9—C10—C11180.0 (2)
C2—C3—C14—O2171.1 (2)C8—C9—C10—C110.3 (3)
C2—C3—C14—C1511.1 (3)C9—C10—C11—C120.7 (3)
C4—C3—C14—O29.5 (4)C10—C11—C12—C131.3 (4)
C4—C3—C14—C15168.4 (2)C11—C12—C13—C80.9 (3)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x1/2, y+1/2, z+1; (iii) x+1/2, y, z+1/2; (iv) x1, y, z; (v) x+1, y, z; (vi) x+1, y1/2, z+1/2; (vii) x1/2, y1/2, z+1; (viii) x+1/2, y1/2, z+1; (ix) x1/2, y, z1/2; (x) x, y+1/2, z+1/2; (xi) x+1/2, y, z1/2; (xii) x1/2, y, z+1/2; (xiii) x3/2, y+1/2, z+1; (xiv) x, y1/2, z+1/2; (xv) x+1/2, y+1/2, z+1; (xvi) x+3/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.841.842.590 (2)148
C7—H7···O2vi0.952.403.321 (3)162
Symmetry code: (vi) x+1, y1/2, z+1/2.
 

Acknowledgements

The authors acknowledge CRM2, Institut Jean Barriol (UMR 7036 CNRS, University de Lorraine, France), for providing access to the experimental crystallographic facilities. Dr Slimane Dahaoui and Dr Emmanuel Wenger are thanked for their help in collectiong diffraction data, Professor Foudil Khelifa, Director of the Laboratoire d'hygiène de la Wilaya de Constantine, Algeria, for use of the anti­microbial facility and biologists Zine Faiza, Haifi Maya and Belhaffaf Mouni for their help.

References

First citationAlbayrak, Ç., Koşar, B., Demir, S., Odabaşoğlu, M. & Büyükgüngör, O. (2010). J. Mol. Struct. 963, 211–218.  Web of Science CSD CrossRef CAS Google Scholar
First citationAlpaslan, Y. B., Alpaslan, G., Ağar, A. A., İskeleli, N. O. & Öztekin, E. (2011). J. Mol. Struct. 995, 58–65.  Web of Science CrossRef Google Scholar
First citationBenarous, N., Cherouana, A., Aubert, E., Durand, P. & Dahaoui, S. (2016). J. Mol. Struct. 1105, 186–193.  Web of Science CrossRef Google Scholar
First citationBringmann, G., Dreyer, M., Faber, J. H., Dalsgaard, P. W., Staerk, D., Jaroszewski, J. W., Ndangalasi, H., Mbago, F., Brun, R. & Christensen, S. B. (2004). J. Nat. Prod. 67, 743–748.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationChen, X.-T., Xiang, Y., Song, P.-S., Wei, R., Zhou, Z.-J., Li, K. & Tong, A.-J. (2011). J. Lumin. 131, 1453–1459.  Web of Science CrossRef Google Scholar
First citationCiciani, G., Coronnello, M., Guerrini, G., Selleri, S., Cantore, M., Failli, P., Mini, E. & Costanzo, A. (2008). Bioorg. Med. Chem. 16, 9409–9419.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCruickshank, R. (1970). Medical Microbiology, 11th ed., pp. 652, 901. Edinburgh and London: E & S. Livingstone Ltd.  Google Scholar
First citationDe, R. L., Mukherjee, J., Mandal, M., Roy, L., Bhowal, R. & Banerjee, I. (2009). Indian J. Chem. Sect B, 48, 595-598.  Google Scholar
First citationDeTitta, G. T. (1985). J. Appl. Cryst. 18, 75–79.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDhar, D. N. & Taploo, C. L. (1982). J. Sci. Ind. Res. 41, 501-506.  CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, I. (1987). Tetrahedron, 43, 1345–1360.  CrossRef CAS Web of Science Google Scholar
First citationMoustakali-Mavridis, I., Hadjoudis, B. & Mavridis, A. (1980). Acta Cryst. B36, 1126–1130.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPrzybylski, P., Huczynski, A., Pyta, K., Brzezinski, B. & Bartl, F. (2009). Curr. Org. Chem. 13, 124–148.  Web of Science CrossRef CAS Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationŞahin, Z. S., Gūmūş, S., Macit, M. & Işık, Ş. (2009). Acta Cryst. E65, o3022.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSouza, A. O. de, Galetti, F. C. S., Silva, C. L., Bicalho, B., Parma, M. M. & Fonseca, S. F. (2007). Quim Nova, 30, 1563–1566.  CrossRef Google Scholar
First citationWang, L., Feng, Y., Xue, J. & Yukun, L. (2008). J. Serb. Chem. Soc. 73, 1–6.  CrossRef Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer. The University of Western Australia.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds