research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of (2E)-3-(3-chloro­phen­yl)-1-(3,4-di­meth­­oxy­phen­yl)prop-2-en-1-one

crossmark logo

aDepartment of Chemistry, GSSS Institute of Engineering & Technology for Women, Mysuru 570 016, Karnataka, India, bİlke Education and Health Foundation, Cappadocia University, Cappadocia Vocational College, The Medical Imaging Techniques Program, 50420 Mustafapaşa, Ürgüp, Nevşehir, Turkey, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, dDepartment of Engineering Chemistry, Vidya Vikas Institute of Engineering & Technology, Visvesvaraya Technological University, Alanahalli, Mysuru 570 028, Karnataka, India, eX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, fDepartment of Chemistry, Cauvery Institute of Technology, Mandya 571 402, Karnataka, India, and gDepartment of Chemistry, Sri Siddhartha Institute of Technology, Tumkur 572 105, Karnataka, India
*Correspondence e-mail: akkurt@erciyes.edu.tr

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 25 May 2018; accepted 6 June 2018; online 8 June 2018)

In title compound, C17H15ClO3, the dihedral angle between the benzene and chloro­phenyl rings is 18.46 (7)°. In the crystal, mol­ecules are linked by C—H⋯O hydrogen contacts, enclosing an R22(14) ring motif, and by a further C—H⋯O hydrogen contact, forming a two-dimensional supra­molecular structure extending along the direction parallel to the ac plane. Hirshfeld surface analysis shows that van der Waals inter­actions constitute the major contribution to the inter­molecular inter­actions, with H⋯H contacts accounting for 36.2% of the surface.

1. Chemical context

Materials exhibiting two photon absorption (TPA) have wide applications such as frequency-up lasing, multi-photon microscopy, three-dimensional fluorescence imaging, eye and sensor protection. Materials with potential non-linear optical (NLO) properties have significant applications in the field of photonics. Chalcone and its derivatives have attracted significant attention in the past few years because of their availability of high optical non-linearities resulting from the significant delocalization of π-conjugated electron clouds throughout the chalcone system, providing a large charge-transfer axis with appropriate substituents on the terminal aromatic rings. The second harmonic generation (SHG) efficiency of these compounds is due to the strong inter­molecular electron–donor–acceptor inter­actions, which may also enhance the non-linear optical (NLO) properties. With the possibility of developing low-cost, large-area and flexible electronic devices, π-conjugated systems have been studied extensively for their optoelectronic properties (Chandra Shekhara Shetty et al., 2016[Chandra Shekhara Shetty, T., Raghavendra, S., Chidan Kumar, C. S. & Dharmaprakash, S. M. (2016). Appl. Phys. B, 122, 205.], 2017[Chandra Shekhara Shetty, T., Chidan Kumar, C. S., Gagan Patel, K. N., Chia, T. S., Dharmaprakash, S. M., Ramasami, P., Umar, Y., Chandraju, S. & Quah, C. K. (2017). J. Mol. Struct. 1143, 306-317.]).

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The title compound is constructed from two aromatic rings (chlorophenyl and terminal meth­oxy­phenyl rings), which are linked by a C=C—C(=O)—C enone bridge. Compared to the nearly coplanar arrangement of rings in the title compound, the molecule is twisted substanti­ally [C5—C6—C7—O3 = 3.5 (2) ° and O3—C7—C8—C9 = 10.5 (2) °] about the enone bridge, which may arise from steric repulsion with the ortho-O2 atom. Hence, the dihedral angle between the 3,4-meth­oxy­phenyl and chloro­phenyl rings increases to 18.46 (7)°. The C atoms of the meth­oxy groups are close to the plane of their attached ring: deviations of C16 and C17 are 0.252 (2) and 0.038 (2) Å, respectively. The bond lengths and angles are comparable with those in the similar compounds (E)-3-(3,4-di­meth­oxy­phen­yl)-1-(1-hy­droxy­naph­th­alen-2­yl)prop-2-en-1-one (Ezhilarasi et al., 2015[Ezhilarasi, K. S., Reuben Jonathan, D., Vasanthi, R., Revathi, B. K. & Usha, G. (2015). Acta Cryst. E71, o371-o372.]), (E)-1-(3-bromo­phen­yl)-3-(3,4-di­meth­oxy­phen­yl)prop-2-en-1-one (Esco­bar et al., 2012[Escobar, C. A., Trujillo, A., Howard, J. A. K. & Fuentealba, M. (2012). Acta Cryst. E68, o887.]) and (E)-3-(2-bromo­phen­yl)-1-(3,4-di­meth­oxy­phen­yl)prop-2-en-1-one (Li et al., 2012[Li, Z., Wang, Y., Peng, K., Chen, L. & Chu, S. (2012). Acta Cryst. E68, o776.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, mol­ecules are linked by C—H⋯O hydrogen contacts (Table 1[link], Fig. 2[link]), enclosing an [R_{2}^{2}](14) ring motif, and by a further C—H⋯O hydrogen contact, forming a three-dimensional structure extending in the a- and c-axis directions.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11A⋯O3i 0.93 2.54 3.417 (2) 157
C15—H15A⋯O2ii 0.93 2.54 3.4378 (18) 163
Symmetry codes: (i) [-x+1, -y+1, -z]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
A view along the a axis of the crystal packing of the title compound. Inter­molecular inter­actions are shown as dashed lines.

Hirshfeld surfaces and fingerprint plots were generated for the title compound based on the crystallographic information file (CIF) using CrystalExplorer (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]). Hirshfeld surfaces enable the visualization of inter­molecular inter­actions by different colors and color intensity, representing short or long contacts and indicating the relative strength of the inter­actions. Figs. 3[link] and 4[link] show the Hirshfeld surfaces mapped over dnorm(−0.16 to 1.25 a.u.) and shape-index (−1.0 to 1.0 a.u.).

[Figure 3]
Figure 3
View of the three-dimensional Hirshfeld surface of the title compound mapped over dnorm.
[Figure 4]
Figure 4
Hirshfeld surface of the title complex plotted over shape-index.

In Fig. 3[link], the spots near atoms O2 and O3 result from the C15—H15A⋯O2ii and C11—H11A⋯O3i inter­actions significant in the mol­ecule packing of the title compound (Table 1[link]). Some of the short inter­molecular contacts for the title compound are listed in Table 2[link]. The Hirshfeld surfaces illustrated in Fig. 3[link] also reflect the involvement of different atoms in the inter­molecular inter­actions through the appearance of blue and red regions around the participating atoms, which correspond to positive and negative electrostatic potential, respectively.

Table 2
Summary of short inter­atomic contacts (Å) in the title compound

Contact Distance Symmetry operation
Cl1⋯H17B 3.05 −1 + x, 1 + y, z
Cl1⋯C1 3.4666 (15) [{1\over 2}] − x, [{1\over 2}] + y, [{1\over 2}] − z
O2⋯H15A 2.54 [{3\over 2}] − x, −[{1\over 2}] + y, [{1\over 2}] − z
O1⋯H17A 2.86 [{5\over 2}] − x, [{1\over 2}] + y, [{1\over 2}] − z
H17C⋯C10 2.88 1 + x, y, z
H11A⋯O3 2.54 1 − x, 1 − y, −z
C1⋯Cl1 3.4666 (15) [{1\over 2}] − x, −[{1\over 2}] + y, [{1\over 2}] − z
H15A⋯O2 2.54 [{3\over 2}] − x, [{1\over 2}] + y, [{1\over 2}] − z
C10⋯H17C 2.88 −1 + x, y, z
C13⋯C13 3.497 (2) x, 2 − y, −z
H13A⋯H16A 2.46 [{3\over 2}] + x, [{3\over 2}] − y, − [{1\over 2}] + z
H16A⋯H13A 2.46 [{3\over 2}] + x, [{3\over 2}] − y, [{1\over 2}] + z
H17A⋯O1 2.86 [{5\over 2}] − x, −[{1\over 2}] + y, [{1\over 2}] − z
H17B⋯Cl1 3.05 1 + x, −1 + y, z

The overall two-dimensional fingerprint plot for the title compound and those delineated into H⋯H, C⋯H/H⋯C, H⋯O/O⋯H, Cl⋯H/H⋯Cl and Cl⋯C/C⋯Cl contacts are illustrated in Fig. 5[link]; the percentage contributions from the different inter­atomic contacts to the Hirshfeld surfaces are as follows: H⋯H (36.2%), C⋯H/H⋯C (24.6%), H⋯O/O⋯H (19.2%), Cl⋯H/H⋯Cl (10.5%), Cl⋯C/C⋯Cl (5.8%), C⋯C (3.3%), Cl⋯O/O⋯Cl (0.3%) and O⋯C/C⋯O (0.2%), as shown in the two-dimensional fingerprint plots in Fig. 4[link].

[Figure 5]
Figure 5
The two-dimensional fingerprint plots of the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) C⋯H, (d) O⋯H, (e) Cl⋯H and (f) Cl⋯C inter­actions [de and di represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively].

4. Synthesis and crystallization

The reagents and solvents for the synthesis were obtained from the Aldrich Chemical Co. and were used without additional purification. 1-(3,4-Di­meth­oxy­phen­yl) ethanone (0.01 mol) and 3-chloro­benzaldehyde (0.01 mol) were dissolved in 20 ml methanol. A catalytic amount of NaOH was added to the solution dropwise with vigorous stirring. The reaction mixture was stirred for about 5–6 h at room temperature. The progress of the reaction was monitored by TLC. The formed crude products were filtered, washed successively with distilled water and recrystallized from ethanol to get the title chalcone. Crystals suitable for X-ray diffraction studies were obtained from acetone solution by slow evaporation at room temperature. The melting point (371–373 K) was determined by a Stuart Scientific (UK) apparatus. The purity of the compound was confirmed by thin layer chromatography using Merck silica gel 60 F254 coated aluminum plates.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. C-bound H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for C—H and C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms.

Table 3
Experimental details

Crystal data
Chemical formula C17H15ClO3
Mr 302.74
Crystal system, space group Monoclinic, P21/n
Temperature (K) 294
a, b, c (Å) 9.0491 (4), 8.3257 (4), 20.2857 (9)
β (°) 99.484 (1)
V3) 1507.44 (12)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.26
Crystal size (mm) 0.40 × 0.24 × 0.19
 
Data collection
Diffractometer Bruker APEXII CCD
No. of measured, independent and observed [I > 2σ(I)] reflections 39332, 5506, 3732
Rint 0.036
(sin θ/λ)max−1) 0.758
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.158, 1.01
No. of reflections 5506
No. of parameters 190
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.31, −0.43
Computer programs: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

(2E)-3-(3-Chlorophenyl)-1-(3,4-dimethoxyphenyl)prop-2-en-1-one top
Crystal data top
C17H15ClO3F(000) = 632
Mr = 302.74Dx = 1.334 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8862 reflections
a = 9.0491 (4) Åθ = 2.7–30.8°
b = 8.3257 (4) ŵ = 0.26 mm1
c = 20.2857 (9) ÅT = 294 K
β = 99.484 (1)°Block, yellow
V = 1507.44 (12) Å30.40 × 0.24 × 0.19 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
Rint = 0.036
φ and ω scansθmax = 32.6°, θmin = 2.0°
39332 measured reflectionsh = 1313
5506 independent reflectionsk = 1212
3732 reflections with I > 2σ(I)l = 3030
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.158 w = 1/[σ2(Fo2) + (0.0758P)2 + 0.3034P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
5506 reflectionsΔρmax = 0.31 e Å3
190 parametersΔρmin = 0.43 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.02901 (5)1.02517 (6)0.15452 (2)0.0710 (2)
O11.07019 (12)0.65283 (15)0.35402 (5)0.0576 (3)
O21.13649 (12)0.52216 (16)0.24887 (6)0.0634 (4)
O30.67255 (12)0.57110 (17)0.07167 (5)0.0632 (4)
C10.72153 (15)0.73479 (17)0.23869 (7)0.0458 (4)
C20.82535 (15)0.73642 (17)0.29717 (7)0.0463 (4)
C30.96267 (14)0.66310 (15)0.29901 (6)0.0420 (3)
C40.99836 (14)0.59071 (16)0.24086 (6)0.0415 (3)
C50.89499 (14)0.59023 (15)0.18335 (6)0.0405 (3)
C60.75372 (13)0.66142 (14)0.18154 (6)0.0394 (3)
C70.64331 (14)0.64884 (17)0.11929 (7)0.0444 (4)
C80.49469 (15)0.72588 (18)0.11575 (7)0.0495 (4)
C90.38379 (15)0.69300 (18)0.06640 (6)0.0452 (4)
C100.22936 (14)0.75164 (16)0.05882 (6)0.0424 (3)
C110.12555 (17)0.69543 (19)0.00574 (7)0.0525 (4)
C120.02283 (18)0.7421 (2)0.00148 (8)0.0610 (5)
C130.07040 (16)0.8446 (2)0.04383 (8)0.0564 (5)
C140.03261 (16)0.90063 (17)0.09633 (7)0.0470 (4)
C150.18120 (15)0.85720 (16)0.10468 (7)0.0447 (3)
C161.0326 (2)0.7046 (3)0.41599 (8)0.0826 (7)
C171.1814 (2)0.4431 (2)0.19409 (9)0.0669 (6)
H1A0.628880.783750.237880.0550*
H2A0.802420.786890.335120.0560*
H5A0.918670.542160.145040.0490*
H8A0.479000.798540.148720.0590*
H9A0.406420.625390.032950.0540*
H11A0.156120.625770.025230.0630*
H12A0.091130.703760.037340.0730*
H13A0.170360.875450.039110.0680*
H15A0.248860.897460.140350.0540*
H16A1.117640.691300.450690.1240*
H16B1.004320.815870.412820.1240*
H16C0.950440.641750.426280.1240*
H17A1.280640.400960.207050.1000*
H17B1.113300.356690.179880.1000*
H17C1.180730.517780.157990.1000*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0650 (3)0.0704 (3)0.0809 (3)0.0083 (2)0.0216 (2)0.0176 (2)
O10.0518 (6)0.0735 (7)0.0440 (5)0.0124 (5)0.0028 (4)0.0031 (5)
O20.0487 (6)0.0881 (8)0.0518 (6)0.0278 (5)0.0039 (4)0.0044 (5)
O30.0479 (6)0.0898 (8)0.0505 (6)0.0088 (5)0.0038 (4)0.0226 (6)
C10.0400 (6)0.0500 (7)0.0472 (7)0.0080 (5)0.0064 (5)0.0052 (5)
C20.0462 (7)0.0506 (7)0.0420 (6)0.0063 (5)0.0074 (5)0.0069 (5)
C30.0425 (6)0.0424 (6)0.0398 (6)0.0012 (5)0.0028 (5)0.0021 (5)
C40.0382 (6)0.0423 (6)0.0441 (6)0.0057 (5)0.0073 (5)0.0033 (5)
C50.0404 (6)0.0425 (6)0.0396 (6)0.0032 (5)0.0093 (5)0.0010 (5)
C60.0382 (6)0.0393 (5)0.0403 (6)0.0007 (4)0.0057 (4)0.0005 (4)
C70.0384 (6)0.0510 (7)0.0434 (6)0.0014 (5)0.0055 (5)0.0046 (5)
C80.0426 (6)0.0562 (8)0.0476 (7)0.0070 (6)0.0014 (5)0.0090 (6)
C90.0424 (6)0.0539 (7)0.0388 (6)0.0028 (5)0.0050 (5)0.0017 (5)
C100.0401 (6)0.0469 (6)0.0384 (6)0.0001 (5)0.0011 (5)0.0006 (5)
C110.0493 (7)0.0603 (8)0.0449 (7)0.0006 (6)0.0014 (6)0.0093 (6)
C120.0468 (8)0.0733 (10)0.0568 (8)0.0030 (7)0.0092 (6)0.0092 (7)
C130.0379 (6)0.0642 (9)0.0643 (9)0.0002 (6)0.0002 (6)0.0022 (7)
C140.0452 (7)0.0445 (6)0.0519 (7)0.0005 (5)0.0094 (5)0.0004 (5)
C150.0419 (6)0.0476 (6)0.0427 (6)0.0022 (5)0.0016 (5)0.0030 (5)
C160.0814 (12)0.1149 (17)0.0452 (8)0.0267 (12)0.0080 (8)0.0161 (10)
C170.0583 (9)0.0781 (11)0.0673 (10)0.0238 (8)0.0189 (8)0.0001 (8)
Geometric parameters (Å, º) top
Cl1—C141.7310 (15)C12—C131.374 (2)
O1—C31.3570 (16)C13—C141.376 (2)
O1—C161.422 (2)C14—C151.376 (2)
O2—C41.3593 (17)C1—H1A0.9300
O2—C171.408 (2)C2—H2A0.9300
O3—C71.2273 (18)C5—H5A0.9300
C1—C21.387 (2)C8—H8A0.9300
C1—C61.3832 (18)C9—H9A0.9300
C2—C31.3794 (19)C11—H11A0.9300
C3—C41.4088 (17)C12—H12A0.9300
C4—C51.3698 (17)C13—H13A0.9300
C5—C61.4041 (17)C15—H15A0.9300
C6—C71.4792 (18)C16—H16A0.9600
C7—C81.4810 (19)C16—H16B0.9600
C8—C91.3241 (19)C16—H16C0.9600
C9—C101.4643 (19)C17—H17A0.9600
C10—C111.3884 (19)C17—H17B0.9600
C10—C151.4005 (19)C17—H17C0.9600
C11—C121.382 (2)
C3—O1—C16117.66 (12)C6—C1—H1A120.00
C4—O2—C17118.77 (12)C1—C2—H2A120.00
C2—C1—C6120.98 (13)C3—C2—H2A120.00
C1—C2—C3119.94 (13)C4—C5—H5A120.00
O1—C3—C2124.80 (12)C6—C5—H5A120.00
O1—C3—C4115.43 (11)C7—C8—H8A119.00
C2—C3—C4119.77 (12)C9—C8—H8A119.00
O2—C4—C3114.38 (11)C8—C9—H9A116.00
O2—C4—C5125.88 (12)C10—C9—H9A117.00
C3—C4—C5119.72 (12)C10—C11—H11A120.00
C4—C5—C6120.80 (11)C12—C11—H11A120.00
C1—C6—C5118.76 (11)C11—C12—H12A120.00
C1—C6—C7122.74 (11)C13—C12—H12A120.00
C5—C6—C7118.45 (11)C12—C13—H13A121.00
O3—C7—C6120.42 (12)C14—C13—H13A121.00
O3—C7—C8120.14 (13)C10—C15—H15A120.00
C6—C7—C8119.40 (12)C14—C15—H15A120.00
C7—C8—C9121.08 (13)O1—C16—H16A109.00
C8—C9—C10127.00 (13)O1—C16—H16B109.00
C9—C10—C11118.76 (12)O1—C16—H16C109.00
C9—C10—C15122.38 (12)H16A—C16—H16B109.00
C11—C10—C15118.81 (12)H16A—C16—H16C109.00
C10—C11—C12120.58 (14)H16B—C16—H16C109.00
C11—C12—C13120.63 (15)O2—C17—H17A109.00
C12—C13—C14118.77 (14)O2—C17—H17B109.00
Cl1—C14—C13118.53 (11)O2—C17—H17C109.00
Cl1—C14—C15119.45 (11)H17A—C17—H17B109.00
C13—C14—C15122.00 (13)H17A—C17—H17C110.00
C10—C15—C14119.21 (13)H17B—C17—H17C109.00
C2—C1—H1A120.00
C16—O1—C3—C27.7 (2)C1—C6—C7—C83.84 (19)
C16—O1—C3—C4171.77 (15)C5—C6—C7—O33.5 (2)
C17—O2—C4—C3178.44 (13)C5—C6—C7—C8178.75 (12)
C17—O2—C4—C50.3 (2)O3—C7—C8—C910.5 (2)
C6—C1—C2—C30.5 (2)C6—C7—C8—C9167.28 (13)
C2—C1—C6—C51.0 (2)C7—C8—C9—C10175.76 (13)
C2—C1—C6—C7176.44 (13)C8—C9—C10—C11175.75 (15)
C1—C2—C3—O1177.65 (13)C8—C9—C10—C151.6 (2)
C1—C2—C3—C41.8 (2)C9—C10—C11—C12177.04 (14)
O1—C3—C4—O20.40 (17)C15—C10—C11—C120.4 (2)
O1—C3—C4—C5177.86 (12)C9—C10—C15—C14176.57 (13)
C2—C3—C4—O2179.87 (12)C11—C10—C15—C140.8 (2)
C2—C3—C4—C51.60 (19)C10—C11—C12—C130.2 (2)
O2—C4—C5—C6178.20 (13)C11—C12—C13—C140.4 (2)
C3—C4—C5—C60.2 (2)C12—C13—C14—Cl1178.21 (12)
C4—C5—C6—C11.13 (19)C12—C13—C14—C150.0 (2)
C4—C5—C6—C7176.39 (12)Cl1—C14—C15—C10177.64 (10)
C1—C6—C7—O3173.88 (14)C13—C14—C15—C100.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O30.932.452.7888 (18)102
C11—H11A···O3i0.932.543.417 (2)157
C15—H15A···O2ii0.932.543.4378 (18)163
Symmetry codes: (i) x+1, y+1, z; (ii) x+3/2, y+1/2, z+1/2.
Summary of short interatomic contacts (Å) in the title compound top
ContactDistanceSymmetry operation
Cl1···H17B3.05-1 + x, 1 + y, z
Cl1···C13.4666 (15)1/2 - x, 1/2 + y, 1/2 - z
O2···H15A2.543/2 - x, -1/2 + y, 1/2 - z
O1···H17A2.865/2 - x, 1/2 + y, 1/2 - z
H17C···C102.881 + x, y, z
H11A···O32.541 - x, 1 - y, -z
C1···Cl13.4666 (15)1/2 - x, -1/2 + y, 1/2 - z
H15A···O22.543/2 - x, 1/2 + y, 1/2 - z
C10···H17C2.88-1 + x, y, z
C13···C133.497 (2)-x, 2 - y, -z
H13A···H16A2.46-3/2 + x, 3/2 - y, - 1/2 + z
H16A···H13A2.463/2 + x, 3/2 - y, 1/2 + z
H17A···O12.865/2 - x, -1/2 + y, 1/2 - z
H17B···Cl13.051 + x, -1 + y, z
 

Acknowledgements

The authors extend their appreciation to the Vidya Vikas Research & Development Centre for the facilities and their encouragement.

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChandra Shekhara Shetty, T., Chidan Kumar, C. S., Gagan Patel, K. N., Chia, T. S., Dharmaprakash, S. M., Ramasami, P., Umar, Y., Chandraju, S. & Quah, C. K. (2017). J. Mol. Struct. 1143, 306–317.  Web of Science CrossRef Google Scholar
First citationChandra Shekhara Shetty, T., Raghavendra, S., Chidan Kumar, C. S. & Dharmaprakash, S. M. (2016). Appl. Phys. B, 122, 205.  Web of Science CrossRef Google Scholar
First citationEscobar, C. A., Trujillo, A., Howard, J. A. K. & Fuentealba, M. (2012). Acta Cryst. E68, o887.  CSD CrossRef IUCr Journals Google Scholar
First citationEzhilarasi, K. S., Reuben Jonathan, D., Vasanthi, R., Revathi, B. K. & Usha, G. (2015). Acta Cryst. E71, o371–o372.  Web of Science CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLi, Z., Wang, Y., Peng, K., Chen, L. & Chu, S. (2012). Acta Cryst. E68, o776.  CSD CrossRef IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds