research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, Hirshfeld surface analysis and energy framework calculation of the first oxoanion salt containing 1,3-cyclo­hexa­nebis(methyl­ammonium): [3-(aza­niumylmeth­yl)cyclo­hex­yl]methanaminium dinitrate

CROSSMARK_Color_square_no_text.svg

aUniversity of Tunis El Manar, Faculty of Sciences of Tunis, Laboratory of Materials, Crystal Chemistry and Applied Thermodynamics, 2092 El Manar II, Tunis, Tunisia, and bUniversity of Tunis, Preparatory Institute for Engineering Studies of Tunis, Street Jawaher Lel Nehru, 1089 Montfleury, Tunis, Tunisia
*Correspondence e-mail: chebhamouda@yahoo.fr

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 24 May 2018; accepted 6 June 2018; online 12 June 2018)

The title salt, C8H20N22+·2NO3, was obtained by a reaction between 1,3-cyclohexa­nebis(methyl­amine) and nitric acid. The cyclo­hexane ring of the organic cation is in a chair conformation with the methyl­ammonium substituents in the equatorial positions and the two terminal ammonium groups in a trans conformation. In the crystal, mixed cation–anion layers lying parallel to the (010) plane are formed through N—H⋯O hydrogen-bonding inter­actions; these layers are formed by infinite undulating chains running parallel to the [001] direction. The overall inter­molecular inter­actions involved in the structure were qu­anti­fied and fully described by Hirshfeld surface analysis. In addition, energy-framework calculations were used to analyse and visualize the three-dimensional topology of the crystal packing. The electrostatic energy framework is dominant over the dispersion energy framework.

1. Chemical context

The design of new organic–inorganic hybrid ionic materials is of current inter­est for various applications, particularly in the areas of crystal engineering, supra­molecular chemistry and materials science (Kimizuka & Kunitake, 1996[Kimizuka, N. & Kunitake, T. (1996). Adv. Mater. 8, 89-91.]; Mitzi et al., 1999[Mitzi, D. B., Prikas, M. T. & Chondroudis, K. (1999). Chem. Mater. 11, 542-544.]; Bonhomme & Kanatzidis, 1998[Bonhomme, F. & Kanatzidis, M. G. (1998). Chem. Mater. 10, 1153-1159.]; Wachhold & Kanatzidis, 2000[Wachhold, M. & Kanatzidis, M. G. (2000). Chem. Mater. 12, 2914-2923.]), and also for optical semiconductor materials (Kagan et al., 1999[Kagan, C. R., Mitzi, D. B. & Dimitrakopoulos, C. D. (1999). Science, 286, 945-947.]; Li et al., 2008[Li, H.-H., Chen, Z.-R., Cheng, L.-C., Liu, J.-B., Chen, X.-B. & Li, J.-Q. (2008). Cryst. Growth Des. 8, 4355-4358.]). Among these hybrid compounds, organic nitrates are particularly inter­esting for their multiple applications including as catalytic precursors of numerous reactions, in biological treatment systems or as pharmaco­logical products (Brandán, 2012a[Brandán, S. A. (2012a). Nitrate: occurrence, characteristics and health considerations. Edited Collection. Hauppauge, New York: Nova Science Publishers.],b[Brandán, S. A. (2012b). Structural and vibrational study of the chromyl chlorosulfate, fluorosulfate, and nitrate compounds. Dordrecht: Springer.], 2015[Brandán, S. A. (2015). Descriptors, structural and spectroscopic properties of heterocyclic derivatives of importance for the health and the enviroment. Edited Collection. Hauppauge, New York: Nova Science Publishers.]; Castillo et al., 2011[Castillo, M. V., Romano, E., Lanús, H. E., Díaz, S. B., Ben Altabef, A. & Brandán, S. A. (2011). J. Mol. Struct. 994, 202-208.]; Torfgård & Ahlner, 1994[Torfgård, K. E. & Ahlner, J. (1994). Cardiovasc. Drug. Ther. 8, 701-717.]).

1,3-Cyclo­hexa­nebis(methyl­amine) (CHMA) is used industrially as a hardener for ep­oxy resins, a raw material for the production of polyamides and iso­cyanates, a rubber chemical for paper-processing agents, in fiber treatment agents and in cleaning agents (Pham & Marks, 2012[Pham, H. Q. & Marks, M. J. (2012). Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH.]). It can also be used as an effective new cross-linking agent for the chemical modification of polyimide membranes (Shao et al., 2005[Shao, L., Chung, T. S., Goh, S. H. & Pramoda, K. P. (2005). J. Membr. Sci. 267, 78-89.]). We have previously reported on the use of the 1,3-cyclo­hexa­nebis(methyl­ammonium) dication in the syntheses of organic–inorganic hybrid ionic complexes (Huo et al., 1992[Huo, Q., Xu, R., Li, S., Ma, Z., Thomas, J. M., Jones, R. H. & Chippindale, A. M. (1992). J. Chem. Soc. Chem. Commun. pp. 875-876.]; Yang et al., 2008[Yang, Y., Zhao, Y., Yu, J., Wu, S. & Wang, R. (2008). Inorg. Chem. 47, 769-771.]), but to the best of our knowledge there are no reported salt forms containing an oxoanion and 1,3-cyclo­hexa­nebis(methyl­ammonium).

In a continuation of our recent studies of new hybrid compounds containing an organic cation and an inorganic oxoanion such as CrO42− (Chebbi et al., 2000[Chebbi, H., Hajem, A. A. & Driss, A. (2000). Acta Cryst. C56, e333-e334.]; Chebbi & Driss, 2001[Chebbi, H. & Driss, A. (2001). Acta Cryst. C57, 1369-1370.], 2002a[Chebbi, H. & Driss, A. (2002a). Acta Cryst. E58, m147-m149.],b[Chebbi, H. & Driss, A. (2002b). Acta Cryst. E58, m494-m496.], 2004[Chebbi, H. & Driss, A. (2004). Acta Cryst. E60, m904-m906.]), Cr2O72− (Chebbi et al., 2016[Chebbi, H., Ben Smail, R. & Zid, M. F. (2016). J. Struct. Chem. 57, 632-635.]; Ben Smail et al., 2017[Ben Smail, R., Chebbi, H., Srinivasan, B. R. & Zid, M. F. (2017). J. Struct. Chem. 58, 724-733.]), NO3 (Chebbi et al., 2014[Chebbi, H., Ben Smail, R. & Zid, M. F. (2014). Acta Cryst. E70, o642.]) and ClO4 (Chebbi et al., 2017[Chebbi, H., Boumakhla, A., Zid, M. F. & Guesmi, A. (2017). Acta Cryst. E73, 1453-1457.]; Ben Jomaa et al., 2018[Ben Jomaa, M., Chebbi, H., Fakhar Bourguiba, N. & Zid, M. F. (2018). Acta Cryst. E74, 91-97.]), we report in this work the crystal structure, Hirshfeld surface analysis and energy-framework calculations for a new organic nitrate, (C8H20N2)[NO3]2 (I).[link]

[Scheme 1]

2. Structural commentary

The title compound crystallizes with one 1,3-cyclo­hexa­ne­bis(methyl­ammonium) dication, (CHMA)2+, and two nitrate anions in the asymmetric unit (Fig. 1[link]). An EDX spectrum confirming the presence of C, N, and O is shown in Fig. 2[link].

[Figure 1]
Figure 1
The asymmetric unit of (I)[link], showing the atom-labeling scheme, displacement ellipsoids at the 30% probability level and the two configurations, cis and trans, of (CHMA)2+.
[Figure 2]
Figure 2
The EDX spectrum of (I)[link], showing the presence of C, N, and O.

All atoms of the nitrate anion are coplanar with the N—O bond distances varying between 1.218 (4) and 1.250 (4) Å. The O—N—O angles are in the range of 118.8 (4)–121.1 (4)°. These bond lengths and angles are in good agreement with those observed in similar compounds (Blerk & Kruger, 2009[Blerk, C. van & Kruger, G. J. (2009). Acta Cryst. E65, o1008.]; Gatfaoui et al., 2017[Gatfaoui, S., Mezni, A., Roisnel, T. & Marouani, H. (2017). J. Mol. Struct. 1139, 52-59.]; Hakiri et al., 2018[Hakiri, R., Ameur, I., Abid, S. & Derbel, N. (2018). J. Mol. Struct. 1164, 468-492.]). The cyclo­hexane ring of the organic cation adopts a chair conformation with the methyl­ammonium substituents in the equatorial positions and the two terminal ammonium groups in a trans conformation (Fig. 1[link]). The same trans conformation has been observed in other compounds with this organic cation (Zhao et al., 2008[Yang, Y., Zhao, Y., Yu, J., Wu, S. & Wang, R. (2008). Inorg. Chem. 47, 769-771.]). Examination of the C—C (N) distances and C—C—C (N) angles in the (CHMA)2+ dication shows no significant difference from those in other organic materials associated with the same organic groups (Huo et al., 1992[Huo, Q., Xu, R., Li, S., Ma, Z., Thomas, J. M., Jones, R. H. & Chippindale, A. M. (1992). J. Chem. Soc. Chem. Commun. pp. 875-876.]; Yang et al., 2008[Yang, Y., Zhao, Y., Yu, J., Wu, S. & Wang, R. (2008). Inorg. Chem. 47, 769-771.]).

3. Supra­molecular features

In the crystal, the (CHMA)2+ cations and nitrate anions are linked by N—H⋯O hydrogen bonds into infinite layers parallel to the ac plane (Fig. 3[link]). Each layer is formed of infinite undulating chains running parallel to the [001] direction, further extended into an overall two-dimensional supra­molecular network structure (Fig. 4[link]). As seen in Table 1[link], all of the hydrogen atoms bonded to the amine group of (CHMA)2+ dication contribute to the formation of N—H⋯O hydrogen bonds with the nitrate anions. The –N(1,2)H3+ groups of the organic cations, which act as donors to the N(3,4)O3 anions generate R12(3) dimeric rings. The propagation of these dimers produces infinite undulating chains running parallel to the [001] direction (Fig. 5[link]). The inter­connection of two adjacent undulating chains leads to the generation of another two hexa­meric R63(12) and R64(14) ring motifs. Thus, the three types of R12(3), R63(12) and R64(14) rings are alternately linked into infinite layers parallel to the ac plane (Fig. 6[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.87 (4) 2.22 (4) 3.084 (6) 169 (4)
N1—H1A⋯O3i 0.87 (4) 2.36 (4) 3.013 (5) 132 (3)
N1—H1B⋯O4ii 0.95 (4) 2.59 (4) 3.187 (6) 121 (3)
N1—H1B⋯O5ii 0.95 (4) 1.87 (4) 2.818 (5) 172 (3)
N1—H1C⋯O2iii 0.87 (5) 2.12 (5) 2.939 (6) 157 (4)
N2—H2D⋯O4iv 0.77 (4) 2.48 (4) 3.142 (6) 145 (4)
N2—H2D⋯O6iv 0.77 (4) 2.19 (4) 2.899 (6) 153 (4)
N2—H2E⋯O1iv 0.99 (4) 2.46 (4) 3.178 (6) 130 (3)
N2—H2E⋯O3iv 0.99 (4) 1.88 (4) 2.858 (5) 173 (4)
N2—H2F⋯O5v 0.96 (6) 2.05 (6) 2.967 (5) 159 (5)
N2—H2F⋯O6v 0.96 (6) 2.23 (6) 3.016 (6) 139 (4)
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [-x+{\script{3\over 2}}, -y, z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, -y, z+{\script{1\over 2}}]; (iv) x, y, z+1; (v) [x-{\script{1\over 2}}, -y-{\script{1\over 2}}, -z+1].
[Figure 3]
Figure 3
Structure of (I)[link] viewed along the [001] direction, showing the infinite layers parallel to the ac plane. The N—H⋯O hydrogen bonds are shown as orange dashed lines.
[Figure 4]
Figure 4
Unit-cell contents for (I)[link] shown in projection down the a axis, showing the infinite undulating chains. The orange dotted lines indicate N—H⋯O hydrogen bonds.
[Figure 5]
Figure 5
A view showing the R12(3) motif built by N—H⋯O hydrogen bonds in the undulating chain. C and H atoms not involved in the inter­molecular inter­actions (dashed lines) have been omitted for clarity.
[Figure 6]
Figure 6
A view of the supra­molecular layer in the ac plane of (I)[link], showing the formation of the R12(3), R63(12) and R64(14) motifs. C and H atoms not involved in hydrogen bonds (orange dashed lines) have been omitted for clarity.

4. Hirshfeld surface analysis and energy framework calculations

The Hirshfeld surfaces (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and their relative 2D fingerprint plots (Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]; Parkin et al., 2007[Parkin, A., Barr, G., Dong, W., Gilmore, C. J., Jayatilaka, D., McKinnon, J. J., Spackman, M. A. & Wilson, C. C. (2007). CrystEngComm, 9, 648-652.]; Rohl et al., 2008[Rohl, A. L., Moret, M., Kaminsky, W., Claborn, K., McKinnon, J. J. & Kahr, B. (2008). Cryst. Growth Des. 8, 4517-4525.])) were drawn using CrystalExplorer 3.1 (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer 3.1. University of Western Australia.]). The qu­anti­fying and decoding of the inter­molecular contacts in the crystal packing are visualized using dnorm (normalized contact distance) and 2D fingerprint plots, respectively. The dark-red spots on the dnorm surface arise as a result of short inter­atomic contacts, while the other inter­molecular inter­actions appear as light-red spots. di (inside) and de (outside) represent the distances to the Hirshfeld surface from the nuclei, with respect to the relative van der Waals radii. The proportional contribution of the contacts over the surface is visualized by the color gradient (blue to red) in the fingerprint plots.

The Hirshfeld surface mapped over dnorm in the range 0.0620 to 0.9660 a.u. is illustrated in Fig. 7[link]. Information regarding the inter­molecular inter­actions, visible as spots on the Hirshfeld surface (Fig. 7[link]), is summarized in Table 1[link]. For instance, the distinct circular depressions (red spots) are due to the N—H⋯O contacts, whereas the white spots are due to H⋯H contacts.

[Figure 7]
Figure 7
Hirshfeld surface around the constituents of (I)[link] coloured according to dnorm. The surface is shown as transparent to allow visualization of the orientation and conformation of the functional groups.

The inter­molecular inter­actions present in the structure are also visible on the two-dimensional fingerprint plot, which can be decomposed to qu­antify the individual contributions of each inter­molecular inter­action involved in the structure. The H⋯O/O⋯H contacts associated with N— H⋯O hydrogen bonding appear to be the major contributor to the crystal packing (68.8%); these contacts are represented by the spikes in the top-left (de > di, H⋯O, 31.3%) and bottom-right (de < di, O⋯H, 37.5%) regions of the related plots in Fig. 8[link]a. Inter­actions of the type H⋯H appear in the middle of the scattered points in the fingerprint plots; they comprise 24.6% of the entire surface (Fig. 8[link]b). The forceps-like tips in the region de + di ≃ 3 Å of the fingerprint plot (Fig. 8[link]c) represent a significant H⋯N/N⋯H contribution, covering 4.2% of the total Hirshfeld surface of (I)[link]. The O⋯O contacts, which represent only 2.4% of the Hirshfeld surface, Fig. 8[link]d, are extremely impoverished in the crystal (enrichment ratio EOO = 0.17; Jelsch et al., 2014[Jelsch, C., Ejsmont, K. & Huder, L. (2014). IUCrJ, 1, 119-128.]), as the oxygen atoms bound to nitro­gen and the NO3 group as a whole are electronegative, therefore the O⋯O contacts are electrostatically repulsive.

[Figure 8]
Figure 8
Two-dimensional fingerprint plots for (I)[link] showing contributions from different contacts: (a) H⋯O/O⋯H, (b) H⋯H, (c) H⋯N/N⋯H and (d) O⋯O.

Fig. 9[link] shows the voids (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer 3.1. University of Western Australia.]) in the crystal structure of (I)[link]. These are based on the sum of spherical atomic electron densities at the appropriate nuclear positions (procrystal electron density). The crystal-void calculation (results under 0.002 a.u. isovalue) shows the void volume of title compound to be of the order of 469.14 Å3 and surface area in the order of 1334.82 Å2. With the porosity, the calculated void volume of (I)[link] is 17%. There are no large cavities. We note that the electron-density isosurfaces are not completely closed around the components, but are open at those locations where inter­species approaches are found, e.g. N—H⋯O.

[Figure 9]
Figure 9
Void plot for (I)[link].

The crystallographic information file (crystal geometry and hydrogen bond distances to 1.083 Å) was used as input to CrystalExplorer 17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer 17. University of Western Australia.]) and the inter­molecular inter­action energies were calculated for the energy-framework analysis. This calculation is estimated from a single-point mol­ecular wavefunction at B3LYP/6- 31G(d,p). A cluster of radius 3.8 Å was generated around the mol­ecule and the energy calculation was performed. The neighbouring mol­ecules (density matrices) are generated within this shell by applying crystallographic symmetry operations with respect to the central mol­ecule (density matrix). The inter­action energy is broken down as Etot = keleE′ele + kpolE′pol + kdisE′dis + krepE′rep where the k values are scale factors, E′ele represents the electrostatic component, E′pol the polarization energy, E′dis the dispersion energy, and E′rep the exchange-repulsion energy (Turner et al., 2014[Turner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249-4255.]; Mackenzie et al., 2017[Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575-587.]).

Table 2[link] shows the results of the inter­action energies calculations. The results are represented graphically in Fig. 10[link] as framework energy diagrams. The mol­ecular pair-wise inter­action energies calculated for the construction of energy frameworks are used to evaluate the net inter­action energies. The total inter­action energies are electrostatic (E′ele = −247.8 kJ mol−1), polarization (E′pol = −379.5 kJ mol−1), dispersion (E′dis = −43.7 kJ mol−1), repulsion (E′rep = 23.6 kJ mol−1), and total inter­action energy (Etot = −566.3 kJ mol−1). The electrostatic energy framework is dominant over the dispersion energy framework (Fig. 10[link]).

Table 2
Inter­action energies

N refers to the number of mol­ecules with an R mol­ecular centroid-to-centroid distance (Å). Energies are in kJ mol−1.

N Symop R Eele Epol Edis Erep Etot
2 x, −y + [{1\over 2}], z + [{1\over 2}] 8.51 −63.9 −50.6 −6.3 5.4 −107.1
1 x, −y, −z 9.69 32.1 −42.9 −4.6 1.8 −0.7
2 x, y + [{1\over 2}], −z + [{1\over 2}] 8.86 0.0 −53.8 0.0 0.0 −39.8
2 x + [{1\over 2}], −y + [{1\over 2}], z 5.33 −23.1 −75.4 −20.1 14.1 −89.0
1 x + [{1\over 2}], −y + [{1\over 2}], z 5.60 −21.5 −50.6 −6.3 2.1 −64.4
1 x + [{1\over 2}], −y + [{1\over 2}], z 5.77 11.3 −14.6 −0.5 0.0 0.7
1 x + [{1\over 2}], −y + [{1\over 2}], z 5.33 −44.5 −18.9 −0.8 0.0 −61.8
1 x, −y, −z 7.97 −128.4 −53.8 −4.3 0.2 −179.2
1 x, −y, −z 6.43 −9.8 −18.9 −0.8 0.0 −25.0
Scale factors used to determine Etot: kele = 1.057, kpol = 0.740, kdis = 0.871, krep = 0.618 (Mackenzie et al., 2017[Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575-587.]).
[Figure 10]
Figure 10
Energy framework diagram for separate electrostatic (left, red) and dispersion (middle, green) components of (I)[link] and the total inter­action energy (right, blue). The energy factor scale is 60 and the cut-off is 5.00 kJ mol−1.

5. Synthesis and crystallization

1,3-Cyclo­hexa­nebis(methyl­amine) (1 mmol) was dissolved in water (10 mL) and nitric acid (2 mmol in 10 mL of water). The resulting solution was stirred for 3 h, filtered and then left to stand at room temperature. Colorless crystals were obtained after five days by slow evaporation.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All C-bound hydrogen atoms were included in calculated positions with C—H = 0.98 (CH group) or 0.97 Å (methyl­ene) and allowed to ride, with Uiso(H) = 1.2Ueq(C). N-bound H atoms were located in difference-Fourier maps and freely refined.

Table 3
Experimental details

Crystal data
Chemical formula C8H20N22+·2NO3
Mr 268.28
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 293
a, b, c (Å) 10.475 (4), 16.884 (4), 15.514 (2)
V3) 2743.8 (13)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.52 × 0.40 × 0.15
 
Data collection
Diffractometer Enraf–Nonius CAD-4
Absorption correction ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.])
Tmin, Tmax 0.946, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 3798, 2980, 991
Rint 0.036
(sin θ/λ)max−1) 0.638
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.173, 0.98
No. of reflections 2980
No. of parameters 187
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.17, −0.13
Computer programs: CAD-4 EXPRESS (Duisenberg, 1992[Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.]; Macíček & Yordanov, 1992[Macíček, J. & Yordanov, A. (1992). J. Appl. Cryst. 25, 73-80.]), XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992); cell refinement: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2006) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).

[3-(Azaniumylmethyl)cyclohexyl]methanaminium dinitrate top
Crystal data top
C8H20N22+·2NO3Dx = 1.299 Mg m3
Mr = 268.28Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 25 reflections
a = 10.475 (4) Åθ = 11–15°
b = 16.884 (4) ŵ = 0.11 mm1
c = 15.514 (2) ÅT = 293 K
V = 2743.8 (13) Å3Plate, colorless
Z = 80.52 × 0.40 × 0.15 mm
F(000) = 1152
Data collection top
Enraf–Nonius CAD-4
diffractometer
991 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.036
Graphite monochromatorθmax = 27.0°, θmin = 2.4°
ω/2θ scansh = 132
Absorption correction: ψ scan
(North et al., 1968)
k = 119
Tmin = 0.946, Tmax = 1.000l = 121
3798 measured reflections2 standard reflections every 120 reflections
2980 independent reflections intensity decay: 1%
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.062H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.173 w = 1/[σ2(Fo2) + (0.063P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max < 0.001
2980 reflectionsΔρmax = 0.17 e Å3
187 parametersΔρmin = 0.13 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.5381 (5)0.0463 (2)0.6598 (3)0.0659 (10)
H1A0.601 (4)0.058 (2)0.694 (3)0.081 (16)*
H1B0.550 (3)0.080 (2)0.611 (2)0.085 (13)*
H1C0.471 (4)0.059 (3)0.690 (3)0.096 (19)*
N20.4634 (5)0.1776 (3)1.0032 (3)0.0674 (10)
H2D0.534 (4)0.178 (3)1.016 (3)0.081 (19)*
H2E0.431 (4)0.155 (2)1.057 (3)0.098 (15)*
H2F0.426 (5)0.230 (3)1.002 (3)0.16 (2)*
C10.5681 (4)0.0935 (2)0.7032 (2)0.0606 (10)
H10.65490.08190.72320.073*
C20.4800 (4)0.0856 (2)0.7804 (2)0.0652 (11)
H2A0.48320.03160.80160.078*
H2B0.39300.09650.76260.078*
C30.5166 (4)0.1416 (2)0.8520 (2)0.0601 (10)
H30.60370.12790.86950.072*
C40.5197 (4)0.2269 (2)0.8201 (2)0.0652 (11)
H4A0.55120.26100.86570.078*
H4B0.43380.24370.80580.078*
C50.6040 (4)0.2355 (2)0.7419 (2)0.0784 (12)
H5A0.69200.22590.75830.094*
H5B0.59790.28930.72040.094*
C60.5673 (4)0.1791 (2)0.6718 (2)0.0741 (12)
H6A0.48260.19230.65100.089*
H6B0.62640.18450.62410.089*
C70.5393 (4)0.0372 (2)0.6311 (2)0.0701 (11)
H7A0.60300.04360.58620.084*
H7B0.45680.05030.60660.084*
C80.4321 (4)0.1278 (2)0.9289 (2)0.0710 (11)
H8A0.43860.07270.94580.085*
H8B0.34420.13770.91230.085*
N30.2781 (4)0.09045 (18)0.1598 (2)0.0718 (9)
O10.2195 (3)0.10116 (18)0.0922 (2)0.1032 (11)
O20.2248 (3)0.06216 (17)0.22373 (18)0.0826 (9)
O30.3922 (3)0.1097 (2)0.16492 (19)0.1031 (11)
N40.7872 (4)0.1535 (2)0.0224 (2)0.0685 (9)
O40.7259 (3)0.09475 (18)0.0414 (3)0.1171 (12)
O50.9065 (3)0.15214 (15)0.02450 (17)0.0747 (8)
O60.7335 (3)0.21487 (18)0.0004 (2)0.1000 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.070 (3)0.063 (3)0.065 (2)0.009 (2)0.001 (3)0.010 (2)
N20.071 (3)0.078 (3)0.054 (2)0.000 (2)0.001 (2)0.0046 (19)
C10.064 (3)0.059 (2)0.058 (2)0.004 (2)0.004 (2)0.001 (2)
C20.073 (3)0.056 (2)0.066 (2)0.009 (2)0.005 (2)0.0013 (19)
C30.062 (2)0.058 (2)0.060 (2)0.005 (2)0.000 (2)0.009 (2)
C40.072 (3)0.054 (2)0.069 (2)0.003 (2)0.000 (2)0.0053 (19)
C50.098 (3)0.058 (2)0.080 (3)0.013 (2)0.011 (3)0.001 (2)
C60.091 (3)0.062 (2)0.070 (3)0.003 (2)0.016 (2)0.000 (2)
C70.084 (3)0.063 (3)0.063 (2)0.000 (2)0.007 (2)0.000 (2)
C80.076 (3)0.071 (2)0.066 (2)0.012 (2)0.007 (2)0.007 (2)
N30.074 (3)0.068 (2)0.074 (3)0.001 (2)0.005 (2)0.0120 (19)
O10.092 (2)0.140 (3)0.078 (2)0.009 (2)0.0104 (19)0.0334 (19)
O20.081 (2)0.0903 (19)0.0764 (18)0.0065 (17)0.0102 (17)0.0262 (16)
O30.074 (2)0.140 (3)0.096 (2)0.028 (2)0.0052 (19)0.033 (2)
N40.070 (3)0.075 (2)0.060 (2)0.003 (2)0.016 (2)0.0003 (19)
O40.091 (2)0.095 (2)0.165 (3)0.024 (2)0.026 (2)0.042 (2)
O50.071 (2)0.082 (2)0.0709 (18)0.0077 (16)0.0064 (16)0.0090 (14)
O60.084 (2)0.0728 (17)0.143 (3)0.0103 (17)0.033 (2)0.0060 (18)
Geometric parameters (Å, º) top
N1—C71.479 (5)C4—C51.507 (5)
N1—H1A0.87 (4)C4—H4A0.9700
N1—H1B0.95 (4)C4—H4B0.9700
N1—H1C0.87 (5)C5—C61.496 (5)
N2—C81.464 (5)C5—H5A0.9700
N2—H2D0.77 (4)C5—H5B0.9700
N2—H2E0.99 (4)C6—H6A0.9700
N2—H2F0.96 (6)C6—H6B0.9700
C1—C71.499 (5)C7—H7A0.9700
C1—C21.518 (5)C7—H7B0.9700
C1—C61.524 (5)C8—H8A0.9700
C1—H10.9800C8—H8B0.9700
C2—C31.508 (4)N3—O11.229 (4)
C2—H2A0.9700N3—O21.234 (4)
C2—H2B0.9700N3—O31.241 (4)
C3—C81.503 (5)N4—O41.218 (4)
C3—C41.523 (5)N4—O61.227 (4)
C3—H30.9800N4—O51.250 (4)
C7—N1—H1A113 (3)C5—C4—H4B109.3
C7—N1—H1B109 (2)C3—C4—H4B109.3
H1A—N1—H1B104 (3)H4A—C4—H4B108.0
C7—N1—H1C114 (3)C6—C5—C4111.9 (3)
H1A—N1—H1C103 (4)C6—C5—H5A109.2
H1B—N1—H1C113 (4)C4—C5—H5A109.2
C8—N2—H2D115 (3)C6—C5—H5B109.2
C8—N2—H2E112 (2)C4—C5—H5B109.2
H2D—N2—H2E96 (4)H5A—C5—H5B107.9
C8—N2—H2F114 (3)C5—C6—C1111.7 (3)
H2D—N2—H2F113 (5)C5—C6—H6A109.3
H2E—N2—H2F104 (4)C1—C6—H6A109.3
C7—C1—C2114.3 (3)C5—C6—H6B109.3
C7—C1—C6111.2 (3)C1—C6—H6B109.3
C2—C1—C6109.4 (3)H6A—C6—H6B107.9
C7—C1—H1107.2N1—C7—C1112.4 (3)
C2—C1—H1107.2N1—C7—H7A109.1
C6—C1—H1107.2C1—C7—H7A109.1
C3—C2—C1111.9 (3)N1—C7—H7B109.1
C3—C2—H2A109.2C1—C7—H7B109.1
C1—C2—H2A109.2H7A—C7—H7B107.9
C3—C2—H2B109.2N2—C8—C3113.8 (3)
C1—C2—H2B109.2N2—C8—H8A108.8
H2A—C2—H2B107.9C3—C8—H8A108.8
C8—C3—C2109.8 (3)N2—C8—H8B108.8
C8—C3—C4114.6 (3)C3—C8—H8B108.8
C2—C3—C4111.0 (3)H8A—C8—H8B107.7
C8—C3—H3107.0O1—N3—O2121.1 (4)
C2—C3—H3107.0O1—N3—O3119.8 (4)
C4—C3—H3107.0O2—N3—O3119.1 (4)
C5—C4—C3111.5 (3)O4—N4—O6120.9 (4)
C5—C4—H4A109.3O4—N4—O5120.3 (4)
C3—C4—H4A109.3O6—N4—O5118.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.87 (4)2.22 (4)3.084 (6)169 (4)
N1—H1A···O3i0.87 (4)2.36 (4)3.013 (5)132 (3)
N1—H1B···O4ii0.95 (4)2.59 (4)3.187 (6)121 (3)
N1—H1B···O5ii0.95 (4)1.87 (4)2.818 (5)172 (3)
N1—H1C···O2iii0.87 (5)2.12 (5)2.939 (6)157 (4)
N2—H2D···O4iv0.77 (4)2.48 (4)3.142 (6)145 (4)
N2—H2D···O6iv0.77 (4)2.19 (4)2.899 (6)153 (4)
N2—H2E···O1iv0.99 (4)2.46 (4)3.178 (6)130 (3)
N2—H2E···O3iv0.99 (4)1.88 (4)2.858 (5)173 (4)
N2—H2F···O5v0.96 (6)2.05 (6)2.967 (5)159 (5)
N2—H2F···O6v0.96 (6)2.23 (6)3.016 (6)139 (4)
Symmetry codes: (i) x+1, y, z+1; (ii) x+3/2, y, z+1/2; (iii) x+1/2, y, z+1/2; (iv) x, y, z+1; (v) x1/2, y1/2, z+1.
Interaction energies. top
N refers to the number of molecules with an R molecular centroid-to-centroid distance (Å). Energies are in kJ mol-1.
NSymopRE'eleE'polE'disE'repEtot
2-x, -y + 1/2, z + 1/28.51-63.9-50.6-6.35.4-107.1
1-x, -y, -z9.6932.1-42.9-4.61.8-0.7
2x, y + 1/2, -z + 1/28.860.0-53.80.00.0-39.8
2x + 1/2, -y + 1/2, z5.33-23.1-75.4-20.114.1-89.0
1x + 1/2, -y + 1/2, z5.60-21.5-50.6-6.32.1-64.4
1x + 1/2, -y + 1/2, z5.7711.3-14.6-0.50.00.7
1x + 1/2, -y + 1/2, z5.33-44.5-18.9-0.80.0-61.8
1-x, -y, -z7.97-128.4-53.8-4.30.2-179.2
1-x, -y, -z6.43-9.8-18.9-0.80.0-25.0
Scale factors used to determine Etot: kele = 1.057, kpol = 0.740, kdis = 0.871, krep = 0.618 (Mackenzie et al., 2017).
 

Acknowledgements

The authors are grateful to Dr R. Ben Smail, Carthage University, Preparatory Institute for Engineering Studies of Nabeul, for fruitful discussions.

References

First citationBen Jomaa, M., Chebbi, H., Fakhar Bourguiba, N. & Zid, M. F. (2018). Acta Cryst. E74, 91–97.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBen Smail, R., Chebbi, H., Srinivasan, B. R. & Zid, M. F. (2017). J. Struct. Chem. 58, 724–733.  Web of Science CrossRef Google Scholar
First citationBlerk, C. van & Kruger, G. J. (2009). Acta Cryst. E65, o1008.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBonhomme, F. & Kanatzidis, M. G. (1998). Chem. Mater. 10, 1153–1159.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandán, S. A. (2012a). Nitrate: occurrence, characteristics and health considerations. Edited Collection. Hauppauge, New York: Nova Science Publishers.  Google Scholar
First citationBrandán, S. A. (2012b). Structural and vibrational study of the chromyl chlorosulfate, fluorosulfate, and nitrate compounds. Dordrecht: Springer.  Google Scholar
First citationBrandán, S. A. (2015). Descriptors, structural and spectroscopic properties of heterocyclic derivatives of importance for the health and the enviroment. Edited Collection. Hauppauge, New York: Nova Science Publishers.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCastillo, M. V., Romano, E., Lanús, H. E., Díaz, S. B., Ben Altabef, A. & Brandán, S. A. (2011). J. Mol. Struct. 994, 202–208.  Web of Science CrossRef Google Scholar
First citationChebbi, H., Ben Smail, R. & Zid, M. F. (2014). Acta Cryst. E70, o642.  CSD CrossRef IUCr Journals Google Scholar
First citationChebbi, H., Ben Smail, R. & Zid, M. F. (2016). J. Struct. Chem. 57, 632–635.  Web of Science CSD CrossRef CAS Google Scholar
First citationChebbi, H., Boumakhla, A., Zid, M. F. & Guesmi, A. (2017). Acta Cryst. E73, 1453–1457.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChebbi, H. & Driss, A. (2001). Acta Cryst. C57, 1369–1370.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationChebbi, H. & Driss, A. (2002a). Acta Cryst. E58, m147–m149.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChebbi, H. & Driss, A. (2002b). Acta Cryst. E58, m494–m496.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChebbi, H. & Driss, A. (2004). Acta Cryst. E60, m904–m906.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationChebbi, H., Hajem, A. A. & Driss, A. (2000). Acta Cryst. C56, e333–e334.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDuisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92–96.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGatfaoui, S., Mezni, A., Roisnel, T. & Marouani, H. (2017). J. Mol. Struct. 1139, 52–59.  Web of Science CrossRef Google Scholar
First citationHakiri, R., Ameur, I., Abid, S. & Derbel, N. (2018). J. Mol. Struct. 1164, 468–492.  Web of Science CrossRef Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationHuo, Q., Xu, R., Li, S., Ma, Z., Thomas, J. M., Jones, R. H. & Chippindale, A. M. (1992). J. Chem. Soc. Chem. Commun. pp. 875–876.  CrossRef Web of Science Google Scholar
First citationJelsch, C., Ejsmont, K. & Huder, L. (2014). IUCrJ, 1, 119–128.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationKagan, C. R., Mitzi, D. B. & Dimitrakopoulos, C. D. (1999). Science, 286, 945–947.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKimizuka, N. & Kunitake, T. (1996). Adv. Mater. 8, 89–91.  CrossRef CAS Web of Science Google Scholar
First citationLi, H.-H., Chen, Z.-R., Cheng, L.-C., Liu, J.-B., Chen, X.-B. & Li, J.-Q. (2008). Cryst. Growth Des. 8, 4355–4358.  Web of Science CrossRef Google Scholar
First citationMacíček, J. & Yordanov, A. (1992). J. Appl. Cryst. 25, 73–80.  CrossRef Web of Science IUCr Journals Google Scholar
First citationMackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMitzi, D. B., Prikas, M. T. & Chondroudis, K. (1999). Chem. Mater. 11, 542–544.  Web of Science CrossRef CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationParkin, A., Barr, G., Dong, W., Gilmore, C. J., Jayatilaka, D., McKinnon, J. J., Spackman, M. A. & Wilson, C. C. (2007). CrystEngComm, 9, 648–652.  Web of Science CrossRef CAS Google Scholar
First citationPham, H. Q. & Marks, M. J. (2012). Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH.  Google Scholar
First citationRohl, A. L., Moret, M., Kaminsky, W., Claborn, K., McKinnon, J. J. & Kahr, B. (2008). Cryst. Growth Des. 8, 4517–4525.  Web of Science CSD CrossRef CAS Google Scholar
First citationShao, L., Chung, T. S., Goh, S. H. & Pramoda, K. P. (2005). J. Membr. Sci. 267, 78–89.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationTorfgård, K. E. & Ahlner, J. (1994). Cardiovasc. Drug. Ther. 8, 701–717.  Google Scholar
First citationTurner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249–4255.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer 17. University of Western Australia.  Google Scholar
First citationWachhold, M. & Kanatzidis, M. G. (2000). Chem. Mater. 12, 2914–2923.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer 3.1. University of Western Australia.  Google Scholar
First citationYang, Y., Zhao, Y., Yu, J., Wu, S. & Wang, R. (2008). Inorg. Chem. 47, 769–771.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds