research communications
Hirshfeld surface analysis and energy framework calculation of the first oxoanion salt containing 1,3-cyclohexanebis(methylammonium): [3-(azaniumylmethyl)cyclohexyl]methanaminium dinitrate
aUniversity of Tunis El Manar, Faculty of Sciences of Tunis, Laboratory of Materials, Crystal Chemistry and Applied Thermodynamics, 2092 El Manar II, Tunis, Tunisia, and bUniversity of Tunis, Preparatory Institute for Engineering Studies of Tunis, Street Jawaher Lel Nehru, 1089 Montfleury, Tunis, Tunisia
*Correspondence e-mail: chebhamouda@yahoo.fr
The title salt, C8H20N22+·2NO3−, was obtained by a reaction between 1,3-cyclohexanebis(methylamine) and nitric acid. The cyclohexane ring of the organic cation is in a chair conformation with the methylammonium substituents in the equatorial positions and the two terminal ammonium groups in a trans conformation. In the crystal, mixed cation–anion layers lying parallel to the (010) plane are formed through N—H⋯O hydrogen-bonding interactions; these layers are formed by infinite undulating chains running parallel to the [001] direction. The overall intermolecular interactions involved in the structure were quantified and fully described by Hirshfeld surface analysis. In addition, energy-framework calculations were used to analyse and visualize the three-dimensional topology of the crystal packing. The electrostatic energy framework is dominant over the dispersion energy framework.
Keywords: oxoanion salt; crystal structure; organic dinitrate; Hirshfeld surface; fingerprint plots; energy framework.
CCDC reference: 1847743
1. Chemical context
The design of new organic–inorganic hybrid ionic materials is of current interest for various applications, particularly in the areas of crystal engineering, supramolecular chemistry and materials science (Kimizuka & Kunitake, 1996; Mitzi et al., 1999; Bonhomme & Kanatzidis, 1998; Wachhold & Kanatzidis, 2000), and also for optical semiconductor materials (Kagan et al., 1999; Li et al., 2008). Among these hybrid compounds, organic nitrates are particularly interesting for their multiple applications including as catalytic precursors of numerous reactions, in biological treatment systems or as pharmacological products (Brandán, 2012a,b, 2015; Castillo et al., 2011; Torfgård & Ahlner, 1994).
1,3-Cyclohexanebis(methylamine) (CHMA) is used industrially as a hardener for epoxy resins, a raw material for the production of polyamides and isocyanates, a rubber chemical for paper-processing agents, in fiber treatment agents and in cleaning agents (Pham & Marks, 2012). It can also be used as an effective new cross-linking agent for the chemical modification of polyimide membranes (Shao et al., 2005). We have previously reported on the use of the 1,3-cyclohexanebis(methylammonium) dication in the syntheses of organic–inorganic hybrid ionic complexes (Huo et al., 1992; Yang et al., 2008), but to the best of our knowledge there are no reported salt forms containing an oxoanion and 1,3-cyclohexanebis(methylammonium).
In a continuation of our recent studies of new hybrid compounds containing an organic cation and an inorganic oxoanion such as CrO42− (Chebbi et al., 2000; Chebbi & Driss, 2001, 2002a,b, 2004), Cr2O72− (Chebbi et al., 2016; Ben Smail et al., 2017), NO3− (Chebbi et al., 2014) and ClO4− (Chebbi et al., 2017; Ben Jomaa et al., 2018), we report in this work the Hirshfeld surface analysis and energy-framework calculations for a new organic nitrate, (C8H20N2)[NO3]2 (I).
2. Structural commentary
The title compound crystallizes with one 1,3-cyclohexanebis(methylammonium) dication, (CHMA)2+, and two nitrate anions in the (Fig. 1). An EDX spectrum confirming the presence of C, N, and O is shown in Fig. 2.
All atoms of the nitrate anion are coplanar with the N—O bond distances varying between 1.218 (4) and 1.250 (4) Å. The O—N—O angles are in the range of 118.8 (4)–121.1 (4)°. These bond lengths and angles are in good agreement with those observed in similar compounds (Blerk & Kruger, 2009; Gatfaoui et al., 2017; Hakiri et al., 2018). The cyclohexane ring of the organic cation adopts a chair conformation with the methylammonium substituents in the equatorial positions and the two terminal ammonium groups in a trans conformation (Fig. 1). The same trans conformation has been observed in other compounds with this organic cation (Zhao et al., 2008). Examination of the C—C (N) distances and C—C—C (N) angles in the (CHMA)2+ dication shows no significant difference from those in other organic materials associated with the same organic groups (Huo et al., 1992; Yang et al., 2008).
3. Supramolecular features
In the crystal, the (CHMA)2+ cations and nitrate anions are linked by N—H⋯O hydrogen bonds into infinite layers parallel to the ac plane (Fig. 3). Each layer is formed of infinite undulating chains running parallel to the [001] direction, further extended into an overall two-dimensional supramolecular network structure (Fig. 4). As seen in Table 1, all of the hydrogen atoms bonded to the amine group of (CHMA)2+ dication contribute to the formation of N—H⋯O hydrogen bonds with the nitrate anions. The –N(1,2)H3+ groups of the organic cations, which act as donors to the N(3,4)O3− anions generate R12(3) dimeric rings. The propagation of these dimers produces infinite undulating chains running parallel to the [001] direction (Fig. 5). The interconnection of two adjacent undulating chains leads to the generation of another two hexameric R63(12) and R64(14) ring motifs. Thus, the three types of R12(3), R63(12) and R64(14) rings are alternately linked into infinite layers parallel to the ac plane (Fig. 6).
4. Hirshfeld surface analysis and energy framework calculations
The Hirshfeld surfaces (Spackman & Jayatilaka, 2009) and their relative 2D fingerprint plots (Spackman & McKinnon, 2002; Parkin et al., 2007; Rohl et al., 2008)) were drawn using CrystalExplorer 3.1 (Wolff et al., 2012). The quantifying and decoding of the intermolecular contacts in the crystal packing are visualized using dnorm (normalized contact distance) and 2D fingerprint plots, respectively. The dark-red spots on the dnorm surface arise as a result of short interatomic contacts, while the other intermolecular interactions appear as light-red spots. di (inside) and de (outside) represent the distances to the Hirshfeld surface from the nuclei, with respect to the relative van der Waals radii. The proportional contribution of the contacts over the surface is visualized by the color gradient (blue to red) in the fingerprint plots.
The Hirshfeld surface mapped over dnorm in the range 0.0620 to 0.9660 a.u. is illustrated in Fig. 7. Information regarding the intermolecular interactions, visible as spots on the Hirshfeld surface (Fig. 7), is summarized in Table 1. For instance, the distinct circular depressions (red spots) are due to the N—H⋯O contacts, whereas the white spots are due to H⋯H contacts.
The intermolecular interactions present in the structure are also visible on the two-dimensional fingerprint plot, which can be decomposed to quantify the individual contributions of each intermolecular interaction involved in the structure. The H⋯O/O⋯H contacts associated with N— H⋯O hydrogen bonding appear to be the major contributor to the crystal packing (68.8%); these contacts are represented by the spikes in the top-left (de > di, H⋯O, 31.3%) and bottom-right (de < di, O⋯H, 37.5%) regions of the related plots in Fig. 8a. Interactions of the type H⋯H appear in the middle of the scattered points in the fingerprint plots; they comprise 24.6% of the entire surface (Fig. 8b). The forceps-like tips in the region de + di ≃ 3 Å of the fingerprint plot (Fig. 8c) represent a significant H⋯N/N⋯H contribution, covering 4.2% of the total Hirshfeld surface of (I). The O⋯O contacts, which represent only 2.4% of the Hirshfeld surface, Fig. 8d, are extremely impoverished in the crystal (enrichment ratio EOO = 0.17; Jelsch et al., 2014), as the oxygen atoms bound to nitrogen and the NO3 group as a whole are electronegative, therefore the O⋯O contacts are electrostatically repulsive.
Fig. 9 shows the voids (Wolff et al., 2012) in the of (I). These are based on the sum of spherical atomic electron densities at the appropriate nuclear positions (procrystal electron density). The crystal-void calculation (results under 0.002 a.u. isovalue) shows the void volume of title compound to be of the order of 469.14 Å3 and surface area in the order of 1334.82 Å2. With the porosity, the calculated void volume of (I) is 17%. There are no large cavities. We note that the electron-density isosurfaces are not completely closed around the components, but are open at those locations where interspecies approaches are found, e.g. N—H⋯O.
The CrystalExplorer 17 (Turner et al., 2017) and the intermolecular interaction energies were calculated for the energy-framework analysis. This calculation is estimated from a single-point molecular wavefunction at B3LYP/6- 31G(d,p). A cluster of radius 3.8 Å was generated around the molecule and the energy calculation was performed. The neighbouring molecules (density matrices) are generated within this shell by applying operations with respect to the central molecule (density matrix). The interaction energy is broken down as Etot = keleE′ele + kpolE′pol + kdisE′dis + krepE′rep where the k values are scale factors, E′ele represents the electrostatic component, E′pol the polarization energy, E′dis the dispersion energy, and E′rep the exchange-repulsion energy (Turner et al., 2014; Mackenzie et al., 2017).
(crystal geometry and hydrogen bond distances to 1.083 Å) was used as input toTable 2 shows the results of the interaction energies calculations. The results are represented graphically in Fig. 10 as framework energy diagrams. The molecular pair-wise interaction energies calculated for the construction of energy frameworks are used to evaluate the net interaction energies. The total interaction energies are electrostatic (E′ele = −247.8 kJ mol−1), polarization (E′pol = −379.5 kJ mol−1), dispersion (E′dis = −43.7 kJ mol−1), repulsion (E′rep = 23.6 kJ mol−1), and total interaction energy (Etot = −566.3 kJ mol−1). The electrostatic energy framework is dominant over the dispersion energy framework (Fig. 10).
|
5. Synthesis and crystallization
1,3-Cyclohexanebis(methylamine) (1 mmol) was dissolved in water (10 mL) and nitric acid (2 mmol in 10 mL of water). The resulting solution was stirred for 3 h, filtered and then left to stand at room temperature. Colorless crystals were obtained after five days by slow evaporation.
6. Refinement
Crystal data, data collection and structure . All C-bound hydrogen atoms were included in calculated positions with C—H = 0.98 (CH group) or 0.97 Å (methylene) and allowed to ride, with Uiso(H) = 1.2Ueq(C). N-bound H atoms were located in difference-Fourier maps and freely refined.
details are summarized in Table 3
|
Supporting information
CCDC reference: 1847743
https://doi.org/10.1107/S2056989018008381/xu5926sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018008381/xu5926Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989018008381/xu5926Isup3.cml
Data collection: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992); cell
CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2006) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).C8H20N22+·2NO3− | Dx = 1.299 Mg m−3 |
Mr = 268.28 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbca | Cell parameters from 25 reflections |
a = 10.475 (4) Å | θ = 11–15° |
b = 16.884 (4) Å | µ = 0.11 mm−1 |
c = 15.514 (2) Å | T = 293 K |
V = 2743.8 (13) Å3 | Plate, colorless |
Z = 8 | 0.52 × 0.40 × 0.15 mm |
F(000) = 1152 |
Enraf–Nonius CAD-4 diffractometer | 991 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.036 |
Graphite monochromator | θmax = 27.0°, θmin = 2.4° |
ω/2θ scans | h = −13→2 |
Absorption correction: ψ scan (North et al., 1968) | k = −1→19 |
Tmin = 0.946, Tmax = 1.000 | l = −1→21 |
3798 measured reflections | 2 standard reflections every 120 reflections |
2980 independent reflections | intensity decay: 1% |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.062 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.173 | w = 1/[σ2(Fo2) + (0.063P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.98 | (Δ/σ)max < 0.001 |
2980 reflections | Δρmax = 0.17 e Å−3 |
187 parameters | Δρmin = −0.13 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.5381 (5) | 0.0463 (2) | 0.6598 (3) | 0.0659 (10) | |
H1A | 0.601 (4) | 0.058 (2) | 0.694 (3) | 0.081 (16)* | |
H1B | 0.550 (3) | 0.080 (2) | 0.611 (2) | 0.085 (13)* | |
H1C | 0.471 (4) | 0.059 (3) | 0.690 (3) | 0.096 (19)* | |
N2 | 0.4634 (5) | −0.1776 (3) | 1.0032 (3) | 0.0674 (10) | |
H2D | 0.534 (4) | −0.178 (3) | 1.016 (3) | 0.081 (19)* | |
H2E | 0.431 (4) | −0.155 (2) | 1.057 (3) | 0.098 (15)* | |
H2F | 0.426 (5) | −0.230 (3) | 1.002 (3) | 0.16 (2)* | |
C1 | 0.5681 (4) | −0.0935 (2) | 0.7032 (2) | 0.0606 (10) | |
H1 | 0.6549 | −0.0819 | 0.7232 | 0.073* | |
C2 | 0.4800 (4) | −0.0856 (2) | 0.7804 (2) | 0.0652 (11) | |
H2A | 0.4832 | −0.0316 | 0.8016 | 0.078* | |
H2B | 0.3930 | −0.0965 | 0.7626 | 0.078* | |
C3 | 0.5166 (4) | −0.1416 (2) | 0.8520 (2) | 0.0601 (10) | |
H3 | 0.6037 | −0.1279 | 0.8695 | 0.072* | |
C4 | 0.5197 (4) | −0.2269 (2) | 0.8201 (2) | 0.0652 (11) | |
H4A | 0.5512 | −0.2610 | 0.8657 | 0.078* | |
H4B | 0.4338 | −0.2437 | 0.8058 | 0.078* | |
C5 | 0.6040 (4) | −0.2355 (2) | 0.7419 (2) | 0.0784 (12) | |
H5A | 0.6920 | −0.2259 | 0.7583 | 0.094* | |
H5B | 0.5979 | −0.2893 | 0.7204 | 0.094* | |
C6 | 0.5673 (4) | −0.1791 (2) | 0.6718 (2) | 0.0741 (12) | |
H6A | 0.4826 | −0.1923 | 0.6510 | 0.089* | |
H6B | 0.6264 | −0.1845 | 0.6241 | 0.089* | |
C7 | 0.5393 (4) | −0.0372 (2) | 0.6311 (2) | 0.0701 (11) | |
H7A | 0.6030 | −0.0436 | 0.5862 | 0.084* | |
H7B | 0.4568 | −0.0503 | 0.6066 | 0.084* | |
C8 | 0.4321 (4) | −0.1278 (2) | 0.9289 (2) | 0.0710 (11) | |
H8A | 0.4386 | −0.0727 | 0.9458 | 0.085* | |
H8B | 0.3442 | −0.1377 | 0.9123 | 0.085* | |
N3 | 0.2781 (4) | −0.09045 (18) | 0.1598 (2) | 0.0718 (9) | |
O1 | 0.2195 (3) | −0.10116 (18) | 0.0922 (2) | 0.1032 (11) | |
O2 | 0.2248 (3) | −0.06216 (17) | 0.22373 (18) | 0.0826 (9) | |
O3 | 0.3922 (3) | −0.1097 (2) | 0.16492 (19) | 0.1031 (11) | |
N4 | 0.7872 (4) | −0.1535 (2) | 0.0224 (2) | 0.0685 (9) | |
O4 | 0.7259 (3) | −0.09475 (18) | 0.0414 (3) | 0.1171 (12) | |
O5 | 0.9065 (3) | −0.15214 (15) | 0.02450 (17) | 0.0747 (8) | |
O6 | 0.7335 (3) | −0.21487 (18) | 0.0004 (2) | 0.1000 (11) |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.070 (3) | 0.063 (3) | 0.065 (2) | −0.009 (2) | 0.001 (3) | 0.010 (2) |
N2 | 0.071 (3) | 0.078 (3) | 0.054 (2) | 0.000 (2) | 0.001 (2) | 0.0046 (19) |
C1 | 0.064 (3) | 0.059 (2) | 0.058 (2) | −0.004 (2) | 0.004 (2) | −0.001 (2) |
C2 | 0.073 (3) | 0.056 (2) | 0.066 (2) | 0.009 (2) | 0.005 (2) | 0.0013 (19) |
C3 | 0.062 (2) | 0.058 (2) | 0.060 (2) | 0.005 (2) | 0.000 (2) | 0.009 (2) |
C4 | 0.072 (3) | 0.054 (2) | 0.069 (2) | 0.003 (2) | 0.000 (2) | 0.0053 (19) |
C5 | 0.098 (3) | 0.058 (2) | 0.080 (3) | 0.013 (2) | 0.011 (3) | −0.001 (2) |
C6 | 0.091 (3) | 0.062 (2) | 0.070 (3) | 0.003 (2) | 0.016 (2) | 0.000 (2) |
C7 | 0.084 (3) | 0.063 (3) | 0.063 (2) | 0.000 (2) | 0.007 (2) | 0.000 (2) |
C8 | 0.076 (3) | 0.071 (2) | 0.066 (2) | 0.012 (2) | 0.007 (2) | 0.007 (2) |
N3 | 0.074 (3) | 0.068 (2) | 0.074 (3) | 0.001 (2) | 0.005 (2) | −0.0120 (19) |
O1 | 0.092 (2) | 0.140 (3) | 0.078 (2) | 0.009 (2) | −0.0104 (19) | −0.0334 (19) |
O2 | 0.081 (2) | 0.0903 (19) | 0.0764 (18) | 0.0065 (17) | 0.0102 (17) | −0.0262 (16) |
O3 | 0.074 (2) | 0.140 (3) | 0.096 (2) | 0.028 (2) | −0.0052 (19) | −0.033 (2) |
N4 | 0.070 (3) | 0.075 (2) | 0.060 (2) | −0.003 (2) | −0.016 (2) | 0.0003 (19) |
O4 | 0.091 (2) | 0.095 (2) | 0.165 (3) | 0.024 (2) | −0.026 (2) | −0.042 (2) |
O5 | 0.071 (2) | 0.082 (2) | 0.0709 (18) | −0.0077 (16) | −0.0064 (16) | −0.0090 (14) |
O6 | 0.084 (2) | 0.0728 (17) | 0.143 (3) | −0.0103 (17) | −0.033 (2) | −0.0060 (18) |
N1—C7 | 1.479 (5) | C4—C5 | 1.507 (5) |
N1—H1A | 0.87 (4) | C4—H4A | 0.9700 |
N1—H1B | 0.95 (4) | C4—H4B | 0.9700 |
N1—H1C | 0.87 (5) | C5—C6 | 1.496 (5) |
N2—C8 | 1.464 (5) | C5—H5A | 0.9700 |
N2—H2D | 0.77 (4) | C5—H5B | 0.9700 |
N2—H2E | 0.99 (4) | C6—H6A | 0.9700 |
N2—H2F | 0.96 (6) | C6—H6B | 0.9700 |
C1—C7 | 1.499 (5) | C7—H7A | 0.9700 |
C1—C2 | 1.518 (5) | C7—H7B | 0.9700 |
C1—C6 | 1.524 (5) | C8—H8A | 0.9700 |
C1—H1 | 0.9800 | C8—H8B | 0.9700 |
C2—C3 | 1.508 (4) | N3—O1 | 1.229 (4) |
C2—H2A | 0.9700 | N3—O2 | 1.234 (4) |
C2—H2B | 0.9700 | N3—O3 | 1.241 (4) |
C3—C8 | 1.503 (5) | N4—O4 | 1.218 (4) |
C3—C4 | 1.523 (5) | N4—O6 | 1.227 (4) |
C3—H3 | 0.9800 | N4—O5 | 1.250 (4) |
C7—N1—H1A | 113 (3) | C5—C4—H4B | 109.3 |
C7—N1—H1B | 109 (2) | C3—C4—H4B | 109.3 |
H1A—N1—H1B | 104 (3) | H4A—C4—H4B | 108.0 |
C7—N1—H1C | 114 (3) | C6—C5—C4 | 111.9 (3) |
H1A—N1—H1C | 103 (4) | C6—C5—H5A | 109.2 |
H1B—N1—H1C | 113 (4) | C4—C5—H5A | 109.2 |
C8—N2—H2D | 115 (3) | C6—C5—H5B | 109.2 |
C8—N2—H2E | 112 (2) | C4—C5—H5B | 109.2 |
H2D—N2—H2E | 96 (4) | H5A—C5—H5B | 107.9 |
C8—N2—H2F | 114 (3) | C5—C6—C1 | 111.7 (3) |
H2D—N2—H2F | 113 (5) | C5—C6—H6A | 109.3 |
H2E—N2—H2F | 104 (4) | C1—C6—H6A | 109.3 |
C7—C1—C2 | 114.3 (3) | C5—C6—H6B | 109.3 |
C7—C1—C6 | 111.2 (3) | C1—C6—H6B | 109.3 |
C2—C1—C6 | 109.4 (3) | H6A—C6—H6B | 107.9 |
C7—C1—H1 | 107.2 | N1—C7—C1 | 112.4 (3) |
C2—C1—H1 | 107.2 | N1—C7—H7A | 109.1 |
C6—C1—H1 | 107.2 | C1—C7—H7A | 109.1 |
C3—C2—C1 | 111.9 (3) | N1—C7—H7B | 109.1 |
C3—C2—H2A | 109.2 | C1—C7—H7B | 109.1 |
C1—C2—H2A | 109.2 | H7A—C7—H7B | 107.9 |
C3—C2—H2B | 109.2 | N2—C8—C3 | 113.8 (3) |
C1—C2—H2B | 109.2 | N2—C8—H8A | 108.8 |
H2A—C2—H2B | 107.9 | C3—C8—H8A | 108.8 |
C8—C3—C2 | 109.8 (3) | N2—C8—H8B | 108.8 |
C8—C3—C4 | 114.6 (3) | C3—C8—H8B | 108.8 |
C2—C3—C4 | 111.0 (3) | H8A—C8—H8B | 107.7 |
C8—C3—H3 | 107.0 | O1—N3—O2 | 121.1 (4) |
C2—C3—H3 | 107.0 | O1—N3—O3 | 119.8 (4) |
C4—C3—H3 | 107.0 | O2—N3—O3 | 119.1 (4) |
C5—C4—C3 | 111.5 (3) | O4—N4—O6 | 120.9 (4) |
C5—C4—H4A | 109.3 | O4—N4—O5 | 120.3 (4) |
C3—C4—H4A | 109.3 | O6—N4—O5 | 118.8 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O2i | 0.87 (4) | 2.22 (4) | 3.084 (6) | 169 (4) |
N1—H1A···O3i | 0.87 (4) | 2.36 (4) | 3.013 (5) | 132 (3) |
N1—H1B···O4ii | 0.95 (4) | 2.59 (4) | 3.187 (6) | 121 (3) |
N1—H1B···O5ii | 0.95 (4) | 1.87 (4) | 2.818 (5) | 172 (3) |
N1—H1C···O2iii | 0.87 (5) | 2.12 (5) | 2.939 (6) | 157 (4) |
N2—H2D···O4iv | 0.77 (4) | 2.48 (4) | 3.142 (6) | 145 (4) |
N2—H2D···O6iv | 0.77 (4) | 2.19 (4) | 2.899 (6) | 153 (4) |
N2—H2E···O1iv | 0.99 (4) | 2.46 (4) | 3.178 (6) | 130 (3) |
N2—H2E···O3iv | 0.99 (4) | 1.88 (4) | 2.858 (5) | 173 (4) |
N2—H2F···O5v | 0.96 (6) | 2.05 (6) | 2.967 (5) | 159 (5) |
N2—H2F···O6v | 0.96 (6) | 2.23 (6) | 3.016 (6) | 139 (4) |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+3/2, −y, z+1/2; (iii) −x+1/2, −y, z+1/2; (iv) x, y, z+1; (v) x−1/2, −y−1/2, −z+1. |
N refers to the number of molecules with an R molecular centroid-to-centroid distance (Å). Energies are in kJ mol-1. |
N | Symop | R | E'ele | E'pol | E'dis | E'rep | Etot |
2 | -x, -y + 1/2, z + 1/2 | 8.51 | -63.9 | -50.6 | -6.3 | 5.4 | -107.1 |
1 | -x, -y, -z | 9.69 | 32.1 | -42.9 | -4.6 | 1.8 | -0.7 |
2 | x, y + 1/2, -z + 1/2 | 8.86 | 0.0 | -53.8 | 0.0 | 0.0 | -39.8 |
2 | x + 1/2, -y + 1/2, z | 5.33 | -23.1 | -75.4 | -20.1 | 14.1 | -89.0 |
1 | x + 1/2, -y + 1/2, z | 5.60 | -21.5 | -50.6 | -6.3 | 2.1 | -64.4 |
1 | x + 1/2, -y + 1/2, z | 5.77 | 11.3 | -14.6 | -0.5 | 0.0 | 0.7 |
1 | x + 1/2, -y + 1/2, z | 5.33 | -44.5 | -18.9 | -0.8 | 0.0 | -61.8 |
1 | -x, -y, -z | 7.97 | -128.4 | -53.8 | -4.3 | 0.2 | -179.2 |
1 | -x, -y, -z | 6.43 | -9.8 | -18.9 | -0.8 | 0.0 | -25.0 |
Scale factors used to determine Etot: kele = 1.057, kpol = 0.740, kdis = 0.871, krep = 0.618 (Mackenzie et al., 2017). |
Acknowledgements
The authors are grateful to Dr R. Ben Smail, Carthage University, Preparatory Institute for Engineering Studies of Nabeul, for fruitful discussions.
References
Ben Jomaa, M., Chebbi, H., Fakhar Bourguiba, N. & Zid, M. F. (2018). Acta Cryst. E74, 91–97. Web of Science CrossRef IUCr Journals Google Scholar
Ben Smail, R., Chebbi, H., Srinivasan, B. R. & Zid, M. F. (2017). J. Struct. Chem. 58, 724–733. Web of Science CrossRef Google Scholar
Blerk, C. van & Kruger, G. J. (2009). Acta Cryst. E65, o1008. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bonhomme, F. & Kanatzidis, M. G. (1998). Chem. Mater. 10, 1153–1159. Web of Science CSD CrossRef CAS Google Scholar
Brandán, S. A. (2012a). Nitrate: occurrence, characteristics and health considerations. Edited Collection. Hauppauge, New York: Nova Science Publishers. Google Scholar
Brandán, S. A. (2012b). Structural and vibrational study of the chromyl chlorosulfate, fluorosulfate, and nitrate compounds. Dordrecht: Springer. Google Scholar
Brandán, S. A. (2015). Descriptors, structural and spectroscopic properties of heterocyclic derivatives of importance for the health and the enviroment. Edited Collection. Hauppauge, New York: Nova Science Publishers. Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Castillo, M. V., Romano, E., Lanús, H. E., Díaz, S. B., Ben Altabef, A. & Brandán, S. A. (2011). J. Mol. Struct. 994, 202–208. Web of Science CrossRef Google Scholar
Chebbi, H., Ben Smail, R. & Zid, M. F. (2014). Acta Cryst. E70, o642. CSD CrossRef IUCr Journals Google Scholar
Chebbi, H., Ben Smail, R. & Zid, M. F. (2016). J. Struct. Chem. 57, 632–635. Web of Science CSD CrossRef CAS Google Scholar
Chebbi, H., Boumakhla, A., Zid, M. F. & Guesmi, A. (2017). Acta Cryst. E73, 1453–1457. Web of Science CSD CrossRef IUCr Journals Google Scholar
Chebbi, H. & Driss, A. (2001). Acta Cryst. C57, 1369–1370. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Chebbi, H. & Driss, A. (2002a). Acta Cryst. E58, m147–m149. Web of Science CSD CrossRef IUCr Journals Google Scholar
Chebbi, H. & Driss, A. (2002b). Acta Cryst. E58, m494–m496. Web of Science CSD CrossRef IUCr Journals Google Scholar
Chebbi, H. & Driss, A. (2004). Acta Cryst. E60, m904–m906. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Chebbi, H., Hajem, A. A. & Driss, A. (2000). Acta Cryst. C56, e333–e334. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92–96. CrossRef CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gatfaoui, S., Mezni, A., Roisnel, T. & Marouani, H. (2017). J. Mol. Struct. 1139, 52–59. Web of Science CrossRef Google Scholar
Hakiri, R., Ameur, I., Abid, S. & Derbel, N. (2018). J. Mol. Struct. 1164, 468–492. Web of Science CrossRef Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Huo, Q., Xu, R., Li, S., Ma, Z., Thomas, J. M., Jones, R. H. & Chippindale, A. M. (1992). J. Chem. Soc. Chem. Commun. pp. 875–876. CrossRef Web of Science Google Scholar
Jelsch, C., Ejsmont, K. & Huder, L. (2014). IUCrJ, 1, 119–128. Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
Kagan, C. R., Mitzi, D. B. & Dimitrakopoulos, C. D. (1999). Science, 286, 945–947. Web of Science CrossRef PubMed CAS Google Scholar
Kimizuka, N. & Kunitake, T. (1996). Adv. Mater. 8, 89–91. CrossRef CAS Web of Science Google Scholar
Li, H.-H., Chen, Z.-R., Cheng, L.-C., Liu, J.-B., Chen, X.-B. & Li, J.-Q. (2008). Cryst. Growth Des. 8, 4355–4358. Web of Science CrossRef Google Scholar
Macíček, J. & Yordanov, A. (1992). J. Appl. Cryst. 25, 73–80. CrossRef Web of Science IUCr Journals Google Scholar
Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587. Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Mitzi, D. B., Prikas, M. T. & Chondroudis, K. (1999). Chem. Mater. 11, 542–544. Web of Science CrossRef CAS Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Parkin, A., Barr, G., Dong, W., Gilmore, C. J., Jayatilaka, D., McKinnon, J. J., Spackman, M. A. & Wilson, C. C. (2007). CrystEngComm, 9, 648–652. Web of Science CrossRef CAS Google Scholar
Pham, H. Q. & Marks, M. J. (2012). Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. Google Scholar
Rohl, A. L., Moret, M., Kaminsky, W., Claborn, K., McKinnon, J. J. & Kahr, B. (2008). Cryst. Growth Des. 8, 4517–4525. Web of Science CSD CrossRef CAS Google Scholar
Shao, L., Chung, T. S., Goh, S. H. & Pramoda, K. P. (2005). J. Membr. Sci. 267, 78–89. Web of Science CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392. Web of Science CrossRef CAS Google Scholar
Torfgård, K. E. & Ahlner, J. (1994). Cardiovasc. Drug. Ther. 8, 701–717. Google Scholar
Turner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249–4255. Web of Science CrossRef CAS PubMed Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer 17. University of Western Australia. Google Scholar
Wachhold, M. & Kanatzidis, M. G. (2000). Chem. Mater. 12, 2914–2923. Web of Science CSD CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer 3.1. University of Western Australia. Google Scholar
Yang, Y., Zhao, Y., Yu, J., Wu, S. & Wang, R. (2008). Inorg. Chem. 47, 769–771. Web of Science CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.